

### A Multidimensional Performance Model for Consolidating Balanced Scorecards



### Alain Abran





# Agenda

- > Introduction
- Balanced Scorecards BSc
  - > Structure & Challenges
- > Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- > Integration of multi-dimensional representations



### Balanced Scorecards = Performance Measurement Framework

Conceptually: very attractive
 Strong appeal to business executives

Operationnally: very challenging



Then, why is it not more widespread in organizations, and in software organisations in particular?

- People reluctance?

- Organizational reluctance?



- Widespread recognition of benefits of measures
  - Hundreds of measures proposed to the software industry

Why is there so limited usage in practice?



*The Again:* 

- People reluctance?

- Organizational reluctance?



Research Lab. in Software Engineering Focus:

- Measurement for decision-making
- Measurement as a technology
- Approach:
  - Which pieces of the measurement technology puzzle are missing?



### What is missing for implementation?

- Has the measurement technology really been tested?
- Is it ready for the practitioners?
- Can it be improved before deployment?





# Agenda

> Introduction

### > Balanced Scorecards - BSc

- > Structure & Challenges
- > Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- > Integration of multi-dimensional representations

### école de technologie supérieure Balanced Scorecards Predecessor

Most common approach to measurement in software:

Goal – Question - Metrics (GQM)



## **GQM** Approach





STC IT Conference, Ottawa, April 6-7, 2005

11

Interpretation



# GQM Approach

**GQM** - one of the most well-known and used measurement approaches for establishing a measurement program

**GQM -** a technique to derive measures for *project* control

starting from high-level goals, passing through the decomposition in several questions to answer.

Author: Victor Basili in the early '80s

(NASA Goddard Space Fligth Center)

Main measurement object: software projects



### Limitations

Limited scope – a project at a time
re-inventing the wheels most of the time
How to figure out the organizational view?
How to leverage the business models?



### **BSc Framework**

#### Balanced Sc -

• A multidimensional framework for *"translating (organisational) strategy into action"* at all levels of an enterprise, by linking objectives, initiatives and measures to an organization's strategy

Authors: Kaplan & Norton (HBS) in the early '90s

- originating from the method: Tableau de Bord
  - turn of 20th century

Main measurement object:

• The whole organization / a Business Unit

DO N. DO.

# **BSc Framework**



### *ÉCOLE DE TECHNOLOGIE SUPÉRIEURE* BSc and Management Needs

SPI is not a goal in itself, but a mean to achieve business goals more effectively

**Basic Management need**: align internal processes and activities to business objectives

• to maintain business competitiveness (Porter's Value Chain)

#### Strategic Management basic principles:

- Alignment of processes & strategic business goals
- Identification & application of measures for an overall business unit
- Performance management



# BSc in the Software field

Two versions of the BSc for the software field developed in the last few years:

- Balanced IT Scorecard (BITS) by the European Software Institute (ESI)
- AIS BSc by the Advanced Information Services Inc. (AIS)

**Commonalities**: both frameworks support 5 perspectives, adding the "People/Employee" one



ESI BITS

#### Financial:

How do our software processes and SPI add value to the company?

#### Customer:

How do we know that our customer (int/ext) are delighted?

#### • People:

Is the people issues (competence, satisfaction and retention) properly managed to implement a sustainable improvement program?

#### • Process:

Are our software development processes performing at levels sufficient enough to meet customer expectations?

#### Infrastructure & Innovation:

Are the technology and organisational infrastructure issues being addressed to implement a sustainable improvement program?



# BSc Support Technologies

Data Presentations Tools using BSc framework

- OLAP Cubes manipulation
  - Based on an assumption that data is available
  - Most take for granted that the information models are available and mastered
  - No automated causal-impact linkages



## BSc Technology Challenges

For software organizations:

Adequate and relevant measures for each perspective:

- Definitions
- Data collection
- Normalization

Analysis models for software organizations

- Integrating models that can map to business models of performance
- Techniques for multi-dimensional models





# Agenda

- > Introduction
- Balanced Scorecards BSc
  - > Structure & Challenges
- > Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- > Integration of multi-dimensional representations







### ISO 9126 Quality Characteristics



STC IT Conference, Ottawa, April 6-7, 2005



- Assumes that any software quality requirement can be a function of many variables (characteristics), linked in several ways among themselves
  - The highest level of its tree structure is given by quality characteristics
  - The lower one, by measurable quality attributes

### *ÉCOLE DE TECHNOLOGIE SUPÉRIEURE* ISO 9126 Quality Analysis





# *Multiple viewpoints*

**Multi perspectives** To obtain a more complete and exhaustive assessment: multiple concurrent viewpoints from several stakeholders



**Example**: the *"organolectic analysis"* for wine evaluation takes into account three weighted concurrent criteria for determining the final quality value:

- visual (20%) 100%
- smell (28%)
- taste (52%)

STC IT Conference, Ottawa, April 6-7, 2005





### *Multiple Viewpoints*

Software : ISO 9126 standard explicitly considers three viewpoints (Manager, User, Developer):

| Actors     | Viewpoint     | Objectives                  |
|------------|---------------|-----------------------------|
| Managers   | Economic (E)  | Overall quality             |
| Users      | Social (S)    | Usability                   |
| Developers | Technical (T) | Conformance to requirements |





# Agenda

- > Introduction
- Balanced Scorecards BSc
  - > Structure & Challenges
- > Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- > Integration of multi-dimensional representations



### Use of Measures in General Business Performance Analysis:

Measures need to be normalised based on the number of functional outputs of a production process (or of a business unit: i.e. How many hours by car, what is the asset cost by unit of production,...).

### Why normalise?

- For comparison purposes,
- To develop reference numbers.





How can reference numbers be derived in evaluating software processes?

By figuring out how to measure the number of production units in software;

#### Proposed Solution:

- •Functional Size Measures (FSM) such as:
  - Function Points FPs IFPUG
  - COSMIC-FFP ISO 19761

• They measure the appropriate concepts and have the appropriate properties.





#### ISO 19761 = COSMIC-FFP

STC IT Conference, Ottawa, April 6-7, 2005



 Functional Size measures provide a mean to measure software from the external user point of view and is particularly effective in supporting contractual aspects.



### FSM-based measures and BSC perspectives

|   | GOAL/OBJECTIVE          | DRIVER                         | INDICATOR                                                                | <b>COMMENTS / EFFECTS</b>                                                                                                                                                |
|---|-------------------------|--------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F | NANCIAL                 | •                              |                                                                          |                                                                                                                                                                          |
|   | Asset Management        | Existing asset utilisation     | <ul> <li>Total Assets (FSAV) / # employees         (\$)</li> </ul>       |                                                                                                                                                                          |
|   |                         |                                | • FSAV – FS <sub>units</sub> Asset Value                                 |                                                                                                                                                                          |
|   |                         |                                | PS – Portfolio Size                                                      |                                                                                                                                                                          |
|   | Revenue & Profitability | Revenue                        | Revenues / FSAV (%)                                                      |                                                                                                                                                                          |
|   |                         | Growin                         | <ul> <li>Revenues from new customers /<br/>Total Revenues (%)</li> </ul> | <ul> <li>New customers<br/>acquired using FSM as<br/>a contractual condition<br/>for measuring the<br/>project – Derived<br/>(Improve project<br/>governance)</li> </ul> |
|   |                         | Profitability                  | Profits / FSAV (%)                                                       |                                                                                                                                                                          |
|   | Financial Management    | Organisationa<br>I Investments | Investments in IT                                                        |                                                                                                                                                                          |
|   |                         | Project                        | <ul> <li>PCFS – Project Cost per FS<sub>unit</sub></li> </ul>            |                                                                                                                                                                          |
|   |                         | Investments                    | • ECFS – Enterprise Cost per FS <sub>unit</sub>                          |                                                                                                                                                                          |
|   |                         |                                | AMCFS – Application     Maintenance Cost per FS <sub>unit</sub>          |                                                                                                                                                                          |

### FSM-based measures and BSC perspectives

|   | GOAL/OBJECTIVE              | Driver                     | INDI     | CATOR                                                                                    | Col | MMENTS / EFFECTS                                                                    |
|---|-----------------------------|----------------------------|----------|------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|
| С | USTOMER                     |                            | -        |                                                                                          |     |                                                                                     |
|   | Customer partnership        | Collaboration              | •        | % projects using integrated teams                                                        |     |                                                                                     |
|   | and involvement             |                            | •        | SR – Stability Ratio                                                                     |     |                                                                                     |
|   | Customer satisfaction       | SLA                        | •        | % SLA met                                                                                | •   | if the agreement uses<br>FSM as a basis for the<br>contract                         |
|   | Business Process<br>Support | Innovation<br>usage        | •        | % IT solutions supporting process<br>improvement projects                                | •   | project measurement<br>using FSM                                                    |
|   |                             | Requirements<br>Management | •<br>RTI | Requirement Turnover Index<br>[MELI01]<br>= $[(\Sigma_j CRFS_j)/Final FS_{units}] * 100$ | •   | Showing the level of<br>turbulence in requisites<br>during the development<br>phase |
|   |                             |                            | •        | CRFS = Change Request<br>Function Size units                                             |     |                                                                                     |
|   |                             | Problem                    | •        | DR – Defect Ratio                                                                        |     |                                                                                     |
|   |                             | Management                 | •        | AR – Application Reliability                                                             |     |                                                                                     |
|   | Business Growth             | Market Share               | •        | % Market share                                                                           | •   | increasing % using FSM<br>as an initial contract<br>condition                       |

### FSM-based measures and BSC perspectives

|   | GOAL/OBJECTIVE                              | DRIVER        | INDICATOR                                                                 | COMMENTS / EFFECTS                                                                                                                                                             |
|---|---------------------------------------------|---------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ | ROCESS                                      |               |                                                                           |                                                                                                                                                                                |
|   | Application<br>Development &<br>Maintenance | Size          | • FS <sub>unit –</sub> Functional Size unit,                              | According to the FSM method<br>used, it can be expressed for<br>instance by:<br>• <b>FP</b> – Function Points<br>• <b>C</b> <sub>fsu</sub> - COSMIC functional<br>size units – |
|   |                                             |               | PS – Portfolio Size                                                       |                                                                                                                                                                                |
|   |                                             | Effort        | WE – Work Effort                                                          |                                                                                                                                                                                |
|   |                                             | Productivity  | PDR – Project Delivery Rate                                               |                                                                                                                                                                                |
|   |                                             |               | EP – Enterprise Productivity                                              |                                                                                                                                                                                |
|   |                                             | Support       | ASR – Application Support Rate                                            |                                                                                                                                                                                |
|   |                                             |               | DDR – Duration Delivery Rate                                              |                                                                                                                                                                                |
|   |                                             |               | AMPL – Application Maintenance     Load per Person                        |                                                                                                                                                                                |
|   |                                             | Defectability | RCR – Repair Cost Ratio                                                   |                                                                                                                                                                                |
|   |                                             | & Test        | SR – Stability Ratio                                                      |                                                                                                                                                                                |
|   |                                             |               | DR – Defect Ratio                                                         |                                                                                                                                                                                |
|   |                                             |               | TPR – Testing Proficiency Ratio                                           |                                                                                                                                                                                |
|   |                                             |               | MTTR – Mean Time To Repair<br>ratio                                       |                                                                                                                                                                                |
|   |                                             |               | AR – Application Reliability                                              |                                                                                                                                                                                |
|   |                                             |               | DER – Defect Detection Ratio                                              |                                                                                                                                                                                |
|   |                                             |               | # defects / 100 <b>FS</b> <sub>unit</sub> according to<br>user acceptance |                                                                                                                                                                                |
|   |                                             | Reuse         | FR – Functional Reuse %                                                   |                                                                                                                                                                                |
|   |                                             |               | TR – Technical Reuse %                                                    |                                                                                                                                                                                |

### FSM-based measures and BSC perspectives

|   | GOAL/OBJECTIVE                | DRIVER                           | IND | ICATOR                                | COMMENTS / EFFECTS |  |  |
|---|-------------------------------|----------------------------------|-----|---------------------------------------|--------------------|--|--|
| F | People                        |                                  |     |                                       |                    |  |  |
|   | Core Competencies &<br>Skills | Core<br>Competencies<br>& Skills | •   | Feedback from FSM-based courses (I&I) |                    |  |  |
|   |                               | Effects of<br>Training           | •   | DER – Defect Detection Ratio          |                    |  |  |

### FSM-based measures and BSC perspectives

|    | GOAL/OBJECTIVE              | DRIVER                                        | IND | ICATOR                                                             | Con | MENTS / EFFECTS                                                                                                                                                       |
|----|-----------------------------|-----------------------------------------------|-----|--------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN | INNOVATION & INFRASTRUCTURE |                                               |     |                                                                    |     |                                                                                                                                                                       |
|    | Workforce<br>Improvements   | Workforce<br>Competency<br>and<br>development | •   | IT expended on Training / IT<br>expenses (%)                       | •   | Leverage on the<br>increased forecasting<br>ability of Project<br>Managers (Process<br>perspective) and on<br>their increased<br>satisfaction (People<br>perspective) |
|    |                             |                                               | •   | % of staff trained in relevant standards or new technologies       | •   | Training in functional<br>measurement for<br>planning and<br>governance                                                                                               |
|    |                             |                                               | •   | % employees skilled in advanced<br>application measurement methods |     |                                                                                                                                                                       |
|    |                             | Tools &<br>Products                           | •   | Investment in new product support and training (\$)                | •   | For FSM-based tools or<br>for courses about FSM-<br>based techniques                                                                                                  |
|    | SPI Improvements            | Methodology currency                          | •   | % projects measured using<br>recognised methods                    |     |                                                                                                                                                                       |
|    |                             | Support                                       | •   | PDR – Project Delivery Rate                                        |     |                                                                                                                                                                       |
| [  |                             |                                               | •   | ASR – Application Support Rate                                     |     |                                                                                                                                                                       |
|    |                             |                                               | •   | DDR – Duration Delivery Rate                                       |     |                                                                                                                                                                       |
|    |                             |                                               | •   | AMPL – Application<br>Maintenance Load per Person                  |     |                                                                                                                                                                       |
|    |                             |                                               | •   | RCR – Repair Cost Ratio                                            |     |                                                                                                                                                                       |

### *ÉCOLE DE TECHNOLOGIE SUPÉRIEURE* **FSM-based measures & BSc perspectives**

FSM-based measures can contribute to the multidimensional nature of a BSc, providing ratios for all the BSc perspectives

- Most impacted perspectives: Process and Financial
- Less impacted perspectives: Customer and People





# Agenda

- > Introduction
- > Balanced Scorecards BSc
  - > Structure & Challenges
- > Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- > Integration of multi-dimensional representations

### *ÉCOLE DE TECHNOLOGIE SUPÉRIEURE* **Structure of QEST Model**

Most current performance models:

A single dimension at once:

with representation into a single dimension, even with Kiviat diagrams

How to take into account many dimensions?

- *The By using geometry to:* 
  - > Integrate multiple concepts
  - Represent multi-dimensions



Its three dimensional format:

- <u>Economic dimension (Management)</u>
- Social dimension (Users)
- > <u>Technical dimension (Developers)</u>

The QEST model provides a multidimensional structured shell, which can then be filled according to management objectives for any specific project

Referred to as an open model.



The three dimensions (E, S, T) in the space correspond to the corners of the pyramid's base, and the convergence of the edges to the P vertex, which describes the top performance level.

**Thetrahedron = Pyramid (all side equal)** 

The tetrahedron supplies several performance indices:

**Distance (between the tetrahedron base and the plane)** 

> Area (of the sloped plane section)

> Volume of the lower part of truncated tetrahedron













### ISO 9126 Rating Levels

<u>(Azuma 2002)</u>

- To make judgement on how good the attribute is.
  - Normalize the measure (assigned value)





## QEST Model



### *ÉCOLE DE TECHNOLOGIE SUPÉRIEURE* **Econometrics Models**





### Work in progress

- Development of measurement models adapted to software organizations
- Multi-dimensional representation of business views
- Analysis of impact of innovations
- Building prototypes to integrate contributions of multiple projects
- Automation of all steps for a BSc

| ④ S file:///C:/Program%2ata/classes/Data.htm |                                                                                                                                                                                |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | distance performance level: 0.51<br>decreasing area performance level: 0.74<br>volume performance level: 0.88<br>slope angle : 18.4<br><u>repaint</u> solid<br>only lower part |  |
|                                              |                                                                                                                                                                                |  |
|                                              |                                                                                                                                                                                |  |
|                                              |                                                                                                                                                                                |  |





# Agenda

- > Introduction
- > Balanced Scorecards BSc
  - > Structure & Challenges
- Measurement & Information Models
- > ISO 9126 Multi-Dimensional Quality Models
- Functional Size Measures in a BSc
- Integration of multi-dimensional representations
   Conclusion



# Conclusion

### Why is BSc not yet wide spread?

- People reluctance?

- Organizational reluctance?



# Conclusion

Research Lab. in Software Engineering

- Measurement for decision-making
- Measurement as a technology
- Approach:
  - Which pieces of the measurement technology puzzle are missing?



# Conclusion

We are working at what is missing for implementation

Getting it ready for the practitioners
 Building prototypes (procedures & software tools)
 Improving it before deployment



# **Question Time**





# **Thank You !**



#### aabran@ele.etsmtl.ca