A FRAMEWORK FOR AUTOMATIC FUNCTION POINT COUNTING
FROM SOURCE CODE

Vinh T. Ho and Alain Abran
Software Engineering Management Research Laboratory
Université du Québec a Montréal (Canada)

vho@lIrgl.ugam.ca

ABSTRACT

The paper proposes a general framework to build
a model for automatic Function Point Analysis
(FPA) from the source code of COBOL system
using program slicing technique. The COBOL
system source code is scanned by the model to
produce Function Point counts. The application’s
source files are used to define the application’s
boundary for the count. The model takes into
account the structure of the COBOL language to
identify physical files and transactions. Reserved
words as FDs, file input/output statements
(READ and WRITE) and user interface and data
manipulation statements (ACCEPT, DISPLAY
and MOVE) are used as basic information for
program slicing technique to identify candidate
physical files and transactions. Some heuristic
rules will be proposed in order to map candidate
physical files and transactions into candidate
logical files and transactions. These candidate
files and transactions are then assessed with
regards to the IFPUG’ identifying rules in order to
identify data function types and transactional
function types to be counted. The proposed
framework helps to build models for automating
Function Point Analysis from source code in
compliance with the IFPUG Counting Practices
Manual.

| INTRODUCTION

.1 Automation of Function Points
counting: scope and objectives

Function Point Analysis (FPA) is the
measurement of the functional size of software.
Function points are now being used for software
quality studies, software contract management,
business process re-engineering, and software
portfolio control (Jones, 1995). The latest release
of the method is the version 4.1 of the Counting
Practices Manual (IFPUG, 1999). The objectives
of Function Point Analysis (IFPUG, 1994) are: to

abran.alain@ugam.ca

measure what the user requested and received,
to measure independently of the technology used
for implementation, to provide a sizing measure
to support quality and productivity analysis, to
provide a vehicle for software estimation, and to
provide a normalization factor for software
comparison.

The process of Function Points counting is a
multi-step manual process that requires a labor
intensive and time consuming work and expertise
of the counter. Moreover, it depends on
availability and quality of documentation related
to the application to be counted. It is very useful
that some type of software support should be
possible and available to count Function Points.
Our research is interested in developing a tool
that can automatically count Function Points from
the source code of COBOL systems.

IFPUG defines automatic Function Point
counting as: “Where the system counts the
function points automatically based on stored
descriptions of the application functions, records
the count and performs appropriate calculations”.
The stored descriptions are referred to as
elements in the IFPUG case study no. 1 (IFPUG,
1994). The definition emphasizes on the fact that
these elements must be stored on some
computer-readable medium. Examples of
descriptions in the case study nol are: user
requirements, database physical structure,
interfaces and reports layout. Application
functions represent a sub-set of all user
requirements by representing the user practices
and procedures that the software must perform
to fulfil the wusers’ needs. Appropriate
calculations are referred to those based on the
rules of the Counting Practices Manual. That is to
obtain an accurate count with regards to the
IFPUG Counting Practices Manual (IFPUG
CPM).

International Workshop on Software Measurement (IWSM'99) — September 8-10, 1999

Lac Supérieur, Canada

1.2 Literature review on automatic Function

Point counting from source code

The ability to count function point directly from
source code is quite interesting for large
organizations that spend the majority of their time
maintaining software. One of the most pervasive
problems while maintaining software systems is
that most of the programs being maintained are
poorly documented and unstructured. As a result,
to manually apply Function Point Analysis to
these programs would not be realistic in terms of
time, cost and accuracy. However, there are few
attempts concerning automation of Function
Point counting from source code (Couturier,
1993; Mendes, 1996; Edge, 1997; April, 1997).

In their theoretical research on automation of
IFPUG function point analysis method, Paton
and Abran (1995) mentioned that the method
lacks a formal basis since the object to be
counted is nowhere defined in a precise manner.
It is clear from the IFPUG CPM that the object to
be counted must include such things as file,
records, fields, processes and that it must be
known which process read and write which fields
in which records in which files. They proposed a
formal notation for the rules of function point
analysis. By breaking function point counting
process, they figured out 17 tasks in counting
function points. It is indicated that twelve tasks
could be programmed while five other tasks need
user’s judgment. In (Paton and Abran, 1997), a
structured analysis of the counting rules was
presented using the specification techniques of
decision tables for the tasks that could be
automated. It is important to mention that all
proposed decision tables are justified by referring
to the IFPUG CPM. The analysis suggests the
following four applications: reviewing existing
tools based on IFPUG CPM 4.0, building a
validation protocol to facilitate the verification of
tools that claim to have automated the function
point counting process, extending the rules to
include uncodified practice used by expert
counters, and building a tool with which a
standard body can investigate the effect of
changing rules. Although their research has not
yet reach the construction of a prototype, their
works are the first detail theoretical research
published in the literature concerning automation
of function point counting process. It is worth
noting that their works fully support the IFPUG
counting rules.

249

Edge et al (1997) have proposed a model as a
solution to the problem of automating a function
point approximation count for COBOL legacy
system source code. As they indicated, an
important difference between this automated
process and manual counting is that the
automatic model cannot readily identify individual
logical transactions. It is mainly for this reason
that the model output is termed a function point
“approximation” rather than a function point
count. This model addresses both IFPUG and
Mk 1l function point counting methods. Note that
this work is still in progress.

April et al (1997) have proposed that there would
be a benefit in developing models that can be
easily automated, in particularly that would take
into account the CPM counting concepts and
rules. The CPM rules are expressed in natural
language and must be subject to formal definition
in order to automate them. Based on the semi-
formal representation proposed by Paton and
Abran (1995), they have put forward an
extension of the formalism to include a logical to
physical translation. Using this logical
representation, IFPUG counting rules could be
formalized while assuming that the primitives of
the FPA (i.e. file and process) were identified. An
example of formalization of four CPM identifying
rules associated to an external inquiry (EQ) was
presented. Reverse engineering techniques will
be used to identify the primitives (i.e., file and
process) of the FPA from the source code. This
work is original in the sense that it proposed an
approach for automation of function point
counting process that aims to fully support the
IFPUG concepts and rules. While this approach
appears as a promising research direction still a
large amount of theoretical and practical works,
as to refine the formal representation and to
select candidate reverse engineering techniques,
need to be done before a tool can be developed.

Software reverse engineering technologies are a
promising basis for building tools in order to
automate Function Point counting from source
code. In the next section, we propose using
program slicing technique to identify
automatically both data function types and
transactional function types from source code of
COBOL system.

I AUTOMATIC FUNCTION POINT
ANALYSIS USING PROGRAM SLICING
TECHNIQUES

.1 IFPUG Function Point Counting
Process

The function point measurement includes five
major visible externally components of software
applications: inputs, outputs, inquiries, logical
files, and interfaces. The Counting Practices
Manual published by the IFPUG (IFPUG, 1994)

Count

Data Function Types

Determine
Type of Count

Identify
Counting Boundry

Count

Types

Transactional Function

provides a method with a set of rules to measure
functional size from the user point of view. The
method can be devised in five major steps:
determine the type of the count, identify the
boundary of the count, determine the unadjusted
function point count, determine the value
adjustment factor, compute the final adjusted
count. Most counting time and effort are spent in
the third step: determine the unadjusted function
point count (Fig. 1), especially to identify data
and transactional function types. Once identified
the counting procedure is quite straightforward.

Determine
Unadjusted
Function Point Count
Determine
Final Adjusted
Function Point Count

Determine
>

» Value Adjustment
Factors

Figure 1. Function Point counting process (IFPUG, 1994)

The CPM provides a set of rules to identify each
of five major components that comprise an
application: internal logical file (ILF), external
logical file (ELF), external input (El), external
output (EO) and external inquiry (EQ). Our main
interest is to propose a framework based on
program slicing techniques to identify
automatically data and transactional function
types from source code.

.2 Background of

technology

program slicing

Program slicing is a program-analysis technique
that extracts from program statements relevant to
a particular computation. Such a particular
computation is referred as a slicing criterion and
is typically specified by a pair (program point, set
of variables). The parts of a program that have a
direct or indirect effect on the computation at a
slicing criterion constitute the program slice with
respect to that criterion. The task of computing
program slices is called program slicing (Tip,
1995). For example, a slice can answer the
guestion “What program statements potentially
affect the computation of variable v at statement
s?” (Binkley and Gallagher, 1996). There are
various slightly different notions of program slices
as well as a number of methods to compute

250

slices (Tip, 1995). Two kinds of program slices:
static and dynamic. The former is computed
without making assumptions regarding a
program’s input whereas the latter relies on
some specific input cases. A backward slice of a
program with respect to a set of program
elements S is the set of all programs elements
that might affect the values of the variables used
at members of S. A forward slice with respect to
S is the set of all program elements that might be
affected by the computations performed at
members of S. A chop is a kind of “filtered” slice
that answers questions of the form “Which
program elements serve to transmit effects from
a given source element s to a given target
element t?” Applications of slicing include
program understanding, debugging, testing,
parallelizasion, re-engineering, maintenance, etc
(Gramma Tech, 1998; Huang et al, 1998; Ning et
al, 1994).

1.3 A model for automatic Function Point

counting

Most works on automation of Function Point
counting have taken a black box approach by
which the counting process is not transparent to
users. The counting tool reads some description
of the system being counted and provides the

Function Point counts as final output. For this
research we adopt a white box approach and the
counting process is thus transparent to users.
This approach can help the users to assess
whether the counting process is in compliance
with the IFPUG rules.

A model based on program slicing technique is
proposed to derive Function Point counts from
source code of COBOL system (Fig. 1). In
principle, the COBOL system source code is
scanned by the model to produce Function Point
counts. The application’s source files is used to
define the application’s boundary for the count.
The model takes into account the structure of the
COBOL language to identify physical files and

251

transactions. Reserved words as FDs, file
input/output statements (READ and WRITE) and
user interface and data manipulation statements
(MOVE, ACCEPT and DISPLAY) are used as
basic information for program slicing technique to
identify candidate physical files and transactions.
Some heuristic rules will be proposed in order to
map candidate physical files and transactions
into candidate logical files and transactions.
These candidate files and transactions are then
assessed with regards to the IFPUG’ identifying
rules in order to identify data function types and
transactional function types to be counted.
Determining contribution of these objects is thus
straightforward to produce a final adjusted
Function Point counts.

Source Code

COBOL Systems

COBOL Parser
(READ, WRITE,

A

Candidate Physical
Objects
(Files & Transactions)

MOVE, DISPLAY,
ACCEPT)

Heuristic Rules for
Mapping Physical

e

Candidate Logical
Objects
(Files & Transactions)

Objects to Logical
Objects

Assessment of
Candidate Objects

e

Objects to be counted
(Files & Transactions)

Regarding IFPUG
Identifying Rules

Straightforward
Calculation Based on
IFPUG Rules for

e

Contribution of objects
to be counted
(Files &Transactions)

Final
Adjusted Function
Point Counts

Evaluating
Contribution
(DETs & RETSs)

Figure 2. Proposed model for automatic FPA

IDENTIFYING DATA AND
TRANSACTIONAL FUNCTION TYPES
FOR FUNCTION POINT ANALYSIS

252

1.1 Identifying Data Function Types

From Data Division of the COBOL code and
based on the level indicator FD and the level
number 01, all physical files, their records and
data groups within records are identified. The

record’s name is then used to track READ,
WRITE and REWRITE statements operated on
these files (and their “Parent” Procedures).

Candidate physical files are selected as Data
Function Type being counted based on the
following criteria:

A file is an Internal Logical File (ILF) if it is
updated (by WRITE and/or REWRITE
statements) with information entered from
outside of the application (i.e., with ACCEPT
statement).

A file is an External Interface File (EIF) if is
operated in read-only mode (i.e. by READ
statement).

[lI.2 Identifying Transaction Function Types

Candidate transactions are identified using a file-
oriented method. Based on the record and their
data groups of the identified logical files, the
model can supposedly track (with slicing
technique) all procedures and/or statements
operated on these files. Note that procedures
and statements are identified for each logical file
respectively.

The candidate transaction are then analyzed
based on a formal notation proposed in (Paton &
Abran, 1995). An application is represented by
process, user and date flows as in Figure 3. This

representation was used to develop a classifying
signature for transactional function types of
Function Point based on the CPM rules (Abran &
Paton, 1997). The signature in Table 1 can be
interpreted in the following manner:

A transaction that reads (i.e., with ACCEPT
and/or READ statements) outside of the
boundary but does not write (i.e., with
WRITE and/or REWRITE statements)
outside of the boundary is an External Input

(El).

A transaction that writes (i.e., with DISPLAY
statement) outside of the boundary but does
not read outside of the boundary is an
External Output (EO).

A transaction that reads and writes outside of
the boundary is an External Enquiry (EQ) if it
reads inside of the boundary too.

A transaction that carries on all four activities
(read and write outside and inside of the
boundary) is a Double transaction and must
be decomposed as an External Input plus an
External Output.

Note that a flow is assigned 1 in Table 1 if this
flow does exist. Otherwise it is assigned 0.

©
()
]

Flow 4

@ Users

> Q <
0
B

©
Q)
L]

O

—_

Process

Data flow

Figure 3. A formal representation of an application (Paton & Abran, 1995)

253

Table 1. Classifying signatures for transactional function types

v CONCLUSION

We propose a framework that can be used to
build a model for automatic Function Point
counting in compliance to the IFPUG Counting
Practices Manual. Slicing technique in reverse
engineering is identified as a principle program
analysis technique which can help to develop a
tool for automating Function Point Analysis from
source code of COBOL systems. In addition, the
proposed model produces information that can
be used to assess the uniqueness of files and
transactions while identifying files and
transactions for the Function Point count.

It is important to note that the realization of the
proposed model is highly dependent on the
ability and the efficiency of the slicing tool being
implemented. Continuing research will address
design a prototype of a tool to automatically
compute Function Point from COBOL source
codes. Another research direction is the
empirical validation of the proposed model by
comparing the count produced by the tool to that
of a manual count.

ACKNOWLEDGEMENT

This work has been financially supported by Bell
Canada and the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

1. Abran, A. & K. Paton (1995). A Formal
Notation for the Rules of Function Points
Analysis. Research Report No 247, LRGL-
UQAM.

2. Abran, A. & K. Paton (1997). Tool Builders
Require Structured Rules Specifications for
Building Accurate Automated FP Counting
Tools. IFPUG Spring Conference, Cincinnati.

254

10.

11.

12.

Flow 1 Flow 2 Flow 3 Flow 4
El 1 0 1 0
EO 0 1 0 1
EQ 1 1 0 1
El + EO 1 1 1 1
3. Albrecht, A. J. (1988). Function Points

Fundamentals. IBM: 22.

April, A., E. Merlo, et al. (1997). A Reverse
Engineering Approach to Evaluate Function
Point Rules. WCRE97 - Fourth Working
Conference on Reverse Engineering, CWI,
Amsterdam, The Netherlands, IEEE
Computer Society Press.

Bellay B. & Gall H. (1998). An Evaluation of
Reverse Engineering Tool. Software
Maintenance: Research and Practice, 10,
305-331.

Binkley, D. & Gallagher K. (1996). Program
Slicing. In Advances in Computers, Volume
43, 1996. Marvin Zelkowitz, Editor, Academic
Press San Diego, CA.

Couturier, G. W. (1993). Automatic function
point calculations in maintenance
environment. Proceedings of the 31st Annual
Southeast Conference, Birmingham, AL,
USA, ACM New York, NY, USA.

Edge, N., Finnie, G. Wittig, G. Automating
Function Point Approximation Counts For
COBOL Legacy. ACOSM 97, Australian
Software Metrics Association, pp. 80-87.

GrammaTech (1998). CodeSurfer
Technology Overview: Dependence Graphs
and Program Slicing.

Huang Hai et al. (1998). Business Rule
Extraction Techniques for COBOL Programs.
Software Maintenance: Research and
Practice, 10, 3-35.

IFPUG (1994). Function Point Counting
Practices Manual, Release 4.0. Westerville.

Ohio, International Function Point Users
Group.
Jones, C. (1998). Sizing Up Software.

Scientific American: 104-109.

13.

14.

15.

16.

17.

18.

19.

Jones, E. L. (1995). Automated Calculation
of Function Points. Proceedings for the 4th
software engineering research forum, Boca
Raton, Florida, SERF.

MacDonell, S. G. (1994). Comparative
Review of Functional Complexity
Assessment Methods for Effort Estimation.
Software Engineering Journal: 107-116.

Mendes, O. (1996). Développement d'un
protocole d'évaluation pour les outils
informatisés de comptage automatique de
points de fonction. Département
Informatique. Montréal, Université du
Québec a Montreal: 430.

Ning J. Q et al. (1994). Automated Support
for Legacy Code Understanding.
Communication of the ACM, Vol. 37, 50-57.

Tip Frank (1995). A Survey of program
slicing techniques. Journal of Programming
Languages, 3, 121-189.

Wittig, G. E. (1995). Artificial Neural
Networks with Function Point Analysis for
Software Development Effort Estimation.
School of Information Technology, Bond
University: 249.

Wittig, G. E. and G. R. Finnie (1994).
Software Design for The Automation of
Unadjusted Function Point Counting.
Business Process Re-Engineering
Information Systems Opportunities and
Challenges. IFIP TC8 Open Conference,
Gold Coast, Qld., Australia.

255

