
UPGRADE Vol. VII, No. 1, February 2006 5© Novática

Key Success Factors in Software Engineering

Keywords: Engineering Knowledge, ISO 19759, Soft-
ware Engineering, SWEBOK, Vincenti.

1 Introduction
"Engineering is a problem-solving activity…dealing

mainly with practical problems" (Vincenti).
 Software engineering is defined by the IEEE (Institute

of Electrical & Electronics Engineers) as "the application
of a systematic, disciplined, quantitative approach to the
development, operation and maintenance of software, the
application of engineering to software" (IEEE 610.12) [1].
Of course, in comparison with mechanical and electrical
engineering, Software Engineering is still an emerging en-
gineering discipline, and one that is not as mature as other
classical engineering fields.

There are millions of software professionals worldwide,
and software is a ubiquitous presence in our society. How-
ever, the recognition of Software Engineering as an engi-
neering discipline is still being challenged.

 Achieving consensus by the profession on a core body
of knowledge is a key milestone in all disciplines, and has
been identified by the IEEE Computer Society as crucial
for the evolution of Software Engineering towards profes-
sional status. The Guide to the Software Engineering Body
of Knowledge (SWEBOK Guide), written under the aus-
pices of the IEEE Computer Society’s Professional Prac-
tices Committee, was initiated in 1998 to develop an inter-
national consensus [2] in pursuing the following objectives:

 to characterize the content of the Software Engineer-
ing discipline,

 to promote a consistent view of Software Engineering
worldwide,

 to provide access to the Software Engineering body of
knowledge,

 to clarify the place, and set the boundary, of Software
Engineering with respect to other disciplines, and

 to provide a foundation for curriculum development
and individual certification material.

 The SWEBOK Guide [2], also adopted as a technical
report by the ISO (Internacional Organization for Stand-
ardization) [3], has been selected as the subject of a study
to explore the following question: Is Software Engineering
truly an engineering discipline?

 The content of each knowledge area (KA) in the
SWEBOK Guide was developed by domain experts and
extensively reviewed by an international community of
peers. This Delphi-type approach, while very extensive and
paralleled by national reviews at the ISO level, did not spe-
cifically address the engineering perspective, nor did it pro-
vide a structured technique to ensure the completeness and
full coverage of fundamental engineering topics. Therefore,
it did not provide sufficient evidence that it had adequately
tackled the identification and documentation of the knowl-
edge expected to be present in an engineering discipline.

Analysis of Software Engineering from
An Engineering Perspective

Alain Abran and Kenza Meridji

Walter G. Vincenti, in his book "What engineers know and how they know it", has proposed a taxonomy of engineering knowl-
edge. Software Engineering, as a discipline, is certainly not yet as mature as other engineering disciplines, and some authors
have even challenged the notion that Software Engineering is indeed engineering. To investigate this issue, Vincenti’s categories
of engineering knowledge are used to analyze the SWEBOK (Software Engineering Body of Knowledge) Guide from an engi-
neering perspective. This paper presents an overview of the Vincent’si categories of engineering knowledge, followed by an
analysis of the engineering design concept in Vincenti vs. the design concept in the SWEBOK Guide: this highlights in particular
the fact that Vincenti’s engineering design concept is not limited to the design phase knowledge area in the SWEBOK Guide, but
that it pervades many of the SWEBOK knowledge areas. Finally, the SWEBOK Software Quality knowledge area is selected as
a case study, and analyzed using Vincenti’s classification of engineering knowledge.

Authors

Alain Abran is a Professor and the Director of the Software
Engineering Research Laboratory at the École de Technologie
Supérieure (ETS) – Université du Québec, Montreal, Canada.
He is the Co-executive editor of the Guide to the Software
Engineering Body of Knowledge project. He is also actively
involved in international Software Engineering standards and is
Co-chair of the Common Software Measurement International
Consortium (COSMIC). Dr. Abran has more than 20 years of
industry experience in information systems development and
Software Engineering. He is the co-executive editor of the IEEE
project on the Guide to the Software Engineering Body of
Knowledge – SWEBOK (ISO TR 19759).
<aabran@ele.etsmtl.ca>

Kenza Meridji is a PhD student at the Software Engineering
Research Laboratory of the École de Technologie Supérieure –
Université du Québec, Montreal, Canada. She is pursuing
research on the fundamental principles of Software Engineering.
She holds a Master degree in Software engineering from Con-
cordia University, Canada. <kenza.meridji.1@ens.etsmtl.ca>

6 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

 In this paper, an approach is proposed to investigate
the content of the SWEBOK Guide in a structured way to
verify what engineering knowledge is included in the Guide,
and what could be missing. This approach is based on
Vincenti’s classification of engineering knowledge. How-
ever, since this classification of engineering knowledge had
not, at the time of this investigation, been used to analyze
other engineering disciplines, it was felt necessary to carry
out some structuring and modelling of the embedded criteria
to render its use practical in the analysis of the SWEBOK
Guide. In particular, the engineering design concepts had to
be probed further, since at first glance there seemed to be a
disconnect between the SWEBOK Guide design concept
and Vincenti’s description of engineering design. Finally,
Vincenti’s criteria are used to analyze a section of the
SWEBOK Guide, the Software Quality KA.

 This paper is organized as follows: Section 2 introduces
Vincenti’s engineering viewpoint, and Section 3 presents a
set of models developed to facilitate the use of Vincenti’s

concepts for the analysis of an engineering discipline. Sec-
tion 4 presents a mapping of Vincenti’s engineering design
concept to the SWEBOK Guide Software Engineering de-
sign concept. Section 5 analyzes, from an engineering view-
point, the Software Quality KA of the SWEBOK Guide,
and, finally, in Section 6, a summary and future research
directions are presented.

2 Vincenti’s Engineering Viewpoint
2.1 Overview and Context
Vincenti, in his book "What engineers know and how

they know it" [4], proposed a taxonomy of engineering
knowledge based on the historical analysis of five case stud-
ies in aeronautical engineering covering a roughly fifty-year
period. He identified different types of engineering knowl-
edge and classified them in six categories:

1. fundamental design concepts,
2. criteria and specifications,
3. theoretical tools,

Engineering
Vocabulary

Definitions

Design Denotes both the content of a set of plans (e.g. in the design for a new aeroplane and
the process by which those plans are produced.

Normal
configuration

The general shape and arrangement commonly agreed upon to best embody the
operational principle.

Normal
technology

According to Edward’s constant that “what technological communities usually do”
comprises “the improvement of the accepted tradition or its application under new or
more stringent conditions.”

Normal design The design involved in normal technology.
The engineer working with such a design knows at the outset how the device in
question works and what its customary features are, and that, if properly designed
along such lines, it has a good likelihood of accomplishing the desired task.
Normal design is evolutionary rather than revolutionary.

Operational
principle

Defines the essential fundamental concept of a device,.
“How its characteristic parts… fulfill their special function in combination to [sic] an
overall operation which archives the purpose.”

Production Denotes the process by which these plans are translated into the concrete artifice.
Operation Deals with the employment of the artifice in meeting the recognized need.
Radical design How the device should be arranged, or even how it works, is largely unknown. The

designer has never seen such a device before and cannot presume that it will succeed.
Engineering
knowledge

The knowledge used by engineers.
Engineering knowledge has to do not only with design, but also with production and
operation.

Descriptive
knowledge

The knowledge of how things are.

Prescriptive
knowledge

The knowledge of how things should be to attain a desired end.

Device Devices are single, relatively compact entities, such as aeroplanes, electric generators,
turret lathes, and so forth (Laundan).

Systems Systems are assemblies of devices brought together for a collective purpose.
Examples are airlines, electric power systems and automobile factories.

Technologies Denote systems and devices taken together.
Concepts May exist explicitly only in the designer’s mind. They are unstated givens for the

project, having been absorbed by osmosis, so to speak, by the engineer in the course of
his development, perhaps even before entering formal engineering training. They had to
be learned deliberately by the engineering community at some time, however, and form
an essential part of design knowledge.

 Table 1: Vincenti’s Vocabulary Relating to Engineering Terms and Concepts [4].

UPGRADE Vol. VII, No. 1, February 2006 7© Novática

Key Success Factors in Software Engineering

4. quantitative data,
5. practical considerations, and
6. design instrumentalities.
Furthermore, Vincenti stated that this classification is

not specific to the aeronautical engineering domain, but can
be transferred to other engineering domains. However, he
did not provide documented evidence of this applicability
and generalization to other engineering disciplines, and no

author could be identified as having attempted to do so ei-
ther. In this paper, we propose some pioneering work on
the use of Vincenti’s categorization of engineering knowl-
edge as constituting criteria for investigating Software En-
gineering from an engineering perspective.

 The Vincenti categorization of knowledge was first used
in a graduate seminar in 2002 at the École de Technologie
Supérieure, Université du Québec (Canada), as an analyti-

Engineering
Knowledge
Category

Corresponding Criteria

Fundamental
design concepts

• About the design
• Designers must know the operational principle of the device
• How the device works
• Normal configuration
• Normal design
• Other features may be opened

Criteria and
specifications

• Specific requirements of an operational principle
• General qualitative goals
• Specific quantitative goals laid out in concrete technical terms
• The design problem must be “well defined”
• Unknown or partially understood criteria
• Assignment of values to appropriate criteria
• This task takes place at the project definition level in the design hierarchy.
• Definition of technical specifications

Theoretical tools • Mathematical methods and theories for making design calculations
• Intellectual concepts for thinking about the design
• Precise and codifiable
• They come mostly from deliberate research
• They are not sufficient by themselves

Quantitative data • Specify manufacturing processes for production
• Display the detail for the device
• Data essential for design
• Obtained empirically
• Calculated theoretically
• Represented in tables or graphs
• Precise and codifiable
• They come mostly from deliberate research
• They are not sufficient by themselves

Practical
considerations

• Theoretical tools and quantitative data are not sufficient. Designers also
need practical considerations derived from experience

• Practical considerations are learned on the job, and not in school or from
books

• Practical considerations are rarely documented
• Practical considerations are also derived from production and operation
• This knowledge is difficult to define
• This knowledge defies codification
• A prototype must often be built to check the designer’s work
• The practical consideration learned from operation is judgment
• Rules of thumb
• The practices from which these rules derive include not only design, but

production and operation as well
Design
instrumentalities

• Knowing how
• Procedural knowledge
• Ways of thinking
• Skills based on judgment
• Knowledge on how to carry out tasks
• Must be part of any anatomy of engineering knowledge

Table 2: Vincenti’s Engineering Knowledge Categories and Criteria.

8 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

cal tool to tackle this issue by analyzing each of the
SWEBOK KAs separately. The initial purpose of this ap-
proach was to gain insights into their content and structure,
which, by definition, were expected to be of an engineering
knowledge type. While it was easy for graduate students at
the Master’s degree and doctoral levels to use Vincenti’s
criteria to analyze the SWEBOK Design KA and to pro-
pose a mapping to the Vincenti categorization, this proved
to be much more challenging for all the other KAs, to the
point where some of these students questioned the relevance
of the applicability of Vincenti’s categorization to these other
SWEBOK KAs, and, as a corollary to that, that these other
KAs did not necessarily constitute knowledge of an engi-
neering type. The specific vocabulary defined by Vincenti
is presented in Table 1.

2.2 Vincenti’s Categorization Criteria & Goals
Vincenti provides a categorization of engineering de-

sign knowledge and the activities that generate it. However,
the divisions are not entirely exclusive; some items of knowl-
edge can contain the knowledge of more than one category.
From Vincenti’s definitions of each engineering knowledge-
type category, a number of criteria were identified and have
been listed in Table 2. The goals of each category have also
been identified, and these are listed in Table 3.

3 Vincenti’s Classification of Engineering Knowl-
edge Types
3.1 Relationship between The Various Categories
Since the categories are not mutually exclusive, it is

important to understand the relationships between them. An
initial modelling of Vincenti’s categories of engineering
knowledge is presented in Figure 1. This figure illustrates
that, in seeking a design solution, designers move up and

down within categories, as well as back and forth from one
category to another.

It can also be noted that three categories (theoretical
tools, quantitative data and design instrumentalities) are
related in the following manner: theoretical tools guide and
structure the data, while quantitative data suggest and push
the development of tools for their presentation and applica-
tion – see Figure 2. Furthermore, both theoretical tools and
quantitative data serve as input for design instrumentalities,
while appropriate theoretical tools and quantitative data are
needed for technical specifications. The next section presents
several models to illustrate the relationships across these
engineering concepts.

3.2 Vincenti’s Classification of Engineering
Knowledge-type Models
We now present a detailed description of Vincenti’s six

categories of engineering knowledge and the related models
for each. Vincenti stated that these categorizations of engineer-
ing knowledge are not exclusive, since some elements of knowl-
edge can be found in more than one category.

3.2.1 Fundamental Design Concepts
The goal of ‘fundamental design concepts’, according

to Vincenti, is as follows: "Designers setting out on any
normal design bring with them fundamental concepts about
the device in question," which means the definition of fun-
damental concepts related to the device by the designer.
Fundamental design elements are composed of four elements
(Figure 3); operational principles, normal configuration,
normal technology and concepts in people’s minds. At first,
these concepts exist only in the designer’s mind:

Concepts in people’s minds are inputs to the project
(Figure 4).

Engineering
Knowledge
Category

Goals

Fundamental
design concepts

Designers embarking on any normal design bring with them fundamental
concepts about the device in question.

Criteria and
specification

To design a device embodying a given operational principle and normal
configuration, the designer must have, at some point, specific requirements in
terms of hardware.

Theoretical tools To carry out their design function, engineers use a wide range of theoretical tools.
These include intellectual concepts as well as mathematical methods.

Quantitative data Even with fundamental concepts and technical specifications at hand,
mathematical tools are of little use without data for the physical properties or
other quantities required in the formulas. Other kinds of data may also be needed
to lay out details of the device or to specify manufacturing processes for
production.

Practical
considerations

To complement the theoretical tools and quantitative data, which are not sufficient.
Designers also need less sharply defined considerations derived from
experience.

Design
instrumentalities

Besides the analytical tools, quantitative data and practical considerations required
for their tasks, designers need to know how to carry out those tasks.
How to employ procedures productively constitutes an essential part of design
knowledge.

Table 3: Vincenti’s Engineering Knowledge Categories and Goals.

UPGRADE Vol. VII, No. 1, February 2006 9© Novática

Key Success Factors in Software Engineering

Fundamental Design Concepts

Theoretical tools

Quantitative Data

Practical Considerations

Design Instrumentalities

Critiria and Specifications

Up

Down

Back and Forth

Figure 1: Vincenti’s Classification of Engineering Knowledge.

from abstract concepts to precise concepts (Figure 6).
Normal configuration is "the general shape and ar-

rangement that are commonly agreed to best embody the
operational principle."

Normal technology is "the improvement of the ac-
cepted tradition or its application under new or more strin-
gent conditions." Design, in Vincenti, "denotes both the
content of a set of plans (as in the design for a new aero-
plane) and the process by which those plans are produced."
There are two types of design: normal design and radi-
cal design. The latter is a kind of design that is unknown
to the designer, and where the designer is not familiar
with the device itself. The designer does not know how
the device should be arranged, or even how it works. The
former is a traditional design, where the designer knows
how the device works. The designer also knows the tradi-
tional features of the device. This type of design is also
the design involved in normal technology, which was
mentioned earlier. In conclusion, "normal design is evo-
lutionary rather than revolutionary." Finally, a normal
configuration and operational principles together provide
a framework for normal design (Figure 7).

In Vincenti, a normal technology, or design, is part of
a normal configuration and of a related operational prin-
ciple.

3.2.2 Criteria and Specifications
The goal for ‘criteria and specifications’ can be ex-

pressed as follows: "To design a device embodying a given
operational principle and normal configuration, the de-
signer must have, at some point, specific requirements in
terms of hardware." The designer designs a device meet-
ing specific requirements which include a given opera-
tional principle as well as a normal configuration. First,
the design problem must be well defined. Then, the de-
signer translates general quantitative goals into specific
quantitative goals (Figure 8): the designer assigns values
or limits to the characteristics of the device which are cru-
cial for engineering design. This allows the designer to
provide the details and dimensions of the device that will
be given to the builder. Furthermore, the output at the prob-

Operational principles define the essential fundamen-
tal concept of a device. "How its characteristic parts… fulfill
their special functions in combination to [sic] an overall
operation which archives the purpose." The operational
principles must be known by the designers first (Figure 5)
and constitute the basic components for the design, whereas
operational principles are abstract, and the design moves

Figure 2: Relationships between Theoretical Tools & Quantitative Data.

Theoretical Tools

Quantative Data

Design InstrumentalitiesGuide Push

Feeds

Feeds

Structure
Suggest the
development

of tools

10 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

Operational principlesDesigners Must know

Figure 5: Designers Initial Knowledge.

O p e r a t i o n a l
p r i n c i p l e s

C o n c e p t s i n
p e o p l e ’ s m i n d s

N o r m a l
c o n f i g u r a t i o n

N o r m a l
t e c h n o l o g y o r

d e s i g n

F u n d a m e n t a l d e s i g n
c o n c e p t e l e m e n t s

Figure 3: Elements of A Fundamental Design Concept.

ProjectConcepts in people's minds GivensTo

Figure 4: Project Input.

lem definition level is used, in turn, as input to the remain-
ing design activities that follow (Figure 9). These specifi-
cations are more important where safety is involved, as in
the case of aeronautical devices. The criteria on which the
specifications are based become part of the accumulating
body of knowledge about how things are done in engineer-
ing. Finally, ‘criteria and specifications’ exists as a category
of knowledge only in engineering and not in science. In
science, the aim is to understand: scientists do not need to
have highly specified or concrete objectives. In engineer-
ing, by contrast, to design a device, criteria and specified
goals are crucial.

3.2.3 Theoretical Tools
Theoretical tools are used

by engineers to carry out their
design. The goal of the
‘theoretical tools’ category is
expressed by Vincenti as fol-
lows: "To carry out their de-
sign function, engineers use
a wide range of theoretical
tools. These include intellectual concepts as well as math-
ematical methods" (Figure 10). Intellectual concepts (such
as design concepts, mathematical methods and theories) are
tools for making design calculations. Both design concepts
and methods are part of science.

In the first class of theoretical tools are mathematical
methods and theories composed of formulas, either simple
or complex, which are useful for quantitative analysis and
design. This scientific knowledge must be reformulated to

Design instrumentalities contain instrumentalities of the
process, the procedures, judgment and ways of thinking.
The latter are less tangible than procedures and more tangi-
ble than judgment; an example of ways of thinking is ‘think-
ing by analogy’. Judgment is needed to seek out design
Having the analytical tools, quantitative data and practical
considerations at hand, designers also need procedural
knowledge to carry out their tasks, as well as to know how
carry out their tasks, as well as to know how to employ
these procedures.

make it applicable to engineering. The engineering activity
requires that thoughts be conceived in people’s minds. In
the second class of theoretical tools are intellectual con-
cepts, which represent the language expressing those
thoughts in people’s minds. They are employed first in the
quantitative conceptualization and reasoning that engineers
have to perform before they carry out the quantitative analy-
sis and design calculations, and then again while they are
carrying them out.

3.2.4. Quantitative data
The goal of ‘quantitative data’ is to

lay down "the physical properties or
other quantities required in the formu-
las. Other kinds of data may also be
needed to lay out details of the device
or to specify manufacturing processes
for production." Besides fundamental
concepts and technical specifications,

UPGRADE Vol. VII, No. 1, February 2006 11© Novática

Key Success Factors in Software Engineering

Normal
configuration

Operational
principle

Normal
technology or

design

Operational principles

Normal configuration

Framework

for normal design
Provide

Figure 7: Relationships between Normal Configuration, Operational Principles and Normal Design.

Specific
quantitative

goals

General
quantitative

goals Into
Designer

Translate

Figure 8: Designer’s Goals.

Design

Operational principles
Basis Abstract

Precise

Figure 6: Design Pyramid.

the designers also need quantitative data to lay out details
of the device. These data can be obtained empirically, or in
some cases they can be obtained theoretically. They can be
represented in tables or graphs.

These data are divided into two types of knowledge:
prescriptive and
descriptive:

 Descriptive
knowledge is
"knowledge of
how things are."
It includes
p h y s i c a l
c o n s t a n t s ,
properties of
substances and
p h y s i c a l
processes. In
some situations,
it refers to op-
e r a t i o n a l
conditions in the
physical world.
Descriptive data
can also include
measurement of
performance.

 Prescriptive
knowledge is
"knowledge of how things should be to attain a desired end."
An example might be: "In order to accomplish this or
organize this, arrange things this way."

Operational principles, normal configuration and tech-
nical specifications are prescriptive knowledge, because they
prescribe how a device should satisfy its objective (Figure
11).

3.2.5 Practical Considerations
According to Vincenti, the goal of ‘practical considera-

tions’ is "to complement the role of theoretical
tools and quantitative data which are not
sufficient. Designers also need for their work
less sharply defined considerations derived
from experience." This kind of knowledge is
prescriptive in the way that it shows the
designers how to proceed with the design to
achieve it. Vincenti refers to practical
considerations as constituting non-codifiable
knowledge derived from experience, unlike
theoretical tools and quantitative data which
are very precise and codifiable because these
are derived from intentional research. This cat-
egory of engineering knowledge is needed by
designers as a complement to theoretical tools
and quantitative data. These practical
considerations are learned on the job, rather

than at school or from books. They are not to be formalized
or programmed. They are derived from design, as well as
from production and operation. The practical consideration
derived from production is not easy to define and cannot be
codified, and a prototype is highly recommended to check

the designer’s work (Figure 12). An example of a practical
consideration from operation is the judgment that comes
from the feedback resulting from use.

3.2.6 Design Instrumentalities
The goal of ‘design instrumentalities’ in the engineer-

ing design process required for the engineer’s tasks is "to
know how to carry out those tasks. How to employ proce-
dure productively constitutes an essential part of design

knowledge".
Having the

analytical tools,
quantitative data
and practical
considerations at
hand, designers
also need
p r o c e d u r a l
knowledge to

12 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

Assigned values or
limits to criteria

Concrete design activities that folllow

Technical
specifications

Problem definition

Figure 9: Problem Definition Level Output.

Theoretical tools

Mathematical methods

Intellectual concepts Thoughts in people’s minds

Quantitative analysis and
design

Qualitative conceptualizing
and reasoning

Mathematical theories

Physical reasoning

Mathematical theories
and

Physical reasoning

Provide
language for

Quantitative analysis and
designEmployed In

<Include>

<Derive> <Employed In>

Figure 10: Theoretical Tools Model.

carry out their tasks, as well as to know how to employ
these procedures.

Design instrumentalities contain instrumentalities of the
process, the procedures, judgment and ways of thinking.
The latter are less tangible than procedures and more tangi-
ble than judgment; an example of ways of thinking is ‘think-
ing by analogy’. Judgment is needed to seek out design so-
lutions and make design decisions (Figure 13)

4 The Design Process
4.1 TheEngineering Design Process in Vincenti
According to Vincenti, the engineering ‘design’ concept

"denotes both the content of a set of plans (as in the design
for a new aeroplane) and the process by which those plans
are produced". In Vincenti’s view, design is an iterative
and complex process which consists of plans for the pro-
duction of a single entity, such as an aeroplane (device),
how these plans are produced, and, finally, the release of
these plans for production.

Vincenti mentions that there are two types of design in
engineering, normal and radical. In the former, the designer
knows how the device works, how it should be arranged
and what its features are. In the latter, the device is new to
the engineer who is encountering it for the first time. There-

UPGRADE Vol. VII, No. 1, February 2006 13© Novática

Key Success Factors in Software Engineering

Quantitative data

Prescriptive knowledge

Descriptive knowledge Technical specification

Physical constant

Properties of substance

Physical processes

Normal configurationIncludes

<Includes> Operational principles

Operational conditions

Measurement of
performance

Figure 11: Quantitative Data Model.

fore, the engineer does not know how it works or how it
should be organized.

He also mentions that design is a multilevel and hierar-
chical process. The designer starts by taking the problem as
input.

The design hierarchies start from the project definition
level, located at the upper level of the hierarchy where prob-
lems are abstracted and unstructured.

At the overall design level, the layout and the propor-
tions of the device are set to meet the project definition. At
level 3, the project is divided into its major components. At
level 4, each component is subdivided. At level 5, the
subcomponents from level 4 are further divided into spe-
cific problems.

At the lower levels, problems are well defined and struc-
tured. The design process is iterative, both up and down
and horizontally throughout the hierarchy. Vincenti’s view
of the levels of design is modeled in Figure 14. At each
level of the hierarchy, a design can be either normal or radi-
cal.

4.2 The Engineering Process in The SWEBOK
Guide

The SWEBOK Guide is composed of ten KAs -- see
Figure 15. Each KA is represented by one chapter in the
SWEBOK Guide.

4.3 Design Motion in The SWEBOK Guide
The Software Requirements KA is composed of four

phases of software requirements: elicitation, analysis, speci-
fication and validation. The elicitation phase is the process
of deriving requirements through observation of existing
systems. Requirements specification is the activity of trans-
forming the requirements gathered during the analysis ac-
tivity into a precise set of requirements. Software Require-
ments Specifications describe the software system to be
delivered. In the requirements validation phase, the require-
ments are checked for realism, consistency and complete-
ness.

Software design is defined in [1] as both "the process of
defining the architecture, components, interfaces, and other
characteristics of a system or component" and "the result of
[that] process". Software design in the Software Engineer-
ing life cycle is an activity in which software requirements
are taken as input to the software design phase for analysis.
"Software requirements express the needs and constraints
placed on a software product that contribute to the solution
of some real-world problem."

The result will be the description of the software archi-
tecture, its decomposition into different components and the
description of the interfaces between those components. Also
described will be the internal structure of each component

14 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

Practical
considerations

Less sharply defined
considerations

TheoryDesign

Production

Operation

Are

on a jobLearned

<Derived
from>

Tabulation

Programming

Experience in practice

Derived from

Judgment

Feedback from use

<Come from>

<Example>

<Are not>

Cannot be codified

Difficult to define

Need a prototype

<Knowledge
coming from>

Figure 12: Practical Considerations Model.

Design instrumentalities

Instrumentalities of the
process

The procedures

Ways of thinking

Judgmental skills by which
it is done

Figure 13: Design Instrumentalities Model.

4. It can be observed that it is defined significantly differently
in the two documents; that is, design in engineering accord-
ing to Vincenti is not limited to design as described in the
SWEBOK Guide.: iIn Vincenti, it goes far beyond the scope
of the SWEBOK, that is: it is composed of the whole of the
Software Engineering life cycle, as illustrated in Figure 16.

All the activities of the software life cycle, like the re-
quirements phase, the design phase, the construction phase
and the testing phase) map to a single phase in the engi-
neering cycle, that is, design. These activities do not neces-
sarily take place in the same order: for instance, testing in
engineering starts right at the beginning, at the problem
definition level, and goes on until the final release of the
plans for production, while in the Software Engineering life
cycle, as defined generically in the SWEBOK Guide, test-
ing starts after the construction phase.and the related program.

4.4 Design KA: Mapping between Vincenti and
The SWEBOK Guide

 The analysis of the term ‘design’ in both Vincenti
and the SWEBOK Guide is presented in Table 4: it can
be observed that it is defined significantly differently in
the two documents.

Is there a direct and unique mapping of this ‘design’
term used in both the SWEBOK Guide and Vincenti’s
categorization of engineering knowledge?

If there were such a direct mapping, would this mean
that only the Design KA in the SWEBOK could be
mapped to Vincenti’s engineering knowledge? Or, alter-
natively, is the notion of design defined by Vincenti dif-
ferent from the design concept in Software Engineering
as defined in the SWEBOK Guide? And, if so, what is its
scope within the SWEBOK Guide?

The definitions and descriptions of this term in both
Vincenti and the SWEBOK Guide are presented in Table

UPGRADE Vol. VII, No. 1, February 2006 15© Novática

Key Success Factors in Software Engineering

KA10 - Software Quality

KA09 - Software Engineering Tools and Methods

KA08 - Software Engineering Process

KA07 - Software Engineering Management

KA06 - Software Configuration Management

KA05 -
Maintenance

KA04 -
Testing

KA03 -
Construction

KA02 -
Design

KA01 -
Requirements

•Primary
Processes

•Supporting
Processes

Figure 15: SWEBOK’S Ten KAs [2].

The detailed mapping between the different design lev-
els in engineering and in the Software Engineering life cy-
cle is presented in Table 4.

5 Identification of The Engineering Concepts in
The Software Quality KA
We present next an analysis of the engineering content

within the SWEBOK Guide using one of its ten KAs as a
case study, that is, Software Quality.

5.1 Software Quality
Authors and organizations

have provided many different
definitions of quality. For in-
stance, Phil Crosby (Cro79) stated
that it is "conformance to user
requirements", while Watts
Humphrey (Hum89) defined it as
"achieving excellent levels of fit-
ness for use". IBM uses the term
"market-driven quality". Further-
more, ISO 900:2000 has de-
scribed quality as "the degree to
which a set of inherent character-
istics fulfills requirements". Fi-
nally, the SWEBOK Guide intro-
duces software quality as a sepa-
rate KA, describing quality in dif-
ferent ways. The breakdown of
software quality topics adopted in
the SWEBOK Guide [2][3] is pre-
sented in Figure 17.

5.2 Analysis Using The
Vincenti Classification of
Engineering Knowledge

This section discusses the evaluation of the Software
Quality KA of the SWEBOK Guide from an engineering
perspective. To analyze the breakdown related to the Soft-
ware Quality KA, the Vincenti classification of engineer-
ing knowledge is used to identify the strengths and weak-
nesses of this KA, and to gain further insights on the level
of maturity of this topic from an engineering viewpoint.

This analysis is based on the models of engineering
knowledge described earlier. These models give us a very

Project Definition

Major component design

Major component design

Subdivision of
component

design

Subdivision of
component

design

Subdivision of
component

design

Subdivision of
component

design

Overall design

Up

Down

Major component design

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 14: Modelling of The Levels of The Design Hierarchy, as Described in Vincenti.

16 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

Design definition for engineering according to Vincenti Design definition for Software Engineering
Design, as defined by Vincenti:
“The content of a set of plans (as in the design for a new
aeroplane)” and “the process by which those plans are
produced” .

Design is defined in [IEEE 610.12-90] as both:
“The process of defining the architecture, components,
interfaces, and other characteristics of a system or
component” and “the result of [that] process”.

Design, in the engineering life cycle is a process which starts by
taking as input the problem, following a set of hierarchical levels.
This process moves from problem definition to the production of
a device as output.

Software design in the Software Engineering life cycle is an
activity in which software requirements are taken as input to
the software design phase for analysis. The result will be a
precise description of the internal structure of the program.

DesignProblem Device

Design

Software
specification
Document

Requirements

Software
Design

Document

Construction

.

.

.

.

Table 4: Design According to Vincenti vs. Design in The Software Engineering Life Cycle.

descriptive analysis of the various key elements contained
in each of the corresponding engineering knowledge areas.
This allows us to make an appropriate mapping between
the different categories of the engineering knowledge area
and software quality. It helps in identifying the engineering
elements contained in this topic, as well as the missing ones.
As a result, it looks into the software quality area from an
engineering perspective. Table 6 describes the mapping

between the corresponding criteria for the classification of
engineering knowledge and the related software quality top-
ics. This analysis can provide useful insights into possible
strengths and weaknesses of the software quality topic. It
helps categorize the knowledge contained in the Software
Quality KA of the SWEBOK Guide: for instance, it covers
all categories of engineering knowledge from an engineer-
ing viewpoint, but this does not mean that it is complete

Requirement
Specification Design TestingConstruction Maintanance

Design

Engineering cycle

Sofware development
life cycle

Figure 16: Design According to Vincenti vs. Design in The Software Engineering Life Cycle.

UPGRADE Vol. VII, No. 1, February 2006 17© Novática

Key Success Factors in Software Engineering

and inclusive.

6 Summary
The SWEBOK Guide documents an international con-

sensus on ten Software Engineering KAs within what is
referred to as an engineering discipline. Software engineer-
ing, as a discipline, is certainly not yet as mature as other
engineering disciplines, and some authors have even chal-
lenged the notion that Software Engineering is indeed en-
gineering. The work presented here has involved investi-
gating this engineering perspective, first by analyzing the
Vincenti classification of engineering knowledge, and sec-

ond by comparing the design concept in Vincenti vs. the
design concept in the SWEBOK Guide.

The result of this analysis was to show that the design
issue in Vincenti is not limited to the design issue in the
SWEBOK Guide: it goes beyond that, in that it is composed
of the whole of the Software Engineering life cycle.

Finally, the SWEBOK Software Quality KA was selected
as a case study and analyzed using the Vincenti classifica-
tion as a tool to analyze this KA from an engineering per-
spective. This analysis was carried out to identify some of
the strengths and weaknesses of the breakdown of topics
for the Software Quality KA. It has shown that all the cat-

Figure 17: Breakdown of Topics for the Software Quality KA (SWEBOK Guide).

Levels Description of the design process in
engineering

Software engineering life
cycle

1 Project Definition Requirements
2 Overall design – component layout of the

aeroplane to meet the project definition.
Specification

3 Major component design – division of project into
wing design, fuselage design, landing gear
design, electrical system design, etc.

Architecture of the system

4 Subdivision of areas of component design from
level 3 according to the engineering discipline
required (e.g. aerodynamic wing design,
structural wing design, mechanical wing design)

Detailed design

5 Further division of the level 4 categories into
highly specific problems

Construction

Table 5: Mapping of The Design Process in Engineering vs. The Software Engineering Life Cycle

18 UPGRADE Vol. VII, No. 1, February 2006 © Novática

Key Success Factors in Software Engineering

Engineering
Knowledge
Category

Corresponding Criteria Quality Concepts Refined

Fundamental
design
concepts

• About the design
• Designers must know the operational

principle of the device
• How the device works
• Normal configuration
• Normal design
• Other features may be created

• Planning the software quality
process

• Quality characteristics of the
software (QI), (QE), (QIU)

• Software quality models
• Quality assurance process
• Verification process
• Validation process
• Review process
• Audit process

Criteria and
specification

• Specific requirement of an operational
principle

• General qualitative goals
• Specific quantitative goals laid out in concrete

technical terms
• The design problem must be “well defined”.
• Unknown or partially understood criteria
• Assignment of values to appropriate criteria
• This task takes place at the project definition

level

• Quality objective to be specified
• Characteristics of quality tools
• Software characteristics
• Criteria for assessing the

characteristics

Theoretical
Tools

• Mathematical methods and theories for
making design calculation

• Intellectual concepts for thinking about design
• Precise and codifiable

• Verification process model
• Formal methods
• Testing
• Theory measurement
• Verification/proving properties
• TQM (Total Quality Management)

Quantitative
 data

• Specify manufacturing process for production
• Display the detail for the device
• Data essential for design
• Obtained empirically
• Calculated theoretically
• Represented in tables or graphs
• Descriptive knowledge
• Prescriptive knowledge
• Precise and codifiable

• Quality measurement
• Experimental data
• Empirical study
• E.g. the process of requirement

inspection
• Value and cost of quality

Practical
Considera-
tions

• Theoretical tools and quantitative data are not
sufficient. Designers also need considerations
derived from experience

• It is difficult to find them documented
• They are also derived from production and

operation
• This knowledge is difficult to define
• It defies codification
• The practical consideration derived from

operation is judgment
• Rules of thumb

• Application quality
 requirements
• Defect characterization

Design
Instrumenta-
lities

• Knowing how
• Procedural knowledge
• Ways of thinking
• Judgment skills

• Quality assurance procedures
• Quality verification procedures
• Quality validation procedures
• SQM process tasks & techniques
• Management techniques
• Measurement techniques
• Project planning and tracking
• Quality assurance process
• Verification process
• Validation process
• Review process
• Audit process

Table 6: Quality Concepts in The SWEBOK Guide Using Vincenti’s Classification.

UPGRADE Vol. VII, No. 1, February 2006 19© Novática

Key Success Factors in Software Engineering

egories of engineering knowledge described by Vincenti are
present in this KA of the SWEBOK; that is, it addresses the
full coverage of all related engineering-type knowledge. This
does not mean, however, that it is all-inclusive and com-
plete, but only that the coverage extends to all categories of
engineering knowledge from an engineering viewpoint.

The next stage of this R&D project will focus on inves-
tigating the application of Vincenti’s engineering knowl-
edge to the analysis of a single candidate Software Engi-
neering principle. This analysis will be performed from an
engineering viewpoint to the primary processes contained
in the SWEBOK Guide with respect to the following fun-
damental principle: "Manage quality throughout the life
cycle as formally as possible".

References
[1] IEEE 610.12-1990 (1990), IEEE Standard Glossary of

Software Engineering Terminology, Institute of Elec-
trical and Electronics Engineers ISBN: 155937067X.
84 pages.

[2] A. Abran, J. Moore, P. Bourque, R. Dupuis, L. Tripp.
Guide to the Software Engineering Body of Knowledge
– SWEBOK, IEEE Computer Society Press, Los
Alamitos, 2005. <http://www.swebok.org>.

[3] ISO/IEC TR 19759-2005, Guide to the Software Engi-
neering Body of Knowledge (SWEBOK), International
Organization for Standardization - ISO, Ginebra, 2005

[4] W.G. Vincenti. What engineers know and how they
know it. Baltimore, London, The Johns Hopkins Uni-
versity Press, 1990.

