
 A. Abran, R. Braungarten, R. R. Dumke

218

Web-based Support for White Box Software Estimation

Alain Abran1, René Braungarten2, Reiner R. Dumke2

1 Département de génie électrique et génie logiciel,

École de technologie supérieure Montréal (Québec), Canada
and

2 Department of Computer Science, Institute for Distributed Systems, AG Software-
Engineering

Otto-von-Guericke University Magdeburg, Germany

 Abstract: Most commercial estimation tools can be considered as black boxes in
that they do not provide details of the samples used to build their estimates. With
the availability of the ISBSG international repository of 2000+ software projects,
it is now feasible to develop white box estimation models which provide
additional insights into the strengths and limitations of software estimates. This
paper presents two Web-based software prototypes developed to support white
box software project estimation.

1 Introduction

Reliable software effort estimation is critical for project selection, project
planning and project control. Over the past thirty years, various estimation
models have been developed to help managers perform estimation tasks, and this
has led to a market offering of estimation tools. Some of these tools date from
the late 1970s, and have been progressively modernized by their vendors.

For organizations interested in using such estimation tools, it should be crucial
to know about the predictive performance of the estimates such tools produce.
In this market segment, however, estimation tool builders have not provided
information on the performance of their models, either with respect to their
initial data repositories or on their performance when adapted to the evolution of
software development technologies. For users, these tools are basically black
boxes about which little is known in terms of the reliability of the estimates such
black-box tools provide as output.

The construction of an estimation model usually requires a set of completed
projects from which a statistical model is derived and which is used thereafter as
the basis for the estimation of future projects. However, in most organizations,
there is often no structured set of historical data about past projects, which
explains their inability to build their own models based on the characteristics of
those projects. Traditionally, organizations without such historical data have
had four alternatives when they wanted to improve their estimation process:

Web-based Support for White Box Software Estimation

219

1- Collect data from past projects and build estimation models using their own
historical data sets – this is particularly useful if the projects to be estimated
have a high degree of similarity with past projects. This, of course, requires
the availability of high quality information about those projects documented
in a similar and structured way.

2- Take the time required to collect project information from current projects,

and wait until completion of enough projects to build sufficiently reliable
estimation models with a reasonable sample size. Most often, however,
managers cannot afford to wait.

3- If their upcoming projects bear little similarity to their own past projects, they

may access data repositories containing projects similar to the ones they are
embarking on and derive estimation models from these. A key difficulty,
until fairly recently, has been the lack of market availability of project
repositories.

4- Purchase a commercial estimation tool from a vendor claiming that the tool

basis includes historical projects of the same type as their upcoming projects.
This is a quick solution, but often an expensive one.

While alternatives 1 and 2 are under the total control of an organization,
alternatives 3 and 4 depend on an outside party. Until fairly recently, for those
organizations without their own historical data sets for building estimation
models themselves, and who could not afford the long lead time to do so, only
alternative 4 was widely available, with the associated constraint of not knowing
either the basis of the estimation or the quality of the estimates derived from
sources not available for independent scrutiny. In this paper, we refer to these
commercial tools as black box estimation tools.

Section 2 presents the international repository now available to industry and
researchers. Section 3 presents the white-box approach made feasible by this
international repository. Section 4 presents the first Web-based prototype, and
section 5 the second Web-based prototype. Observations and next steps are
presented in section 6.

2 ISBSG International Repository

In the mid-1990s, various national software measurement associations got
together to address the limitations of alternatives 1 to 4, specifically to overcome
the problems of both the availability and the transparency of data for estimation
and benchmarking purposes and to offer the software community a more
comprehensive alternative in the form of a publicly available multi-
organizational data repository. This led to the formation of the International

 A. Abran, R. Braungarten, R. R. Dumke

220

Software Benchmarking Standards Group (ISBSG) [10] whose goal is the
development and management of a multi-organizational repository of software
project data.

The ISBSG organization collects voluntarily provided project data (Functional
Size, Work Effort, Project Elapsed Time, etc.) from the industry, concealing the
source and compiling the data into a database.

By mid-2003, this repository contained over 2000 projects. It is now available to
organizations, for a minimal fee, and any organization can use it for estimation
purposes. For instance, such a repository can also be used to assess software
estimation tools already on the market [3].

3 White box to estimation

3.1 White-box approach

The white-box approach to estimation consists of the analysis of a data set for
which all the data points are available, and the statistical models of which can be
analyzed both graphically and through the results of statistical tests. For a
white-box approach, it is necessary to have access to the full data set: access to
each of the individual data points allows both visual analysis of the data sets
and, for instance, the investigation of obvious outliers to interpret the results in
the empirical context of size intervals.

3.2 Statistical approach

For the prototypes, the linear regression technique was selected to build the
estimation models over more complex estimation techniques such as analogy-
based and neural network techniques which have not been shown to better
explain the size-effort relationship in software projects on the types of data sets
available for such studies, including multi-organizational data sets [5,6].
Furthermore, linear regression models are better known by practitioners and
simpler to understand and use.

Many software engineering data sets are heterogeneous, have wedge-shaped
distributions [1,2,3,9,10,12] and can, of course, have outliers which have an
impact on the construction of the models and on their performance. Therefore,
any sample selected needs to be analyzed for the presence of outliers, as well as
for visually recognizable point patterns which could provide an indication that a
single, simple linear representation would not be a good representation of the
data set: for instance, a set of projects within an interval of functional size might
demonstrate one behavior with respect to effort, and the same set of projects
within another size interval a different one. If such recognizable patterns are

Web-based Support for White Box Software Estimation

221

identified, then the sample should be sub-divided into two smaller samples - if
there are enough data points, of course. Both the samples with outliers and those
without them should be analyzed.

The visual analysis provides another clue. The following example is provided in
[3]: A visual analysis of Figure 1a) indicates that there are two candidate outliers
which might have an undue impact on the regression model: the data point with
almost 1,000 Function Points (FP) [4] has a corresponding level of effort which
is much smaller than that of many projects of much smaller functional size, and
a project with 3,700 FP is almost three times as large as the majority of the
projects. Two different groups can be identified: one subset of projects between
20 and 620 FP, with a good sample size of 30 observations (Figure 1b), and the
other a more sparsely populated subset of 9 projects between 621 and 3700 FP, a
much larger size interval (Figure 1c). It can then be observed visually that in the
sample of projects with functional size between 20 FP and 620 FP there is a
relationship between the independent and dependent variables: its estimation
model (Figure 1b) is Y = 6.135 x FP + 265 with an R² = 0.475. In this model,
the constant = 265 hours could represent the fixed cost of setting up the projects
within this size interval, the positive slope then corresponding to the variable
cost which is dependent on the size of the projects.

For projects larger that 620 FP in size (Figure 1c), the estimation model is Y =
10.539 x FP – 1404 with R² = 0.74, but, with only 9 data points, caution must be
exercised in interpreting the data. For the smaller range, the constant of the
regression line is positive; for this larger size interval, the constant of the
equation is negative (-1404 hours), which is, of course, counter-intuitive. This
means in particular that there should not be an extrapolation of the model
outside the range of values from which it was derived (that is, it is not valid for
projects smaller than 621 FP).

Natural y = 10,053x - 648,91

R
2
 = 0,8577

0
10000
20000
30000
40000

0 1000 2000 3000 4000

Size (FP)

E
ff

or
t (

H
ou

rs
)

1a) N = 41 (includes outliers)

 A. Abran, R. Braungarten, R. R. Dumke

222

1b) size < 620FP (n=30)

1c) size > 620FP (N=9)

Figure 1: Regression analyses - projects in NATURAL

This study [3] also highlights the fact that in this ISBSG multi-organizational
data set there is, for each sample and by programming language, a different size-
effort relationship, and the strength of this relationship differs. The directly
derived models performed as well as models built by other researchers for
smaller and older multi-organizational data sets ? 6? under similar conditions,
as well as for more recent software applications: for some programming
languages, the relationship of the models is within the range reported in the
literature for multi-organizational data sets (that is, R2 around 0.40) without any
indication of their programming languages.

3.3 Prototype approach

Without visualization, the results obtained from estimation tools can be
somewhat of a mystery to practitioners and have at times been referred to as
“black-box” estimations [3]. The “white box” estimation prototypes we have
developed greatly alleviates this problem.

The first generation of prototypes was built as a proof-of-concept for the white-
box approach to software estimation. It was based on a business model which
must take into account that, while the ISBSB data can be purchased from
ISBSG, this international organization retains the copyrights to these data and
does not permit purchasers to resell their data set, thereby protecting the
business value of their repository. This data constrains the deployment of this

Natura l [20 , 620] y = 6,1355x + 264,98

R2 = 0,475

0

2000

4000

6000

0 200 400 600 800

S i z e (F P)

Natural [621, 3500]
y = 10,539x - 1404,9

R
2
 = 0,7424

0

20000

40000

0 1000 2000 3000 4000

Taille (FP)

E
ff

or
t

(P
H

R
)

Web-based Support for White Box Software Estimation

223

stand-alone prototype, as potential acquirers are required to purchase the ISBSG
data set as well as the software itself.

A new business model was explored in our second generation of Web-based
prototypes: in this new model, it was the estimation features themselves,
provided by the white-box prototypes, which would be marketed through the
Web, rather that the data or the software. This meant that the pricing policy
would based on the number of requests for estimation, without the obligation of
paying for the full data set or for the software itself. It also meant that users
would not need to worry about software upgrades or further repository releases.

This paper reports on two prototypes developed to implement the second
generation of white box estimation software. Both prototypes have been
implemented as a Java Applet in a “Web-based” Client / Server configuration
using a database server and a Java client. Project work effort and duration are
estimated by computing a linear regression line and a prediction interval which
depend on the result of a database query with the parameters selected by the
users of the white box estimation tool.

4 First Web-based prototype

4.1 Architecture

The first Web-based prototype was designed and implemented as an application
server model with three tiers. It was programmed as a “Web-based” Java-Applet
in a Distributed System using Java (Sun Corporation) and its Remote Method
Invocation (RMI) counterpart to the Remote Procedure Calls (RPC), [Figure 2].

Figure 2: Distributed System with Java RMI [7]

Because it consists of three layers, the architecture of the application server
approach is called a “3-tier” system [7], (Figure 3).

GUI, computation,
visualization

CLIENT

SERVER

DB-SERVER

Database logic (I/O)
high bandwidth
Network

low bandwidth
Network

DBs: User (MySQL),
 ISBSG (MS Access)

 A. Abran, R. Braungarten, R. R. Dumke

224

Figure 3: 3-tier Architecture [6]

The first tier, containing the database-server only, handles queries for the data
stored on the server: the user database is used to manage the login and billing
process, while the ISBSG database is used to manage queries about project data.

Since the project data and user data were stored in different database formats
(Microsoft Access file and MySQL database), two different connection
managers had to be used: Java Database Connectivity (JDBC) and Open
Database Connectivity (ODBC). This is, of course, a handicap in terms of
moving the prototype and all its data from the Windows test and development
environment to a real, professional production server with a different runtime
environment and operating system (Linux).

The server tier (application server) is connected via a high-bandwidth network.
It is to be noted that the boundaries between the various layers are logical ones.

The application server provides only the database logic, that is, inputs and
outputs, and protects the data from direct access by the client. In more
heavyweight applications, this tier is also the home of business objects,
implementing the customer’s business rules.

Via low bandwidth network connections, the last tier, called the client-tier,
communicates with the server. It is responsible for visualization of the data
received from the subjacent layer, and handling user events via its Graphical
User Interface (GUI).

4.2 Mode of operation

Users have to log in to start the estimations. Access is only granted when there
are enough remaining credit points; such points are decreased by one unit for
every database query or computation. Once a user is logged in, he selects the
parameters of interest to him: development language, development platform and
quality rating, as well as a range of functional size. The parameters selected are
used for the database query and computations. Computation results [13] are

CLIENT

RMI Remote Reference
Layer

Transport Layer

SERVER

Remote object

Skel-eton

ISBSG
data

user
data

Stub

Web-based Support for White Box Software Estimation

225

presented in Figure 4, in both table and scatter-plot format, with Work Effort or
Duration displayed (Y-axis) depending on the number of Function Points (X-
axis).

Figure 4: Stand-alone Prototype

 A linear regression line, its equation and R² are displayed, using the least
squares method of statistics. Depending on the confidence interval selected and
the expected size of the project to be estimated, the estimated Effort (or
Duration), its prediction interval and the prediction bounds are plotted.

The user can analyze the impact of outliers by using the select/unselect option to
delete some data from the sample he is analyzing, and asking the prototype to
recompute the estimation results.

In the table at the bottom of the display screen, the lower, estimated and upper
values for the dependent variables (Project Work Effort, Elapsed Time, Delivery

 A. Abran, R. Braungarten, R. R. Dumke

226

Rate and Speed of Delivery) are given, together with the number of projects in
the sample selected and taken into account in the regression model.

5 Second Web-based prototype

5.1 Additional requirements

Of course, as a proof-of-concept, robustness had to be added to the first
prototype. Furthermore, the first prototype was built using release 7 of the
ISBSG repository. However, not only does ISBSG publish updated versions of
its repository at irregular intervals, but also modifies, for various reasons, the
data structures of the data set made available with each successive release (for
instance, new fields for added data variables).

In addition to improvements to the management of user accounts, more
sophisticated visualization features were recommended to permit the
construction of multiple estimation models by selecting ranges of data points
from the same sample, as illustrated in Figures 1a) to 1c).

5.2 Architectural Changes

To downsize the Applet from its complex RMI implementation, a “2-tier”
architecture was implemented (Figure 5).

Figure 5: 2-tier architecture [7]

2-tier systems are in widespread use, because of the quality and low cost of the
tools and middleware and because of well-integrated personal computer tools
like VBS.

However, most of the server-sided tools are more expensive and do not offer the
same potential in Rapid-Application-Development (RAD) as client-sided tools
do. More lightweight applications like this Applet can be produced very easily
and in a shorter time period using this technology.

The basis for the second Web-based prototype is formed by only two different
logical layers, whereas the first one had all its business and database logics as
well as the data itself on each host system (1-tier system).

CLIENT

SERVER

GUI, computation, visualization,
database logic (I/O)
DBs: User (MySQL),
 ISBSG (MySQL)

Web-based Support for White Box Software Estimation

227

The first tier is the server, which provides the user and the ISBSG project
databases and uses only MySQL. The second is the client tier, which provides
the GUI, the database logics, all the computations and the subsequent
visualization (Figure 6).

Figure 6: Distributed System - 2nd Prototype [8]

5.3 Functional changes

The first functional change improved the “Look & Feel” of the Applet. The Java
Foundation SWING classes were used: they represent a kind of framework [8]
and provide easy black-box reuse of predefined GUI-components. See Figure 7.

Figure 7: GUI-driven user administration

CLIENT

business
object

SERVER

ISBSG
data

user
data

 A. Abran, R. Braungarten, R. R. Dumke

228

Furthermore, the ISBSG database situated in the Microsoft Access file was
moved over to the MySQL database, as was the newest version of the ISBSG
data (2003, release 8).

The estimation features were enhanced to provide users with the facility to build
multiple estimation models from the same sample, as described in [3]. For
instance, in this second prototype, a user, after a graphical analysis of the sample
he selected, can divide the X-axis into ranges of functional sizes (i.e. intervals)
to obtain distinct regression models for each size range. Of course, the linear
regression curve, associated equation and R² are provided for every scatter plot
(Figure 8). Finally, to improve the management of user accounts, a Java GUI-
driven user database handler was implemented to delete a user, add a user or
alter the user settings from the GUI instead of direct typewriting at a terminal
(Figure 9).

Figure 8: Estimation features – 2nd Web-based prototype

6 Limitations and next steps

This white box, Web-based estimation prototype is being used for educational
purposes at the ÉTS at both the Bachelor’s and Master’s degree level to teach

Web-based Support for White Box Software Estimation

229

students about data analysis and estimation. It is also being used to promote the
ISBSG repository to industry and to request contributions of projects from them.
Research work is ongoing to improve the features of this prototype, such as that
outlined below.

The architectural change from 3-tier to 2-tier has made the tool less complex and
easier to maintain, but has rendered it vulnerable to unauthorized data access
[6]:

Since the database logic is part of the client-side application, a resourceful user
could, after some Reverse Engineering, decompile in plain text the files
containing the database access data. A tentative solution would be to sniff the
network traffic for the access data that is being submitted by the JDBC driver in
plain text. Such a security threat was not possible with the three-tier architecture,
as the third logical layer provided security – through to local access - for a
database query carried out and provided by the RMI server application.

Figure 9: GUI-driven user administration

Additional visualization features are being investigated to facilitate both the
identification of outliers and the semi-automated selection of sub-samples. Such
improvements and enhancements could provide us with additional insights into
the estimation issues and contribute to improving software estimation training.

 A. Abran, R. Braungarten, R. R. Dumke

230

Finally, a candidate enhancement could be to re-instate a 3-tier architecture
using a different technology [7] like PHP, JSP or Servlets, rather than the load-
?causing Java RMI, which has revealed security weaknesses.

Acknowledgments

The development of both Web-based prototypes was carried out in cooperation
with ÉTS Montréal (Canada), Otto-von-Guericke University Magdeburg
(Germany) and ISBSG.
The authors would like to thank Christian Kolbe for the development of the first
Web-based prototype, and Christian Kolbe, René Köppel and Martin Kunz for
their assistance with the second prototype.

References

1. A. Abran and P.N. Robillard, “Function Points Analysis: An Empirical

Study of its Measurement Processes,” IEEE Transactions on Software
Engineering, Vol. 22, no 12, 1996, pp. 895-909.

2. A. Abran, I. Silva and L. Primera, Field studies using functional size

measurement in building estimation models for software maintenance,
Journal of Software Maintenance: Research and Practice, Vol. 14, pp. 31-
64, (2002).

3. A. Abran, I. Ndiaye and P.Bourque, "Contribution of Software Size in

Effort Estimation", submitted for publication, Journal of Software Quality
(2003).

4. A. J. Albrecht and J. E. Gaffney Jr., Software Function, Source Lines of

Code and Development Effort Prediction: A Software Science Validation,
IEEE Tr. on Soft. Eng., SE-9, 639-647 (1983).

5. L.C. Briand, T. Langley and I. Wieczorek., 2000, “A Replicated

Assessment of Common Software Cost Estimation Techniques,”
International Conference on Software Engineering - ICSE, Limerick, 2000,
pp. 377-386.

6. J.J. Dolado, “On the Problem of the Software Cost Function,” Information

and Software Technology, Elsevier Ed., Vol. 43, No. 1, January 2001, pp
61-72.

Web-based Support for White Box Software Estimation

231

7 R. Dumke, Lecture scripts on “Web Engineering,” http://ivs.cs.uni-
magdeburg.de/~dumke/HSkript/WebPlan.html, OvG – University
Magdeburg / Germany (1994–2003).

8. R. Dumke, Lecture scripts on “Distributed Systems,” http://ivs.cs.uni-

magdeburg.de/~dumke/STV/STVplan.html, OvG – University Magdeburg
/ Germany (1994–2003)

9 C.F. Kemerer, “An Empirical Validation of Software Cost Estimation

Models,” Communications of the ACM, Vol. 30, no 5, May 1987.

10. ISBSG, "Estimating, Benchmarking and Research Suite (Release 8)";

International Software Benchmarking Standards Group, Warrandyte,
Victoria (Australia), 2003 http://www.isbsg.org.au/

11. G. Paul, Lecture on “Development of computer-supported engineering

systems,” http://wwwiti.cs.uni-magdeburg.de/iti_ti/ETIS-
Mat/Kapitelneugesamt6_6_01.pdf, OvG – University Magdeburg /
Germany (2000-2003).

12 B.A Kitchenham and N.R. Taylor, “Software Cost Models,” ICL Technical

Journal, Vol. 4, no 1, May 1984, pp. 73-102. ¨

13 N. A. Weiss and M. J. Hasset, Introductory Statistics (3rd Edition),

Addison-Wesley Publishing, 600-651 (1991).

