
A FUNCTIONAL SIZE MEASUREMENT METHOD FOR EVENT-
BASED OBJECT-ORIENTED ENTERPRISE MODELS

Geert Poels
VLEKHO Business School, Koningsstraat 336, 1030 Brussel, Belgium

Email: gpoels@vlekho.wenk.be

Keywords: metrics, software sizing, function points, object-orientation, layered architectures, events, enterprise models

Abstract: The effective management of IS-related processes requires measuring the functional size of information
systems. Functional size measurement is usually performed using the Function Points Analysis method.
Earlier attempts to apply Function Point counting rules to object-oriented systems met with serious
problems because the implicit model of functional user requirements in Function Points Analysis is hard to
reconcile with the object-oriented paradigm. The emergence of a new generation of functional size
measurement methods has changed this picture. The main implementation of this generation, COSMIC Full
Function Points, explicitly defines a generic model of functional user requirements onto which artifacts
belonging to any IS specification or engineering methodology can be mapped. In this paper we present
specific COSMIC-FFP mapping rules for methodologies that take an event-based approach to information
system engineering. In particular we show that the event-oriented nature of the COSMIC-FFP measurement
rules provides for a natural mapping of concepts. To illustrate the mapping rules we use MERODE, a
formal event-based object-oriented methodology for systems development in information processing
intensive domains. The mapping rules presented are confined to the enterprise layer in a MERODE IS
architecture.

1. INTRODUCTION

To effectively manage the process of IS
specification, development, and implementation, it is
necessary to know the functional size of the required
information system.

According to the ISO standard for functional size
measurement, the functional size of an information
system is captured by the user's perspective on the
functional IS requirements (ISO, 1998). This
perspective relates to the subset of user requirements
that focus on what the system must do to fulfill the
user's information needs, without considering how
this will be accomplished. The functional user
requirements therefore exclude all technical, quality,
and performance requirements. Moreover,
functional size measurement must be independent of
the technical IS development and implementation
decisions that are taken during the IS lifecycle,
providing an 'objective' basis of comparison and
assuring the timeliness of the size measurement.

Functional size measurement has traditionally
been performed using Function Points Analysis
(FPA) (Albrecht et al., 1983), a method for data-rich

and information processing intensive systems that
identifies transaction functions and logical data files
based on the requirements specifications. These
base functional components are subsequently
quantified using a fixed schema of weights that
reflects the amount of data stored in a file or
manipulated by a function.

The FPA view of functional size reflects
contemporary IS engineering methodology and
practices based on structured principles and
functional decomposition. This function-oriented
view is not compatible with modern approaches
towards the development of enterprise information
systems that use object-oriented (OO) specifications
and layered IS architectures.

In OO information systems, data and the
procedures operating on these data are encapsulated
in a same unit of software called the object. There is
no natural mapping between the concept of object
and the FPA notion of function. Dismembering
object classes into data (i.e. files) and procedures
(i.e. transaction functions) is an option, but poses a
granularity problem. The scope of the average FPA
function in non-OO software is a magnitude of order
larger than the scope of a typical class method.

Another problem with FPA is that its implicit
model of the system to be sized does not

accommodate the concept of layered architecture,
which is used to distinguish different kinds of IS
components based on the type of functionality they
offer to the user. The method does therefore not
consider the exchange of data between system
layers, positioned at different levels of functional
abstraction. As a consequence, it is hard to apply
the FPA measurement rules to a layer that does not
directly exchange data with the system's users.

These and other problems have motivated a
group of experts, called the COmmon Software
Measurement International Consortium (COSMIC),
to work on the principles of a next generation of
functional size measurement methods. The main
result of this work is COSMIC Full Function Points
(Abran et al., 2001).

The COSMIC-FFP functional size measurement
method proposes measurement rules for an abstract
model of functional user requirements. This model
is based on a base functional component typology
that no longer requires data to be separated from the
procedures operating on these data. Moreover, the
model incorporates the notion of layers in
requirements specifications.

The independence of specific IS development
methodologies realized by COSMIC-FFP is due to
the abstractness of its underlying model. The cost of
this generality is the absence of detailed
measurement rules for specific requirements
specification artifacts. There is currently a need for
mapping the constructs used by current IS
development methodologies to COSMIC-FFP
concepts.

In this paper we provide a set of rules to apply
COSMIC-FFP to a specific class of OO
methodologies for developing enterprise information
systems, i.e. the event-based approach. Event-based
methodologies have in common that they assume
object behavior to be triggered by the occurrence of
real-world or system events, for which explicit
modeling constructs are offered. We show that the
presence of 'triggering events' in COSMIC-FFP
provides for a natural mapping of concepts. To
substantiate and exemplify this mapping we use
MERODE (Snoeck et al., 1999), a formal event-
based, and (partly) UML notation based,
methodology that is used in the business
administration domain. The scope of the mapping
presented in this paper is limited to the enterprise
model, i.e. the layer in a MERODE system
architecture that captures the essential business
requirements that the system must fulfill.

This paper is organized as follows. In section 2
we review the main principles of event-based OO
enterprise modeling and illustrate these principles
using MERODE. In section 3 we briefly describe
the COSMIC-FFP method. Sections 4 and 5 present

specific COSMIC-FFP rules for MERODE event-
based OO enterprise models, respectively focusing
on model mapping rules and function point counting
rules. Finally, section 6 discusses related work and
section 7 presents conclusions.

2. EVENT-BASED OBJECT-
ORIENTED ENTERPRISE
MODELING

MERODE prescribes a layered IS architecture
that partitions an object model following the
principle of model-driven development. According
to this principle, different kinds of system
specifications are distinguished based on their
expected change rates. The enterprise model
contains the set of specifications that stem from
essential business requirements, reflecting the
relevant domain knowledge for running a business.
The functionality model consists of the
specifications that originate from the work
organization (i.e. the input services) and the end
user's or organization's information needs (i.e. the
output services). Finally, the user interface model
specifies the facilities to trigger, interrupt, and
resume the execution of the input and output
services. The most stable specifications are those of
the enterprise model, as they meet requirements that
are also valid in the absence of an information
system. The most volatile specifications are in the
user interface model, which captures workflow,
presentation, and dialogue aspects.

Each type of specifications gives rise to a
number of object classes, which are organized in
layers. The innermost layer contains the enterprise
object classes; the middle layer the function object
classes; the outermost layer the user interface
classes. Objects are only allowed to use the services
of objects in the same or a more inner layer. That
way, classes are prevented to depend upon less
stable classes, ensuring a strict control on the
propagation of changes and hence a flexible and
stable architecture.

In this paper we are concerned with the
functional size measurement of enterprise models.
MERODE enterprise models consist of three
interrelated sub-models, presenting different views
of the same business reality. The first sub-model is
a class diagram (for which UML notation can be
used) containing a set of object type specifications
that are classified according to two mechanisms:

existence dependency1 and generalization-
specialization. The second sub-model is an object-
event table specifying which (type of) enterprise
objects are involved in which (type of) real-world
events. According to this formalism, objects interact
when they are involved in the same event. Within
the enterprise model, object communication is
therefore modeled using the event broadcasting
mechanism instead of direct message passing
between enterprise objects. The third sub-model is a
collection of object life cycle models (formalized by
Finite State Machines), expressing the sequence
constraints that hold for the participation of
enterprise objects in real-world events.

In order to apply functional size measurement
we assume that there exists a unified and detailed
view of these three sub-models, consisting of a set of
object class specifications. Each of these
specifications contains an object class name, the
object class attributes, and the object class methods.
Methods have a specification, consisting of the
method signature (including parameters) and the
method preconditions, and an implementation
consisting of the method body. Each time an
enterprise object participates in a real-world event, a
method is triggered that may modify the value of the
object's attributes. Within class specifications,
inherit clauses are used to specify inheritance
relationships between object classes as indicated by
the generalization-specialization relationships in the
class diagram. Existence dependency relationships
are specified by means of the abstraction mechanism
(i.e. attributes are declared of an object class data
type). Sequence constraints and other business
constraints are specified within the method
preconditions.

3. EVENT-BASED FUNCTIONAL
SIZE MEASUREMENT

The COSMIC-FFP method can be applied to a
system as a whole, or to any layer within a system
that is obtained by an architectural decomposition
based on a functional view. Once the scope of
measurement is established and the system or layer
boundaries are defined, the COSMIC-FFP method
proceeds through two stages: a mapping phase and a
measurement phase.

1 The principle of existence dependency is the most
distinctive feature of MERODE. For more information
on this topic we refer to (Snoeck et al., 1999).

3.1 The Mapping Phase

During the mapping phase functional processes
and data groups are identified within the system or
system layer that must be sized. These are the only
two types of constructs that are used within the
system model assumed by COSMIC-FFP.

A functional process is seen as a unique set of
data exchanges across the boundaries of the system
(or system layer), that implement a cohesive and
logically indivisible set of functional user
requirements. For any system or system layer, two
boundaries are considered: a front-end boundary and
a back-end boundary. The front-end boundary
separates the system or system layer from its user,
which in case of a layer can be another system layer.
The back-end boundary separates the system or
system layer from data storage, which in case of a
layer can be realized through invoking the services
of another system layer. Data exchanges across
system or layer boundaries can take four forms:
entry, exit, read, and write. Fig. 1 illustrates these
four types of data exchange for the software
component of an information system. In the front-
end direction data is exchanged with the user across
the I/O boundary. In the back-end direction data is
exchanged with the storage devices.

As a practical guideline to delimit a cohesive and
logically indivisible set of functional user
requirements, the COSMIC-FFP measurement
manual states that a functional process is triggered
by an event occurring outside the system or layer
boundary and is complete when it has executed all
that is required to be done in response to the
triggering event.

Apart from functional processes, all data groups
referenced by these functional processes need to be
identified. A data group is defined as a distinct,
non-empty, non-ordered, and non-redundant set of
data attributes, where each included data attribute
describes a complementary aspect of the same object
of interest.

3.2 The Measurement Phase

Within each functional process, all COSMIC-
FFP sub-processes are identified. In the current
version of COSMIC-FFP, these sub-processes are
exactly the same as the data exchanges occurring
during the execution of a functional process. There
are four COSMIC-FFP sub-process types:

SOFTWARE

I/O
 H

A
R

D
W

A
R

E

ST
O

R
A

G
E

H
A

R
D

W
A

R
E

USERS

PERSONS

or

SOFTWARE

or

ENGINEERED
DEVICES

Front end Back end

ENTRIES

WRITESEXITS

READS

Figure 1: Generic exchange of data through software from a functional perspective

1. An ENTRY (E) is a movement of one or more
data attributes found in one data group from the
user's side of the boundary to the inside of the
boundary.

2. An EXIT (X) is a movement of one or more data
attributes found in one data group from inside
the boundary to the user side of the boundary.

3. A READ (R) is a movement of one or more data
attributes found in one data group from storage
to the functional process to which the read sub-
process belongs.

4. A WRITE (W) is a movement of one or more
data attributes found in one data group from the
functional process to which the write sub-
process belongs to storage.
The COSMIC-FFP sub-process types are the

base functional component types used by the
COSMIC-FFP method. They determine the
particular point of view of functional size taken by
this method.

The function point counting procedure of
COSMIC-FFP is trivial once sub-processes are
identified. Each instance of a sub-process type
found in the functional processes has a functional
size equal to 1 Cfsu (Cosmic functional size unit),
which is the measurement standard used by
COSMIC-FFP. The sum of these values is the
functional size of the system or system layer to be
sized. Given the choice of measurement standard,
this sum is equal to the count of sub-processes (or
data exchanges).

4. FUNCTIONAL SIZE
MEASUREMENT MAPPING
RULES

The COSMIC-FFP mapping phase can be
subdivided in two sub-phases. The first sub-phase
results in an instance of the COSMIC-FFP context
model, where the scope of the functional size
measurement exercise is determined by identifying
system layers and boundaries. The second sub-
phase constructs an instance of the abstract
COSMIC-FFP model that determines the functional
structure (i.e. functional processes and data groups)
of the system or system layer within the scope of
functional size measurement.

4.1 COSMIC-FFP Context Model
for MERODE Enterprise Models

According to the COSMIC-FFP measurement
manual, the identification of system layers is
facilitated by the use of a layered IS architecture on
condition that it provides a functional view of the
various system components. The MERODE
architecture provides such a view, as it distinguishes
between business functionality, information system
functionality, and user interface functionality. The
manual further stipulates that if a specific
architectural paradigm is used, then an equivalence
should be established between specific architectural
objects and the concept of layers in COSMIC-FFP.
The principle of model-driven development allows
distinguishing three such layers in the COSMIC-FFP
context model for MERODE: the enterprise layer,
the functionality layer, and the user interface layer.

MERODE SYSTEM
SPECIFICATIONS

UI layer

Functionality layer

Enterprise layer

I/O

 H
A

R
D

W
A

R
E

ST
O

R
A

G
E

H
A

R
D

W
A

R
E

USERS

PERSONS

or

SOFTWARE

or

ENGINEERED
DEVICES

Front end Back end

SOFTWARE

O
S,

 d
ev

ic
e

dr
iv

er
s

D
B

M
S

 O
S,

 d
ev

ic
e

dr
iv

er
s

 G

U
I

Figure 2: COSMIC-FFP context model for MERODE

The boundaries between these three layers are
clearly defined in MERODE (Fig. 2). The user
interface classes use the services of the function
object classes, which in turn use the services of the
enterprise object classes. Therefore, the user
interface layer is a client to the functionality layer,
which is in turn a client to the enterprise layer. The
user interface layer has a front-end boundary with
the user, via some intermediate layers outside the
scope of MERODE (e.g. I/O devices, device drivers,
OS, GUI). The enterprise layer has a back-end
boundary with storage devices, again via a number
of subordinate layers like DBMS, OS, and device
drivers.

As this paper is only concerned with functional
size measurement for MERODE enterprise models,
we limit the scope of functional size measurement to
the enterprise layer of the software application. It
should be understood that the enterprise object
classes specify only a subset of the functional user
requirements. Though it seems that these business
requirements do not directly deliver information
system functionality (i.e. information products) to
the system users, which is the aspect of size
considered by COSMIC-FFP, they do represent part
of the user practices and procedures that the system
must perform to fulfill the user's needs. We
therefore consider the business functionality
specified in the enterprise object classes as part of
the functionality delivered by the system to the users
(via the functionality and user interface layers). The
functional size of the enterprise layer contributes to
the functional size of the entire system. As opposed
to other functional size measurement methods,
COSMIC-FFP allows measuring the functional size
of separate layers.

Fig. 3 details the COSMIC-FFP context model
for MERODE by focusing on the data exchanges
across the boundaries of the enterprise layer.

In the front-end direction, function objects
communicate with enterprise objects by means of
messages and status inspections. When an event
occurs in the real world, a function object sends an
event message to all enterprise objects involved. For
each of these enterprise objects an event method is
triggered by the event message. If this method has
parameters, then the event message carries the
required data. With this type of object
communication, there is no exchange of data from
the enterprise layer to the functionality layer, as
event methods have no return type. Status
inspections2 allow function objects to inspect the
value of enterprise object attributes. Hence, they
carry data from the enterprise layer to the
functionality layer.

In the back-end direction, it is assumed that the
services of a DBMS are used to store and retrieve
the enterprise object state vectors, which contain the
object attribute values.

2 Status inspections can be implemented by sending
messages to trigger 'accessor' methods, having return
types. Such methods are however not specified in
MERODE enterprise classes, as they are considered an
implementation issue.

ENTERPRISE
MODEL

FUNCTIONALITY
MODEL

DBMS

Front end Back end

ENTRIES (1)

WRITES (4)EXITS (2)

READS (3) Legend:

(1) Entry of data through event message
parameters

(2) Exit of data through status inspections
(3) Retrieval of object state vectors
(4) Storage of object state vectors

Figure 3: detailed COSMIC-FFP context model for MERODE enterprise models

4.2 Abstract COSMIC-FFP Model
for MERODE Enterprise Models

The abstract COSMIC-FFP model contains all
elements of the functional user requirements within
the scope of the context model (in our case limited
to the enterprise layer), that are considered as
relevant for a COSMIC-FFP functional size
measurement exercise.

The definition of a functional process in the
measurement manual leads to an unambiguous
interpretation of this concept in the context of
MERODE enterprise models. This definition states
that "A functional process is a unique set of data
movements […] implementing a cohesive and
logically indivisible set of [functional user
requirements]. It is triggered directly, or indirectly
via an 'actor', by an Event (-type) and is complete
when it has executed all that is required to be done
in response to the triggering Event (-type)" (Abran et
al., 2001, p. 26). Furthermore, this triggering event
must occur outside the boundary of the measured
system or system layer.

In case of MERODE enterprise models, business
functionality is triggered by events occurring in the
real world. Input function objects qualify as actors
that transmit real-world events to the enterprise
model via event messages. These messages trigger a
set of event methods, leading to the execution of the
corresponding method bodies. Adhering to the
above definition, a MERODE enterprise model
functional process can therefore be defined as the
collection of data exchanges that are contained
within the set of event methods triggered by a real-
world event (type). This definition is
operationalized as Mapping Rule 1.

Mapping Rule 1: For each event type in the object-
event table, identify a functional process. Include in
this functional process all event methods specified in
the enterprise object classes, occurrences of which
are involved in occurrences of the event type.

According to their definition (cf. section 3.1)
data groups in COSMIC-FFP correspond to the sets
of attributes in the enterprise object classes.

Mapping Rule 2: For each object type in the object-
event table, identify a data group. This data group is
the set of attributes found in the enterprise object
class that specifies the data, functionality, and
behavior of the object type.

5. FUNCTIONAL SIZE
MEASUREMENT COUNTING
RULES

A COSMIC-FFP sub-process is defined as "a
data [exchange] occurring during the execution of a
functional process" (Abran et al., 2001, p. 34). Data
exchange sub-processes move data contained in
exactly one data group. The data is moved across
the boundary of the system or system layer.

The following kinds of data exchange occur
during the execution of a MERODE enterprise
model functional process:
1. The functional process is triggered by event

messages, which may carry data from the
functionality layer to the enterprise layer.

2. During the execution of the functional process,
the values of enterprise object attributes are
updated and stored in the enterprise object state
vectors.

3. During the execution of the functional process,
values of enterprise object attributes may be
retrieved from the enterprise object state vectors.
The first type of data exchange relates to entry

sub-processes in COSMIC-FFP. Data is moved
from the functionality layer's side of the boundary to
the side of the enterprise layer. As each ENTRY
moves data from only one data group, the triggering
of a functional process by a real-world event may
result in the execution of more than one entry sub-
process. Each event method that is triggered may
require parameters referring to the enterprise object
attributes. Hence, the potential number of entry sub-
processes is equal to the number of object types
involved in the event type. This reasoning is
formalized in Counting Rule 1.

Counting Rule 1: For each functional process, an
ENTRY functional sub-process is counted for each
of the event methods it includes, on condition that
the method signature has at least one parameter.

The second type of data exchange relates to
write sub-processes. Each time that the execution of
an event method body involves initializing or
modifying the value of at least one enterprise object
attribute, a WRITE occurs. Conceptually, the data is
moved from the enterprise layer's side of the
boundary to the DBMS side. As during the
execution of a functional process more than one
event method can be triggered and all these triggered
methods relate to different data groups (i.e.
enterprise objects), more than one write sub-process
may be identified.

Counting Rule 2: For each functional process, a
WRITE functional sub-process is counted for each
of the event methods it includes, on condition that
the method body updates the value of at least one
enterprise object attribute.

The third type of data exchange relates to read
sub-processes. The processing within an event
method body may require a READ to supply the
value of one or more enterprise object attributes.
Even before a method body is executed, it might be
necessary to get the value of enterprise object
attributes when checking method preconditions.
This access to the enterprise object attributes can
conceptually be described as a movement of data
from the DBMS side of the boundary to the
enterprise layer's side. Again, more than one read
sub-process can be involved in the execution of a
MERODE enterprise model functional process.

Counting Rule 3: For each functional process, a
READ functional sub-process is counted for each of

the event methods it includes, on condition that the
method body or preconditions retrieve the value of
at least one enterprise object attribute.

There is no equivalent to the COSMIC-FFP
EXIT functional sub-process in MERODE enterprise
models. Although, conceptually, status inspections
bring data lying inside the enterprise layer within
reach of the functionality layer (cf. Fig. 3), these
data movements are not within the realm of the
MERODE enterprise model functional processes.
Exit data exchanges are part of the MERODE
functionality model functional processes, which
implement information system functionality required
by users. As such they are not documented in the
MERODE enterprise model.

To summarize, the functional size of a
MERODE enterprise model is equal to the number
of ENTRY, WRITE, and READ sub-processes in its
functional processes.

6. RELATED WORK

To 'solve' the OO-FPA mapping problem, many
FPA variants have been proposed (Rains, 1991;
Whitmire, 1993; Thomson et al., 1994; Hastings,
1995; Zhao et al., 1995; Sneed, 1996; Caldiera et al.,
1998; Fetcke et al., 1998; Uemura et al., 1999;
Pastor et al., 2001; Ram et al., 2001). None of these
proposals has succeeded in becoming a widely
accepted functional size measurement method for
OO systems.

The feasibility of mapping OO concepts onto the
abstract COSMIC-FFP functional user requirements
model is evidenced by recent work in the field (Bévo
et al., 1999; Jenner, 2001; Diab et al., 2001).

Both Bévo et al. (1999) and Jenner (2001)
provide a mapping for UML-based specifications.
Bévo et al. map constructs used in class diagrams
and use case diagrams onto the abstract COSMIC-
FFP model. The use case diagram is used to identify
the system (i.e. the collection of use cases modeled),
its boundary (i.e. the system boundary specified in
the use case diagram), and its users (i.e. the actors in
the use case diagram). An equivalence to the layer
concept in COSMIC-FFP is not established. Bévo et
al. further contend that UML classes correspond to
COSMIC-FFP data groups and that use cases
correspond to COSMIC-FFP functional processes.
A scenario, i.e. a specific sequence of actions
illustrating a use case instance, is considered as a
sequence of COSMIC-FFP sub-processes.

As shown by Jenner, Bévo et al. confuse in their
examples the concept of scenario with that of
detailed use case. They provide for a same system

specification widely ranging size 'estimates',
depending on the level of detail in the use case
diagram. As argued by Jenner, the fact that a system
specification may look very different according to
who produces it (i.e. according to the level of
granularity with which use cases are described),
suggests that a mapping of use cases onto COSMIC-
FFP functional processes may not be appropriate.
As an alternative, Jenner proposes to look at the
sequence diagram for each use case and regard each
use case as a sequence of COSMIC-FFP functional
processes. Each functional process is triggered by
something done or requested by an actor, as
documented in the sequence diagram. According to
Jenner, sequence diagrams are specified at a level of
detail, where the granularity problem observed when
specifying use case diagrams, does not occur.
Jenner further uses the concept of "swimlanes" in
UML sequence diagrams to establish an equivalence
with the layer concept in COSMIC-FFP.

The different interpretations of functional
processes in UML by Bévo et al. and Jenner stem
from the fact that the concept of a 'triggering event'
is not explicitly present in UML. Diab et al. (2001)
provide a mapping for ROOM (Real-time Object-
Oriented Modeling) specifications, which
correspond more closely to the event-based
approach to system specification described in this
paper. Diab et al. identify functional processes
based on the transitions in statechart specifications.
These transitions are triggered by messages, which
can be considered as external events. The
interpretation of COSMIC-FFP sub-processes is
largely the same as in this paper. It must be noted,
however, that ROOM specifications are not
organized using layered architecture principles. The
application of functional size measurement to a
specific layer within the IS architecture distinguishes
our work from (Diab et al., 2001).

7. CONCLUSIONS

This paper presented five rules to map the
constructs and artifacts used in MERODE enterprise
modeling onto the concepts, definitions, principles,
and rules of the COSMIC-FFP method. COSMIC-
FFP is the principal implementation of a new
generation of functional size measurement methods,
which is meant to improve the first generation of
Function Points based methods (i.e. FPA and
variants).

The main distinguishing feature of COSMIC-
FFP is the explicit definition of a generic, abstract
model of the functional user requirements, onto
which the operational artifacts of the IS development

methodology that is adopted, are mapped before
measurement takes place. It is this feature that
makes a functional size measurement method not
only independent of technology and implementation
choices, as with FPA, but above all really free from
the development methodology. The paradigm clash
between OO methodologies and first generation
Function Points based methods is therefore not
observed when mapping the OO specifications in a
MERODE enterprise model onto the abstract
COSMIC-FFP functional user requirements model.

Two other features of COSMIC-FFP provide for
a natural mapping of concepts. First, the notion of
layers in COSMIC-FFP allows determining the
scope of functional size measurement in the context
of a layered system (or software) architecture, and
thus helps conceiving specific functional size
measurement procedures for the enterprise layer in
the MERODE IS architecture.

Second, the focus on external events as process
triggers in both COSMIC-FFP and MERODE, helps
determining the appropriate level of granularity of
the mapping rules. It is especially this event-
orientation in COSMIC-FFP that goes well with the
event-driven nature of MERODE and the event-
based approach to requirements specification in
general.

In our future work we will investigate the
applicability of Early & Quick COSMIC-FFP (Meli
et al., 2000; Santillo, 2001), a functional size
measurement method currently being developed for
functional user requirements at a higher level of
abstraction than usually assumed in COSMIC-FFP.
This would allow measuring the functional size of a
MERODE enterprise model using partial, early
available, information, such as an object-event table.
One such high-level functional size measure, the
Level of Object-Event Interaction (LOEI), which is
basically a count of the object type - event type
interactions in the object-event table, has recently
been proposed (Poels et al., 2001). We will
investigate whether the LOEI measure complies
with the Early & Quick COSMIC-FFP method.

REFERENCES

Abran, A., Desh arnais , J.-M., Oligny, S., St-Pierre, D.,
Sym ons, C. (2001). COSM IC-FFP Measurem ent
M anual, Version 2.1. Th e Com m on Softw are
M e asurem ent International Consortium

Albrech t, A.J., Gaffney, J. (19 83). Softw are function,
source lines of code and developm ent effort prediction.
IEEE Transactions on Softw are Engineering 9 (6) 639 -
648

Bévo, V., Léve s que, G., Abran, A. (19 9 9). Application de
la m éth ode FFP à partir d'une spécification selon la

notation UM L: com pte rendu des prem iers e s sais
d'application et q uestions. Proceedings of th e 9 th
International W ork s h op on Softw are Measurem ent, Lac
Supérieur, Canada, 230-242

Caldiera, G., Antoniol, G., Fiutem , R., Lok an, C. (19 9 8).
Definition and Experim ental Evaluation of Function
Points for O bject-Oriented System s . Proceedings of th e
5th International Sym posium on Softw are Metrics,
Bethe sda, M aryland, USA, 167-178

Diab, H ., Frappier, M ., St-Denis, R. (2001). A Form al
Definition of COSM IC-FFP for Autom ated
M e asurem ent of ROOM Specifications . Proceedings of
th e 4th European Conference on Softw are
M e asurem ent and ICT Control, H eidelberg, 185-19 6

Fetck e, T., Abran, A., Nguyen, H . (19 9 8). Function point
analysis for th e OO -Jacobson m eth od: a m apping
approach . Proceedings of th e 1st European Softw are
M e asurem ent Conference, Antw erp, 39 5-410

H astings, T. (19 9 5). Adapting Function Points to
contem porary softw are system s: A review of proposals.
Re s earch report, Departm ent of Softw are Developm ent,
M onas h University, Australia

ISO (19 9 8). ISO/IEC 14143-19 9 8 - Softw are Engineering
- Softw are Measurem ent - Definition of Functional
Size M e asurem ent. Th e International O rganization for
Standardization

Jenner, S.M . (2001). COSM IC-FFP 2.0 and UM L:
Estim ation of th e Size of a System Specified in UM L -
Problem s of Granularity. Proceedings of th e 4th
European Conference on Softw are Measurem ent and
ICT Control, H eidelberg, 173-184

M eli, R., Abran, A., H o, V.T., Oligny, S. (2000). On th e
Applicability of COSM IC-FFP for M e asuring Softw are
Th rough out its Life Cycle. Proceedings of th e 11th
European Softw are Control and Metrics Conference,
M unich

Pastor, O ., Abrah ao, S.M ., M olina, J.C., Torres, I. (2001).
A FPA-lik e Measure for O bject-Oriented System s from
Conceptual M odels. Proceedings of th e 11th
International W ork s h op on Softw are Measurem ent,
M ontréal

Poels, G., Dedene, G. (2001). M e asuring event-based
object-oriented conceptual m odels. L'O bjet: Softw are,
Databases, Netw ork s 7(4) 49 7-514

Rains, E. (19 9 1). Function Points in an ADA O bject-
O riented Design. O OPS M essenger 2(4) 23-25

Ram , D.J., Raju, S.V.G.K. (2001). Estim ating Relative
Size w h e n Alternative Designs Exist. Proceedings of
th e 5th International ECOOP W ork sh op on
Quantitative Approach e s in O bject-Oriented Softw are
Engineering, Budapest, 35-44

Santillo, S. (2001). Early & Quick COSM IC-FFP Analysis
Using Analytic H ierarch y Proces s . Proceedings of th e
10th International W ork s h op on Softw are
M e asurem ent, Berlin, 2000. Lecture Notes in Com puter
Science, Vol. 2006, Springer-Verlag, Berlin, 147-160

Sneed, H . (19 9 6). Estim ating th e Developm ent Costs of
O bject-Oriented Softw are . Proceedings of th e 7th
European Softw are Control and Metrics Conference,
W ilm slow , UK, 135-152

Snoeck , M ., Dedene, G., Verh elst, M ., Depuydt, A.-M .
(19 9 9). O bject-Oriented Enterpris e Modelling w ith
M ERODE. Leuven University Pre s s

Th om son, N., Joh nson, R., M acleod, R., M iller, G.,
H ansen, T. (19 9 4). Project Estim ation Using an
Adaptation of Function Points and Use Cases for O O
Projects. Proceedings of th e OOPSLA’9 4 W ork s h op on
Pragm atic and Th e oretical Directions in O bject-
O riented Softw are Metrics

Uem ura, T., Kusum oto, S., Inoue, K. (19 9 9). Function
Point M easurem ent Tool for UM L Design
Specifications . Proceedings of th e 6th International
Sym posium on Softw are Metrics, Boca Raton, Florida,
USA, 62-69

W h itm ire, S.A. (19 9 3). Applying Function Points to
O bject O riented Softw are Models. In: Softw are
Engineering Productivity H andbook . M cGraw - H ill,
New Y ork , 229 -244

Z h ao, H ., Stock m an, T. (19 9 5). Softw are Sizing for O O
softw are developm ent - Object Function Point
Analysis. Proceedings of th e 2nd GSE International
Conference on Inform ation Tech nology and
M anagem ent, Berlin

