The Emergence of New Knowledge Engineering Disciplines

Alain Abran

Ateneo Conference

University of Zaragoza - October 24, 2007

New Engineering Disciplines

- Logistics Engineering
- Risk Engineering
- Neural Engineering
- Delivery Engineering
- Safety or Security Engineering
- Bioengineering
- Biomedical Engineering
- Assistive (Life support) Engineering
- Synthetic biology Engineering,....

New Engineering Disciplines

New Knowledge Engineering disciplines:

- Software Engineering
- Data Engineering
- Knowledge Engineering
- Web Engineering
- Systems Engineering
- Value Engineering
- Information Technology Engineering

Presentation Objectives

- Understand how a civil society develops & supports an engineering discipline
- Understand the core of an engineering discipline: its body of knowledge
- Understand how to develop quickly a consensus on an engineering body of knowledge
- Identifies opportunities for improving/consolidating new Knowledge Engineering disciplines

List of topics

- 1. Engineering products and services: What do you expect?
- 2. The framework of an engineering discipline in a society
- 3. A body of knowledge: From anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering: Fundamental Principles?
- 5. Conclusions?

List of topics

- Engineering products and services: What do you expect?
- 2. The framework of an engineering discipline in a society
- 3. A body of knowledge: From anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering: Fundamental Principles?
- 5. Conclusions

- Bridges
- O Airplanes
- Airports
- Trains
- Electricity delivery
- Medical devices

What happens when it does not work as engineering devices?

- 1. Bridges
- 2. Airplanes
- 3. Airports
- 4. Trains
- 5. Electricity delivery
- 6. Medical devices

What do you expect from an engineer?

• ??

1- Engineering Products and Services: What does society expect from an Engineer?

Bridge built in 1971: collapsed in 2006!

- 2007 Government Inquiry Outcomes:
 - Lack of details in engineering plans on multiple types of steel
 - But according to knowledge & standards known in 1971
 - Faulty implementation in 1971
 - Faults assigned to:
 - » Contractor-builder firm & executives
 - » Steel supplier & executives
 - » Consulting Engineering firm & executives
 - » Engineer in charge of supervision

1- Engineering Products and Services: What does society expect from an Engineer?

• Government enquiry (Cont'd 2):

- Poor quality of cement used
 - No blame assigned due to lack of documentation

Other causes:

- Vulnerability to some types of 'cisaillement'
 - » Recommendation to improve standards
- Lack of impermeability in 1992 led to inspection & repairs
 - » Some intrusive tests led to further weaknesses
 - » Engineer faulted for poor diagnostic and poor management of the 1992 repairs

1- Engineering Products and Services: What does society expect from an Engineer?

• Government enquiry (Cont'd 3):

- > 2004 Inspection:
 - Inspector in charge of regular inspections requested further technical help
 - Expert engineer called in:
 - » did not carry other specialized analyses
 - » But had not access to 1992 study report
 - Engineer faulted
 - Goverment faulted for lack of adequate oversights:
 - » in documentation management, incomplete plans, incomplete quality assurance plans, ambiguity in accountability responsibilities between individuals and administrative units

Lessons learned:

- Professional engineer:
 - Professional rigor
 - Expertise and discipline in execution
 - Curiosity in investigating causes of damages found in inspections should be overriding
- Engineering firms:
 - Accountability of engineering firms on inspection and decision making on follow-up
 - Necessity to adapt inspection systems to context and types of products and services

What do you expect from an Engineer and of an Engineering firm?

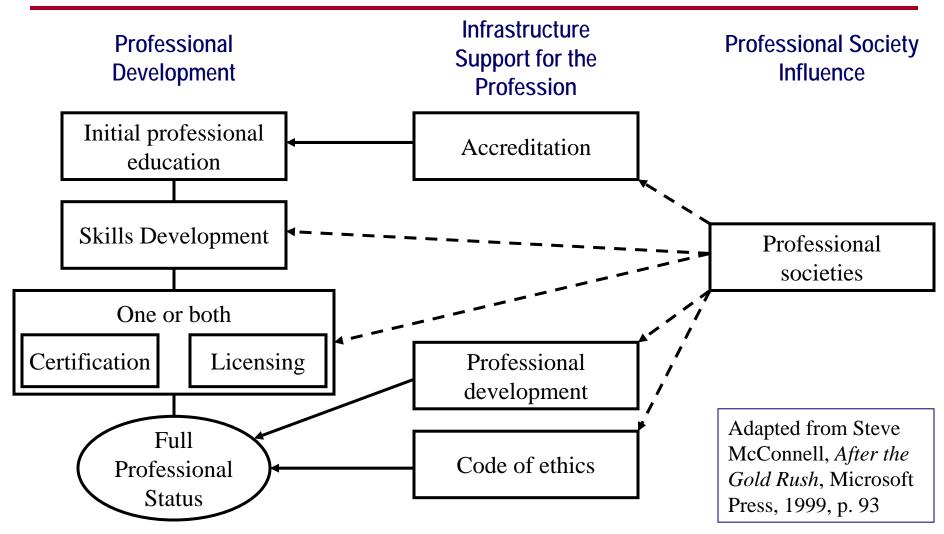
- Technical & Legal accountability of:
 - Engineering plans
 - Execution of plans & use of adequate resources
 - Quality assurance of execution
 - Quality assurance of maintenance & inspections

List of topics

- 1. Engineering products and services: what do you expect?
- 2. The framework of an engineering discipline in a society
- 3. A new body of knowledge: from anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering: Fundamental Principles?
- 5. Conclusions?

Recognized Profession?

- P. Starr, The Social Transformation of American Medicine, BasicBooks, 1982:
 - Knowledge and competence validated by the community of peers
 - Consensually validated knowledge rests on rational, scientific grounds
 - Judgment and advice oriented toward a set of substantive values


Model of the Maturity of a Profession

- Ford and Gibbs:
 - Education
 - Accreditation
 - Skills development
 - Licensing/certification
 - Professional development
 - Code of ethics
 - Professional society or societies

G. Ford and N. E. Gibbs, *A Mature Profession of Software Engineering*,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-TR-004, January 1996.

Professional Development

List of topics

- 1. Engineering products and services: what do you expect?
- 2. The framework of an engineering discipline in a society
- A body of knowledge: from anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering: Fundamental Principles?
- 5. Conclusions

3- A new body of knowledge?

Is Software Engineering an Engineering **DISCIPLINE**?

3- A new body of knowledge: from anarchy ...

- The identification of a need from weaknesses
 - The new term emerges early: 1968
- A plethora of initial proposals...
 - and claims
 - Characterized by individual proposals
- Local views in the late 90's:
 - multiple schools of thoughts

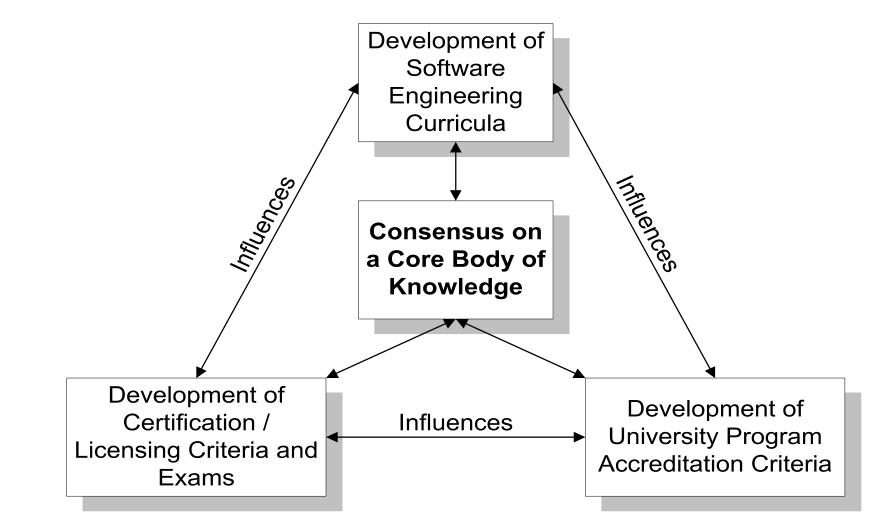
3- A new body of knowledge: from anarchy ...

- **Researchers** investigate new topics:
 - new knowledge but based on very small scale experiments (when there is some..!
- Industry leaders also develop world class solutions & knowledge:
 - ✤ Large scale
 - System wide
 - Support services
 - Relatively high quality

...but far from perfect and at high risks and costs

3- A new body of knowledge: from anarchy

Industry leaders - but:


- Develops expertise internally
- Develops internal system knowledge:
 - Procedural know-how & technologies
- Take years to train staff
- Keeps specialized knowledge as trade secrets for competitive edge

3- A new body of knowledge: from anarchy

And:

- How do you train & develop young people skills and knowledge in a regular engineering program in a university setting:
 - Without access to trade secrets?
 - Without requiring years of practice after graduation?

A Core Body of Knowledge & Relationships in an Engineering Discipline

Window of Opportunity?

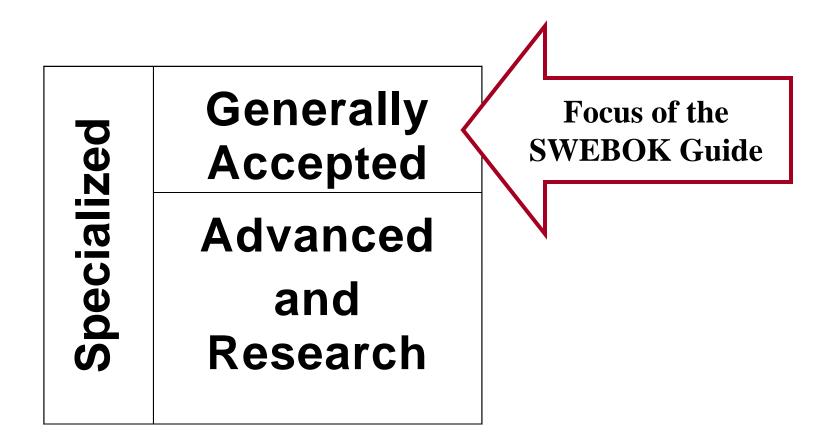
⊙ Texas Board of Professional Engineers & IEEE

- Others:
 - ACM/IEEE-CS Code of Ethics
 - Degrees in Software Engineering
 - Computer Science Curriculum 2001
 - Rochester Institute of Technology (and others) offering undergraduate degrees
 - CSAB & ABET are cooperating on accreditation
 - Possible software liability issues
 - Increased interest in the establishment of a profession (After the Gold Rush was #752 on Amazon.com)
 - Continuing focus on organizational engineering capability (ISO 9000, CMM)

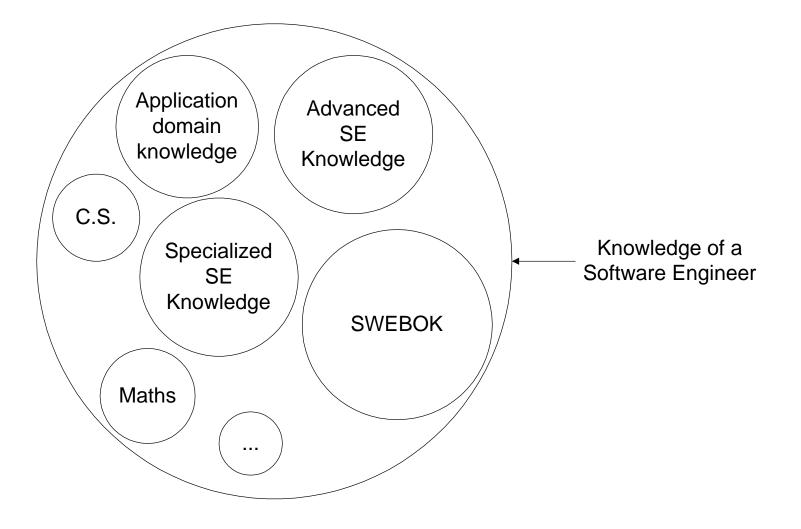
SWEBOK Project Objectives

- Promote a consistent view of software engineering worldwide
- Clarify the place of, and set the boundary of, software engineering with respect to other disciplines
- Characterize the contents of the Software Engineering Body of Knowledge
- Provide a topical access to the Software Engineering Body of Knowledge
- Provide a foundation for curriculum development and individual certification and licensing material

SWEBOK Intended Audiences


- Public and private organizations
- Practicing software engineers
- Makers of public policy
- Professional societies
- Software engineering students
- Educators and trainers

What is Software Engineering?


• IEEE Std 610.12:

- (1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software.
- (2) The study of approaches as in (1).

Categories of Knowledge in the SWEBOK

Software Engineer's Knowledge

Corporate Support by:

Raytheon

National Research Council Canada Conseil national de recherches Canada

Two Underlying Principles of the Project

- Transparency: the development process is itself published and fully documented
- Consensus-building: the development process is designed to build, over time, consensus in industry, among professional societies and standards-setting bodies and in academia

Project Team

- Editorial team
- Industrial Advisory Board
- Knowledge Area Specialists
- Reviewers

Editorial Team

Alain Abran

James W. Moore

École de technologie *E*. supérieure *j* (Université du Québec)

Executive Editors The MITRE Corporation

Pierre Bourque

École de technologie supérieure - Université du Québec Guide Editors

Robert Dupuis

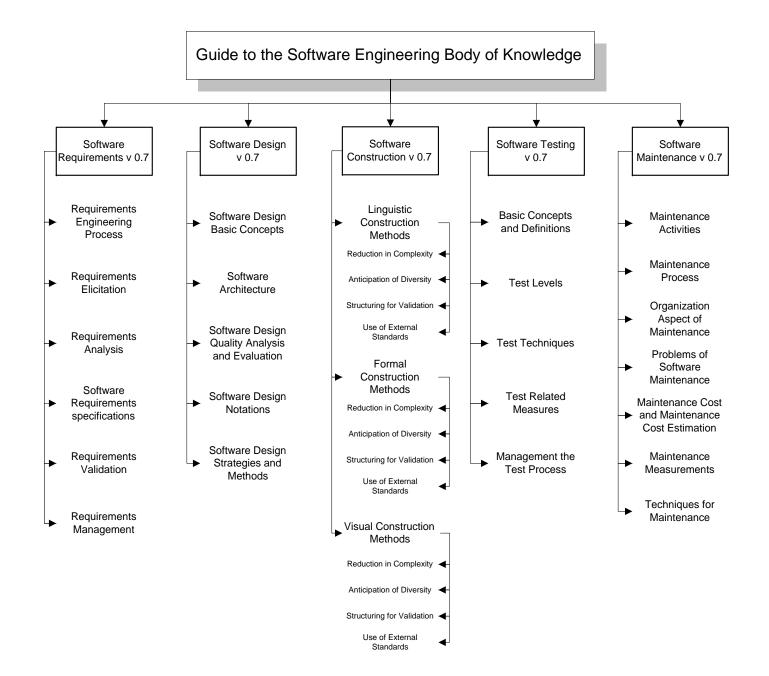
Université du Québec à Montréal

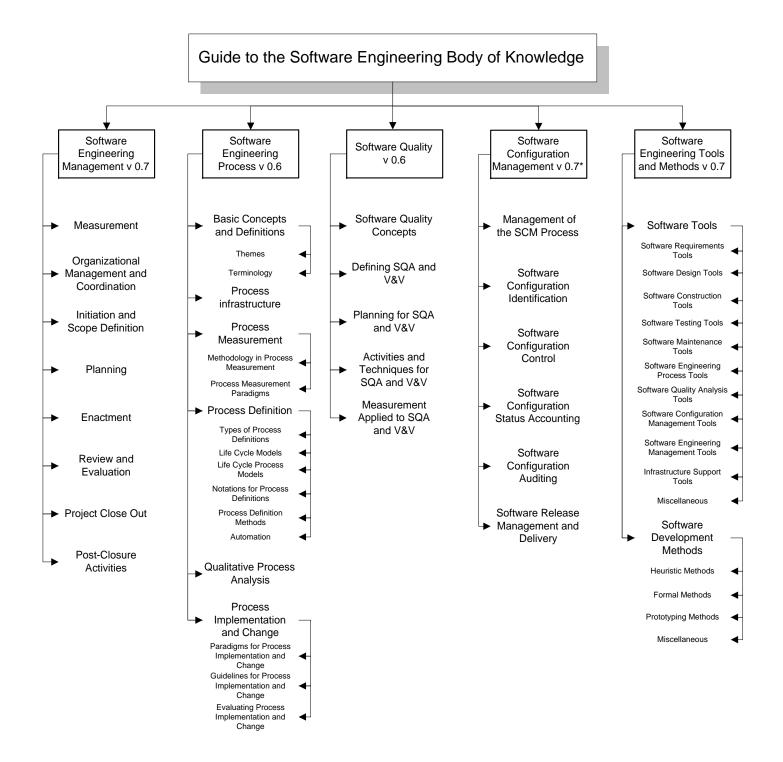
A Three-Phase Approach for Developing the Guide Straw Man Version **Stone Man Version** Iron Man Version (Sub-phase 1) **Iron Man Version** (Sub-phase 2) 1998 1999 2000 2001 2002 2003

Review Process

- Transparency and consensus-building
 - All intermediate versions of documents are published and archived on www.swebok.org
 - All comments are made public as well as the identity of the reviewers
 - Detailed comment disposition reports are produced for Review Cycle 2 and 3
 - Roughly 5000 comments from 200 reviewers in 25 countries

Deliverables


- Consensus on a list of Knowledge Areas
- Consensus on a list of topics and relevant reference materials for each Knowledge Area
- Consensus on a list of Related Disciplines
- Available free on the web


Baseline List of Knowledge Areas

- Requirements
- Design
- Construction
- Testing
- Maintenance
- Configuration Management
- Quality
- Engineering Tools & Methods
- Engineering Process
- Engineering Management

Related Disciplines

- Computer Science (CC2001)
- Mathematics (CC2001)
- Project Management (PMBOK)
- Computer Engineering
- Cognitive Sciences and Human Factors
- Systems Engineering
- Management and Management Science

SWEBOK Body of Knowledge

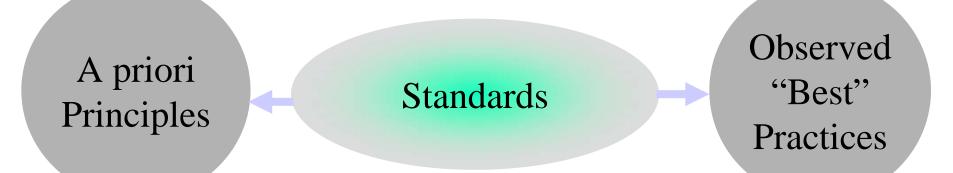
- How long does it take to develop a consensus to be recognized as an engineering discipline?
 - + 1,000 years: civil engineering
 - + 40 years: aeronautical engineering
- Software Engineering?

List of topics

- 1. Engineering products and services: what do you expect?
- 2. The framework of an engineering discipline in a society
- 3. A new body of knowledge: from anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering : Fundamental Principles?
- 5. Conclusions

4- Software Engineering: Fundamental Principles?

Is Software Engineering an Engineering Discipline?

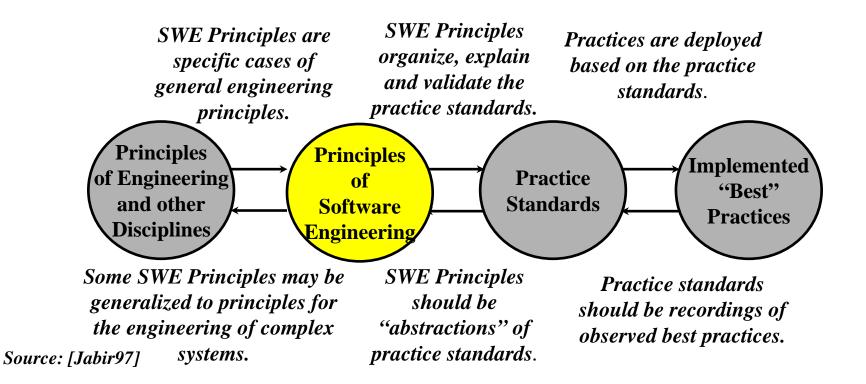

Fundamental Principles of Software Engineering

Work to date & in progress:

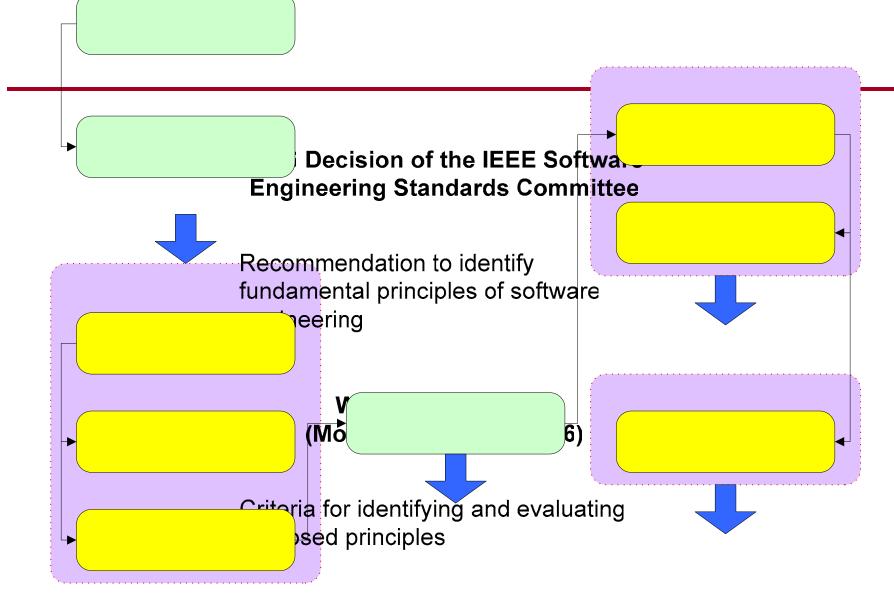
- Relationships: Standards & Principles
- Delphi Studies
- Principles Criteria
- Engineering criteria

Standards Strive to Balance Principles and Practice

Standards strive to integrate and organize strengths of *a priori* principles with 'best' practices observed in the messy real-world.



In many disciplines, *a priori* considerations are provided by science and mathematics. Sometimes they are provided by 'traditions' or by market forces. In software engineering, there is no agreement on such *a priori* and we have to discover and figure out what are its principles.


L1 We have to invent 'what'? LOG, 8/20/2007

Fundamental Principles of Software Engineering

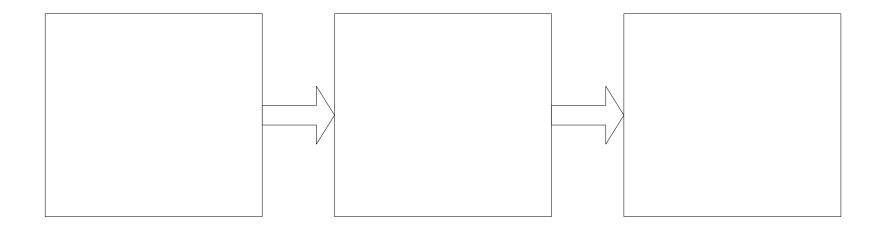
A collaborative Effort: IEEE Computer Society & Université du Québec (UQAM-ETS)

1996-1998 Delphi Studies

Delphi I: International Software Engineering

Criteria: Principles must be ...

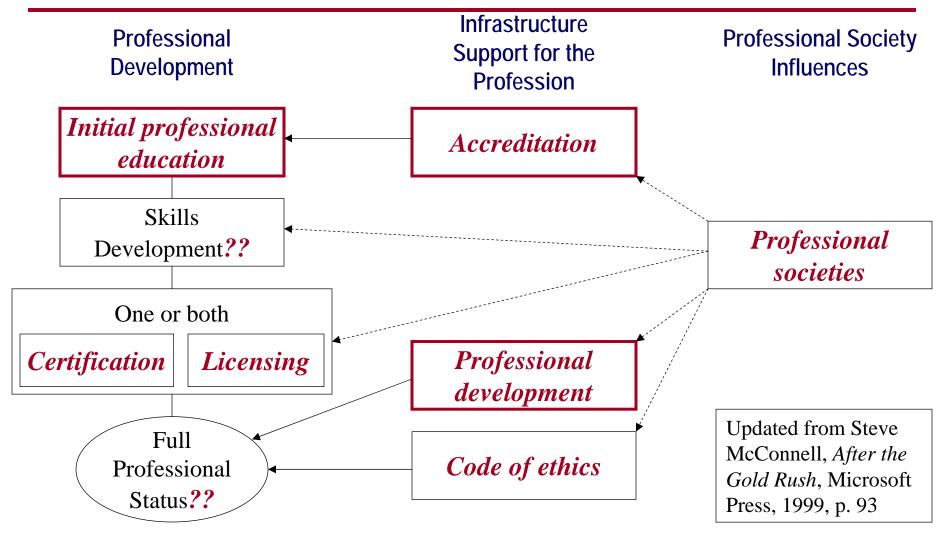
- Less specific than methodologies
- More durable than methodologies and techniques
- Extracted from practice
- Linked to at least one underlying concept of SE
- Not involve a trade-off
- Be specific enough to be able to demonstrate experimentally that not applying the principle leads to bad consequences (e.g. undesirable outcomes).


L2

L2 Est-ce le bon mot en anglais? LOG, 8/20/2007

2003-2006 Séguin Study

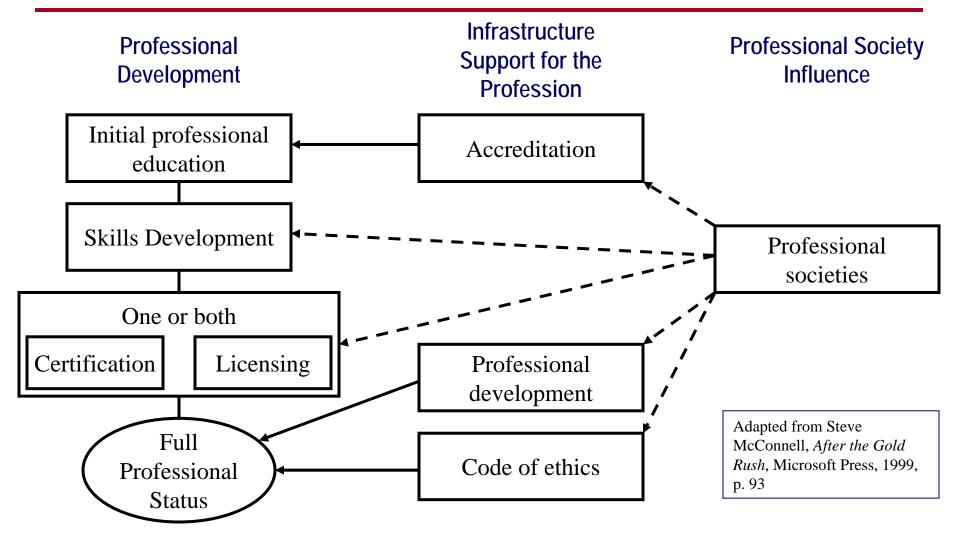
- From the literature survey = 300 proposals principles
 - Activities
 - Prescriptions
 - > Descriptions, etc.
- Identification of criteria to recognize a principle
- Outcome: 34 candidate principles meet the 'principles' criteria (See Séguin 2006)


Meridji 2007+ Study

List of topics

- 1. Engineering products and services: what do you expect?
- 2. The framework of an engineering discipline in a society
- 3. A new body of knowledge: from anarchy to a society's consensus: the SWEBOK project
- 4. Software Engineering : Fundamental Principles?
- 5. Conclusions

Software Engineering Today



New Engineering Disciplines

Knowledge Engineering disciplines:

- Data Engineering
- Knowledge Engineering
- Web engineering
- Systems Engineering
- Value Engineering
- Systems Engineering
- Information Technology

Other New Engineering Disciplines: How do they stack up today?

www.swebok.org

www.gelog.etsmtl.ca

Questions

Acknowledgements

Team work on engineering disciplines:

- Pierre Bourque
- Robert Dupuis
- Leonard Tripp
- James W. Moore