Metrics or Measures? Which one would you better trust?

Alain Abran,

École de technologie supérieure, Université du Québec, Montreal, Canada

Universidad del Pais Vasco, San Sebastian, June 3, 2005

Objectives of the Presentation

• What do we know about measures?

• What do we know about Software Metrics?

Software engineering and Measurements?

 Identification of the gaps where further research on software measurement is required

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Conclusions and Future Work

Motivations

- Measurement is fundamental in:
 - In day to day life
 - In business
 - In sciences and engineering
- Measurement instruments are key to all
- What is the status (maturity) of measurement in software?

Why do you measure?

- To understand:
 - ❖ To know to learn

- ⊙ To plan:
 - ❖ To set targets
- ⊙ To control:
 - ❖ To monitor To compare
 - To make adjustments

Measurements

Everywhere in sciences and engineering

- Where do they come from?
- How do you know that our measures are OK?

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Conclusions and Future Work

Software Metrics

The dominant view in software measurement =

« Software Metrics »

Software Metrics

- Lines of code
- McCabe
- Function Points
- Halstead
- COCOMO
- Software quality metrics: Hundreds +
- Software complexity metrics: Hundreds +
- ⊙ 00 metrics: Hundred ++
- Estimates and Estimations models....

Quality of 'metrics'

- O Do you get:
 - ❖ Reproducible results?
 - ❖ Repeatable results?
 - Accurate results?
 - ❖ Results that you can trust?
- Who design these metrics?
 - How qualified are they?
 - Who verifies their metrics proposals?

Software Metrics

How are they designed?

- Anything that can be 'counted'
- How are they defined:
 - Often labels
 - ❖ An algorithm
- How do we know if they are valid?
 - Sometimes validation based on measurement theory
 - Sometimes on claims of 'usefullness'

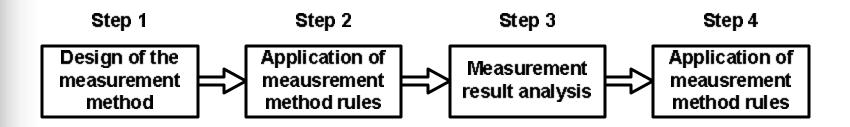
List of topics

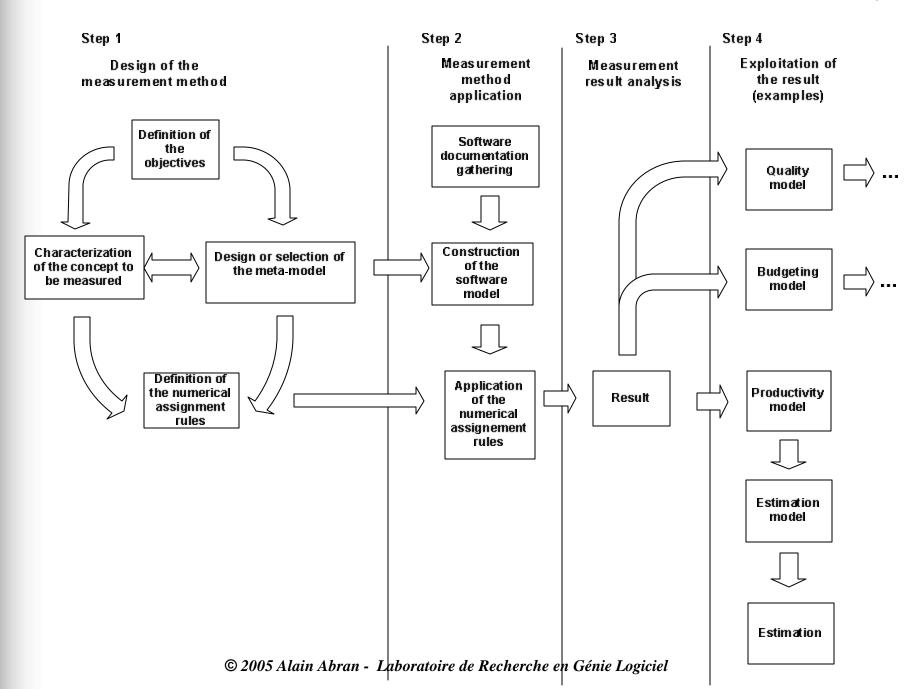
- Motivations and Objectives
- Software Metrics

Models for Designing Measures

- What is Generally Accepted?
- International Standards
- Conclusions and Future Work

Analytical Tools of Measurement


Measurement Process model


Abran & Jacquet

- Metrology:
 - ISO International Vocabulary in Metrology

Measurement Process Model

High-level measurement process model

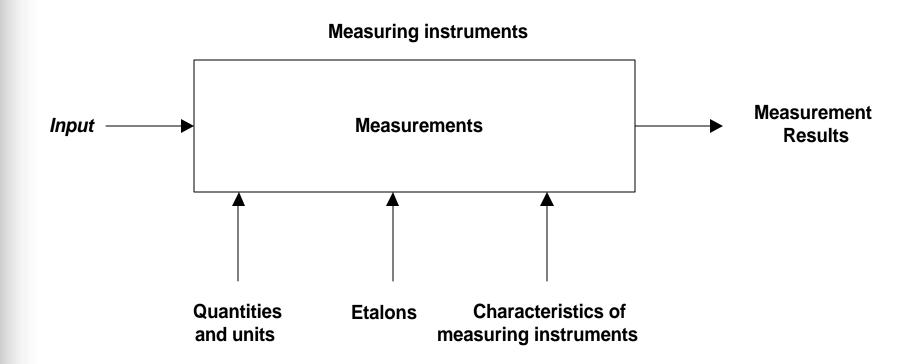
Metrology

- The long-standing international consensus on measurement terminology
- The basis of the International System (IS) of measurements

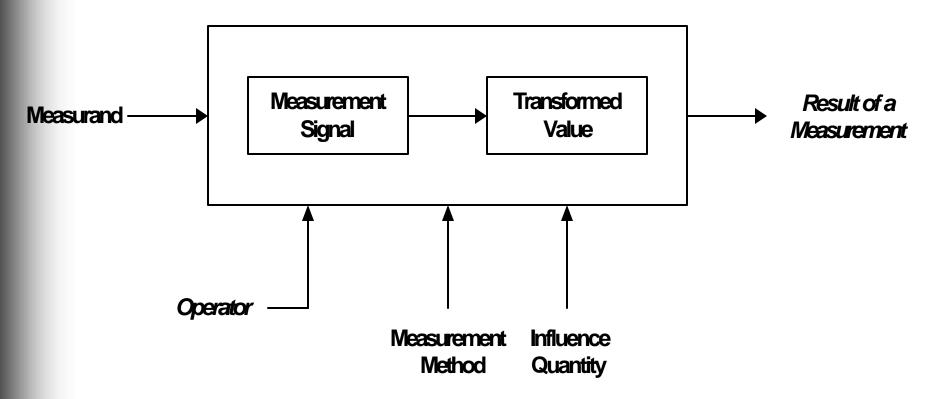

- National Metrology Agencies
 - The legal framework for weights and measures in industrialized countries

Metrology Vocabulary

- Six categories of terms
 - - In increasing order of complexity!


 Most challenging to grasp relationships across terms, understand, and remember!

Measurement foundations


© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel

High-level model of the ISO Vocabulary

Measurement Procedure

Measurement Procedure

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel

Measurement results

Types of measurement results	Modes of verification of measurement results	Uncertainty of measurement
Indication (of a measuring instrument) Uncorrected result	Accuracy of measurement Repeatability (of results of measurements)	Experimental standard deviation Error (of measurement)
Corrected result	Reproducibility (of results of measurements)	Deviation Relative error Random error Systematic error Correction Correction factor

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel

Mapping between models

Alignment of metrology concepts with the measurement process model

Measurement process model	Design of measurement methods	Application of measurement method rules	Measurement results analysis	Exploitation of measurement results
ISO metrology model	Quantities and units	Measuring instruments Characteristics of measuring instruments	Measurement results	

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures

• What is Generally Accepted?

- International Standards
- Conclusions and Future Work

SWEBOK

- Generally Accepted:
 - What applies most of the time, to most projects, and which value has been validated by the community of peers
 - ♥ Project Management Institute
- Software Engineering Body of Knowledge -SWEBOK

Measurement within SWEBOK

SWEBOK KA	Topics	Step 1 Design	Step 2 Measu ring	Step 3 Results	Step 4 Uses
Software engineering requirements	Process support and management Requirements negotiation Document quality Acceptance tests Requirements tracing				× × × ×
Software engineering design	Measures			×	
Software engineering testing	Evaluation of the program under test Evaluation of the tests performed				×
Software engineering maintenance	Software Maintenance Measurement				×

Measurement within SWEBOK

SWEBOK KA	Topics	Step 1	Step 2	Step 3	Step 4
Software configuration management	Surveillance of software configuration management				×
Software	Goals				×
engineering	Measurement selection				×
management	Measuring software and its development				×
	Collection of data		×		
	Software Measurement Models			×	
	Nethodology in process measurement		×		
engineering process	Process Measurement Paradigms				×

Measurement within SWEBOK

SWEBOK KA	Topics	Step 1	Step 2	Step 3	Step 4
Software engineering	Measuring the value of quality Fundamentals of Measurement	×			×
quality	Measures Measurement analysis techniques			×	×
	Defect characterization				×
	Additional Uses of SQA and V&V data				×

Generally accepted knolwedge about software measurement?

Strong recognition of benefits:

o to understand, plan, monitor and control

 \odot Foundations = ??

And little metrology strengths

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?
- OInternational Standards in Software Measurement
- Conclusions and Future Work

International Standards

Currently, only for:

- Software Products Quality
- Software Functional Size

How to Measure Software Quality?

- ISO 9126 on Software **Products** Quality
- Part 1: Quality Models and Definitions
- Parts 2 to 4: Technical Reports
- Over + 120 Metrics!
- with little about:
 - measurement method for each (labels & algorithms)
 - Validity & Quality of these 'metrics' ??
 - Then (if used in a non consistent manner), how do figure out how measurement results compare across contexts, across time, and across measurers?

Software Functional Size

How do you measure software size?

• The technical size = ?

• The functional size = ?

A unique set of measures in software engineering:

- Designed in the late 1970's:
 - ❖ By Albrecht, from IBM, using 24 MIS projects
- Published in the early 1980's
- User group in the mid 1980's
 - Measurement Manual
 - Training & Certification

Does it withstand the test of time?

Still in use and referenced

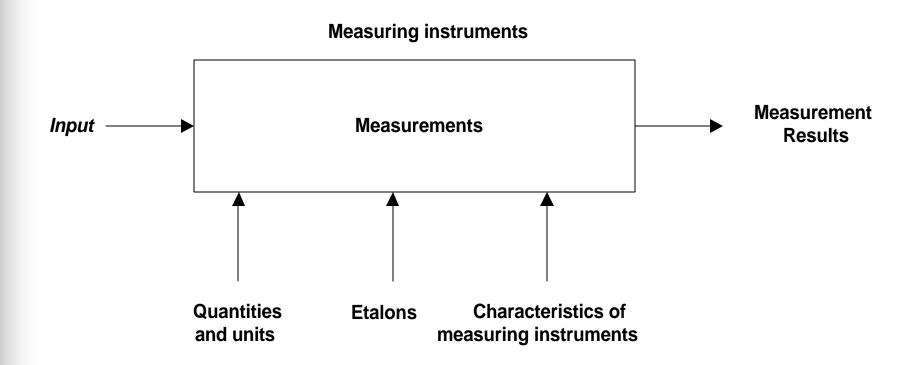
But

- The basic method has not evolved significantly since the early 90's
- Software has changed considerably
- Oustide of MIS domain = ?
- In the early 90's: + 30 variations to tackle weaknesses

Innovation in software measurement: Standardization through ISO

First a meta-standard to layout the ground rules about functional size measurement: ISO 14143

- Part 1 = Definitions of Key Concepts
- Part 2 = Conformity Assessment
- Part 3 = Verification Guide
- Part 4 = Set of References
- Part 5 = Functional Domains


Four specific methods approved by ISO

Will they withstand the test of time as measurement methods?

Will a consensus emerge?

Do they meet 'metrologoy' criteria?

High-level model of the ISO Vocabulary

Measurement results

Types of measurement results	Modes of verification of measurement results	Uncertainty of measurement
Indication (of a measuring instrument) Uncorrected result	Accuracy of measurement Repeatability (of results of measurements)	Experimental standard deviation Error (of measurement)
Corrected result	Reproducibility (of results of measurements)	Deviation Relative error Random error Systematic error Correction
© 2005 AL-i	Alama Inhandia In Bahanka a Cin	Correction factor

© 2005 Alain Abran - Laboratoire de Recherche en Génie Logiciel

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Analytical Tools of Software Measurement
- What is Generally Accepted?
- International Standards

Conclusions and Future Work

Summary & Conclusion

Generally accepted knowledge about Measurement in software:

- Extensive set of references on the use of measurement results in assessment and predictive models.
- O Little discussion on:
 - Quality of measurement results
 - Quality of measuring instruments
- Limited knowledge on the design of measurement methods

Conclusions - Next

- The field of « software metrics » is going where after 30 years of research?
 - Why not learn from the masters in measurement?
- Most majors R & D contributions still waiting for you!
- Standardization is critical for measurement!

Questions

?