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1- Introduction: the business context 
The software estimation process must provide credible input for business decision-
making. Most of the time, business managers must rely on incomplete information to 
make decisions:  there is almost always some information lacking or too expensive to 
gather within the time frame of the decision--making process.  Within their field of 
expertise, decision-makers can make valuable expert judgments on the missing or 
incomplete information.  However, many decision-makers have not mastered the 
information technology domain and need expert support to fill in the gaps in their 
knowledge of the subject. 
 
For this reason, the software estimation process must provide decision-makers not only 
with estimates (the “the numbers”), but also information on the quality and confidence 
level of that estimate. The key assumptions and the key uncertainties inherent in the 
estimation process must be conveyed to business managers to help them make informed 
business decisions on the basis of the estimates provided to them.  For example, decision-
makers should have a feel for the quality and accuracy of the inputs, as well as for the 
estimation models used for deriving the estimates. 
 
The estimation process must be credible from a business perspective, and the outcomes of 
the estimation process must include statements on the credibility of its various 
components. Furthermore, since major investment decisions are made based on these 
estimates, the full estimation process should be auditable. 
 
This paper highlights the key elements that make an estimation process both credible and 
auditable.  This includes a discussion on the quality of the input measures (products, 
processes and resources), the reliability of the productivity models built into an estimation 
process, the other inputs to the estimation process (key assumptions, constraints and 
expert judgments) and the type of decisions that should be taken on the basis of the 
confidence level of the outcomes of the estimation process. This is illustrated with 
examples from the multi-organizational project repository of the International Software 
Benchmarking Standards Group – ISBSG. 



2- The estimation process 
A high-level view of the estimation process is presented in Figure 1, complete with inputs 
and outputs.  This process can be further decomposed into two major sub-processes:  a 
productivity simulation sub-process and an adjustment sub-process.   
 
The productivity simulation sub-process includes a productivity simulation model which 
takes as input Measures of resources, processes and products, and which provides as 
output Simulation Results.  The adjustment sub-process takes the simulation results as 
input, together with information on uncertainty factors and risk assessment results, and 
provides as output the outcomes of the full estimation process. 
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Figure 1:  High-level model of an estimation process. 

 
The credibility of the whole estimation process must be based on the credibility of each of 
its sub-processes and their components.  The final result of the estimation process cannot 
be more reliable than the reliability of each component, and is as weak as its weakest 
component.  Therefore, the quality of each component must be made known to the 
decision-makers for prudent use of the outcomes of an estimation process.  Decisions 
should not be based only on the results of a simulation model. 

3- Simulation sub-process 

3.1 Quality of the input measures 
Measures are required as input to the simulation sub-process.  This includes measures of 
the resources, of the processes and of the products [FEN 92] (Figure 2). 
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Figure 2:  Inputs to the productivity simulation model 



 
Some measures might be quantitative, such as those of functional size [ALB84] 
[ABR01], while others are descriptive (the project development mode -- Prototyping, 
JAD and RAD -- qualitative measures, the values of which are on a nominal scale type).   
 
The degree of accuracy of these measures must also be known and should be documented 
for each and all types of measures.  In Figure 3, this document is referred to as an Audit 
Report. 
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Figure 3: Key components of an estimation process 

3.2 Quality of the productivity simulation model(s) 
Furthermore, the simulation model (or models, when more than one is used) should be 
calibrated to the business Group that has to make a business decision and commit 
resources.  In other fields of engineering and business, information on industry averages 
might be used for high-level planning of resources; these industry averages can be used 
for performance comparison, but should not be used as a basis for commitment in terms 
of resources and schedules for individual products.  Business would much prefer locally 
tailored models derived from their specific environment. 
 
Therefore, in the situation of an externally supplied productivity simulation model, there 
should be both a calibration and a validation (Figure 4) of the simulation model with 
respect to the corporate historical database [DES93]. 
 
This implies that there should be documented evidence of the effectiveness and reliability 
of the productivity simulation model, based on both the data set that contributed to the 
design of the productivity simulation model (calibration) and additional data to validate 
the quality of the model (validation).  The explanatory power of the model, in the 



absence of uncertainty, should be documented and credible.  This is referred to in Figure 
3 as the Reliability Report. 
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Figure 4:  Calibration and Validation 

4- Simulation using the ISBSG international repository 
The construction of an estimation model, whatever estimation method is used, usually 
requires a set of completed projects from which an estimation model is derived and which 
is used thereafter as the basis for the estimation of future projects.  However, in most 
organizations there is often no structured set of historical data about past projects, which 
explains their inability to build their own models based on the characteristics of past 
projects.  Organizations without such historical data traditionally had four alternatives 
when they wanted to improve their estimation process: 

1- Collect data from past projects and build estimation models using their own 
historical data sets – this is particularly useful if the projects to be estimated have 
a high degree of similarity with past projects.  This, of course, requires the 
availability of high quality information about past projects documented in a 
similar and structured way. 

2- Take the time required to collect project information from current projects, and 
wait until completion of enough projects to build sufficiently reliable estimation 
models with a reasonable sample size.  This, of course, requires time, and most 
often managers cannot afford to wait. 

3- If their upcoming projects bear little similarity to their own past projects, an 
alternative is to access data repositories containing projects similar to the ones 
they are embarking on and derive estimation models from these.  A key difficulty, 
until fairly recently, has been the lack of market availability of repositories of a 
projected project type. 

4- Purchase a commercial estimation tool from a vendor claiming that the tool basis 
includes historical projects of the same type as their upcoming projects.  This is a 
quick solution, but often an expensive one.  

While alternatives 1 and 2 are under the total control of an organization, alternatives 3 
and 4 depend on an outside party.  Until fairly recently, for those organizations without 
their own historical data sets for building estimation models themselves, and who could 
not afford the long lead time to do so, only alternative 4 was widely available, with all the 
associated constraints of not knowing either the basis of the estimation or the quality of 



the estimates derived from sources not available for independent scrutiny. In this paper 
we refer to these commercial tools as black-box estimation tools. 

In the mid-1990s, various national software measurement associations got together to 
address the limitations of alternatives 1 to 4, specifically to overcome the problems of 
both the availability and the transparency of data for estimation and benchmarking 
purposes and to offer the software community a more comprehensive alternative in the 
form of a publicly available multi-organizational data repository. This led to the 
formation of the International Software Benchmarking Standards Group [ISBSG] for the 
development and management of a multi-organizational repository of software project 
data. This repository is now available to organizations, for a minimal fee, and any 
organization can use it for estimation purposes.  Such a repository can also, of course, be 
used for the analysis of software estimation tools already on the market [ABR02]. 

Many software engineering data sets are heterogeneous, have wedge-shaped distributions 
[ABR94] [ABR96] [KIT84] and can, of course, have outliers which have an impact on 
the construction of the models and on their quality.  Therefore, each sub-sample was 
analyzed for the presence of outliers, and well as for visually recognizable point patterns 
which could provide an indication that a single simple linear representation would not be 
a good representation of the data set. For instance, a set of projects within one interval of 
functional size might have one behavior with respect to effort, and another size interval 
could have a different behavior. If such recognizable patterns were identified, then the 
sample would be sub-divided into two smaller samples -- if there were enough data 
points, of course. Both the samples with outliers and those without them were analyzed. 
This research methodology was used on each sample identified by a programming 
language.   

Two prototypes were built to facilitate the development of estimation (or simulation) 
models with the ISBSG repository:  the first with Visual Basic on a stand-alone PC 
[STR98], and the second using Web technology to access both the data and the software 
from anywhere with an Internet connection [KOL01]. 

Table 1 [NDI01] presents the set of linear regression models derived directly from this 
ISBSG repository: 12 samples including outliers on the left-hand side, and 18 samples 
excluding outliers on the right-hand side, and subdivided by size intervals where 
warranted by graphical analysis.  In Table 1, the coefficient of regression (R2) is presented 
for each model.  Analysis of the R2 of the estimation models for the samples (with and 
without outliers) illustrates how the outliers can impact the general behaviour of the size-
effort relationship.  For example, the R2 of 0,62 for the C++ sample with outliers (left-
hand side, Table 1) could lead us to believe that the size-effort relationship is strong; 
however, a few outliers have a major undue influence on the regression modelling, and 
their exclusion leads to models where there is almost no size-effort relationship, with an 
R2 of either 0,11 or 0,06 for the sets of intervals and quite distinct models.  By contrast, 
outliers can hide a significant size-effort relationship for the majority of the data points:  
for example, the PL1 sample with outliers has a very low R2 of 0,23.  However, when 
some are excluded from the sample, the size-effort relationship has an R2 of 0,64 for the 
80 to 450 FP interval.  The subdivision of samples (with and without outliers) gives 
different linear models, as well as different strengths in the size-effort relationship:  with 



COBOL II, for instance, the R2 is 0,45 for the 80 to 180 FP size interval, while it is 0,61 
for the 180 to 500 FP interval, thereby giving managers more fine-tuned, and more 
representative, models of the information contained in the data sets. 

From the right-hand side of Table 1, the samples can be classified into three groups with 
respect to their size-effort relationship (excluding the sub-samples with too few data 
points for the large upper intervals): 

A- languages with an R2 < 0,29, representing a weak relationship between functional size 
and effort: Access, C, C++, Powerbuilder and SQL;  

B- languages with an R2 > 0,39, representing a strong relationship between functional size 
and effort: Cobol, Cobol II, Natural, Oracle, PL1, Telon and Visual Basic; 

C- language samples for which there are either not enough data points in the sample 
(N<10) or for which the interval is much too large for the number of data points, thereby 
making the samples very sensitive to the size of a candidate outlier within this size range 
(upper intervals for C++, Cobol II, Natural, PL1 and SQL).  This illustrates that 
regression models under these conditions are not easy to interpret empirically.  This can 
be illustrated with the following example: 

Within the higher interval, for instance for PL1 with 5 data points between 450 
FP and 2500 FP, the slope is reasonable -- the fixed cost is negative (but 
minimal), but the R2 of 0,86 can only be indicative and tentative, since the 
sample range is much too sparsely populated between 450 and 2500 FP for the 
results to be otherwise.  

Some estimation models built directly from the ISBSG are presented graphically below for: 
Oracle (100, 2000), PL1 (80, 450), Powerbuilder and Telon (Figures 5a to 5d).  

It can also be observed that the samples for each programming language have very distinct 
estimation models, with differences in both the coefficients and the fixed (or error) terms, 
thereby indicating a different production function for each, and, of course, dispersion across 
this production function.  More specifically, for the samples with a large number of data points, 
the coefficients (or slope) will vary from 0,3 for Access to 16,4 for Cobol II (80-180).  There 
are also, of course, variations in their constants or error terms.  This means that when the 
programming languages are known, such information should be used for deriving the relevant 
production function to be used in an estimation context, rather than using a single model, or a 
two-level model by generic environment (mainframe, PC, etc.). 



 

Table 1: Direct ISBSG regression models (with and without outliers) 

 

 Samples with outliers Samples without outliers, and within size intervals 

Language N= 
377 

Size 
Interval 

Linear Regression 
Equation (where x 
= FP units) 

R² N= 
302 

Functional 
Size 
Interval 

Linear Regression 
Equation (where x = 
FP units) 

R² 

Access 17 200-1500 Y=-0,10x+840,8 0,01 11 200-800 Y= 0,30x + 623,5 0,19 

C 15 40-2500 Y= 4,05x + 4288 0,19 9 200-800 Y= 2,34x + 2951,7 0,29 

C++ 21 70-1500 Y=13,43x + 1346,4 0,62 12 

5 

70-500 

750-1250 

Y= 11,53x + 1197,1 

Y= -6,57x + 23003 

0,11 

0,06 

Cobol 106 0-5000 Y=4,94x + 5269,3 0,36 60 

32 

60-400 

401-3500 

Y= 10,83x + 299,1 

Y= 12,32x – 14,1 

0,44 

0,64 

Cobol II 21 80-2000 Y= 27,80x – 3593 0,96 9 

6 

80-180 

180-500 

Y= 16,39x – 92,3 

Y= 26,73x – 3340,8 

0,45 

0,61 

Natural 41 20-3500 Y=10,05x – 648,9 0,85 30 

9 

20-620 

620-3500 

Y= 6,13x + 264,9 

Y= 10,53x – 1404,9 

0,47 

0,74 

Oracle 26 110-4300 Y=6,20x + 509,7 0,42 19 100-2000 Y= 7,78x – 1280,7 0,39 

PL/1 29 80-2600 Y=11,06x + 46,7 0,23 19 

5 

80-450 

451-2550 

Y= 8,32x – 197,6 

Y= 5,49x – 65,3 

0,64 

0,86 

Power 
builder 

18 60-900 Y=12,99x – 380,2 0,66 12 60-400 Y= 1,99x + 1560,1 0,13 

SQL 20 280-4400 Y=7,57x – 271,2 0,60 11 

8 

280-800 

801-4500 

Y= -0,42x + 3831,2 

Y= 9,23x – 6064,3 

0,00 

0,67 

Telon 23 70-1100 Y=7,42x + 650,9 0,85 18 70-650 Y= 5,50x + 1046,1 0,75 

Visual 
Basic 

34 30-2300 Y=9,69x + 661,5 0,56 24 30-600 Y= 7,24x + 52,4 0,46 
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Figure 5 (a to d):  directly derived ISBSG estimation models 

 



5- Adjustment sub-process 

5.1 Other variables 
Once the output of the productivity simulation model has been derived, then additional 
inputs should be taken into account in order to make adjustments to the simulation results 
– Figure 3.  Such additional inputs can be: 
 - the degree of completeness of the inputs (usually based on the project life-cycle 

phases) 
 - the project key assumptions, such as: 

  - the key costs drivers; 
  - the key opportunity drivers; 
  - the key constraint drivers. 
- the project risks (identified in a risk assessment study); 
- the consequences of the iterative nature of estimates throughout the life-cycle of 

project phases 

5.2 Scope management 
Industry experience has shown that project scope will change throughout the project life-
cycle, and this must be managed.  A value-added estimation process will provide the 
basis for managing changes in project scope.  On the one hand, measures of product 
functional size will provide the basis for scope creep identification and sizing later on in 
the project life-cycle.  On the other hand, the projected unit cost derived from the results 
of the simulation model (total project cost divided by size) can provide a technique for 
negotiation of project price increase/reduction.  This unit cost basis should be agreed 
upon prior to moving to the next project phase. 

5.3 Continuous improvement to the estimation process 
Upon project completion, comparison of “actual” versus “estimated” costs (not only in 
terms of Effort, but of all other Product measures) should be looked at to provide 
feedback on the quality of the estimation process; this could provide valuable information 
for improving any one of the estimation process steps. Actual data should be fed back 
into the simulation model for further refinement. 

5.4 Guarantees of accuracy 
Within the current state of the art in software estimation, it is not feasible to guarantee the 
accuracy of the outcomes of an estimation process for individual projects, or even for 
groups of projects. 
 
If an estimator were to provide such guarantees, the expectations raised at the customer 
site should be managed and the estimator should be held accountable for these 
guarantees.  Such a guaranteed commitment can only be based on actual performance of 
the projects when compared to estimates.   
 
To facilitate follow-up of the guarantees, the estimates should be stated not only on full 
project estimates, but also on unit cost (for example, estimated unit cost per Function 



Point per project estimated).  This would allow for validation and control of the 
estimation process, even for a minimal or major increase or reduction of project scope.   
 
Since the validation process cannot occur before project completion, the estimator's 
contract should include penalty clauses for not meeting the guarantees, and the estimator 
should be insured through commercial, bound clauses that could be exercised up until 
project completion.  



6- Conclusion: The business context 
In project estimation, the business context is much larger and is not restricted to either a 
single project or to the software project perspective. 
 
It cannot be expected that the outcome of the previous software estimation sub-process be 
the unique contributor to the business decision-making process. 
 
From a project perspective, there should be a business/market estimation report made in 
parallel to the software estimation process, and it should be redone for each estimation 
iteration throughout the project life-cycle.  
 
From a business perspective, the portfolio of all projects must also be taken into account:  
prior to making a decision on a specific project, business managers must consider 
estimated costs, estimated benefits and estimated risks of all projects, and individual 
project decisions must be made in the context of a strategy that optimizes the corporate 
outcome while minimizing the risks across all projects.   
 
Business objectives, practices and policies must be taken into account as well when 
making business decisions.  This might reveal that the software cost estimate is not 
precisely mapped to the business estimates.   
 
For example, in a high-risk project situation with a potential for very high benefits, 
decision-makers may want to add contingency funding provisions to ensure project 
completion; even in an over-budget project situation; contingency funding might not be 
communicated to project management. 
 
Similarly, to win market share, a business decision may be made to complete a project at 
a loss.  In such situations, the project estimates are not lowered, but the project loss 
situation is recognized.  Unfortunately, such situations are not often formally identified in 
the software estimation process, whereas the segregation of the business estimation and 
the technical estimation is not a recognized, documented practice:  this leads to a situation 
where perfectly valid technical estimates may too often be significantly lowered for the 
purposes of business strategy, thereby leading to lower, as well as unrealistic and 
unachievable, project estimates. 
 
From a longer term corporate perspective, the two types of estimates should be identified 
and managed separately.  This will clarify the decision-making responsibilities and, over 
time, will facilitate improvements to both types of estimation process. 
 
The technical software estimation process is not a substitute for a full business estimation 
process:  it is only a contributor to the full extent of its specialized expertise in terms of 
providing decision-makers with their professional advice on the estimation of project 
costs, project uncertainties and project risks. 
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