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Résumé :  
L’estimation des projets de développement de logiciels est un défi pour la plupart des organisations de 
développement de logiciels; c’est également un défi pour leurs clients qui subissent des débordements 
considérables des budgets, des retards importants par rapport aux échéanciers, moins de fonctionnalités 
que promises et avec des niveaux de qualité questionnables.  

L'estimation et la qualité des logiciels sont deux préoccupations importantes  pour les gestionnaires et les 
ingénieurs logiciels: il n'y a pas un projet de logiciel qui n'a pas besoin d'être estimé. La disponibilité de 
modèles et d'outils d'estimation n'est plus un problème, et certains sont même disponibles gratuitement 
sur le web. La vraie question est: ceux-ci sont-ils fiables? Est-ce que l'industrie du logiciel sait mieux 
estimer aujourd'hui qu’il y a 30 ans. Comment déterminer la qualité d'un modèle d'estimation logiciel? 
Quelles sont les connaissances disponibles pour évaluer l'estimation des outils mis à la disponibilité de 
l'industrie? 

Cet article présente une vision intégrée de nombreux concepts théoriques et modalités pratiques 
nécessaires par des professionnels et des gestionnaires pour les aider à comprendre les fondements de 
l'évaluation des modèles d'estimation logiciels, ainsi que des améliorations à ceux-ci. L'approche adoptée 
dans le présent papier est de proposer des critères de vérification pour chacune des étapes d'un 
processus d'estimation des logiciels liés au processus d'estimation, la qualité de les entrées 
(directs/indirects) et sorties de ces modèles ainsi que la qualité des études publiées par le les 
constructeurs et les modèles de propagation d'erreurs à travers les différentes étapes d'un processus 
d'estimation. 

Abstract:  

Software project estimation is a challenge to most software organizations, and to their customers who 
endure software development projects significantly over budget, with significant delays in schedules, less 
functionality than promised and with unknown levels of quality.  

Software estimation and software quality are two of the most prevalent issues facing software managers 
and software practitioners: there is not a software project which does not need to be estimated. 
Availability of estimation tools and techniques is not the problem anymore and some are even freely 
available on the web. But the real issue is: how good are they?  Is the software industry better today than 
30 years ago at estimating software projects? How to figure out the quality of software estimation 
models? What knowledge is available to assess the estimation tools available to industry?  

This paper presents an integrated view of the many of the theoretical concepts and practical procedures 
needed by professionals and managers to help them understand the fundamentals of the evaluation of 
software estimation models, and of improvements to them. The approach taken in this paper is to propose 
verification criteria for each of the steps of a software estimation process related to the estimation process, 
the quality of its direct/indirect inputs, outputs for such models as well as the quality of studies published 
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by the models builders and of the propagation of errors through the various steps of an estimation process. 

Mots clés: Modèles d’estimation,  Mesures de taille, Dépôts, International Software Benchmarking 
Standards Group (ISBSG). 
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1. Introduction 

Software estimation and software quality are two of the issues that software managers and software 
practitioners (as well as their users and organizations) face. There is not a software project that does not 
need to be estimated, and there is not a manager, at any level in an organization, who has not requested a 
fixed and accurate software effort estimate based on some fuzzy requirements, and wanted it yesterday! 
Unfortunately, it is common practice in the software industry to seek a single magic number to which 
everybody, including the estimator, has to commit at the peril of their own professional career.  This is 
not what estimation is about. Software estimation tools have been around for the past 3 decades, and are 
typically multi-variable estimation models from a variety of sources:  

• books and research papers 

• vendors (these tools typically take a black-box approach, where neither the internal 
mathematical equations nor the datasets used to build them are available for independent 
review)  

• the Web (no-fee estimation software)  

The availability of estimation tools and techniques is no longer the problem. The real issue is, how good 
are they?   

While important management decisions with significant financial impacts are taken on the basis of such 
software estimation models, little is done in software organizations to verify the quality of such models. 
By contrast, in day-to-day life (as well as in engineering and in most scientific fields), the quality of 
products and services is a major concern. For example, before purchasing a car, we read consumer reports 
or specialized magazines to compare prices, features, suggestions, and pros & cons, and consider many 
possible variables – both quantitative and qualitative -- which we consider relevant for making a decision. 
No one, of course, would rely exclusively on the advertising material produced by car vendors. Do 
software managers and practitioners carry out this type of due process before using a software estimation 
model or technique? Do they behave like wise consumers? Is the software industry better today at 
estimating software projects than it was 30 years ago? 

Software estimation models based on statistical techniques consist of a set of mathematical operations. 
The use of such techniques for estimation purposes requires several types of data verification, from inputs 
to outputs. Figure 1 presents a generic estimation model using a process view.  

 

Figure 1. An estimation model as a process 
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Researchers and estimation tool vendors are hard at work building software estimation models, but are 
today’s proposed estimation models and approaches better suited to the task than those of 30 years ago? 
How can the quality of software estimation models be determined? What knowledge is available to assess 
the estimation tools available to industry?  

This paper presents an integrated view of many of the theoretical concepts and practical procedures 
needed by professionals and managers to help them understand the fundamentals of evaluating software 
estimation models. The approach taken in this paper is to propose verification criteria for each of the steps 
of a software estimation process. The paper is organized as follows: section 2 proposes a procedure for 
verifying the quality of the direct inputs to the estimation models; section 3 sets out criteria for the 
derived inputs to the estimation models and criteria for the quality of the outputs of those models; section 
5 presents an evaluation of the quality of estimation models by their builders, as well as independent 
evaluation of the models; section 6 provides some additional comments concerning the propagation of 
errors through the various steps of an estimation process; and section 7 presents a summary.  

2. Verification of the Direct Input Parameters  

Looking at estimation models as processes (Figure 1), the first step is to verify the quality of the input 
parameters to these models. Any estimation technique (from simple to multiple regression analyses, to 
neural networks, to case-based reasoning (CBR), etc.) uses the data that are fed into it, on the implicit 
assumption that such data are well-defined, accurate, and reliable. However, such an assumption is rarely 
justified in practice, and it is the responsibility of the users of the estimation tools to ensure the quality of 
the data fed into the estimation model as input parameters: The colloquial expression ‘garbage in – 
garbage out’ (GIGO) properly summarizes the  starting point for this series of data quality verification 
steps. Examples of these steps are the following:  

• Verification of the data definitions: Each input parameter should be clearly defined1 and 
understood, including its scale type (nominal, ordinal, interval, ratio), and each requires distinct 
relevant statistical techniques [11].  

• Verification of the quality of the data collected – see upcoming ISO 25012 [12]. 
• Verification of the uncertainty about the data collected: Is the information used for the 

measurement of the input complete, unambiguous, coherent, and stable? If not, what is the impact of 
uncertainty and how can the corresponding risk be mitigated in the estimation process. 

In addition, the building (and use) of statistical techniques requires that the data parameters in the inputs 
meet a number of conditions, such as: 

• a normal distribution in regression techniques 
• identification and removal of significant outliers    

The existence of a normal distribution and of outliers can be verified through statistical tests on these 
inputs, as well as by graphical analysis [4, 8]. 

                                                

1 Refer to [25, chapter 4] for examples of well-defined definitions of data fields for software benchmarking and estimation models. 
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3. Verification of Derived Inputs to Estimation Models 

Input verification also consists in verifying the so-called derived inputs to estimation models. In the 
literature, most software estimation models take as inputs the number of lines of code (LOC) and 
functional size in Function Points (FP), as well as a number of costs parameters.  

Lines of code:  Typically, this number is not derived from measurement, since the software has not yet 
been built.  It must therefore be ‘estimated’, thereby introducing additional uncertainty into the estimation 
process. The quality of the output of the estimation process will be highly dependent on the quality of this 
estimated LOC input. 

Functional size: A number of estimation tools indicate that they take functional size as input, but, since 
relatively few estimation models had, until quite recently, been built using FP directly as their main size 
input, a conversion step was required between FP and LOC. The term used for proposing conversion 
ratios between the two types of inputs is ‘backfiring’. Both practitioners and researchers must be 
extremely careful when dealing with such conversion factors, as there are currently almost no reliable, 
documented studies on the comparability of the two measures across programming languages. Moreover, 
published conversion factors do not provide any documentary evidence of their origin or characterization 
from a statistical viewpoint (e.g. unknown number of data points in samples used, unknown statistical 
deviations from the published averages, unknown presence (or absence) of outliers within the datasets, 
unknown indication of potential causes of significant variation from the published averages, etc.). 
Without such information, those conversion ratios are merely numbers, without any intrinsic quality as 
valuable pieces of information for decision-making purposes. Similarly, there is little in the way of 
recommendations to support a professionally sound use of such numbers. 

Other derived inputs: In parametric estimation models, users should gain an understanding of the 
strengths and weaknesses of the variables used as inputs to these models, in particular when such 
variables are transformed prior to being used, as in the COCOMO-like models. For example, each of the 
‘cost drivers’ used as inputs in COCOMO I and II is:  

(a) first described as a ‘nominal variable’, and then 
(b) broken down into 5 ‘ordinal’ categories (from ‘very low’ to ‘extremely high’). 

Finally, next to each category within a cost driver, an impact factor is assigned an ‘impact’; that is, a 
transformation of these inputs into fraction of ‘days per size unit’. This means that these input cost drivers 
are no longer direct inputs to the estimation models, but rather ‘estimation sub-models’ themselves! Most 
of these transformations (or estimation sub-models) are neither documented nor supported by publicly 
available empirical data. Because the quality of such estimation sub-models is unknown, these models 
can but provide a weak basis for the estimation models themselves: each of these transformations is a 
‘black box’ for which it is not possible to analyze the original input data or to determine their level of 
quality. 

4. Analysis of the Outputs of the Estimation Models 

After verifying the quality of the inputs, the next step is to analyze the outputs obtained by the estimation 
models.  There exist multiple statistical criteria for assessing whether or not a model reflects a dataset and 
its ability to predict the behaviour of the dependent variable [1-3, 9-10, 13-16]. Some of the criteria most 
often used are: 

(a) Coefficient of determination (R2): This describes the percentage of variability explained by the 
predictive variable in regression models. Its range is between 0 and 1: the closer it is to 1, the 
stronger the relationship between the independent and dependent variables. 
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(b) Error of an estimate: There are various possible views on errors: the Mean Relative Error (MRE), 
which gives an indication of the divergence between estimated and actual values as a percentage in 
absolute terms, and where values close to 0 are desirable; the Mean Magnitude of Relative Error 
(MMRE), which is the MRE applied to a whole dataset; the Root of the Mean Square Error (RMS) 
and its Relative RMS (RRMS). 

(c) Predictive quality of the model: the prediction level of an estimation model is given by 

( ) kPRED l
n

= , where k is the number of projects in a specific sample of size n for which MRE ≤ l.  In 

the software engineering literature, an estimation model is generally considered good when 
PRED(0.25)=0.752. 

(d) P value statistical parameter: This parameter expresses the statistical significance of the 
coefficient of the independent variables. Commonly, P values lower than 0.05 are considered 
significant.  

The above criteria are not, however, sufficient to claim that such models are good enough from a 
statistical viewpoint. Estimation models built using statistical regression analysis techniques require that 
additional conditions be met, such as:  

(a) large enough datasets: typically, at least 30 data points for each independent parameter included in 
the model;  

(b) a normal distribution of the input parameters (dependent and independent parameters);  
(c) no outlier which unduly influences the model.  

When any one of the above conditions is not met, care should be exercised. For instance:  

(a) with fewer than 15 to 20 projects, authors should not venture into broad generalizations about their 
models;  

(b) with 4 to 10 data points, models should be considered as merely anecdotic and without statistical 
strength.  

5. Evaluation of Estimation Models 

5.1. Evaluation by model builders  

The classical example of an evaluation by a model builder is the evaluation performed by Boehm for his 
COCOMO I model [5]. Table 1 shows the performance of the three versions this model, as documented 
by the author himself. 

 MRE PRED(0.25) 

Basic 610% 25% 

Intermediate 584% 68% 

Detailed 608% 70% 

Tableau 1. COCOMO I – Quality evaluation on some statistical criteria 

A revised COCOMO II version was produced in the late ’90s [6,7]. The main additions include more cost 
drivers, as well as some updates to previous cost drivers, and a few extra features, such as the use of 

                                                
2 Of course, project managers and users would like much better levels of prediction, but these expectations are typically far 
beyond the state of both research and practice!   
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backfiring FP for determining the estimated software product size. The design of COCOMO II was not 
based on additional data collection and statistical analyses, but rather, as reported by Boehm and his 
colleagues, on opinions from various domain experts. A few subsequent studies, including one by the 
authors themselves on 161 projects, have attempted to verify the model’s performance, but results to date 
have been inconclusive [19]. The revised COCOMO II model being based not on empirical data, but on 
expert opinion, should be considered a ‘theoretical’ model, and how good it is remains to be 
demonstrated.  

5.2. Independent review of evaluations by model builders   

The evaluations published by model builders are always interesting, but they are not necessarily 
complete. Independent evaluations are the most useful, and challenging, of course, because of the need 
for a dataset large enough for both replication studies using the same quality criteria and for exploring 
criteria not looked into by the model builders. The independent evaluation of the COCOMO I model is 
the easiest to perform, since its author has extensively documented his model, including the original 
dataset on which it was built. COCOMO I was built on the basis of a sample of 63 projects, and includes 
three models (Basic, Intermediate, Detailed) with 4, 18, and 72 input parameters respectively. The 
number of projects required for statistical meaningfulness for each of these 3 models would be 120 
projects (4 independent parameters x 30 data points) for the Basic model, 540 projects (18 parameters x 
30 projects) for the Intermediate model, and 2,160 projects (18 x 4 project phases x 30) for the Detailed 
model. Therefore, the published sample of 63 projects is barely sufficient for the Basic model and 
certainly not enough for the Intermediate and Detailed ones. Consequently, the reported performances 
achieved in terms of R2 for the Intermediate and Detailed versions of COCOMO I are not statistically 
significant, since the sample size for Intermediate and Detailed models is not large enough. Therefore, 
COCOMO I users should not rely on the reported performance of either the Intermediate or the Detailed 
COCOMO I models. 

6. Error Propagation in Software Measurement and Estimation 

In science, the terms uncertainty and error do not formally refer to mistakes, but rather to the uncertainty 
that is inherent in all measurements and can never be completely eliminated. A part of an estimator’s 
effort should be devoted to understanding such uncertainty (error analysis), so that appropriate 
conclusions can be drawn from variable observations. In science and engineering, numbers without 
accompanying error estimates are suspect and possibly useless. This also holds true in software 
engineering – in estimation, for every input parameter, and subsequent transformation/manipulation, the 
corresponding uncertainty should be recorded. Therefore, an estimator should have a good understanding 
of the consequences of the application of some formula (algorithm) to derive further quantities, and the 
same is true of estimation models.  In science, this analysis is usually denoted as error propagation (or 
propagation of uncertainty) [17-18].  

The percent error on the output of a mathematical formula with multiple parameters is not the simple sum 
of the percent errors on these parameters, and will depend on the function itself. Table 2 shows the 
uncertainty of simple functions, resulting from independent variables A, B, and C, with uncertainties ΔA, 
ΔB, and ΔC, and a constant c which is precisely known.  

Applying the same concepts to software engineering, and in particular to parametric estimation models 
such as COCOMO, a general conclusion would be that the more we introduce additional cost drivers into 
an estimation model, the more sources of uncertainty are introduced into the estimation process. Very few 
estimation model builders have considered this in their search for a hope-for-all cost driver formula: when 
due care is not exercised, an unreasonable propagation of errors may result.  
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Function Function uncertainty 

X = A ± B (ΔX)² = (ΔA)² + (ΔB)² 

X = cA ΔX = c ΔA 

X = c(A×B) or X = c(A/B) (ΔX/X)² = (ΔA/A)² + (ΔB/B)² 

X = cAn ΔX/X = |n| (ΔA/A) 

X = ln (cA) ΔX = ΔA/A 

X = exp(A) ΔX/X = ΔA 

Tableau 2. Examples of formulae for calculating a function uncertainty [17] 

7. Summary 

Software project estimation is a challenge for most software organizations, as well as for their customers, 
who often face significant cost over-runs and substantial delays in their software development projects. 
Not only must customers frequently accept less functionality than promised, but also unknown levels of 
quality. Researchers are hard at work building software estimation models, but are today’s proposed 
estimation models and approaches better suited to the task than those of 30 years ago?  

This paper has looked into how to determine the quality of software estimation models based on the 
knowledge we have to assess the estimation tools available to industry. We have presented an integrated 
view of the many theoretical concepts and practical procedures needed by professionals and managers to 
help them understand the fundamentals of evaluating software estimation models. The criteria identified 
have been applied to the direct input parameters, to the derived input parameters, and to the outputs of the 
estimation models. Examples we have presented include both information provided by model builders 
and an analysis of the limitations of such self-assessments. The criteria have been illustrated with 
examples from the COCOMO models using criteria used by the model builders themselves, as well as 
additional criteria which must be taken into account for a more comprehensive evaluation.  Further work 
is being carried out to develop verification procedures and to prepare detailed examples for each of the 
criteria we have identified here.  

A proper data-driven process for building estimation models constitutes a quality-driven process for 
improving estimates over time and for allowing an organization to move towards higher maturity and 
capability levels. 
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