
ESCOM-SCOPE 2000, April 18-20, 2000 1

Using COSMIC-FFP to Quantify Functional Reuse
in Software Development

Vinh T. Ho, Alain Abran, Serge Oligny
Dept. of Computer Science, Université du Québec à Montréal, Canada

vho@lrgl.uqam.ca, abran.alain@uqam.ca, oligny.serge@uqam.ca

Abstract
One of the means organisations use to adequately measure the performance of their

software engineering process, is to try to identify how much reuse has actually occurred. In
this paper, the COSMIC-FFP (COSMIC-Full Function Points) measurement method is
proposed as a method for quantifying reuse from a functional perspective rather than from a
technical perspective.

The COSMIC-FFP method has been developed to improve the measurement of the
functional size of various software types: real-time, technical, system and MIS software. By
using functional user requirements as input, the method makes it possible to measure the
size of software from the user’s viewpoint. When other functional perspectives are taken
into account in the measurement process, the other results may be used as complementary
information related to the measured software. The value of this new information includes
the ability to quantify reuse from a functional perspective, and as such it would be worth
considering taking it into account in the software productivity model. Some practical results
on industrial software are presented, along with the concepts involved.

1. Introduction
Software reuse is generally recognised as providing a great opportunity for reducing costs,

both in software development and in maintenance. Even though software reuse can occur at any
point during the software life cycle, the literature has reported mostly on software reuse
performed at the source code level [4][5][6][9], which saves effort only late in the life cycle.
Of interest to organisations as a means to improve the performance of their software
engineering process is reuse applied much earlier in the life cycle, such as at the requirement
analysis or software design stage. Software measurement can play an important role in
quantifying such potential for reuse at the functional level, when major development costs have
not yet been incurred. Unfortunately, there are few measures of reuse at that level.

An approach to measure reuse based on functional size measurement has been proposed in
[2]. This paper illustrates the concept of using functional size to quantify functional reuse by
identifying avoided functions, those that did not need to be redeveloped. The approach allows
estimation of an alternative functional size which takes into account a subset of functions: those
reused and not redeveloped. This alternative functional size can then be used to quantify the
benefits of major enhancement work in terms of a lower unit cost when non redeveloped
functions are taken into account. This initial work [2] has been initially performed using the
data function types of the traditional Function Points method, with MIS software only, without
the investigation of functional reuse at the transaction level.

This paper extends the concept presented in [2] by using the more recent COSMIC-FFP
measurement method developed to improve the measurement of the functional size of various
software types: real-time, technical, system and MIS software [1][8]. By using the functional
user requirements as input, the method allows measurement of the functional size of software
from the user’s viewpoint. When other functional perspectives are taken into account to feed
the measurement process, the other results may be used as complementary information related

ESCOM-SCOPE 2000, April 18-20, 2000 2

to the measured software. The value of this new information includes the ability to quantify the
functional reuse, thereby opening the door to assessing the economic impact of reuse.

This paper thus presents and illustrates the applicability of COSMIC-FFP for measuring
software functional reuse. Section 2 presents the COSMIC-FFP measurement method and
section 3 presents the concept for the measurement of functional reuse with this measurement
method, while results from empirical case studies are presented in section 4 and observations
in section 5.

2. COSMIC-FFP Measurement Method
In this section are presented some of the key concepts of the COSMIC-FFP method [3]. The

method consists in applying a set of rules and procedures to a given piece of software in order
to measure the functional size of this software. Two distinct and related phases are necessary
for measuring the functional size of software: mapping the functional user requirements
embedded in the artifacts of the software to be measured onto the COSMIC-FFP software
model and then measuring the specific elements of this software model, as illustrated in Figure
1.

Measurement
Phase

Rules and
Procedures

COSMIC-FFP
software FUR

model

COSMIC-FFP
 functional size

model(1)

Functional size
of the software

FUR model

Mapping
Phase

FUR of the
software to be

measured

COSMIC-FFP Measurement Manual

(1): COSMIC-FFP functional size model includes concepts, definitions and relationship
structure of functional size attributes

Figure 1. COSMIC-FFP measurement process model [3]

Prior to applying the measurement rules and procedures, the software to be measured must
be mapped onto a generic model (the COSMIC-FFP software model – Figure 2) which
captures the concepts, definitions and relationships (functional structure) required for a
functional size measurement exercise. According to this model, software functional
requirements are implemented by a set of functional processes. Each of these functional
processes is an ordered set of sub-processes and each sub-process performs a data movement.

The COSMIC-FFP generic software model distinguishes four types of data movement:
entry, exit, read and write. Entries move the data from outside the software boundary to the
inside; exits move it from inside the software toward the outside of the software boundary;
reads and writes move data across the storage side. These relationships are illustrated in
Figure 2.

The COSMIC-FFP measurement rules and procedures are applied to the software model in
order to produce a numerical figure representing the functional size of the software. The
standard unit of measurement is defined as 1 data movement. One COSMIC Functional Size
Unit, e.g. 1CFSU., is therefore attributed to each identified data movement.

ESCOM-SCOPE 2000, April 18-20, 2000 3

OR
Engineered

Devices

I/
O

 H
ar

dw
ar

e

St
or

ag
e

H
ar

dw
ar

e

SOFTWARE

ENTRIES

EXITS

« Front end » « Back end »USERS

READS

WRITES

Figure 2. COSMIC-FFP software model and sub-process types [3]

3. Concept for Measuring Functional Reuse using COSMIC-FFP
In software engineering, there are two kinds of reuse, determined according to the

perspective of the reuser: reuse without modification, referred to as black-box reuse and reuse
with modification, referred to as white-box reuse. This paper investigates black-box reuse at
the functional process level. The COSMIC-FFP method is proposed as a method for identifying
and measuring functional reuse.

The COSMIC-FFP measurement method measures the size of software based on identifiable
functional user requirements. Depending on how these requirements are allocated, the resulting
software might be implemented in a number of pieces. While all the pieces exchange data,
they will not necessarily operate at the same level of abstraction. The COSMIC-FFP method
introduces the concept of the software layer to help differentiate Functional User Requirements
(FURs) allocated at different levels of functional abstraction. Each level is designated as a
distinct layer and each layer encapsulates functionality useful to other layers using its services.
The functionality of a layer may be composed of a number of functional processes and sub-
processes. An illustration of layer configurations is presented in Figure 3.

USERS

I/O Boundary

S
o

ft
w

ar
e

I/O Devices I/O Devices

Special
Storage
Devices

STORAGE

Storage
Devices

Storage side

Layer Boundary

Application layer

Driver layer

Figure 3: Example of a configuration of functional layers [3]

Practice has shown that identifying functional layers within the software to be measured has
made it possible to identify some of the functionality that was being reused in the software
system, based on the functional relationships between layers.

The approach proposed in this paper quantifies the functional reuse based on the size of the
processes referenced in the functional relationships between layers.

ESCOM-SCOPE 2000, April 18-20, 2000 4

When a functional process is identified as involving reuse, the amount of reuse associated
with it is determined by its own functional size multiplied by the number of processes using its
services:

servicesusing its processes Number of reusedocessSize of prsswith proceassociatedreuseAmount of ×=

(1)
For the entire software being measured, the amount of reuse is defined as the total of the

amounts of reuse from all reused processes:

∑= h processciated witreuse assoAmount of reuseofamountOverall (2)

The percentage of reuse in the software is derived as follows:

100
out reusesured withftware meaSize of so

useount of reOverall am
 of reuse Percentage ×= (3)

4. Illustrative Examples
This section presents some results from an empirical case study illustrating the application

of the proposed Functional Reuse concept for quantifying the functional reuse in some
industrial software. Discussions on the impact of reporting the measurement results for
productivity analysis and estimation are also presented.

4.1. ISDN tester software
The ISDN tester software was designed and manufactured for an Australian organisation.

The ISDN tester is a device used to test the integrity of four wires ISDN circuits, cross-
connected at a remote ‘Point of Presence’ location, from either end of the ISDN service. Test
officers at a local exchange are able to dial up the ISDN tester installed at a remote location
and use DTMF (Dual-Tone Multi-Frequency touchtone dialing) to instruct the ISDN software
either to open circuits on both sides of a transmit and receive circuit or to provide loops via
the transmit and receive wires back to the local exchange. When the test officer is connected to
the ISDN device, he can perform maintenance programming functions as well as testing
functions.

For the purpose of measuring functional size, the boundary between the ISDN software and
its environment is identified such as illustrated in Figure 4. Since the user must be connected to
the ISDN device via the Access line before performing any remote programming functions, the
software can be modelled as having two layers (Figure 4):

• Access layer: contains the Access functional process allowing the user to connect to the
ISDN device;

• Application layer: contains a set of functional processes implementing the maintenance
and testing functions of the ISDN software.

Thirty-eight functional processes were identified within the ISDN software: 1 functional
process in the Access layer (the Access process), and 37 processes in the Application layer.
Since they need to receive remote commands from the user before operating, thirty-two
processes in the Application layer use services provided by the Access process. From a
functional perspective, these processes make up a functional reuse of the Access process. In
other words, the Access process is functionally reused in the modelling of the ISDN software
according to the COSMIC-FFP software model.

ESCOM-SCOPE 2000, April 18-20, 2000 5

Access
Layer

Application
Layer

User ISDN Device

ISDN Software

Figure 4. The COSMIC-FFP software boundary of the ISDN software

For illustrative purposes, the measurement results of the Access process are presented in
Table 1, including its 10 data movement sub-processes. The functional size of the Access
process is 10CFSU.

Table 1. Measurement results for the Access process
Data movement sub-process Type COSMIC-FFP size

Receive dialing event E 1
Read LRD Code R 1
Issue message reading LRD Code X 1
Enter PIN E 1
Verify PIN R 1
Write Invalid Password Counter W 1
Read Invalid Password Counter R 1
Write Log on Counter W 1
Receive canceling signals E 1
Issue error message X 1

Total: 10CFSU

By applying equation (1), the amount of reuse derived from functionally reusing the Access
process becomes:

Amount of reuse = 10CFSU × 32 (number of processes using its services) = 320CFSU.
The size of the ISDN software measured with the identification of the functional reuse of

this Access layer is 136CFSU (this means that the size of the Access process is accounted only
once). If its size had been measured without taking into account functional reuse (meaning that
the size of the Access process is added to that of every process using its services, i.e. 32
times), the software size would have been 436CFSU.

It is important to mention that the measurement of the ISDN software was performed based
solely on the Operator and Installation manual of the ISDN system. The measurer had no
knowledge of the actual implementation of the software. It is therefore worth noting that the
functional reuse results presented here were identified and measured from the user’s point of
view, using the specific measurement tool of the software layer concept of the COSMIC-FFP
method.

ESCOM-SCOPE 2000, April 18-20, 2000 6

4.2. Other examples
The results of measuring reuse in three other system software are presented in this section.

The first two are control software and the third is a surveillance sub-system software. For the
sake of simplicity, the details are not presented, only the final measurement results.

All identified functional processes within the two control software receive data from
external sensors and, by convention, the data acquisition functionality was included inside the
software’s boundary. However, instead of including the functionality repetitively in each
process, the control functionality was identified as a distinct layer referred to by other
processes in a black-box reuse style. This layer was therefore measured, and assigned its own
functional size, even though its functionality was used in multiple processes. This is a clear
case where functionality, structured inside a layer, is an instantiation of actual reuse. In Table
2, column (2) identifies the number of units assigned to the control layer, and column (3), the
number of times this layer is invoked by other processes. The next three columns present the
impact on the measurement results:

Column (4) = (2) x (3) = explicit amount of reuse associated with a process (in the data
acquisition layer, for example, for Control Systems 1 and 2); this would be equivalent to the
sum of the functional size of all duplicate functions if there had been no reuse.

Column (5) = (6) + (4) = size of software when including the multiple duplicates of the
same functionality (without implementation of functional reuse).

Column (6) = size of software measured when taking into account that a subset of functions
has been put into a layer (the data acquisition layer), each function to be reused wherever
needed. This means that the size of the reused layer is included only once in the measurement
results. This of course generates a smaller size.

Column (7) = the ratio of the two measurements, with and without the inclusion of reuse
from the functions in the data acquisition layer. It is obvious that, for these three empirical case
studies, having included the duplicates of functions would have increased the functional size by
a factor of 2.26 and 2.98. Of course, it is to be expected that other case studies would have
their own ratios, depending on their own functional relationships.

Table 2. Measurement results in CFSU units
Software

(1)

Size of
reused
process

(2)

Number of
processes

using
reused

process’s
services

(3)

Quantity
of

duplicates

(4)

Size of software
measured

without
implementation

of reuse

(5)

Size of
software
measured
with reuse

implemented

(6)

Ratio
(5) / (6)

(7)

Control System
1

50 9 450 807 357 2.26

Control System
2

25 8 200 359 159 2.26

Surveillance
Sub-System 3

29 3 87 131 44 2.98

For all cases presented in this paper, the size of the software measured taking into account
functional reuse is obviously much smaller than if it had been measured with the duplicates of
functions.

It is interesting to note that the measurer of the two control systems had no knowledge on the
actual implementation of the software, while in the surveillance sub-system the measurer knew
about its actual implementation. For the two control systems, the software team agreed that the
measurement performed at the abstract level, using the specific measurement tool of the

ESCOM-SCOPE 2000, April 18-20, 2000 7

software layer concept of the COSMIC-FFP method, with the reused functionality segregated in
a distinct layer, was much more representative of the team’s perceived functional size of the
software. The software practitioners commented that the alternative of measuring multiple
duplicates would have represented a significant distortion of the functional size of the
software.

This observation illustrates the importance of documenting the basis of the measurement
procedure in the presence of functional reuse, whether implemented or not.

The proper recording of this information then becomes critical in the development of
productivity models, and, later on, for their use in an estimation process. For example, if we
were to study Control System 1, we would find different unit costs using either column (5) or
column (6) in the denominator of the unit cost formula (unit cost = Effort / Size = Hours /
CFSU): when taking reuse into account before measuring, the unit cost would appear to be
significantly higher (since the duplicates would not have been taken into account), while the
project would appear much cheaper unit-wise if column (5) were used in the formula. This
underlines the importance of proper documentation of the measurement procedures, and proper
recording of measurement results. Such an interpretation context would ensure the proper
interpretation of results across multiple projects, both for productivity analysis and for
estimation purposes.

Readers interested in investigating how to take functional reuse into account in software
productivity analysis should refer to [2] for further detail on the concept of identification and
measurement of avoided duplicate functions. Integrating the more sophisticated concepts from
the economics models presented in the literature on the measurement of reuse at the code level
could help improve productivity models (for example, taking into consideration the normally
higher costs of building and testing more generic reused functions).

5. Discussion and Conclusion
This paper has presented and illustrated the applicability of the COSMIC-FFP method for

identifying and quantifying software functional reuse. The software layer concept introduced in
the measurement process of the COSMIC-FFP method was used as a means to identify
potential sources of functional reuse in the software to be measured. The results from the four
empirical case studies illustrated that there can be important variations between the size of the
software with and without functional reuse. On the one hand, this underlines the fact that such
information on functional reuse must be taken into account when analysing software
productivity and cost. On the other hand, the observation of such alternative functional size
could be useful for analysing the quality of a design (or architecture). It has also been
recommended, in [7], that the presence of reuse must be recorded in the data collection process
and in the database used for benchmarking purposes. Research is ongoing to gain further insight
into the identification of reuse, its measurement, recording and use in more sophisticated
productivity and estimation models.

It would be also interesting to perform more detailed analyses of the software measured
here with a view to finding opportunities for additional reuse, that is, the identification and
measurement of potential for reuse (i.e. the reusability) at the functional level. With the
COSMIC-FFP method, the process of modelling software to be measured allows for
characterisation of the software at the level of data movements. While looking at the identified
functional processes, software engineers can figure out whether some functional processes
might be conceptually similar even though they occur in different instances from the user’s
point of view. From their experience and knowledge about the software’s design principles,
they would be able to identify functional processes which could result in a similar
implementation. The functional reuse potential is therefore identified based on the conceptual
(implementation) closeness acknowledged by the software engineer between the identified

ESCOM-SCOPE 2000, April 18-20, 2000 8

functional processes. Note that still do not exist a well-defined notation for the concept of
conceptual closeness. The COSMIC-FFP method could be used to quantify the potential amount
of reuse based on data movement sub-processes identified within the processes to be reused.
Future research is planned to investigate this approach in various industrial software projects.

Acknowledgements
This work has been financially supported by Bell Canada and the Natural Sciences and

Engineering Research Council of Canada.

6. Reference

[1] Abran, A., “FFP Release 2.0: An Implementation of COSMIC Functional Size Measurement
Concepts”, Presented at FESMA 99, Amsterdam, Oct. 4-7, 1999.

[2] Abran, A., Desharnais, J-M., “Measurement of Functional Reuse in Maintenance”, Software
Maintenance: Research and Practice, 1995, pp. 263-277.

[3] Abran, Desharnais, Oligny, St-Pierre, Symons, “COSMIC-FFP Measurement Manual, version 2.0”,
Ed. S. Oligny, Software Engineering Management Research Lab., Université du Québec à Montréal
(Canada), Oct., 1999.

[4] Burd, E., Munro, M., “A Method for the Identification of Reusable Units through the Reengineering
of Legacy Code”, Journal of Systems and Software, 1999, pp. 121-134.

[5] Gaffney, J.E., Cruickhank, R.D., “A General Economics Model of Software Reuse”, ACM, 1992,
pp. 327-337.

[6] Leach, R.J., “Method of Measuring Software Reuse for the Prediction of Maintenance Effort”,
Software Maintenance: Research and Practice, 1996, pp. 309-320.

[7] Meli, R., “Software Reuse as a Potential Factor of Database Contamination for Benchmarking in
Function Points”, Proceedings of ISBSG Workshop, Rome, Italy, Feb. 1998.

[8] Oligny, S., Abran, A., St-Pierre, D., “Improving Software Functional Size Measurement,
Proceedings of COCOMO and Software Cost Modeling International Forum 14, USA, Oct., 1999.

[9] Poulin, J.S., “Measuring Software Reusability”, Proceedings of the Third International Conference
on Software Reuse: Advances in Software Reusability, 1994, pp. 126-138.

