
Estimating the Required Test Volume and Effort for Software
Verification and Validation

A. Abran1 and J. Garbajosa2

1Université du Québec, Canada; 2Universidad Politécnica de Madrid, Spain
e-mail: aabran@ele.etsmtl.ca, jgs@eui.upm.es

Abstract
This paper introduces an approach to estimating the test volume and related effort
required to perform verification and validation activities on software projects. This
approach first uses size measures of functional requirements to estimate this volume,
and then effort estimation models based on these test volumes. This estimation approach
takes into account other types of non-functional requirements, as documented in ECSS-
E-40, part 1-B.

1. Introduction
The implementation of a verification and validation (V&V) process requires an
estimation, early in the project life cycle, of the V&V effort for a specific project. This
estimation can be produced based solely on expert experience. However, the use of
former project data may help to obtain more accurate estimations and also to create a
baseline for continuous improvement. This paper presents an initial study on the use of
a functional size method to estimate V&V test volume and the effort required to
perform the process. The advantages of this approach are that estimates are based on
functional requirements, but taking into consideration other kind of requirements, and
that it can be automated. An updated estimation can be produced if a new requirements
baseline is defined.

This paper is structured as follows: section 2 briefly reviews the V&V process
according to ECSSe40B. Section 3 introduces some software estimation concepts based
on software functional size as the independent variable, and section 4, a V&V test
volume estimation process. Next, section 5 presents a V&V effort estimation process
based on functional and non-functional requirements. A discussion and some
conclusions are presented in section 6.

2. A review of the V&V process
2.1 The process
In [3], the validation process (for software) is defined so as to ensure that the
requirements’ baseline functions and performances are correctly and completely
implemented in the final product, as follows:

The verification process (for software): to establish that adequate
specifications and inputs exist for any activity, and that the outputs of
the activities are correct and consistent with the specifications and input.

The software V&V process may start at any time following the System Requirements
Review (SRR). This process is intended to confirm that the customer’s requirements
have been properly addressed, that all requirements have been met and that all design
constraints are respected. Design constraints and V&V requirements are in itially

defined at the system requirements analysis stage, and may end with the acceptance
review.

The software V&V engineering processes consist of:

• verification process implementation;
• validation process implementation;
• verification activity;
• validation activity; and
• joint technical review process.

Verification activities are associated with all the intermediate products.

The software validation process is described in [3] as consisting of:

• validation process implementation;
• validation activities with respect to the Technical Specifications (TS); and
• validation activities with respect to the Requirements Baseline (RB).

The RB analysis and the TS analysis both constitute the input to the validation process,
and to the estimation process as well. As the rest of the paper is focused on estimation
based on functional requirements, it may be worth while to analyze the validation
process in more detail here.

Taking [3] as the basic reference, supported by [4] and [5], the RB includes, in short, a
set of system functions, performance requirements, overall safety and reliability
requirements of the software to be produced, man machine interface, mock-up
requirements and general requirements, system and software observability requirements,
some configuration management requirements, and critical function identification and
analysis. The RB must be ready at the System Requirements Review (SRR) stage, and,
with it, the Interface Requirements Document (IRD). This IRD document provides
useful information from an estimation point of view: interface requirements, software-
hardware interface requirements, system-level interface requirements, system-level data
interfaces, system -level integration support products and system-level integration
preparation requirements. Validation with respect to the RB must be performed prior to
the Qualification Review (QR).

The TS include the software requirements specifications, functional and performance
specifications, including hardware characteristics, and environmental conditions under
which the software item executes, including budgets requirements, software product
quality requirements, security specifications, human factors engineering (ergonomics)
specifications, data definition, database requirements, the software logical model, the
MMI specifications for software, and other non-functional and software quality
requirements. The TS must receive initial approval at the Preliminary Design Review
(PDR) stage, and then again at the Detailed Design Review (DDR) stage. The Interface
Control Document (ICD) contains the specifications and design of the interfaces
external to the software; this ICD must also be reviewed at the same time as the TS, and
again, as in the case of the IRD, the information included within it can be useful as input
to the estimation process. The validation with respect of the TS shall be performed prior
to the Critical Design Review (CDR).

For each test, it is necessary to specify the testing specifications, which must include,
whatever the testing approach, test items, inputs, outputs and test pass/fail criteria, as

well as test scripts, test procedures and environmental needs. Therefore, tests are
interface-based. It must be noted that there may exist requirements that cannot be
validated using tests, and where alternative techniques such as analysis will have to be
used.

2.2 The types of requirements
In the ECSS-E-40 Part 1-B standard, a number of different types of requirements must
be taken into account in the validation process – see Table 1.

Table 1: Types of requirements in ECSS- E-40 Part 1-B

Software Requirements Specification
Requirements
 1 Functional requirements
 2 Performance requirements
 3 Interface requirements
 4 Operational requirements
 5 Resource requirements
 6 Design requirements and implementation constraints
 7 Security and privacy requirements
 8 Portability requirements
 9 Software quality requirements
10 Software reliability requirements
11 Software maintainability requirements
12 Software safety requirements
13 Software configuration and delivery requirements
14 Data definition and database requirements
15 Human factor -related requirements
16 Adaptation and installation requirements
17 Other requirements

Interface requirements shall include software item external interfaces, interfaces
between these software items and other software items, interfaces between the software
items and hardware products, and interface requirements relating to the man-machine
interaction (as applicable). Naming conventions applicable to the data comm and
interface shall also be identified.

3. Software estimation based on functional
requirements

3.1 Sizing functional requirements – Overview of ISO 19761: COSMIC-FFP
A key aspect of COSMIC-FFP [1] is the establishment of what is considered to be part
of the software and what is considered to be part of the software’s operating
environment. Figure 1 below illustrates the generic flow of data from a functional
perspective and from which the following observations can be made [7,14]:
• Software is bounded by hardware in the “front-end” and “back-end” directions.

In the first, or front-end, direction, the software used by a human user is
bounded by I/O hardware such as mouse, keyboard, printer or display, or by
engineered devices such as sensors or relays. In the second, or back-end,
direction, the software is bounded by storage hardware like a hard disk and
RAM and ROM memory.

• Four distinct types of movement can characterize the functional flow of data
attributes. In the front-end direction, two types of movement (ENTRIES and
EXITS) allow the exchange of data with the users across a “boundary”. In the

back-end direction, two types of movement (READS and WRITES) allow the
exchange of data attributes with the storage hardware.

Figure 1: Generic flow of Data Groups through software

from a functional perspective [7]

3.2. Estimation based on functional size
An estimation process is usually based on insights into the productivity of past projects.
If this knowledge about past projects is quantitative and documented, then estimation
models can be built based on statistics on past projects. If this knowledge about past
projects is not documented, or quantified, then historical data cannot be accumulated, in
which case the estimation process must rely entirely on people’s subjective assessment
of past projects; this is often referred to as experience-based estimation, or sometimes
expert-based estimation. Such expertise cannot be either verified or validated.

In software engineering, software project productivity can vary considerably. In
heterogeneous data sets with data coming from various organizations and from various
countries, there may be significant variations, with a number of projects having much
higher or much lower productivity than other projects of the same functional size.

The International Software Benchmarking Standards Group – ISBSG – is a not-for-
profit organization established in the late 1990s [17] to improve software benchmarking
and estimation by setting up and maintaining a publicly available repository of software
projects. The ISBSG makes available to industry and to researchers, at a reasonable
cost, an Excel data file containing 100 variables for each project in its repository, effort
(in hours), functional size of the software (measured according to various standards of
measurement available, e.g. Function Points, COSMIC-FFP – ISO 19761, MKII, etc.),
programming language, etc. The ISBSG repository contains information about 3,024
projects, making it one of the largest software project databases publicly available at a
reasonable cost. It is a multi-organizational, multi-application domain and multi-
environment data repository; that is, its data content is fairly heterogeneous in terms of
project characteristics.

In Figure 2, functional size is on the X-axis and effort on the y-axis. Figure 2 is typical
of the data sets available in software engineering; that is, with an increasing dispersion
of data, (referred to as heteroscedasticity in Kitchenham et al. [18]).

Figure 1. Data set with heteroscedasticity

Figure 2: A data set of 15 software projects (size units in Cfsu – ISO 19761)

From such a data set, an estimation model can be obtained through a linear regression
model which basically builds the line that best represents this set of projects in terms of
effort with respect to corresponding project size (measured in ISO 19761 units:
COSMIC functional size units – Cfsu in Figures 2 and 3).

In Figure 3, it can be easily observed that a number of projects have an effort cost lower
than that predicted by the model, while there are also quite a few projects with an effort
cost higher than that predicted by the model. This model is, of course, based on a single
independent variable, functional size; it cannot be realistically expected that this
variable would by itself be sufficient to produce a perfect estimate without taking into
consideration the large number of other independent variables.

Figure 3: Linear Regression Model of a 15-project data set

3.3. Upper and lower effort limits in data sets based on functional size
Of course, there are a number of other variables that can impact project effort, each
having its own specific impact. Then, the combination of all these other variables will in
turn have an overall impact on effort, the dependent variable. That is, the combination

0

100

200

300

400

500

600

700

0 100 200 300 400 500

Cfsu

Effort

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

C f s u

Ef for t

of the impact of these other independent variables will lead to a particular effort for
such a project: such effort may be lower or higher than the effort predicted by the
regression line of a model with a single independent variable.

This is illustrated next with another data set [20]: in Figure 4 the circles point out the
projects that have a large functional size with very little corresponding effort: these
projects, within a functional size range of 500 to 2500 FP, did not cost more than many
projects 10 to 20 times smaller (measured in ISO 20926 [15] units : Function Points
Analysis – Unadjusted Function Points - UFP).

Function Points Cobol 2. R9

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500

Function Points

W
o
rk
 E
ffo
rt

Figure 4. Visual identification of projects with a much smaller unit cost [20]

In Figure 5, the circles point out next, in the same data set, the projects with large effort
with relatively small functional size. Again for illustrative purposes, three projects in
the 400 to 1200 FP range cost at least 10 times more than other projects of similar size.
This illustrates well that a number of other variables, in addition to size, must be taken
into account to explain individual project effort.

Function Points C Language

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000

Function Points

W
o
rk
 E
ffo
rt

Function Points

Figure 5. Visual identification of projects with the highest unit cost [20]

4. A software V&V Volume Estimation Process
This section proposes a way to use functional requirements to provide a V&V
estimation of test volume, and then a way to assess the functional requirements for their
usage as additional inputs to an effort estimation process.

4.1 Estimation of functional test volume

The first type of requirement in ECSS-E-40 (see Table 1) is the functional requirement.
The high-level criteria for the measurement of functional requirements have been

adopted in ISO 14143 [12]. Four specific functional measurement methods have also
been recognized by the ISO:

- ISO 19761: COSMIC-FFP [7,14].
- ISO 20926: Function Point Analysis (e.g. IFPUG 4.1, unadjusted function points –

UFP only) [15];
- ISO 20968: Mk II [13]
- ISO 24570: NESMA [16]1

The FPA, MarkII and NESMA methods were primarily designed to measure business
application software, while COSMIC-FFP, the newest method, was designed to handle
other types of software as well, such as real-time, telecommunications and infrastructure
software (Figure 6).

Business
Business Application

Software
Embedded or

Control Software

Infrastructure
Utility

Software
Users Tools

Software
Developers

Tools Software

Systems Software

Figure 6. Software types which can be measured with COSMIC-FFP [7]

These functional size measurement methods must, as required by ISO 14143-1, measure
the functional requirements of the software independently of the technical and quality
requirements. This means that they must exclude all the other requirement types
identified in ECSS-E-40: these will have to be dealt with in a subsequent estimation
step.

The functional size measurement process requires that all software functions be
identified, analyzed, measured and recorded for traceability purposes. This means that
all software functions must be identified, measured and recorded. As a by-product, any
such identified function must also be included in a functional test plan. For instance, the
details of a functional sizing activity can be used as a detailed plan for functional
testing.

The details of the functional requirements must exactly be mapped onto the set of
functional tests required in V&V, the size of which can be referred to as the functional
testing volume. These testing volumes can then be expressed using the same sized units:
in Cfsu (COSMIC functional size units) for ISO 19761, and in Function Points (FP) for
ISO 209262.

4.2 Assessment of other types of requirements to be validated
Each type of requirement from ECSS-e40 has to be taken into account in the V&V
process and related effort, and, conversely, each of those requirements must have had an
impact on the project productivity data of past completed projects in historical
databases. The challenge is, of course, two-fold: how to ‘size’ these other types of
requirements, and how to determine their respective impacts on V&V effort.

1 NESMA [ISO 05] is a Dutch interpretation of FPA version 4.1, which produces similar results to FPA
[NESM04]
2 Convertibility of size units across both ISO standards is discussed in [21]

A COCOMO-like approach [9,10] is selected to take into account all 16 other ECSS-
e40 types of requirement: for instance, for each type of requirement, a four-interval
classification is defined, as illustrated in Table 2, using a similar set of four class
intervals for all types of requirements. The first interval will represent basically the
absence, or the minimum, of the corresponding variable to take into account in
verification-validation, while the fourth interval would correspond to the maximum set
of conditions for this independent variable.

Of course, standardized definitions of interval classification will be required to improve
repeatability of the classification for each interval. This would ensure that the
classification would be repeatable and reproducible across measurers and across
projects.

An example of a classification is provided next, with similar class labels assigned to
each ordered class, from “Low” assigned to the nil or minimum class, “Nominal” (as
defined in a COCOMO-like model) to the middle class, “High” to the next one, and,
finally, “Very High” to the highest-ordered class with the maximum value. It is to be
noted that the middle, or nominal, class would correspond to the theoretical normal set
of conditions, and is used as the reference base.

From this, a classification profile can be established for the analysis of the other
requirements of a project: the project illustrated in Table 3 has 9 types of requirements
with a classification of Very High (Table 3 – bottom row).

Table 2. Example: A project assessment of 16 types of non-functional requirements

Class
1

Class
2

Class
3

Class
4

 Types of requirements

Low Nominal High Very
High

1 Performance requirements Low
2 Interface requirements Low
3 Operational requirements Low
4 Resource requirements High
5 Design req.& implementation constraints Max
6 Security and privacy requirements High
7 Portability requirements Nominal
8 Software quality requirements Low
9 Software reliability requirements Low
10 Software maintainability requirements Nominal
11 Software safety requirements Low
12 Software configuration and delivery req. Low
13 Data definition and database req. Max
14 Human factor-related requirements Low
15 Adaptation and installation req. Nominal
16 Other requirements Low
 Profile of the combined assessment of

the 16 types of requirements for this
simulated project

9
Low

3
Nominal

2
High

2
Very
High

5. A software V&V Effort Estimation Process
The estimation process consists of 5 steps:

1. Identification of a reference dataset;
2. Identification of the V&V functional test volume;
3. Building of the initial estimation model based on functional test volume;
4. Identification and classification of the set of non-functional requirements;
5. Adjustment of the initial estimation model (of step 3) to take into account the

integrated set of non-functional requirements of step 4.

5.1 Identification of a reference dataset: ISBSG
In project management, the importance of planning, estimation and control is well

known, and the problem of producing adequate estimation for software development
projects has often been discussed in the literature [11]. The occurrence of this problem
is not due to a lack of estimation process alternatives: expert-based, analogy-based,
price-to-win, available resources-based and parametric models-based. Most estimation
processes have defined steps, such as estimation of the size of the software (in lines of
code, function points, etc.), which is then taken as input to estimation models based on
the analysis of effort of past, completed projects.

For benchmarking, as well as for estimation models and tools requiring historical
data, at least two prerequisites must be met: there must be enough historical data to
ensure statistical validity, and the data must be homogeneous enough to provide
meaningful interpretations.

The 2005 ISBSG repository, release 9 (R9), contains information on 100 data fields
for 3,024 projects; however, these projects might not contain information about all 100
fields that can be collected in the repository, and only a subset of these are mandatory
fields. The repository data originates from organizations across the world with projects
from industries which have used various methodologies, phases and techniques. Of
course, the ISBSG captures information about the process, technology, people, effort
and product associated with the project, and has defined each of the fields to be
collected in its repository with great care.

Two of the key fields in such repositories are, of course, size and effort. To
adequately record the required background information on the total project effort
reported in its repository, the ISBSG asks data collectors to map their own life cycle to a
standardized ISBSG life cycle of six phases: Planning, Specification, Design, Build,
Test and Implement.

In the ISBSG repository, total project effort is a mandatory field, while the effort per
project phase is an optional one. This heterogeneity in project phases included in the
effort data collected means, then, that the total project effort3 recorded in the ISBSG
repository has to be handled with care (e.g. the life cycle coverage is not identical across
projects).

5.2 Identification of the V&V functional test volume
Before analyzing ISBSG data, it is important to understand how the repository’s fields
are defined, used and recorded, as recommended in [19]. In data set preparation, two
verification steps must be carried out: data quality verification and data completeness
verification. The verification of effort data quality analysis is easy: the ISBSG data

3 The ISBSG refers to this total project work effort recorded as the ‘summary work effort’

repository manager himself carries out such a data quality analysis right at collection
time, and records his judgment in a project field. His rating will vary from very good
(A) to unreliable (D). To reduce the risk of poor quality data and to improve the validity
of the analysis reported here, projects with a data quality rating of C or D can be
removed prior to the analysis.

In the ISBSG repository, not all projects have been sized according to the same
functional sizing method. The IFPUG, COSMIC-FFP and Mark II methods are used, as
well as a few others.

The 2005 version of the ISBSG data set, R9, contains 1,345 projects with information
about the effort for the testing phase, which is of interest here.

Of these, 110 projects have an indicator of poor quality (C or D) data collection. This
leaves 1,235 pr ojects with good data quality collection (A or B).

Of this set, 84 projects use size measurement methods other than the IFPUG method,
which leaves 1,151 projects measured with the same size method, that is, the IFPUG
method.

Of this set of IFPUG-sized projects, 90 have a tag indicating doubts (tag = C or D)
about the quality of the size measurement. This leaves 1,061 projects with reliable size
measurement (size tag = A or B).

Furthermore, in terms of size measurement, there was a clear outlier at 16,148 FP, while
the next biggest project in terms of IFPUG functional size measured 5,372 UFP. This
outlier was deleted for further analysis. There remained, therefore, 1,060 projects.

These 1,060 projects could be further subdivided as a function of their project types:

• 556 were projects for the development of new software – Figure 7;
• 502 were projects for enhancements to existing software – Figure 8;
• 2 were redevelopment projects (these were dropped from further analysis).

New Development

0

5000

10000

15000

20000

0 1000 2000 3000 4000 5000 6000 7000

Size - UFP

T
es

t
E

ff
o

rt
 -

 H
o

u
rs

Series1

Figure 7. ISBSG – Data set of 556 new software projects

Enhancements

0
2000
4000
6000
8000

10000
12000
14000
16000

0 1000 2000 3000 4000

Size = UFP

T
es

t
E

ff
o

rt
 -

 H
o

u
rs

Series1

Figure 8. ISBSG – Data set of 502 enhancement projects

5.3 Building the initial effort estimation model based on functional test
volume
The initial estimation model for the V&V process was initially based only on the
functional test volume, and was built using the regression technique. For the 556 new
development projects, the regression model based on functional test volume obtained is
the following one:

V&V Effort = 1.3 *FP + 181 with an R2 = .24

Of course, as can be seen in Figure 9, there is considerable dispersion from the single
value predicted by the model.

X Variable 1 Line Fit Plot

0
5000

10000
15000
20000

0 2000 4000 6000 8000

X Variable 1

Y

Y
Predicted Y

Figure 9. Regression model for the 556 ISBSG’s new software projects

For instance, if we were to estimate the V&V effort for a project with a functional size
of 1,000 FP, the regression model would predict:

Effort = 1.3 * 1,000 + 181 = 1,300 + 181 = 1,481 hours

With an R2 of only 0.24, a considerable dispersion across this value would be expected,
as can be observed – see Figure 9.

Consider now that for this dataset the regression model represents the nominal values
for all the other types of requirements. A graphical analysis can then be carried out to
identify both the max and min values on the graph; from there, the High values could be
considered between the Very High and regression model value.

That is, from the graph, the maximum is approximately 15,000 hours, while the
minimum is approximately 10 hours. The low and high values would then be:
High = (Model value + Very High) / 2 = (1,481 + 15,000) / 2 = 15,481 / 2 = 7,741
hours

This, of course, represents considerable variation: a single type of requirement, that is,
the functional requirements, explains only 24% of the effort variation, while all the
other types of requirements contribute the other 76% of the variation in project effort.
Therefore, the other non-functional requirements must also be taken into account as
independent variables influencing project effort. This is discussed in the next section.

5.4 Identification and classification of the set of non -functional
requirements
 In the COCOMO I and II approaches, the 16+ independent variables (other than the
size variable) have been described and classified in a four-interval range, each with its
own definitions for classification within the four-interval set (these are, therefore, not
really intervals, but rather ordered classifications without any specified numerical
values).

The next step in the COCOMO approach is to assign a specific effort impact value to
each of the ordered classes, for each of the 16 variables; this assignment was performed
in COCOMO subjectively by a panel of experts in order to figure out, again intuitively,
the perceived corresponding impact on effort. In this COCOMO approach, the
commonly applied rule is that the impact on the size-based effort estimation model is
nil4 when an individual independent variable (referred to as a cost factor) is classified in
the nominal ordered class; the impact is assigned a weight lower than 1 when in the
lower-order classification, or higher than 1 in the higher-order classification. Then, in
COCOMO, all the weights are combined, impacting the same size-based effort
estimation equation, see [9,10].

In the approach presented in this paper, the first step of COCOMO is kept, but the
second step of using combined subjectively assigned weights is bypassed entirely: there
is, therefore, no attempt to subjectively figure out the impact of each individual variable,
which in this case is the set of non-functional requirements.

5.5 Adjusting the initial estimation model to take into account the
integrated set of non-functional requirements
The estimation approach selected does not attempt to model the individual effort
relationship for each of the potential variables: it uses rather the information about the

4 A null impact is represented by a weight = 1.0 in COCOMO I and II.

other non-functional requirements and the data from the ISBSG data set to position the
project to be estimated, in terms of required effort, somewhere between the minimum
and the maximum functional size as a function of the set of non-functional
requirements.

The integration of all the other independent variables (that is, the non-functional
requirements) is achieved through the graphical analysis of the data set on hand; that is,
with the ISBSG data set for the specific V&V functional volume to be estimated: this is
achieved by combining the information from the upper and lower effort limits in the
available data sets based on functional size (see section 3.3) with the assessment of the
non-functional requirements that impact effort (see section 4.2) in addition to functional
size (see section 4.1). The integration of these concepts is illustrated next:

1- In the ISBSG dataset, all the projects precisely on the regression line of the initial
estimation would correspond to projects with all non-functional requirements being in
the nominal interval scale. Stated another way, the precise regression line is interpreted
as corresponding to the expected nominal size-based effort relationship.

2- In the ISBSG dataset, all the projects with “very high” effort – that is, projects with
the maximum effort above the regression line and along the functional size axis -, would
correspond to projects with all non-functional requirements being the highest in the 4-
interval scale.

3- In the ISBSG dataset, all the projects with “low” effort – that is, projects with the
minimum effort below the regression line, and along the functional size axis - would
correspond to projects with all non-functional requirements being the lowest in the 4-
interval scale

4- In the ISBSG dataset, all the projects with all ‘high’ non-functional requirements
would somewhere in the mid-range between the regression model estimate and the
‘very-high’ effort estimate.

Of course, this approach does not presume that the range of data points above the
regression line is not necessarily equal to the range below the regression line.

The set of 165 rated interval values assigned to each of the non-functional requirements
can be used next to select a specific estimation value within the project effort data at the
V&V functional volume that needs to be estimated.

5.6. Example
The proposed technique is therefore quite simple, and an example is provided next
using the ISBSG. For the data set illustrated in Figure 6, a project of 100 UFP with all
its non-functional requirements rated as nominal would be estimated by the estimation
model at:
Y= 41 + 1.35 x UFP R²= 0.60, for n=14 projects
Y= 41 + 1.35 x 100 UFP = 41 + 135 = 176 days

5 Corresponding to the 16 non-functional types of requirements in ECSSE-E-40 Part 1-B.33

Comment [MSOFFICE1]:

At 100 UFP, the graphical analysis indicates an effort range between 75 days and 350
days.

It can be observed that the ranges have an asymmetry across the regression line:

• The upper range above the regression value at 100 UFP is (Very High: 350 days
– Nominal:176 days) equal to 174 days;

• The lower range below the regression value at 100 UFP is (Nominal: 176 days –
Low: 75 days) equal to 101 days.

Finally, the value for the High class is calculated as the mid-point between Nominal and
Very High in the following way:
Nominal + (Very High – Nominal)/2 = 176 + (350 – 176)/2 = 176 +87 = 263 days.

The profile of non-functional requirements for the specific project illustrated in Table 2
(bottom row) is:

• 9 non-functional requirements rated as Low
• 3 non-functional requirements rated as Nominal
• 2 non-functional requirements rated as High
• 2 non-functional requirements rated as Very High

Taking this profile and the information from the ISBSG data set at 100 FP, the
estimation process is illustrated next in Table 3, providing an estimation value of 166
days based on both the V&V functional volume and the corresponding set of 16 non-
functional requirements listed in ECSS-E 40.

Table 3: Estimation calculations for the project described in Table 2
Non-functional
interval class

Number within
a class

(1)

Effort on the
data set for a

class
(2)

Impact

(3) = (1) * (2)

Normalized
value (= /16

classes)
(4) = (3) / 16

Low 9 75 days 675 42
Nominal 3 176 days 528 33
High 2 263 days 526 33
Very high 2 350 days 700 44
Total 16 2429 152 days

6. Discussion
This paper has presented an initial study on the use of the functional size approach to
estimate V&V test volume and effort in the context of ECSS-e40 B. Next, a method for
assessing and rating non-functional requirements in the context of ECSS-e40 was
presented, followed by a proposal for its use in an effort estimation process which takes
this set of non-functional requirements to make effort estimation adjustments within the
lower and upper effort limits of a reference data set of completed projects. It is obvious
that the applicability of this estimation approach to the ESA context would require data
obtained from ESA projects.

The information required for the implementation of this estimation approach is available
during the execution of projects developed in compliance with ECSS E-40. While this

estimation approach can be an entirely manual process, it would, of course, be
extremely valuable to automate a large part of it, in terms of both data collection and
data analysis. In particular, automated functional sizing with ISO 19761: COSMIC-FFP
should be addressed first, since most of the required information is, like the
measurement method for software functional size, available as part of the Requirements
Baseline (RB) and the Interface Requirements Document (IRD) at the System
Requirements Review (SRR) stage and the Software Requirements Specification (SRS)
stage, and the Interface Control Document (ICD) at the Preliminary Design Review
(PDR) and (Critical Design Review (CDR) stages. Standardization of the classification
of non-functional requirements should be addressed next to ensure consistency of
classification across software engineers and across organizations.

Finally, automation of graphical data analysis of available data sets should be
investigated to take into account the adjustments derived from the classification of the
non-functional requirements. In summary, a document based automated CASE support
environment, such as the one described in [8], would be a good basis to facilitate the
automation process. As long as most of the information is available, the cost would not
be expected to be unreasonable and the advantages clear. It would also be expected that
automation support could be provided without disturbing the software process.

References
[1] ECSS E-10 Part 1B. System engineering – Part 1: Requirements and process. 18 November, 2004.
[2] ECSS E-10-02A. Verification. 17 November, 1998.
[3] ECSS E-40 Part 1B. Software – Part 1: Principles and requirements. November 28, 2003.
[4] ECSS E-40 Part 2B. Software – Part 2: Document requirements definitions (DRDs). March 31, 2005.
[5] ECSS Q-80B Software product assurance. October 10, 2003.
[6] Abran, A.; Maya, M.; Desharnais, J.-M.; St -Pierre, D., Adapting Function Points to Real-Time

Software, in American Programmer, vol. 10 , 1997, pp. 32-43.
[7] Abran, A. ; Desharnais, JM.; Oligny, S.; St-Pierre, D.; Symons, C.; Measurement Manual COSMIC-

FFP 2.2, The COSMIC Implementation Guide for ISO/IEC 19761, École de technologie
supérieure, Université du Québec, Montréal, Canada, 2003.

[8] Alarcon , P.P.; Garbajosa, J.; Crespo, A.; Magro, B., Automated integrated support for requirements -
area and validation processes related to system development, INDIN '04. 2004 2nd IEEE
International Conference on Industrial Informatics, 2004.

[9] Boehm, B.W., Software Engineering Economics , Prentice-Hall, pp. 487, 1981.

[10] Boehm, B.W. et al., Software Cost Estimation with COCOMO II , Prentice Hall, 2000.

[11] Ferens, D. V. (1999). The conundrum of software estimation models. Aerospace and Electronic
Systems Magazine, IEEE, 14(3), 23-29.

[12] ISO/IEC 14143-1:1998 Information technology -- Software measurement -- Functional size
measurement -- Part 1: Definition of concepts, International Organization for Standardization,
Geneva, 1998.

[13] ISO/IEC 20968: 2002, Software Engineering -- Mk II Function Point Analysis - - Counting Practices
Manual, International Organization for Standardization -- ISO, Geneva, 2002.

[14] ISO/IEC19761:2003, Software Engineering -- COSMIC-FFP - - A Functional Size Measurement
Method, International Standardization Organization - ISO, Geneva, 2003.

[15] ISO/IEC 20926: 2003, Software Engineering -- IFPUG 4.1 Unadjusted functional size measurement
method - - Counting Practices Manual, International Organization for Standardization -- ISO,
Geneva, 2003.

[16] ISO/IEC 24750: 2005, Software Engineering -- NESMA functional size measurement method
version 2.1 -- Definitions and counting guidelines for the application of Function Point Analysis,
International Organization for Standardization -- ISO, Geneva, 2005.

[17] ISBSG. (2005). Worldwide Software Development - the Benchmark . from www.isbsg.org
[18] Kitchenham, B.A.; Taylor, N.R., "Software Cost Models", ICL technical journal, Vol. 4, no 1, May

1984, pp. 73-102.

[19] Maxwell, K. D. (2002). Applied statistics for software managers. Upper Saddle River, N.J.: Prentice
Hall PTR.

[20] Paré, D.; Abran, A., Obvious Outliers in the ISBSG Repository of Software Projects: Exploratory
Research, Metrics News, Otto Von Gueriske Universitat, Magdeburg (Germany), Vol. 10, no. 1,
August, 2005, pp. 28-36.

[21] Abran, A. ; Desharnais, JM.; Azziz; Measurement Convertibility: From Function Points to
COSMIC-FFP. 15th International Workshop on Software Measurement. Montreal, Canada, 2005,
pp 227-240.

Acknowledgement. This research work has been partially sponsored by the
AGMOD project, Ref. TIC2003-08503, funded by the Ministry of Education of Spain.

