Using COSMIC-FFP to Quantify Functional Reuse in Software Development

Vinh T. Ho, Alain Abran, Serge Oligny

Presented at

ESCOM-SCOPE 2000, Munich, Germany

April 18-20, 2000

Agenda

• Context

- Functional reuse
- Measuring functional reuse
- Examples
- Conclusion

Context

- Goal: Using COSMIC-FFP, explore functional reuse measurement as a quantitative basis for evaluating alternatives designs
- Exploratory work
- Reuse mostly measured at code level
- Reuse at earlier stages is of interests

Functional reuse

Kinds of reuse:

- Reuse without modification: black-box reuse
- Reuse with modification: white-box reuse

This exploratory research concentrates on black-box reuse.

Functional reuse

- <u>Functional reuse</u>: identifying "avoided" functions, that is functions which do not need to be re-developed.
- Goal: How much such re-development could be avoided ?

COSMIC-FFP: a functional size measurement method

- Candidates for reuse
- Quantifying functional reuse

COSMIC-FFP:

Principle

Software functional size is directly proportional to the number of its datamovement sub-processes.

Base Functional Components

COSMIC-FFP recognize 4 types of data movements: Entry, Exit, Reads and Writes.

<u>Unit</u>

The standard unit of measurement (1 C_{fsu}) is defined by convention as equivalent to one single data movement at the sub-process level.

COSMIC-FFP:

Measurement process

Candidates for reuse:

- COSMIC-FFP layer differentiates F.U.R. allocated at different levels of functional abstraction
- Each layer encapsulates functionality useful to other layers using its services

 Identifying layers facilitate identification of reused functionality.

Quantifying functional reuse:

Principle

Amount of functional reuse is proportional to the product of the size of the functional processes reused and the number of functional processes using their services.

Where: F_{RU} represents the total amount of functional reuse, in C_{fsu},
i represents the total number of reused functional process identified,
U_i represents the number of functional processes using functional process i

Quantifying functional reuse:

The relative amount of reused functionality within a piece of software.

$$R_{I} = \frac{F_{RU} * 100}{Size(Software)}$$

Where: $\mathbf{R}_{\mathbf{I}}$ represents the reuse index, in $\boldsymbol{\%}_{\mathbf{A}}$,

 F_{RU} represents the total amount of reuse within a piece of software, in C_{fsu} Size(Software) represents the size, in C_{fsu} , of the piece of software without reuse

ISDN Loopback tester, detailed example

• Summary of three other software

ISDN Loopback tester:

 Device used to test the integrity of four wires ISDN circuits at a remote location

 Users dial in to connect to ISDN device and performs testing and maintenance programming functions

ISDN Loopback tester:

Scenario 1 - Assuming Access functionality is reused whenever possible

i = 1 (1 reused functional process - Access)

U = **32** (32 functional processes using Access)

Size (Func. $process_1$) = 10 C_{fsu}

$$F_{RU} = \sum_{i=1}^{1} 10 C_{fsu} * 32$$

 $F_{RU} = 320 C_{fsu}$

Size of software with functional reuse: 136 C_{fsu}

ISDN Loopback tester:

Scenario 2 - Assuming Access functionality is not reused at all

Size of Access layer: 10 C_{fsu}

Size of Application layer: 126 C_{fsu}

Size of duplicated access functionality (31* 10 C_{fsu}): 310 C_{fsu}

Total size of software: 446 C_{fsu}

ISDN Loopback tester:

Comparing scenario 1 and 2

What have we done?

Three other software:

	Size(Fp ₁)	U	F _{RU}	Size A ¹	Size B ²	Ratio
Control software A	50 C _{fsu}	9	450 C _{fsu}	807 C _{fsu}	357 C _{fsu}	2,26
Control software B	25 C _{fsu}	8	200 C _{fsu}	359 <mark>C_{fsu}</mark>	159 C _{fsu}	2,26
Surveillance sub-system	29 C _{fsu}	3	87 C _{fsu}	131 C _{fsu}	44 C _{fsu}	2,98

1: size of software without functional reuse

2: size of software with complete functional reuse

UQÀM

Conclusion

Important variance in size with and without functional reuse

- must be taken into account in productivity and cost analysis
- could be used as index to evaluate quality of design
- could be used as index to evaluate integration of application portfolio
- Reuse must be recorded in data collection for benchmarking

- COSMIC-FFP layer concept useful to identify functional reuse
- Measuring reuse provides a quantitative basis for evaluating alternatives designs
- Enlarge scope from black-box/complete reuse to white-box/partial reuse

Further readings

- Bootsma F., "Applying Full Function Points to drive strategic business improvement within the real-time software environment", Annual IFPUG Conference, New-Orleans, 1999
- Abran A., Desharnais J.M. "Measurement of functional reuse in Maintenance", Software Maintenance: Research and Practice, 1995

Downloadable at www.lrgl.uqam.ca/ffp.html

Acknowledgments

 The Software Engineering Management Research Laboratory of the Université du Québec à Montréal is supported through a partnership with Bell Canada.

 Additional funding is provided by the Government of Canada.

