

Software Measurement is Maturing to International Standards

Alain Abran,

École de technologie supérieure, Université du Québec, Montreal, Canada

Universidad Politecnica de Madrid, June 7, 2005

Objectives of the Presentation

- What do we know about measures?
- What do we know about Software Metrics?
- Identification of the gaps where further research on software measurement is required

List of topics

- Motivations and Objectives
- Software Metrics
- What is Generally Accepted?
- International Standards
- Occurrent Conclusions and Future Work

Motivations

- Measurement is fundamental in:
 - In day to day life
 - In business
 - In sciences and engineering
- What is the status (*maturity*) of measurement in software?

Why do you measure?

To know – to learn

- To plan:
 To set targets
- ⊙ To control:
 - To monitor To compare
 - To make adjustments

Measurements

Everywhere in sciences and engineering

♦ Where do they come from?

How do you know that our measures are valid?

List of topics

• Motivations and Objectives

⊙Software Metrics

- Models for Designing Measures
- What is Generally Accepted?
- International Standards
- Occurrent Conclusions and Future Work

Software Metrics

The dominant view in software measurement =

« Software Metrics »

Software Metrics

- Function Points
- ⊙ COCOMO

- OO metrics: Hundred + +

Quality of 'metrics'

⊙ Do you get:

Reproducible results?

- ✤ Repeatable results?
- Accurate results?
- Results that you can trust?

Who design these metrics?
 How qualified are they?
 Who verifies their metrics proposals?

Software Metrics

How are they designed? Anything that can be 'counted'

How are they defined:
 Often labels
 An algorithm

● How do we know if they are valid?

- Sometimes claims of validation based on measurement theory
- Sometimes on claims of 'usefullness'

List of topics

- Motivations and Objectives
- Software Metrics

OModels for Designing Measures

- What is Generally Accepted?
- International Standards
- Occursions and Future Work

Analytical Tools of Measurement

Measurement Process model

Abran & Jacquet

Metrology: * ISO International Vocabulary in Metrology

Measurement Process Model

High-level measurement process model

Metrology

- The long-standing international consensus on measurement terminology
- The basis of the International System (IS) of measurements
- ⊙ National Metrology Agencies
 - The legal framework for weights and measures in industrialized countries

Metrology Vocabulary

- ♦ + 120 terms
 - ✤ In increasing order of complexity!

 Most challenging to grasp relationships across terms, understand, and remember!

Measurement foundations

High-level model of the ISO Vocabulary

Measurement Procedure

Measurement Procedure

Measurement results

Types of measurement results	Modes of verification of measurement results	Uncertainty of measurement
Indication (of a measuring instrument) Uncorrected result Corrected result	Accuracy of measurement Repeatability (of results of measurements) Reproducibility (of results of measurements)	Experimental standard deviation Error (of measurement) Deviation Relative error Random error Systematic error Correction Correction factor

Mapping between models

Alignment of metrology concepts with the measurement process model

Measurement process model	Design of measurement methods	Application of measurement method rules	Measurement results analysis	Exploitation of measurement results
ISO metrology model	Quantities and units	Measuring instruments Characteristics of measuring instruments	Measurement results	

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures

• What is Generally Accepted?

- International Standards
- Conclusions and Future Work

SWEBOK

What applies most of the time, to most projects, and which value has been validated by the community of peers

♥ Project Management Institute

Software Engineering Body of Knowledge -SWEBOK

Measurement within SWEBOK

SWEBOK KA	Topics	Step 1 Design	Step 2 Measu ring	Step 3 Results	Step 4 Uses
Software	Process support and management		0		×
engineering	Requirements negotiation				×
requirements	Document quality				×
	Acceptance tests				×
	Requirements tracing				×
Software engineering design	Measures			×	
Software	Evaluation of the program under test				×
engineering testing	Evaluation of the tests performed				×
Software engineering maintenance	Software Maintenance Measurement				×

Measurement within SWEBOK

SWEBOK KA	Topics	Step 1	Step 2	Step 3	Step 4
Software configuration management	Surveillance of software configuration management				×
Software engineering management	GoalsMeasurement selectionMeasuring software and its developmentCollection of dataSoftware Measurement Models		×	×	× × ×
Software engineering process	Aethodology in process measurement Process Measurement Paradigms		×		×

Measurement within SWEBOK

Swebok ka	Topics	Step 1	Step 2	Step 3	Step 4
Software	Measuring the value of quality				×
engineering	Fundamentals of Measurement	×			
quality	Measures			×	
quanty	Measurement analysis techniques				×
	Defect characterization				×
	Additional Uses of SQA and V&V data				×

Generally accepted knolwedge about software measurement?

Strong recognition of benefits:
 to understand, plan, monitor and control

 \odot Foundations = ??

And little metrology strengths

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Designing Measures
- What is Generally Accepted?

⊙International Standards in Software Measurement

Occursions and Future Work

International Standards

Currently, only for:

⊙ Software Products Quality

How to Measure Software Quality?

ISO 9126 on Software **Products** Quality⊙ Part 1: Quality Models and Definitions

● Parts 2 to 4: Technical Reports

- Over + 120 Metrics !
- with little about:
 - measurement method for each (labels & algorithms)
 - Validity & Quality of these 'metrics' ??
 - Then (if used in a non consistent manner), how do figure out how measurement results compare across contexts, across time, and across measurers?

Software Functional Size

How do you measure software size?

 \odot The technical size = ?

 \odot The functional size = ?

A unique set of measures in software engineering:

Designed in the late 1970's:
 By Albrecht, from IBM, using 24 MIS projects

- Published in the early 1980's
- ⊙ User group in the mid 1980's
 - Measurement Manual
 - Training & Certification

Does it withstand the test of time?

Still in use and referenced

But

- The basic method has not evolved significantly since the early 90's
- Software has changed considerably
- \odot Oustide of MIS domain = ?
- O In the early 90's: + 30 variations to tackle weaknesses

Innovation in software measurement: Standardization through ISO

First a meta-standard to layout the ground rules about functional size measurement: ISO 14143

- \odot Part 1 = Definitions of Key Concepts
- ⊙ Part 2 = Conformity Assessment
- Part 3 = Verification Guide
- \odot Part 4 = Set of References
- \odot Part 5 = Functional Domains

Four specific methods approved by ISO

- ⊙ ISO 19761: COSMIC-FFP
- ⊙ ISO 20926: IFPUG
- ⊙ ISO 20968: MKII
- ⊙ ISO 24570: NESMA

Will they withstand the test of time as measurement methods?

Will a consensus emerge?

Do they meet 'metrologoy' criteria?

High-level model of the ISO Vocabulary

Measurement results

Types of measurement results	Modes of verification of measurement results	Uncertainty of measurement
Indication (of a measuring instrument) Uncorrected result Corrected result	Accuracy of measurement Repeatability (of results of measurements) Reproducibility (of results of measurements)	Experimental standard deviation Error (of measurement) Deviation Relative error Random error Systematic error Correction Correction factor

List of topics

- Motivations and Objectives
- Software Metrics
- Models for Analytical Tools of Software Measurement
- What is Generally Accepted?
- International Standards

Oconclusions and Future Work

Summary & Conclusion

Generally accepted knowledge about Measurement in software:

- Extensive set of references on the use of measurement results in assessment and predictive models.
- Little discussion on:
 - Quality of measurement results
 - Ouality of measuring instruments
- Limited knowledge on the design of measurement methods

Conclusions - Next

• Where is the field of « software metrics » going after 30 years of research?

Why not learn from the masters in measurement?

 Most majors R & D contributions still waiting for you!

Conclusions

Metrics or Measures ?

Which one would you trust better?

Questions

