
10 th International Workshop on Software Measurement – Berlin, Germany 1

Mapping Processes Between Parallel,

Hierarchical and Orthogonal System Representations

Authors

Francis Dion
Epsilon Technologies inc.
1200, Boul. Chomedey
Laval (QC) Canada H7V 3Z3
fdion@xpertdoc.com

Thanh Khiet Tran
 tkhiet@yahoo.com

Alain Abran
Professor and director of the
Software Engineering Management Research Lab.
Université du Québec à Montréal
Département d'informatique
C.P. 8888, Succ. Centre-ville
Montréal (Québec), Canada H3C 3P8
abran.alain@uqam.ca

Abstract
The importance of software system representation through models and visual diagrams is
increasing with the steady growth of systems complexity and criticality. Since no single
representation is best suited to address all the documentation, communication and
expression needs of a typical software development project, the issues related to
conversion and coherence between different representations are having a significant impact
on team productivity and product as well as process quality.

This paper explores the types of relationships that exist between representations and the
impact they have on mapping, generation and synchronization processes. We propose a
characterization of those relationships as being parallel, hierarchical or orthogonal.
Examples and comments on mapping or transformation processes and automation prospects
in the context of software size measurement are also provided.

10 th International Workshop on Software Measurement – Berlin, Germany 2

Keywords
REPRESENTATION, UML, MAPPING, MEASUREMENT

Introduction
In the field of software development and maintenance, we need models whenever the
systems we are working on become too complex to be instantly and completely grasped by
all involved individuals.

Models and diagrams are used for specifying, visualizing, constructing, and documenting
the artifacts of software systems, as well as for business modeling1. They are tools for
stakeholders to communicate their understanding about the system. They can be used to
broadly or precisely specify the work to be done. They can serve as blueprints for
construction or as a basis for cost and schedule estimation. They can also be used as input
for automated size measurement, property validation, code generation and a host of other
purposes.

Local Rules:
Differences Between Organizations Usage of Model Elements

The choice of what models and diagrams one creates has a profound influence upon how a
problem is attacked and how a corresponding solution is shaped. Furthermore, the same
model elements can be used differently to express different concepts or different levels of
abstraction from one organization to another.

Those variations are imputable to many factors, including:

• Organizational culture.

• Available experience and expertise.

• Tools and tools usage.

• Corporate or personal goals and objectives.

Every complex system is best approached through a small set of nearly independent views
of a model2. No single representation of a system can efficiently express or communicate
all needed perspectives on that system. A diagram that is well suited for a specific need or
task could be too low level, too high level or conceptually too distant to be used in another
context.

Since models and diagrams are capable of expressing the details of a system from a
number of perspectives, one of the recurring issues faced when applying modeling
surrounds the management of "Enterprise-wide" modeling efforts and models. Specifically,

1 Adapted from [1], page xi.
2 [1], page 1-3.

10 th International Workshop on Software Measurement – Berlin, Germany 3

there are concerns about models that exist at different level of abstractions, and how to
manage these different models3.

The cost associated with the independent production of many representations for the same
system can be quite substantial. The evolution of the system itself is also likely to be an
issue in terms of maintaining the coherence of loosely related representations. It thus seems
reasonable to look for ways to somehow relate those representations together. By
examining the nature of their relationships, we should be able to assess the potential to
produce one representation as a function of another one. In some instances, the mapping
would be straightforward and the process would be easy to automate. Other mappings,
though, would be much less obvious and require human intervention.

This paper presents a categorization scheme for the relationships between representations
in order to assess their potential for systematic mapping. This classification is a fuzzy set
of three categories representing decreasing correspondence between elements of the
representations. The categories are: parallel, hierarchical and orthogonal.

Please note that, although the examples in this paper are mostly UML diagrams, we
believe the concepts and ideas presented here to be as applicable with any other
modeling technique and even across notations.

Definitions
A model is a simplified representation of a system or a process. A system can be
represented by any number of models. A model could also represent a class of systems or
processes.

A view is a specific expression of a model. It can be seen as a window on the model,
exposing part or all of the information it contains in a format that is suitable for some
specific use or user. A single model can be expressed through many distinct views.

A diagram is a graphical view, by opposition to a textual or tabular view.

Despite their definite differences, these concepts are more or less interchangeable in the
context of this paper. To avoid unnecessary confusion, the term “representation” is use here
to mean either one of them.

Relationships between representations
When considering the ease and usefulness of establishing a mapping between two distinct
representations, one must be able to understand and characterize the relationships that exist
between them. To that effect, we suggest the use of the following categories:

• The representations are parallel if they express roughly the same concepts at the
same level of abstractions.

• The representations are hierarchical if they express roughly the same concepts but
at different levels of abstraction.

3 Adaped from [2]

10 th International Workshop on Software Measurement – Berlin, Germany 4

• The representations are orthogonal if they express unrelated (or at least not
directly related) concepts of the system/unit.

Those categories are not crisp classifiers. They are fuzzy symbols expressing a relative
positioning across a continuum from perfect isomorphism to complete independence. As
we intend to demonstrate in the following sections, they are useful conceptual tools to
assess the potential for systematic mapping between two specific representations.

Parallel Representations
Two distinct representations of a system or unit are said to be parallel if they express
roughly the same concepts at roughly the same level of abstraction.

The mapping or conversion process between parallel representations should be
straightforward and easily automated since their information content is identical and their
differences lie mainly in the way this information is organized and presented.

 Another implication of this definition is that either one could be obtained as a function of
the other and that they could both be expressions of the same internal representation.

Model A Model B

Model Element
A1

Model Element
A2

Model Element
B1

Model Element
B2

Parallel Representations

Same/Identical

Same/Identical

......

Figure 1: Illustration of a parallel relationship between to representations

One example of parallel representations is illustrated by the well-known isomorphism that
exists between collaboration and sequence diagrams in the UML notation. Both are
instances of the abstract interaction type of diagrams and one form can readily be
converted to the other without any loss of information. Many modeling tools directly
support this transformation.

10 th International Workshop on Software Measurement – Berlin, Germany 5

Object A

User

Object B

Message 1

Message 1.1
Message 1.2Message 1.1.1

User

Object A Object B

Message 1

Message 1.1

Message 1.1.1

Message 1.2

Collaboration diagram Sequence diagram

Figure 2: Example of isomorphic collaboration and sequence diagrams

Another less obvious parallel relationship exists between the model of a class and its
representation as a use case diagram. The use cases represented here are not those of the
overall system but rather of the users of the class, usually other classes or components.

Method 1
Method 2

Attribute 1
Attribute 2

Class A

Class diagram for Class A

Other classes
or components

Use case diagram for Class A

Get/Set Attribute 1

Get/Set Attribute 2

Invoke Method 1

Invoke Method 2

Figure 3: Example of a parallel relationship between a class an a use case diagram

Hierarchical Representations
Two distinct representations of a system or unit are said to be hierarchical if they express
roughly the same concepts but at different levels of abstraction. In other words, one of the
models or diagrams presents a detailed view of the system while the other is a more
synthesized, bird’s eye view of that same system. This type of relationship is especially
emphasized by top down methodologies where one goes from a high level specification to
detailed specification to high and low level design and so on all the way down to
implementation. Each level needs to be traceable to its predecessor while adding new,

10 th International Workshop on Software Measurement – Berlin, Germany 6

more detailed information. Such models or views could share the same internal
representation, although at least one of them would use only part of the available
information.

In contrast with parallel relationships, hierarchical transformations require human
intervention or comprehensive heuristic rules to either “fill-in-the-blanks” (when moving
top-down) or select the significant elements (when moving “bottom-up”).

Model A Model B

Model Element
A1

Model Element
A2

Model Element
B1

Model Element
B2

Model Element
B3

Hierarchical Representations

Overview / Details

Overview / Details

Overview / Details

Overview / Details

Model Element
B4

Figure 4: Hierarchical representations

A use case diagram and the various collaborations which represent the detailed
specifications of the use cases are a good example of a hierarchical relationship.

10 th International Workshop on Software Measurement – Berlin, Germany 7

User

Use case diagram

Use Case 1

Use Case 2

Use Case 3

Use Case 4

Object A

User

Object B

Invokes UC 1

Message 1
Message 2

Message 1.1

Collaboration diagram for use case 1

Figure 5: Hierarchical relationship between a use case diagram and a collaboration diagram

Another example of hierarchical relationship can be found when one diagram represents a
summarized view where much of the details of the other one have been “folded”, either by
way of generalization or by packaging together similar features.

User

Use case diagram

Use Case 1

Use Case 2

Use Case 3

Use Case 4

Decomposition of use case 1

Use Case 1.1

Use Case 1.2

Use Case 1.3

Use Case 1.4

Figure 6: Hierarchical relationship expressing a generalization between use cases

Orthogonal Representations
Two distinct representations of a system or unit are said to be orthogonal if they express
unrelated or at least not directly related concepts of the system/unit. This means that their

10 th International Workshop on Software Measurement – Berlin, Germany 8

respective items diverge not (or not only) by their form or level of details but by the nature
of the objects they represent.

Model A Model B

Model Element
A1

Model Element
A3

Model Element
B1

Model Element
B2

Model Element
B3

Orthogonal Representations

Model Element
A2

???

???

???

Figure 7: Orthogonal representations

When a purely orthogonal relationship exists between two representations, it can be
assumed that there is no systematic mapping by which one could be derived from the other.
More common would be situations where only a partial mapping is possible, requiring
human intervention or very sophisticated heuristics for such a transformation to be
performed. In some situations, a hierarchical or parallel relationship exists but cannot be
fully determined because intermediary “levels” are missing, because extensive
optimization and reuse have blurred the initial structure or because the representations
have not been kept in synch and therefore are linked to visions that have diverged over
time.

Application to the measurement process
We would now like to put this discussion in the practical context of the C-FFP software
functional size measurement process.

10 th International Workshop on Software Measurement – Berlin, Germany 9

Figure 8 COSMIC-FFP Measurement Process Model4

The COSMIC-FFP method applies measurement to a generic model of the software
functional user requirements onto which actual artifacts of the software to be measured are
mapped5. The COSMIC-FFP mapping phase takes as input the functional user requirements
of a piece of software and produces a specific software model suitable for measuring
functional size. In many situations, those functional user requirements have to be obtained
from alternate sources, like architecture and design models6.

This measurement method essentially consists of making a model of the software in which
the functionality has been breaking down into series of data movements between layers
separated by boundaries. Those series are called “functional processes” and the data
movements are classified in four categories: Entries, eXits, Reads and Writes (see [3] for
details).

4 Taken from [3], page 13.
5 Idem.
6 Ibidem, page 13 and 14.

10 th International Workshop on Software Measurement – Berlin, Germany 10

Figure 9: Generic flow of data through software from a functional perspective

One of the first mapping challenges that should be addressed in the context of this
measurement method is: “How can the C-FFP software model elements be expressed in
terms of the UML notation elements?”. As demonstrated by Bevo et Al. in [4], most C-FFP
software model elements map directly to UML notation concepts as follows:

C-FFP software model elements UML notation concepts

Functional Process <=> Use Case

User or Engineered Device <=> User

Data Group <=> Class

Data attribute <=> Attribute

The following elements, on the other hand, do not lend themselves to any obvious mapping:

C-FFP software model elements UML notation concepts

Functional Sub-Process (Entry,
eXit, Read and Write)

??? Scenario

Layer ??? Package

One way to view this mapping is to consider, for example, that a use case, in any model
coming from any organization, should always be mapped to a functional process and that a
data group can only be identified by a class in an UML diagram. This, we believe, would
not be a very good view because it does not take into account the context and the purpose
for which those specific models were created.

10 th International Workshop on Software Measurement – Berlin, Germany 11

Suppose that an organization decided to use a local rule specifying that the verb “manage”
should be used in a use case name as a shorthand for the typical “CRUD” database
activities: Create, Read, Update and Delete. This organization would then produce models
with use cases labeled as such:

• UC1 Manage Entity X

• UC2 Manage Entity Y

• Etc.

For C-FFP measurement purposes, these use cases should be expanded as four functional
processes each, one for each activity. Thus a hierarchical relationship exists between the
original use case model and the expanded one. Since the expanded model parallels the
requirements of the C-FFP method, the measurement can then be readily performed.

User

Entry

Entry

Exit

Read

Sequence diagram for data movements

Component Database

Write

H

Validate(value 1, value 2, value 3)

Check references values

[validation failed]

Update database

[reference error]

H

Activity diagram

Figure 10: Orthogonal relationship between two representations of the same functional process

Here is a different example. These two diagrams are representations of the same use case /
functional process. One is an activity diagram depicting the algorithmic features of the
process while the other is a sequence diagram illustrating the data movements coming in
and out of the component realizing the process (as for C-FFP measurement). Although they
both represent the same function, they do so through very different, almost orthogonal sets
of concepts. In this example, there is no indication that the “Check references values”
activity really represents a read on the database. Only a deep understanding of the system

10 th International Workshop on Software Measurement – Berlin, Germany 12

documented, or the use of agreed upon conventions, would allow such a mapping to be
performed.

Conclusion
The increasing role that models play in modern software development and maintenance
activities makes it more and more important to understand the dynamics of their
relationships.

Although it is possible to express almost any aspect of a system using the same model
elements, this in itself is not enough to guarantee a simple, straightforward adaptation
process that would allow any model to be used as input for every task. We believe that the
characterization of representations’ relationships presented here could serve as a
conceptual framework to guide us on the assessment of mapping, transformation and
generation potentials.

Future research directions on this topic include the exploration of the concept of
“orthodoxy” versus local rules in modeling as well as more formal and complete
specifications of the mapping processes between representations.

Acknowledgements
The authors wish to thank France Cano and Sylvain Hamel for their comments on the first
drafts of this paper.

References
[1] OMG Unified Modeling Language Specification, Version 1.3, June 1999, Object

Management Group

[2] Multiple Models, Tom Schulz, Rational Software, 1999,
http://www.rosearchitect.com/mag/archives/9901/extreme.shtml

[3] COSMIC-FFP Measurement Manual, Field Trials 2.0 Version, October 1999

[4] Application de la méthode FFP à partir d’une spécification selon la notation UML,
Valéry Bévo, Ghislain Lévesque et Alain Abran, IWSM 1999.

