
International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

DECISIONS AND JUSTIFICATIONS IN THE CONTEXT

OF INDUSTRIAL-LEVEL SOFTWARE ENGINEERING

FRANÇIS DION

ESI Software inc.
E-mail: FDion@esisoft.com

Phone: (514) 745-3311 ext. 283
Fax: (514) 745-3312

ALAIN ABRAN
Software Engineering Management Research Laboratory

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada

E-mail: abran.alain@uqam.ca
Phone: +1 (514) 987-3000 (8900)

Fax: +1 (514) 987-8477

ABSTRACT

Decision-making is a difficult task per se. This
inherent difficulty is exacerbated by the
complexity and fast pace of the changes that
characterize software engineering. Critical
decisions impacting the success of a project or
even an entire organization must be made
quickly based on information that is either limited
to the point of being insufficient or so abundant
that it is virtually unmanageable. Either way, the
information is more often than not of
questionable quality.

This paper proposes an evolutionary framework
to support efficient and justifiable decision-
making throughout the implementation phase.
This approach covers the necessity to make
decisions quickly without complete, reliable
information, as well as integrate new data as it
becomes available.

INTRODUCTION

This integration paper proposes an evolutionary
framework to effectively support decision-making
for software management. The proposed
approach takes into consideration the quality of
information, a typology of information sources, a
structured hierarchy for the organization of
available data, and an iterative design and
validation process for data acquisition and use.
An application of this approach is presented in
an annex at the end of this document.

DECISION-MAKING IN THE CONTEXT OF
SOFTWARE ENGINEERING

Making decisions is no easy task. The
consequences can sometimes be enormous and
are often poorly defined, misunderstood or even

unknown. Nothing guarantees that past
experiences will be of any use in the future, or
that the latest fad is actually effective.

Decision-making in the field of software
engineering is probably even more challenging.
Contrary to other disciplines such as engineering
or medicine, this industry has yet to develop or
accept reliable validation and control practices.
Novelty is perceived as an intrinsic indicator of
value by suppliers (naturally), but also by
practitioners and consumers. Consequently,
new tools, techniques and methodologies are
constantly being introduced. These ceaseless
upheavals hamper all attempts to consolidate
and tend to discredit lessons learned from past
experience because it is generally believed that
they would not apply to the “new” context.

Managers of software development initiatives
must nonetheless routinely make crucial
decisions in a context where there are many
unknowns regarding the expected
consequences. A few examples are given
below:

• Would an object-oriented methodology be
appropriate?

• Which language should be used?

• Which modelization tool?

• Add more resources, streamline the list of
features or postpone delivery?

• Would increased code inspection have a
positive or negative impact on the schedule?

• Would correcting a particular defect create
more problems than it would solve?

3

INFORMATION – THE CORNERSTONE OF
EVERY DECISION

The quality of any decision depends on the
available information. However, this information
is more often composed of individual opinions
than verified and verifiable facts. Taking into
consideration the reliability of the information
being used is an essential part of decision-
making.

Zvegintzov (1998) proposed a generalized
classification of information sources. In this
classification, information sources are divided
into six categories ranging from most credible
and reliable (“A” rating) to rumors and folklore
(“F” rating).

A. The systematic collection of real data.
Systematic measures with precise
procedures that are applied for a period of
time long enough to allow a sufficient
number of observations.

B. Questionnaire studies. They depend on
individual opinions. Furthermore, the
representativeness of the respondents must
be assessed. Such studies mostly reflect
recent events (2 to 12 months).

C. Isolated data points from observations.

D. Isolated data points from advocacy.

E. Statement by information providers, such as
Gartner, Meta, Giga, CaperJones, H.Rubins.
These groups rarely disclose their sources or
methodologies.

F. Folklore or commonly-held ideas.

Few decisions in software engineering are based
on “A”-rated sources. This is mostly due to the
fact that this type of information is often simply
unavailable. The systematic gathering of factual
data involves significant costs and delays that
not all organizations are able to or are prepared
to incur. The fact that this information is
available does not necessarily guarantee that it
will be used or even considered, however.
Responsible parties are often unaware of how to
use it or believe that their project or situation is
too unique for the information to apply.

METRICS AND MEASURES

Numerous “metrics” have been proposed to
evaluate various aspects of software and the
software engineering process. Specific to the

field of software engineering, this ‘metrics’
concept is neither clearly defined nor associated
with a universally-recognized definition nor
validation process (Jacquet & Abran, 1997).
Choosing a particular measure or measurement
model and interpreting its results can be rather
problematic in this context. The more precise
terms of measures, measurement methods and
measurement models will therefore be preferred
(Jacquet & Abran, 1997).

Gray and McDonnell (1997) proposed a
measurement analysis framework that takes
many related characteristics into consideration.
The resulting model, known as the GQM++,
contains up to 11 levels and provides the
necessary support for a highly-detailed analysis
of the measurement process. The authors’
primary objective was to facilitate the timely
detection of the cost effectiveness or
applicability concerns encountered by many
measurement programs.

The main characteristics of this model are given
below.

• Goals. It is crucial to clearly identify the
goal sought by a measurement program.
This characteristic can be further detailed
through sub-goals.

• Domains. It is wishful thinking to believe
that a measure defined for a given domain
could be applied to another domain without
at least some level of adaptation. This
characteristic can be further detailed in sub-
domains in order to refine the context.

• Questions. Questions make it possible to
identify exactly which questions the
measurement programs should address.
This characteristic can be further detailed in
sub-questions.

• Characteristic to be measured.
Identification of the concept to be measured
(size, complexity, risk, etc.).

• Measurement. Size, for example, can be
measured in terms of the number of lines of
code or the number of objects — two vastly
different methods for measuring the same
concept.

• Sources. Where did the data used for the
measurement come from?

• Analysis techniques. This characteristic
refers to the methods (statistical or other)
used to analyze the measurements results.

4

• Implementation. How each method will be
used and applied, as well as what the
expected benefits are.

ButGoal Goal

DomainDomain Domaine DomainDomain DomainDomainDomain Domain

C. to m.C. to m. C. to m. C. to m.C. to m. C. to m.C. to m.C. to m. C. to m.

QuestionQuestion Question QuestionQuestion QuestionQuestionQuestion Question

Tech.Tech. Tech. Tech.Tech. Tech.Tech.Tech. Tech.

MeasureMeasure Measure MeasureMeasure MeasureMeasureMeasure Measure

Impl.Impl. Impl. Impl..Impl. Impl..Impl.Impl. Impl.

SourceSource Source SourceSource SourceSourceSource Source

Goal

The GQM++ model proposed by Gray and MacDonnell (Adapted)

The vertical and horizontal views provided by
this model make it highly interesting and
pertinent.

It can be read vertically to assess the
completeness of the process. If every step of
the ladder has been completed for a specific
measure, its application can be considered
thorough.

Horizontally, this model puts into perspective
what has been accomplished... and what has
not! A specific measure can only present a
narrow aspect of any given situation. Typically-
speaking, only a tiny fraction of the model’s
”branches” will be covered by a measurement
program. The visualization of residual space
should serve as a warning call and help convince
involved parties that such partial results cannot

be used as a basis for an immediate
generalization.

This model can also facilitate cross-checking
information and clarify the reuse of measures,
analysis techniques and more.

A PROCESS FOR THE DESIGN, VALIDATION
AND APPLICATION OF MEASURES

The GQM++ is a structure or framework for
organizing and documenting measurement
programs. Jacquet and Abran, cognizant that
software measurements are regularly based on
an informal and unverified methodology, present
an integrated process for the design, validation
and application of measures.

5

Application of the
measurement method

assignment rules

Measurement
method analysis

Design of the
measurment

method

Use of the
measurement

results

H

Begin process

End process

H

The measurement process: A high-level model adapted from Jacquet and Abran

Even though this process was developed
independently, a parallel can be established
between it and the structure proposed by Gray
and MacDonnell in the GQM++.

• Design of the method of measurement.
This step covers the levels of the questions
and the characteristics to be measured, as
well as the measurements themselves.

• Application of the assignment rules for
the method of measurement. This covers
the levels of the sources and the application
of the measure.

• Analysis of the results. Maps to the
analysis techniques.

• Application of the measurement results.
The implementation level.

THE ITERATIVE PROCESS AND DECISION
SUPPORT

Jacquet and Abran’s primary objective is to
formalize the process of designing, validating
and applying measurement methods; whereas
Gray and MacDonnell strive to organize the
relevant pieces of information. These
complementary approaches are in fact attempts
to bring software development to the level of a
full-fledged engineering discipline where
performance is quantifiable and results
predictable. Although the possible benefits of
these techniques are indisputable, their practical
implementation could be problematic.
Establishing a measurement program is a project

in itself, with costs and implementation delays
that can be substantial.

If a decision based on incomplete or
unconfirmed information can have serious
consequences, the same can be said about
indecision. Not applying corrective action to an
already-problematic situation simply because all
the relevant information is not available or would
be difficult to obtain can be as detrimental if not
worse, especially if product quality or team
productivity is affected.

The adaptations to the context of decision-
making given below appear necessary:

• Refine how the GQM++ model is to be used
in an iterative context.

• Extend Jacquet and Abran’s process to
explicitly support composite measures.

• Extend the scope of these tools to cover
other sources of information, such as expert
opinions, in addition to measurement
methods.

Sound decision-making requires having access
as quickly as possible to a minimal amount of
information – even when incomplete – as well as
being able to integrate new data when it
becomes available. As suggested by Gray and
MacDonnell, this viewpoint would support
regarding the GQM++ model as a dynamic
sequence of approximations, each one built
upon what was previously learned, rather than a
static, definitive representation.

The process proposed by Jacquet and Abran can
be embedded in another process where iterative
and recursive aspects are explicitly integrated.

6

The evaluation of an attribute or situation often
requires applying lower-level measurements for
which the acquisition and integration process
also needs to be precisely and unambiguously
defined. The underlying hypothesis behind this
“meta-process” is that the specifications of a
higher-level measure should determine the
choice of intermediary or atomic-level measures.
Furthermore, the definition and application of
”secondary” measures can and should trigger a
re-evaluation of the initial measures. The result
is a feed-back mechanism that could require

several iterations before the network of
measures stabilizes and final conclusions can be
made.

An interesting aspect of this expanded process is
that it promotes a gradual approach to the
measurements and decision-making of complex
phenomena. As such, a partial conclusion can
realistically be drawn from partial results. This
first observation can later be refined as more
complete or reliable results become available.

Information Meta-Process

Note that a second entry point has been added
to the model to account for any condition
(unforeseen difficulties, resource reallocation, a
new offensive by the competition, etc.) that could
lead to a change in the context. The link
between the first two steps now has two
branches: direct application of the measurement
method, and recursive design of secondary
measurement methods. The process is
considered completed when the elements
required to make the decision have been fully
acquired, and not before. This decision is
revised at the end of each iteration to take into
account that interim results might be sufficiently
convincing (one way or another) to warrant an
immediate decision.

Jacquet and Abran’s original process and Gray
and MacDonnell’s GQM++ model focus

exclusively on measurements. In a decision-
making context, however, measurements are
only one of many available information sources.
Because any one of these sources can have an
impact on the usefulness and even the
interpretation of the others, it only seems logical
to integrate them in a unified model and process.

DEMONSTRATION OF THE PROCESS

The following example is based on actual
events, but has been modified for the purpose of
this demonstration.

The Scenario

A software engineering specialist is asked to find
a solution to the poor quality plaguing the
deliverables of a large corporation’s IS
Department. The problem has already been

Performing the activity Activity analysis
Design/definition
of the information
gathering activity

Use of the activity's
results

[This activity relies
on lower-level activities]

Integration of the results and
re-evaluation of the information gathering
activity in relation with the objectives

HBegin process H

The context changed

The results are deemed satisfactory
with respect the objectives and as
seen by all those involved.

H

7

linked to the number of bugs still present in the
modules when released by the Development
Team to Quality Assurance.

While attending a conference, our engineer
receives the same piece of advice from two
different experts: set up an environment to
automate unit testing. Although the idea seems
reasonable, its development and application
would require significant investment and
represent a large-scale change in the
department’s operations.

At this stage of the analysis, our engineer
completes the following GQM++ grid:

Goal: Improve the quality of the deliverables.

Sub-goal: Reduce the number of bugs detected
by QA in order to lower the number of cycles
before a system goes to production from 5 to 2.

Domain: Software development in the IS
Department of a large corporation.

Sub-domain: A strategic software development
project employing 30 engineers for a period of 3
years.

Questions Sub-Questions Characteristics
to be Measured

Measures Sources and
Rating

Analysis Application

Would
automating
unit testing
help the
Department
achieve its
objectives?

How much
would
automating
unit testing
cost?

Cost of
developing the
unit testing
automation
process and
tools.

This
measurement
corresponds
to the “fixed
costs” of the
project. Are
they justified?

Cost of
original
deployment
and
maintenance.

Experts’
opinion: Not
much when
compared to
all the
benefits.

Martin Fowler
(C)
Bruce Eckel
(C)

This
measurement
corresponds
to the
“variable
costs” of the
project.
Crucial to the
overall
profitability.

What would
be the impact
on the quality
of the
deliverables?

Quality
enhancement
ratio.

Experts’
opinion: No
single action
would have a
greater
positive
impact.

Martin Fowler
(C)
Bruce Eckel
(C)

Expected
“benefits.”

Will the team
members
accept this
new way of
operating?

Never
underestimate
the human
factor!

Our engineer classified these sources as type
”C” (isolated observations by independent
observers) in part because he realizes that they
personally have nothing to gain by advocating
this technique. He is satisfied with the
information he has collected thus far and decides
to proceed with the feasibility analysis.

The next step is to assess as accurately as
possible the real costs of developing this
solution. The evaluation is carried out by
inspecting similar environments found on the

Web and analyzing historical data gathered
locally from projects of comparable size and
complexity. The results obtained are compatible
with the cost parameters allocated for R&D.

After developing a prototype for the unit testing
automation framework, the concept must be
validated through a pilot project where
deployment costs and the actual quality
enhancement ratio may be estimated. The
updated version of the analysis grid is presented
below.

8

Goal: Improve the quality of the deliverables.

Sub-goal: Reduce the number of bugs detected
by QA in order to lower the number of cycles
before a system goes to production from 5 to 2.

Domain: Software development in the IS
Department of a large corporation.

Sub-domain: A strategic software development
project employing 30 engineers for a period of 3
years.

Questions Sub-Questions Characteristics
to be Measured

Measures Sources and
Rating

Analysis Application

Would
automating unit
testing help the
Department
achieve its
objectives?

How much would
automating unit
testing cost?

Cost of
developing the
unit testing
automation
process and
tools.

20 days Paired
comparison (C)
Historical data
(A)

The results are
acceptable.

Proceed with
development.

Cost of original
deployment and
maintenance.

Experts’ opinion:
Not much when
compared to all
the benefits.

Martin Fowler (C)
Bruce Eckel (C)

This
measurement
corresponds to
the “variable
costs” of the
project. Crucial
to the overall
profitability.

Ratio of
automation time
to initial
development
time: 20%

Pilot (A- and B) The real cost
should decrease
as team
members
familiarize
themselves with
the unit testing
automation
framework.

The observed
cost falls within
the additional
effort that has
been budgeted
for unit testing.

What would be
the impact on the
quality of the
deliverables?

Quality enhance-
ment ratio.

Experts’ opinion:
No single action
would have a
greater positive
impact.

Martin Fowler (C)
Bruce Eckel (C)

Expected
“benefits.”

Ratio of bugs
detected by the
automation
process to the
number of known
bugs: 15%

Pilot (A-) Manual unit
testing had
already been
performed on this
module.

Should be
compared with
the result of the
reverse situation
(automated
testing before
manual testing.)

Ratio of bugs
that could not
have been
discovered by
any other method
of testing to the
number of known
bugs: 5%

Pilot project (A-) Mostly non-
functional bugs.

Suggests a
positive impact
on long-term
maintenance.

Will the team
members accept
this new way of
operating?

Never
underestimate
the human
factor!

The ”A-” rating was given to all measurements
from the pilot project because, although they
were obtained through a formal numerical
process, the data did not come from a large
sampling of modules and did not cover a

sufficient length of time to draw definitive
conclusions.

Once again satisfied by the results, our engineer
decides to present his findings to the
Development Team for immediate

9

implementation. Despite a generally favorable
response, however, it was decided to extend the
experimentation phase. Some team members
remarked that the measurement of the cost of
implementation did not cover the second part of
the question (the cost of maintenance). Others,
although not contesting our engineer’s findings,
wonder if alternative quality enhancement
techniques such as formal inspections could
offer a better cost/benefits ratio.

Consequently, another iteration of the evaluation
process was started. New questions were added
to the grid and additional characteristics were
considered in order to better address the
questions and comments raised.

Assessment of the Scenario

This example gave us an outline of the proposed
process for the continuous acquisition and
validation of the decision-support data. We saw
how new information was incorporated in the
grid, as well as how this representation allowed
the various people involved to understand and
intervene in the process. More importantly,
however, we saw how the measurements
themselves were actually merged with other
sources of information such as experts’ opinions.

Conclusion

We began by presenting an assessment of the
decision-making process in the context of
software development. Many decisions made in
this context are based more on intuition and
hunches than on formal measurement. The high
importance of information quality and the
reliability of sources as defined by Nicolas
Zvegintzov was then presented, followed by a
discussion on metrics and their not-so-obvious
applicability. The GQM++, a model proposed by
Gray and MacDonnell, is an attempt to give a
solid foundation to measurement programs.
Jacquet and Abran proposed a process for the
design, validation and application of measures.
A parallel was established between this process
and the GQM++ model. An extension of these
approaches to integrate them in the larger
context of decision-making was then proposed.
This extension places emphasis on iterative
aspects, and covers other forms and sources of
information in addition to measurements. A
concrete example was then presented to
illustrate how this process can be practically
applied.

This proposition is interesting from two different
angles. On one hand, it makes it possible to
combine external information sources, internal

measurements and historical data in a single
model, and then make comparisons between
them. On the other hand, its iterative and
progressive nature allows it to efficiently support
decision-making even in situations that are
urgent or complicated by a number of
uncertainties. Thus, the tight schedules and
numerous unknowns that still plague this industry
should no longer be regarded as obstacles to
rational and accurate decision-making.

ACKNOWLEDGMENTS

We wish to thank the Bell Canada and the
Natural Sciences and Engineering Research
Council of Canada for research funding. The
opinions expressed in this paper are solely those
of the authors.

REFERENCES

[1] Jacquet, J.P. & Abran, A., “From Software
Metrics to Software Measurement Methods: A
Process Model”, Third International
Symposium and Forum on Software
Engineering Standards, ISESS’97, Walnut
Creek (CA), June 2-6, 1997.

[2] Zvegintzov, Nicholas, “Frequently Begged
Questions and How to Answer Them”, IEEE
Software, Vol. 15, no 2, March/April 1998,
p. 93-96.

[3] Gray, A. & MacDonnell, S.G., “GQM++ A Full
Life Cycle Framework for the Development
and Implementation of Software Metric
Programs”, Australian Software Measurement
Conference, Canberra, November 1997.

