
Fundamental principles of software engineering – a journey

Pierre Bourque a,*, Robert Dupuis b,1, Alain Abran a, James W. Moore c,2,
Leonard Tripp d,3, Sybille Wolff e,4

a D�eepartement de G�eenie �EElectrique, �EEcole de Technologie Sup�eerieure, 1100, rue Notre-Dame Quest, Montr�eeal, Qu�eebec, Canada H3C 1K3
b Universit�ee du Qu�eebec �aa Montr�eeal, P.O. Box 8888, Succ. Centre-Ville, Montr�eeal, Qu�eebec, Canada H3C 3P8

c The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102-7508, USA
d Boeing Company, Seattle, WA, USA
e SAP Labs, Montreal, Quebec, Canada

Received 30 December 1999; received in revised form 25 March 2000; accepted 8 August 2001

Abstract

A set of fundamental principles can act as an enabler in the establishment of a discipline; however, software engineering still lacks

a set of universally recognized fundamental principles. This article presents a progress report on an attempt to identify and develop a

consensus on a set of candidate fundamental principles. A fundamental principle is less specific and more enduring than meth-

odologies and techniques. It should be phrased to withstand the test of time. It should not contradict a more general engineering

principle and should have some correspondence with ‘‘best practice’’. It should be precise enough to be capable of support and

contradiction and should not conceal a tradeoff. It should also relate to one or more computer science or engineering concepts. The

proposed candidate set consists of fundamental principles which were identified through two workshops, two Delphi studies and a

web-based survey. � 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

In the IEEE collection of standards, software engi-
neering is defined as:

‘‘(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation
and maintenance of software, i.e. the application of
engineering to software. (2) The study of approaches
as in (1)’’ (IEEE 610.12, 1991)

It is not easy to find, isolate and articulate the rele-
vant principles that are fundamental to a discipline.

Even in the more mature disciplines, where the funda-
mental principles are supposedly known, knowledge is
often tacit. In the emerging discipline of software engi-
neering, some attempts have been made, e.g. (Boehm,
1983; Davis, 1995), but a consensus has not yet devel-
oped.

In the 50-year history of software, various method-
ologies, methods and techniques have been proposed
to facilitate the development of software responsive to
needs. Most have proved to be more specific to the then-
current state of technology than was understood at the
time. As a result, many have subsequently been shown
to be less universally applicable than originally intended.
Despite a plethora of conferences and workshops over
recent decades, and numerous periodicals, books and
courses in the field, software engineering continues
to lack universally recognized fundamental principles
(McConnell, 1997, 1999).

The authors’ interest in the identification of the fun-
damental principles of software engineering results from
work in the development of software engineering prac-
tice standards. It is widely posited that practice stan-
dards should be based upon observation, recording and

The Journal of Systems and Software 62 (2002) 59–70

www.elsevier.com/locate/jss

*Corresponding author. Tel.: +1-514-396-8623; fax: +1-514-396-

8684.

E-mail addresses: pbourque@ele.etsmtl.ca (P. Bourque), dupuis.

robert@uqam.ca (R. Dupuis), aabran@ele.etsmtl.ca (A. Abran),

james.w.moore@ieee.org (J.W. Moore), l.tripp@computer.org (L.

Tripp), sibylle.wolff@sap.com (S. Wolff).
1 Tel.: +1-514-987-3000x3479; fax: +1-514-987-8477.
2 Tel.: +703-883-7396; fax: +703-883-5432.
3 Tel.: +1-425-865-2732; fax: +1-425-865-6914.
4 Tel.: +514-879-7250; fax: +514-879-7234.

0164-1212/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (01 )00136-4



consensual validation of implemented ‘‘best practices’’.
This strategy has resulted, though, in the development
of a corpus of standards that are sometimes alleged to be
isolated, unconnected and disintegrated, because each
standard performs a local optimization of a single ob-
served practice. It is hoped that the identification of a set
of fundamental principles will provide a broad and rich
framework for establishing relationships among groups
of practice standards. A set of fundamental principles
relating to the field could also help characterize the
activities that differentiate software engineering from
other computer-related activities and could help better
define training programs. The identification of princi-
ples viewed as fundamental by the software engineering
community would also provide a rich framework for
analyzing and improving the Guide to the Software
Engineering Body of Knowledge 5 (Abran et al., 2001).
This guide is aimed at providing a topical access to the
core subset of knowledge that characterizes the software
engineering discipline.

In this paper, a progress report is presented on work
carried out to identify and develop a consensus on a set
of fundamental software engineering principles. 6 The
paper begins with a discussion of the criteria for rec-
ognizing fundamental principles: what they are, their
roles and how they relate to underlying concepts. In
Section 3, the research methodology followed and the
deliverables of each project phase are presented: two
workshops, two Delphi studies and a web-based survey.
The degree of consensus on the set of candidate princi-
ples and a brief discussion on each candidate are the
subject of Section 4. Finally, a summary of the paper,
and steps that could be undertaken to improve the set of
candidate principles are presented in Section 5.

2. What are fundamental principles?

2.1. Underlying concepts versus fundamental principles

In discussing fundamental principles, there is some-
times confusion between such principles and what may
be characterized as ‘‘underlying concepts’’. Table 1
contrasts the two.

Underlying concepts are to be regarded as scientific
statements. They must be capable of validation by ex-
periment and are judged on the basis of their correctness
when subjected to experiment. By contrast, fundamental
principles are to be regarded as engineering statements
which prescribe constraints on solutions to problems or

constraints on the process of developing solutions. They
should be rigorously evaluated, but in practice rather
than in the laboratory, and judged by whether or not
they provide useful and substantial contributions to the
successful solution of real problems of significant size
and scope. In general, we would expect fundamental
engineering principles to be strongly related to under-
lying scientific concepts.

An example of an underlying concept would be the
theoretical results by B€oohm and Jacopini (B€oohm and
Jacopini, 1966) indicating that essentially all programs
can be expressed as combinations of statement se-
quences, branching and iterations, and that goto state-
ments are not necessary. 7 In contrast, Dijkstra provided
a corresponding prescriptive principle in his famous
letter, ‘‘Go To Considered Harmful’’, where he argues
that programmers should actually apply the theoretical
results in the construction of code (Dijkstra, 1968). 8

2.2. Roles of fundamental principles

Fig. 1 illustrates the relationships sought among
principles, standards and practices. It is believed that
a body of fundamental principles for some branches
of engineering has been recorded, e.g. (Vincenti, 1990)
(most of the engineering branches have a history far
longer than that of software engineering). Software
engineering principles would, in the general case, be
regarded as specializations of these principles. The
software engineering principles would play the role of
organizing, motivating, explaining and validating the
practice standards. Implemented practices should be
based on those practice standards.

Table 1

Underlying concepts versus fundamental principles

Underlying concepts Fundamental principles

Scientific Engineering

Descriptive Prescriptive

Validated through experiment Validated through rigorous (but

not necessarily experimental) as-

sessment of practice

Judged on the basis of

correctness

Judged on the basis of usability,

relevance, significance, usefulness

5 See www.swebok.org.
6 For more detailed information on this research and notably the

full set of participant comments, please see http://www.lrgl.uqam.ca/

fpse.

7 The candidate fundamental principles related to this underlying

concept would at least be B, I and L. These candidate principles are

presented in Table 3 and discussed in Section 4.
8 Dijkstra’s principle, although useful as an example, is not one of

those selected as fundamental in this study. First of all, it was not

submitted by any of the Delphi participants. Secondly, one could also

argue that Dijkstra’s principle does not satisfy one of the criteria –

independence from specific methodology, in this case, design by

functional decomposition.

60 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70



Working from the specific toward the general, prac-
tice standards would be recordings and idealizations of
observed and validated ‘‘best practices’’. The software
engineering principles would be abstractions of the
practice standards. Furthermore, software engineering
principles might be candidates for generalization to the
status of general engineering principles, particularly
when complexity is a concern.

2.3. Criteria for the recognition of fundamental principles

The following criteria (possibly better regarded as
heuristics or meta-principles) were developed for the
recognition of fundamental principles:

• Fundamental principles are less specific than method-
ologies and techniques, i.e. specific methodologies
and techniques may be selected, within a particular
technological context, to accomplish the intent of
fundamental principles.

• Fundamental principles are more enduring than
methodologies and techniques, i.e. fundamental prin-
ciples should be phrased in a way that will stand the
test of time, rather than in the context of current tech-
nology.

• Fundamental principles are typically discovered or
abstracted from practice and should have some corre-
spondence with best practices.

• Software engineering fundamental principles should
not contradict more general fundamental principles.

• A fundamental principle should not conceal a trade-
off. By that we mean that a fundamental principle
should not attempt to prioritize or select from among
various qualities of a solution; the engineering pro-
cess should do that. Fundamental principles should
identify or explain the importance of the various
qualities among which the engineering process will
make trades.

• . . . but, there may be tradeoffs in the application of
fundamental principles.

• A fundamental principle should be precise enough to
be capable of support or contradiction.

• A fundamental principle should relate to one or more
underlying concepts.

3. Research methodology and project deliverables by

phase

The project was prompted by a 1996 decision of the
IEEE Software Engineering Standards Executive Com-
mittee to begin efforts to identify a list of fundamental
principles for software engineering. The research meth-
odology that has been followed to identify a candidate
list is summarized in Fig. 2. The deliverables of each
project phase are described next, from the project
kickoff meeting in 1996 to the larger web-based survey in
1999.

3.1. 1996 kickoff workshop: process and deliverables

Three days of discussion at the kickoff workshop
of the Software Engineering Standards Symposium
(SES’96) held in Montreal resulted in (Jabir and Moore,
1998):

• Observations on the nature of fundamental princi-
ples;

• Criteria for identifying and evaluating candidate
principles;

• Examples and counter-examples of principles;
• A recommendation that a Delphi study be organized

and conducted for identifying an initial set of can-
didate fundamental principles. This Delphi study
would be conducted among a group of software engi-
neering experts and would use the criteria developed
in Montreal for identifying and evaluating these
candidate fundamental principles. It was also recom-
mended that a subsequent workshop be held to ana-
lyze the results of this Delphi study.

Fig. 1. Relationship between principles and practice.

P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70 61



3.2. Delphi 1: process and deliverables

The objective of this first Delphi study conducted by
email in the spring of 1997 was to identify an initial set
of candidate fundamental principles. The desire to
consult eminent representatives of the international
community went hand in hand with the selection of the
Delphi method. This technique consists in forming a
panel of experts, who are not told each other’s identities
until the end of the exercise so that the prestige or power
of one member of the group does not unduly influence
the course of the discussion.

In Round 1, the international experts were asked to
submit proposals, based on the criteria already estab-
lished in the kickoff workshop. Each one was asked to
draw up a list of the five fundamental principles they felt
were most pertinent. They were also invited to add any
amount of commentary or explanations so that the
Delphi study coordinators could better understand
and explain their selection to the other participants of
Round 2. This message was sent to 52 international
software engineering experts. The list of contacted ex-
perts contacted was selected by the authors of this paper
and by informally consulting some of the authors’ col-
leagues. Thirteen individuals responded, which means

that 65 proposed principles were obtained and are listed
in Appendix A.

Then, two Delphi study coordinators consolidated
these 65 suggestions into a smaller number of principles
which met the criteria of the SES’96 workshop. This
produced the 16 candidate fundamental principles listed
in Appendix B. At this stage, the objective was to in-
clude the largest number of suggestions possible, while
at the same time trying to reduce overlap among the
candidates.

In Round 2, participants were asked to rate each of the
16 candidate fundamental principles from Round 1 on a
scale of 1 to 10. Brief explanations, that were essentially
culled from the Round 1 submissions, were provided for
each candidate principle. Participants were also asked to
comment on their ratings, which most of them did. This
also provided them with the opportunity to contest the
way in which their initial five suggestions had been con-
solidated into the 16 candidate fundamental principles.

The goal of Round 3 of a Delphi study is to reinforce
and confirm the ratings that emerge. Therefore, partic-
ipants were sent the mean scores of each candidate
fundamental principle. They were then asked whether or
not they agreed with the rating and to add more com-
ments if need be.

Fig. 2. Overview of project steps.

62 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70



The value of this initial candidate list lies primarily in
the expertise of the respondents. Table 2 lists the par-
ticipants (12 of the 14) 9 who agreed to have their names
published. 10 The other two participants chose to remain
anonymous. We believe that the list represents a group
that is diverse in terms of nationality, approach to
software engineering, and theoretical versus practical
experience.

It must be strongly emphasized that the output of a
Delphi study does not represent the single opinion of
each individual participant, but rather a group view
of the topics being investigated, and that it documents
the degree of consensus (or lack of it) on such a group
view.

3.3. ISESS’97 workshop

This initial Delphi study was followed by a workshop
at the IEEE-International Software Engineering Stan-
dards Symposium – ISESS’97, 11 where some twenty
participants discussed the findings. Based on this review
and the lessons learned, this second workshop produced
a list of improved criteria, as well as a more refined list
of fundamental principles, 12 as illustrated in Table 3.
These improvements were to be incorporated in the next
Delphi study and in the web-based survey.

3.4. Delphi 2 study: process and deliverables

The first consultation, although very fruitful,
had obvious limitations, notably the limited number of
participants and the fact that their suggestions could
have been consolidated differently, producing a different
list of principles altogether. Consequently, a second
Delphi study was carried out, this time among a group
of software engineering experts drawn from a different
pool. These individuals were deemed to be experts by
virtue of the fact that they held an ‘‘official’’ software
engineering position within the IEEE Computer Society.

The contacted experts were members of the Executive
Committee of the Technical Council on Software Engi-
neering or members of the editorial committees of IEEE
Software or IEEE Transactions on Software Engineering.
Thirty-one experts of the 72 contacted agreed to par-
ticipate in this two-round Delphi study.

Table 3

List of candidate fundamental principles (in alphabetical order)

A. Apply and use quantitative measurements in

decision-making

B. Build with and for reuse

C. Control complexity with multiple perspectives and mul-

tiple levels of abstraction

D. Define software artifacts rigorously

E. Establish a software process that provides flexibility

F. Implement a disciplined approach and improve it con-

tinuously

G. Invest in the understanding of the problem

H. Manage quality throughout the life cycle as formally as

possible

I. Minimize software component interaction

J. Produce software in a stepwise fashion

K. Set quality objectives for each deliverable product

L. Since change is inherent to software, plan for it and

manage it

M. Since tradeoffs are inherent to software engineering, make

them explicit and document them

N. To improve design, study previous solutions to similar

problems

O. Uncertainty is unavoidable in software engineering.

Identify and manage it

9 One participant did not participate in Round 1 of Delphi 1 and

one participant did not participate in Round 3.
10 For a short biography of each participant, consult the following

address: http://www.lrgl.uqam.ca/fpse/emailfirstdelphi.pdf.
11 ISESS’97, Third International Symposium and Forum on Soft-

ware Engineering Standards, Walnut Creek, CA, IEEE Computer

Society, June 1997.
12 Based on the mean scores of each candidate in Delphi 1, on the

level of consensus among the experts and on the expert comments, the

workshop participants concluded to make the following changes to

the list of candidate principles. Candidate C in Table 3, discussed at

the SES’96 workshop, was adopted instead of candidate 3 in Appendix

B. Candidate N, also discussed at the SES’96 workshop, was added to

the list. Candidates 14 and 15 were dropped from the list.

Table 2

Delphi 1 study – international experts

Participant Organization as of Delphi 1 Country as of Delphi 1

M. Azuma Waseda University Japan

F.P. Brooks University of North Carolina USA

R.N. Charette ITHABI Corp. USA

P. DeGrace Consultant USA

C. Ghezzi Politecnico di Milano Italy

T. Gilb Result Planning Ltd. Norway

B. Littlewood City University United Kingdom

S. MacDonell University of Otago New Zealand

T. Matsubara Matsubara Consulting Japan

J. Musa Consultant USA

R.S. Pressman R.S. Pressman&Associates USA

M. Shaw Carnegie-Mellon University USA

P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70 63



Participants in the second Delphi study who agreed
to have their names published are listed in Table 4. One
participant chose to remain anonymous, one withdrew
and one did not respond during Round 2.

3.5. Web-based IEEE-CS TCSE survey

The output of the second Delphi study was to serve as
an input to a web-based survey of the members of the
Technical Council on Software Engineering (TCSE) of
the IEEE-Computer Society (IEEE-CS), with the co-
operation of the IEEE Computer Society.

A survey instrument was prepared and pre-tested
with a limited sample of 30 participants. Required ad-
justments to questions were made based on feedback
received. Survey participants were asked to rate each
candidate fundamental principle and were also given the
opportunity to provide additional comments at the end
of the survey questionnaire.

An introductory letter was prepared by the 1999
IEEE-CS president, Mr. Leonard Tripp, and sent by
email to all members of the IEEE-TCSE. A total of 3509
TCSE members with valid email addresses were con-
tacted. Out of these members, 574 answered the web-
based survey, representing approximately 16% of the
targeted population.

3.5.1. Demographics of the respondents

• International participation: of the 556 respondents
who indicated their country of residence, 50% were
from the US, while the other 50% were from 48 coun-
tries, 11 countries having over 10 respondents each.

• Educational background: respondents were from a
significant mix of educational backgrounds, ranging
from computer science only, to engineering only, to
math only, but mostly from any combination of these.

• Highest degree: 43% of the respondents indicated that
they had a Ph.D., and 35% indicated a Master’s de-
gree.

• Years in software engineering: 36% of the respondents
indicated that they had over 20 years of experience in

software engineering, while another 37% indicated
that they had between 10 and 20 years of experience.

• Years of practice in industry: 23% of the respondents
indicated that they had over 20 years of experience in
industry, and 36% between 10 and 20 years.

• Employer’s line of business: the major categories of
line of business of employers were: R&D (30%) and
software (23%), and the balance from a variety of
businesses, with only 6% from academia.

• Type of software: the larger portion of respondents
by type of software were from the MIS domain with
38%, followed by real-time software (29%) and scien-
tific software (14%).

4. Discussion and degree of consensus on the candidate set

of fundamental principles

Table 5 summarizes the degree of consensus on the
candidate fundamental principles from each group of
participants. Subsequently, the candidate principles are
discussed separately based both on the analysis of Table
5 and on the rich set of comments provided by the study
participants. A summary of supportive comments is pre-
sented for each candidate principle, followed by some
issues which were identified by the study participants.

For the first Delphi study with the group of 12 ex-
perts, the aggregate ratings of this group of experts are
represented by the mean score (1 is low, and 10 is high),
while in the second column the number of yes votes
indicates the number of experts (out of 12) who rallied
to the mean score. From the second Delphi study on, it
became apparent that the median was more appropriate
for this type of study, and the methodology was modi-
fied accordingly. The third column represents the me-
dian score, therefore, and the fourth column the number
of yes votes out of 29 13 participants. Finally, the fifth
column indicates the median score for the 574 web-
based participants, while the sixth column provides the
standard deviation for this larger sample.

4.1. Apply and use quantitative measurements in decision-
making (A)

To the surprise of the authors, the level of support for
this candidate principle was quite weak, especially
among the participants of Delphi 1 and 2. Essentially,
two points of view prevailed. Some experts argued that
measurement is fundamental to engineering in general
and without it there is no engineering. For them, mea-
surement should always be applied and should be
qualified if needs be. Measurement is key to driving
decisions and progress in the field. Others believe that

Table 4

Delphi 2 – list of participants

Maarten Boasson Richard Kemmerer Shari Lawrence

Pfleeger

Shawn Bohner Barbara Kitchenham Vaclav Rajlich

Terry Bollinger Reino Kurki-Suonio Rami R. Razouk

Andy Bytheway David John Leciston Sam Redwine

Carl Chang Keith Marzullo Mary Lou Soffa

James Cross II Nancy Mead David S. Wile

Peter Eirich Stephen J. Mellor Linda Wills

Bill Everett Ware Myers James Withey

Gene F. Hoffnagle Michael Olsem

Mehdi Jazayeri Linda Ott

13 29 out of the 31 second Delphi study participants took part in

Round 2.

64 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70



this principle has too many caveats for it to be univer-
sally applicable or even universally desirable. In their
opinion, for example, the principle is not always appli-
cable due to excessive cost or to the low level of maturity
of software engineering. Some participants expressed the
view that one can focus too strongly on measurement to
the detriment of better judgment, and that measurement
constitutes only one form of input to the decision-
making process.

4.2. Build with and for reuse (B)

Even though the scores on this principle are quite
high; Table 5 shows that the level of consensus on these
scores is weaker. Most of the participant comments on
this principle revolved around the idea that though reuse
is desirable and important, it is not always pertinent. It
depends on many factors, notably the economic context
and the delivery schedule. Some participants noted that
the risk associated with the level of reliability of reused
artifacts must always also be considered. However, it
was also asserted that this principle does not go far
enough: the software engineering field should be able to
produce a set of descriptions on how to reuse, and a set
of artifacts at many different levels of abstraction which
can be reused, as well as a set of catalogues which make
it easy to navigate throughout all of this.

4.3. Control complexity with multiple perspectives and
multiple levels of abstraction (C)

The participants in the ISESS’97 workshop adopted
this candidate principle as a replacement for candidate 3
of Delphi 1 (see Appendix B) which was withdrawn due
to a low mean score and a low level of consensus on this
mean score (mean score: 4.9/10, number of yes votes: 6/
12). Candidate C was discussed at length at the SES’96
workshop.

Table 5 shows that the median score and the level of
consensus on this median score for candidate C are both
substantially higher than for the previous candidate.
Even so, there were some participants who emphasized
that this was not the only way to reduce complexity, and
in fact some stated that multiple perspectives and levels
of abstraction could indeed add complexity. For exam-
ple, one participant stated that you could simplify the
requirements in order to control complexity.

4.4. Define software artifacts rigorously (D)

Table 5 shows that the participants of Delphi 2 and
of the web-based survey were stronger supporters of
this candidate principle than the Delphi 1 participants,
though it is difficult to understand why. Supporters of
this candidate principle indicated that rigor was essential

Table 5

Overview of participant consensus – documented at project phases

Delphi 1 Delphi 2 Survey

Mean score Yes votes Median score Yes votes Median score S.D.

A. Apply and use quantitative measurements in

decision-making

7.6 7/12 7 13/29 8 2.4

B. Build with and for reuse 8 7/12 9 17/29 8 2.3

C. Control complexity with multiple perspectives

and multiple levels of abstraction

N/A N/A 8 23/29 8 2.4

D. Define software artifacts rigorously 6.4 6/12 8 22/29 8 2.5

E. Establish a software process that provides

flexibility

7.6 7/12 8 21/29 8 2.3

F. Implement a disciplined approach and improve

it continuously

6.9 4/12 8 19/29 9 2.4

G. Invest in the understanding of the problem 8.7 7/12 10 29/29 10 2

H. Manage quality throughout the lifecycle as

formally as possible

7.8 7/12 9 20/29 8 2.5

I. Minimize software component interaction 7.3 8/12 9 25/29 7 2.7

J. Produce software in a stepwise fashion 7.7 7/12 8 23/29 7 2.7

K. Set quality objectives for each deliverable

product

7.7 8/12 8 20/29 8 2.3

L. Since change is inherent to software, plan for it

and manage it

9.1 9/12 10 26/29 9 2

M. Since tradeoffs are inherent to software engi-

neering, make them explicit and document them

8.4 8/12 9 25/29 9 2.3

N. To improve design, study previous solutions to

similar problems

N/A N/A 9 24/29 8 2.1

O. Uncertainty is unavoidable in software engi-

neering. Identify and manage it

8 8/12 10 25/29 8 2.5

P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70 65



to conducting software engineering activities. Others
expressed concern over what is meant by rigor. Does it
imply being formal, or, for example, the application of
standards? There were some participants who empha-
sized the fact that the desired level of rigor is dependent
upon the situation and, notably, the level of criticality of
the software.

4.5. Establish a software process that provides flexibility
(E)

Table 5 shows that there is strong support for this
candidate principle, which is closely related to candidate
F. Supporters of this candidate principle are of the
opinion that flexibility in the process is required since
most software engineering projects must deal, notably,
with accelerated delivery schedules, as well as changing
and incomplete requirements. Others articulated the
need for a variety of processes to be defined and used for
projects of, for example, various degrees of scopes. In
contrast, some participants expressed concern that in
reality too much flexibility can often lead to having no
defined process being followed at all.

4.6. Implement a disciplined approach and improve it
continuously (F)

Table 5 shows that the level of support for this can-
didate principle was strongest among the web-based
survey participants. One participant believes that this is
part of the ‘‘essence’’ of science and engineering in
general. A second participant stated that ‘‘once a project
is staffed, the quality of the processes used to develop
software will largely determine the quality, timeliness,
and cost effectiveness of the result’’. However, other
participants took the position that the disciplined ap-
proach or process itself could become the focus of at-
tention at the expense of the product to be developed,
and that a ‘‘disciplined approach’’ is too often viewed as
a ‘‘silver bullet’’. Interestingly, very few participants
commented on the continuous improvement portion of
this candidate principle.

4.7. Invest in the understanding of the problem (G)

This candidate principle is the highest rated candidate
in the proposed list. In fact, all 29 participants in Delphi
2 rallied to the median score of 10. This is also the me-
dian score of the web-based survey. As one participant
eloquently said: ‘‘This is the absolute pre-requisite to
everything else.’’ A second participant emphasized that
investment was the issue at hand and not cost. However,
a few participants voiced the opinion that this candidate
was most certainly not specific to software engineering
and that it was impossible to disagree with it.

4.8. Manage quality throughout the life cycle as formally
as possible (H)

Table 5 shows that even though the level of support
for this candidate principle is quite strong, the level of
consensus around the scores is not as high, as evidenced
by the number of yes votes in Delphi 1 and Delphi 2.
Many comments regarding this candidate principle were
formulated as questions. What does quality precisely
mean? Is the definition of quality dependent on the
context? Is it dependent on the stakeholder? How do
you measure ‘‘quality’’, and who measures it? Could or
should ‘‘as formally’’ be replaced with ‘‘as explicitly’’?
Could ‘‘as possible’’ be substituted with ‘‘as practical’’?
Could the principle be simply stated simply as ‘‘Manage
quality throughout the life cycle’’? Additionally, how
does this candidate principle interact with candidate
principle K?

4.9. Minimize software component interaction (I)

For some reason, the Delphi 2 participants scored
this candidate principle higher than the Delphi 1 and the
web-based survey participants. Additionally, the level of
consensus on the median score of Delphi 2 participants
is also higher. While some participants believed that this
candidate principle reflected something ‘‘deeper’’ re-
garding the locality of processing and was essential to
the control of complexity, others put forward some very
pertinent questions, such as, for example: Should
‘‘minimize’’ be replaced by ‘‘manage’’ or ‘‘precisely
specify’’? Should ‘‘interaction’’ be restated as ‘‘interde-
pendencies’’? Does this candidate principle apply to all
types of software? If this candidate principle refers to the
coupling issue, should there be a complimentary candi-
date principle referring to the cohesion issue? Can this
candidate principle be over-applied, leading to poorly or
non-integrated software?

4.10. Produce software in a stepwise fashion (J)

Table 5 shows that the level of support and the level
of consensus on the scores for this candidate principle
were quite consistent across the three studies. This level
of support is well illustrated by one participant’s com-
ment that stated that this candidate principle was the
‘‘most fundamental’’ insight that we have arrived at over
the past 20 years. However, this same participant, and
others as well, emphasized that the application of this
candidate principle is not applicable to all categories of
software and problems, nor to all phases of the software
life cycle. Indeed, one participant went even further, by
stating that, if we were able to produce software in a
single step, we should. This participant believes that this
is not a principle, but a consequence of our current in-
ability to do better.

66 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70



4.11. Set quality objectives for each deliverable product
(K)

As with candidate J, the level of support and the level
of consensus around the scores for this candidate prin-
ciple are quite consistent across the three studies. As put
forward by some participants, the level of quality, in-
dependently of how one defines quality, does not need to
be the same for all categories and for all components of
a given software. Others questioned what quality pre-
cisely means in this candidate principle and how this
candidate principle relates to candidates A and H.

4.12. Since change is inherent to software, plan for it and
manage it (L)

This principle is very highly rated, with a strong level
of consensus, by the participants in all three studies. One
participant identified many ways to apply it. For ex-
ample, portions of software which change frequently
should be isolated from portions which change less.
Software should be self-descriptive and programmed
with widely used languages. A maintenance plan should
be incorporated into the project plan. Review points
should be incorporated into a project plan which pro-
vides for changes in requirements as well as for changes
in response to work in progress. Software components
which use vendor-specific capabilities or technology that
is likely to change should be better documented. A few
participants emphasized that not all software changes
frequently, and not all changes can be foreseen.

This principle provides a clear example of the crite-
rion that ‘‘A fundamental principle should be precise
enough to be capable of support or contradiction’’. If
this study had been performed 20 years ago, we would
probably have obtained some variant of ‘‘The require-
ments must be firm and fixed’’ (candidate 14 of Delphi
1). Candidate 14 was not retained after Delphi 1 due to
the weak support for this candidate. Today, most soft-
ware engineers understand that freezing is an undesir-
able action because it means commitments to a set of
requirements which are obsolete upon delivery of the
system. This example also illustrates the concept that a
principle is judged on the basis of utility.

4.13. Since tradeoffs are inherent to software engineering,
make them explicit and document them (M)

Table 5 shows that the level of support is consistently
strong for this candidate principle. As stated by one
participant expressed it, you cannot meet an arbitrarily
large number of good goals. Deliberate choices based on
sound analysis of these choices must be made. Others
noted that a proper understanding of the problem as
identified in candidate principle G is essential to making

these tradeoffs, as are the measurements identified in
candidate principle A. It was also noted that the notion
of constraint should not be confused with that of trade-
off. Tradeoffs should be viewed as one mechanism for
dealing with constraints.

4.14. To improve design, study previous solutions to
similar problems (N)

The SES’96 workshop participants proposed this
candidate principle as an example of a fundamental
principle. However, as with principle C, it did not
emerge from the consolidation of the proposals made
by the Delphi 1 participants. The participants of the
ISESS’97 workshop viewed this as an important omis-
sion and added it to the list. It received strong support in
the two subsequent studies. One participant noted that
one should not restrict oneself to studying only previous
software solutions to similar problems. Others inquired
as to why this candidate principle was limited to design
and as to how to identify which characteristics to use in
determining similarity.

4.15. Uncertainty is unavoidable in software engineering.
Identify and manage it (O)

Interestingly again, this candidate received stronger
support from the participants of Delphi 2 than from the
participants of the other two studies. One participant
postulated that there was probably more uncertainty
in software engineering than in other engineering disci-
plines because it relies so much on human expertise.
Other participants questioned what precisely is meant by
uncertainty. Does it mean risk; changing business needs;
uncertain completion schedules; uncertain staffing; un-
certain markets for the software; all of the above; or
something else? There were some participants who also
inquired as to how this candidate principle interacts with
the notions of measurement and decision-making put
forth in candidate A and the notion of change identified
in candidate L.

5. Summary and next steps

This paper has reported on a series of efforts under-
taken to try to identify a set of fundamental principles of
software engineering. A first workshop was held at the
Forum on Software Engineering Standards Issues of
1996 (SES’96) to establish what a fundamental principle
is and what the criteria are to which it should conform.

A Delphi study was then conducted in 1997 over the
Internet among 14 international software engineering
experts to identify a first candidate list of fundamental
principles of software engineering. A second workshop
was held at the International Symposium on Software

P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70 67



Engineering Standards of 1997 (ISESS’97) to eliminate
or reformulate some of the principles and the criteria.
Subsequently, a second Delphi study was conducted in
1998 among 31 software engineering experts holding
software engineering positions within the IEEE Com-
puter Society. From these studies, a list of fifteen can-
didate fundamental principles of software engineering
was compiled. Finally, an electronic survey was con-
ducted among the membership of the Technical Council
on Software Engineering to confirm the relevance of
these candidate principles for practitioners and to help
determine which of these 15 candidate principles are
indeed fundamental.

Based on the participant feedback and the many
pertinent issues that were brought up, a workshop is
now planned, possibly followed by one or more con-
sensus formation activities (such as Delphi studies) to
develop paragraph-length explanations for each princi-
ple. The object of these paragraph-length explanations
would be to provide better guidance on how each
principle should be interpreted.

The current set of fundamental principles was devel-
oped based on domain experts’ opinions, in successively
larger samples. While highly valuable in developing and
documenting the level of consensus on the process out-
put in terms of speed and cost, this type of research has
inherent methodological limitations which must be ad-
dressed in the future.

Techniques other than opinion surveys should now
also be investigated, through empirical designs for cor-
roborating these principles both within current theories
proposed in the field of software engineering and with
observation of their implementation in currently rec-
ommended best practices.

Other activities can be planned as well: analysis of
the body of current standards, of generally accepted
knowledge in software engineering as described in the
Guide to the Software Engineering Body of Knowledge,
and of university programs in software engineering to
assess the extent to which fundamental principles are
covered.

As shown in Fig. 1, the interaction between the can-
didate fundamental principles proposed in this paper for
software engineering and the more generic principles of
engineering, notably, is an issue that must also be in-
vestigated. However, as indicated in Section 1, funda-
mental principles are often tacit in the more mature
engineering disciplines. A structured comparison of the
work by Vincenti (Vincenti, 1990) with the list of can-
didate principles proposed in this paper is seen as an
interesting avenue in addressing this issue. Vincenti
proposes a taxonomy of engineering knowledge in gen-
eral based on the historical analysis of five case studies
in aeronautical engineering covering a roughly 50-year
period. Maibaum adopted Vincenti’s categories of en-
gineering knowledge to identify issues which need be

addressed to increase the maturity of software engi-
neering practice (Maibaum, 2000).

A thorough and structured analysis of the participant
comments would provide very valuable research mate-
rial for further exploration. An example of such an
analysis on the role of measurement in the set of can-
didate fundamental principles can be found in (Wolff,
1999).

Through a judicious combination of these proposed
next steps, it is hoped that better guidance will be
available on how to interpret the candidate principles,
that the potential flaws of the opinion-based studies
presented in this paper will be pinpointed and that the
set of candidate principles can in due course be judged
on the basis of usability, relevance, significance and
usefulness.

Acknowledgements

We would like to thank everyone who contributed
their ideas to this work: participants of Delphi studies,
workshops and web-based survey, and the anonymous
reviewers of this paper. The authors would also like to
thank the IEEE Computer Society and especially John
Keaton for their continuing support.

Appendix A. Initial 65 proposed principles submitted in

Round 1 of the Delphi 1 study (in alphabetical order)

1. Accept change.
2. Accept uncertainty in estimates.
3. Adopt a managed improvement-oriented ‘produc-

tion’ cycle.
4. Anticipation of change.
5. Build a model of the solution that can be assessed

for quality before any code is generated.
6. Build a transparent architecture.
7. Build with and for reuse.
8. Code in widely used, high-level languages with an

expectation of future maintenance, and the need to
revise/update and correct software over time. Iden-
tify an expected lifetime for the software (including
worst case).

9. Controlling risk. There are large quantities of un-
certainty, and risk of deviation from plans, in any
project. You cannot eliminate risk, but you can
document it, plan and design for it, accept it, mea-
sure it, and reduce it to acceptable levels.

10. Distinguish essential properties from incidental
properties. Enforce the essential properties and make
provisions for the incidental properties to be modi-
fied easily.

11. Do not displace objectives with means.

68 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70



12. Document only what is necessary.
13. Document structure, operations, and limitations.

Isolate code that is likely to change: where work is
based on vendor specific capabilities, where technol-
ogy is likely to change, and/or where user require-
ments are likely to change.

14. Establish a software process that provides flexibility
but still encourages discipline.

15. Establish a testing strategy that incorporates system-
atic testing methods.

16. Every project should plan and quantitatively specify
its reliability strategies (the blend of fault preven-
tion, fault removal, and fault tolerance) based on
its reliability objective(s).

17. Every software project should develop an opera-
tional profile or profiles in consultation with users
or their representatives, so that expected usage can
be quantified and development and testing focus
placed on the most used and/or most critical func-
tions.

18. Every software project should set a reliability objec-
tive or objectives for its deliverable product(s).
Actual reliability achieved should be estimated at
various points in the project and compared with
the objective(s), the ratio being used to manage the
project.

19. Explore multiple design alternatives, evaluate them
objectively, and make deliberate choices among
them.

20. Generality.
21. Goal of software engineering (management) is im-

proving quality, reducing costs (Productivity im-
provement) and delivering in time. But continuous
efforts for improving the environment, motivating
and educating people (engineering staff), and im-
proving process are more important.

22. Goals beat all. Meeting requirements is more funda-
mental than any other process or principle.

23. Identify and profile (see IEEE Std. 1003.0) the envi-
ronment for operations; do this in terms of stan-
dards where applicable.

24. Implement mechanisms to reduce entropy of pro-
cesses and products.

25. Incorporate a backup and maintenance plan into the
project plan. Make sure you can access the source
code and documentation at the end of the lifecycle
as well as at the beginning.

26. Incrementality.
27. Make careful trades between generality and power.
28. Manage software quality upstream. (Upper stream

is more important.)
29. Measure what matters, not what is handy. Predict

what to expect from the measurements before taking
them, and use the results to guide adjustments.

30. Minimize software component interaction.

31. Once a project is staffed, the quality of the processes
used to develop software will largely determine the
quality, timeliness, and cost effectiveness of the re-
sult.

32. Produce independent software.
33. Produce consistent software.
34. Produce modular software.
35. Produce self-descriptive software.
36. Produce simple software.
37. Projects should choose their tools and methodolo-

gies based on quantitative criteria, measuring their
effect on reliability, schedule, and cost with respect
to cost of implementation.

38. Quality (the balance of reliability, schedule, and cost
with respect to user needs) must be defined specifi-
cally for each product.

39. Quality Requirements must be specified for all qual-
ity characteristics, and quality must be measured for
all requirements.

40. Quality should be into the product and the process.
41. Quantification is mandatory for control. The multi-

ple concurrent quality and cost demands of most
systems, means that a quantified and testable set
of requirements is necessary, to get control over
quality and costs.

42. Reasonable balance. Requirements must be bal-
anced; you cannot meet an arbitrarily large number
of arbitrarily good goals.

43. Recognize risk.
44. Rigor (which can lead to formality).
45. Separate concerns. Isolate changing from minimum-

changing parts of the software/system.
46. Separation of concerns.
47. Software engineering is *not* engineering.
48. Software quality evaluation must be scientific and

quantitative. But it must be practical and cost effec-
tive.

49. Software really is different (from conventionally en-
gineered products).

50. Strive for predictable patterns for data, program
architecture, interfaces, and procedural logic, and
whenever possible, work to reuse existing patterns.

51. Test assumptions.
52. The most important determinants of the quality,

cost, and timeliness of software products are the ca-
pability and motivation of the engineer or engineers
who produce them.

53. The requirements for software products are inher-
ently ill defined.

54. The tools, methods, and support systems must be
designed and selected to support the software engi-
neers and the processes they use.

55. There are quite stringent limits to the dependability
that can be achieved and demonstrated for software-
based systems.

P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70 69



56. To build quality software products, the require-
ments must be firm and fixed.

57. Understand current requirements, and incorporate
into the project plan review points that provide for
changes in requirements as well as changes in re-
sponse to work in progress.

58. Understand dependency mechanism causing re-
work.

59. Understand your problem. No amount of rote ap-
plication of analysis, process, method, formalism,
or tools can substitute for genuinely understanding
what you are doing.

60. Understanding the application domain is the most
important part of software engineering.

61. Unnecessary difficulty, novelty and complexity are
the main enemies of the software engineer.

62. Use visual presentations for better quality manage-
ment.

63. View requirements from multiple perspectives.
64. Work with the customer to gain a clear understand-

ing of the problem and an indication of what is not
yet understood.

65. You cannot have it all. Some goals will be deemed
by you, and by your customer, to have higher prior-
ity than others, at particular times, places and con-
ditions.

Appendix B. Candidate principles that were consolidated

from the 65 proposals found in Appendix A (in alphabet-

ical order)

1. Apply and use quantitative measurements in deci-
sion-making.

2. Build with and for reuse.
3. Deal with different individual aspects of the problem

by concentrating on each one separately.
4. Define software artifacts rigorously.
5. Establish a software process that provides flexibil-

ity.
6. Implement a disciplined process and improve it con-

tinuously.
7. Invest in the understanding of the problem.
8. Manage quality throughout the life cycle as formally

as possible.
9. Minimize software components interaction.

10. Produce software in a step-wise fashion.
11. Set quality objectives for each deliverable product.
12. Since change is inherent to software, plan for it and

manage it.
13. Since tradeoffs are inherent to software engineering,

make them explicit and document them.
14. The requirements must be firm and fixed.
15. The tools, methods, and support systems must be

designed and selected to support the software engi-
neers.

16. Uncertainty is unavoidable in software engineering.
Identify and manage it.

References

Abran, A., Moore, J.W. (Exec. Eds), Bourque, P., Dupuis R. (Eds.),

2001. Guide to the Software Engineering Body of Knowledge –

Trial Version (Version 0,95). Montr�eeal, IEEE Computer Society

(can be downloaded from www.swebok.org).

Boehm, B.W., 1983. Seven basic principles of software engineering.

The Journal of Systems and Software 3 (1), 3–24.

B€oohm, C., Jacopini, G., 1966. Flow diagrams, turing machines and

languages with only two formation rules. Communications of the

ACM 9 (5), 366–371.

Davis, A.M., 1995. 201 Principles of Software Development. McGraw-

Hill, New York.

Dijkstra, E.W., 1968. Go to statement considered harmful. Commu-

nications of the ACM 11 (3), 147–148.

IEEE Std 610.12, 1991. IEEE Standard Glossary of Software

Engineering Terminology. Corrected Edition, February.

Jabir, Moore, J.W., 1998. A Search For Fundamental Principles of

Software Engineering. Report of a Workshop Conducted at the

Forum on Software Engineering Standards Issues, published in

Computer Standards&Interfaces – The International Journal on

the Development and Application of Standards for Computers,

1998. Data Communications and Interfaces. North-Holland,

Elsevier, Amsterdam, 19(2), 155–160 (the participants at this

workshop dubbed their group, ‘‘Jabir’’).

Maibaum, T.S.E., 2000. Mathematical foundations of software engi-

neering. In: Proceedings of the Conference on the Future of

Software Engineering, ACM, pp. 161–172.

McConnell, S., 1997. Software’s ten essentials. IEEE Software 14 (2),

143–144.

McConnell, S., 1999. Software engineering principles. IEEE Software

16 (2), 6–8.

Vincenti, W.G., 1990. What Engineers Know and How They Know

It – Analytical Studies from Aeronautical History. Johns

Hopkins, Baltimore, MD and London.

Wolff, S., 1999. La place de la mesure au sein des principes

fondamentaux du g�eenie logiciel. Masters Thesis. Universit�ee du

Qu�eebec �aa Montr�eeal, Montr�eeal, Qu�eebec, Canada.

70 P. Bourque et al. / The Journal of Systems and Software 62 (2002) 59–70


