
Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 1

Lack of Consensus on Measurement in Software Engineering:
Investigation of Related Issues

Pierre Bourque, Sibylle Wolff*, Robert Dupuis**, Asma Sellami, Alain Abran

École de Technologie Supérieure - ETS

1100 Notre-Dame Ouest,

Montréal, Canada H3C 1K3

* SAP Labs Canada

** Université du Québec à Montréal

pbourque@ele.etsmtl.ca, sibylle.wolff@sap.com, dupuis.robert@uqam.ca,
asma.sellami.1@ens.etsmtl.ca, aabran@ele.etsmtl.ca

Abstract:

Even though measurement is considered an essential concept in recognized
engineering disciplines, measures in software engineering are still far from being
widely used. To figure out why software measurement has not yet gained enough
peer recognition, this paper presents a set of issues that still have to be addressed
adequately by the software measurement community. These issues were derived
from the analysis of comments obtained during two Delphi studies and a Web-
based survey conducted to identify and reach a consensus on the fundamental
principles of the discipline within the international software engineering
community. The paper also discusses the application of metrology concepts as a
research direction to address some of the measurement issues identified.

Keywords

Metrology, Software measurement, Fundamental principles of software engineering

1 Introduction

In the IEEE collection of standards, software engineering is defined as:

“(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software, i.e. the application of
engineering to software. (2) The study of approaches as in (1).” [5]

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

2 Software Measurement Conference

It follows from this definition that the application of engineering to software requires
a quantitative approach, and therefore measurement is mandatory from this
perspective. Indeed, the use of measurements and quantitative models is known to
be essential in engineering. For example, Kirby et al. [7] have stated, talking about
the Egyptians, that “to place upright an obelisk of several hundred tons of weight is
an engineering feat that requires nicety of calculations and special equipment even in
modern times.”

In software engineering, however, there is a lack of general agreement on software
measurement. This can be illustrated using the comments collected during a study
conducted among world experts and experienced practitioners in software
engineering to identify and develop (if feasible) a consensus on the fundamental
principles of the discipline [3] :

• Some participants argued that measurement and quantitative models are
fundamental to engineering and that without them there is no engineering per
se. For them, measurement should always be applied and should be qualified
if need be.

• Other participants believed that applying and using measurements and
quantitative models in software engineering has too many caveats for it to be
universally applicable or even universally desirable. In their opinion,
measurements and quantitative models are not always applicable due to
excessive cost or to the low level of maturity of software engineering.

• Some participants also believed that one can focus too strongly on
measurement and quantitative models to the detriment of better judgment, and
that measurement and quantitative models constitute only one form of input to
the software engineering decision-making process.

These differences of opinion among such a group of top experts and seasoned
practitioners in software engineering is troubling and requires further investigation.
Therefore, this paper analyzes these differences of opinion by studying, in a
systematic manner, the detailed set of measurement-related comments provided by
these experts and experienced practitioners to support their opinions; these
comments were collected during a study on the fundamental principles of software
engineering [3], [10]. As an outcome of this analysis, questions on software
measurement are formulated: these questions represent, individually or in groups,
research issues that must addressed for measurement to gain wider recognition and
usage in software engineering. This paper also discusses the application of
metrology concepts as a research direction to address some of the measurement
issues identified.

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 3

The set of comments collected during the study on the fundamental principles of
software engineering is deemed worthy of study because it covers the entire
discipline, comes from an international pool of very competent participants (e.g.
members of IEEE Computer Society software engineering committees and
experienced practitioners) and relates to the essence of the discipline. These
comments can be negative, positive, represent an opinion, denounce two
overlapping principles, etc.

Section 2 presents the steps of the study conducted to identify and develop a
consensus on a list of fundamental principles of software engineering. Section 3
presents a list of reasons to measure in software engineering. These reasons are
used as a conceptual framework to analyze the software measurement-related
comments. An illustrative subset of the list of questions on measurement arising
from this analysis is presented in section 4. The full set of questions is available in
[10]. Section 5 discusses the interpretation and limitations of this analysis of
software measurement-related comments and a discussion of the results. A summary
is presented in section 6.

2 Fundamental Principles of Software Engineering

Figure 1 presents an overview of the various steps of the project conducted to
identify and develop a consensus on a list of fundamental principles of software
engineering; steps where comments were obtained are identified in grey.

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

4 Software Measurement Conference

1996 Decision of the IEEE
Software Engineering Standards

Committee

Workshop - SES'96
(Montréal, October 1996)

Recommendation to identify
fundamental principles of software
engineering

Criteria for identifying and evaluating
proposed principles

 Round 1:
- Submission of 65 proposed principles
- Synthesis into 16 candidates

Delphi I: International Software
Engineering Experts

Round 2:
Vote on the importance of each

candidate

Round 3:
Concurrence with mean rating

16 candidate fundamental principles

Mean rating for each candidate

Round 1:
Vote on the importance of each

candidate

Delphi II: IEEE Computer Society
Software Engineering Experts

Round 2:
Concurrence with median rating

Median rating for each candidate

Survey within membership of the
IEEE/TCSE

Web-Based Survey: CS-TCSE Members

Workshop - ISESS'97
(Walnut Creek, CA, June 1997)

Evaluated candidate fundamental
principles by international experts

Improved list of fundamental
principles with recommendations for

future steps Candidate fundamental principles
evaluated by practitioners

Candidate fundamental principles
evaluated by IEEE CS experts

: Steps in which comments are obtained
Figure 1: Project Steps of the Study on Fundamental Principles [3]

This project was prompted by a 1996 decision of the IEEE Software Engineering
Standards Committee to begin efforts to identify a list of fundamental principles for
software engineering. Such a list was viewed notably as an analysis framework for
better organizing, explaining and validating software engineering standards. A first
workshop was held at the Forum on Software Engineering Standards Issues of 1996
(SES’96) to establish what a fundamental principle is and which criteria it should
conform to, in order to evaluate the proposed principles.

A Delphi study was then conducted in 1997 over the Internet among a group of
software engineering experts, to identify a first list of candidate fundamental
principles of software engineering. It was also recommended that a subsequent
workshop be held to analyze the results of this Delphi study. The list of international
experts participating in this first Delphi study can be found in [3] .

In Round 1 of this first Delphi study, the international experts were asked to submit
proposals based on selected criteria. Each was asked to draw up a list of the five
proposed principles they felt were most pertinent. They were also invited to add any
amount of comments or explanations so that the Delphi study coordinators could

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 5

better understand and explain their selection to the participants in Round 2. Thirteen
international experts responded, which means that 65 proposed principles were
obtained. Then, two Delphi study coordinators consolidated these 65 suggestions
into a smaller number of principles, which met the criteria of the SES’96 workshop.
This produced a list of 16 candidate fundamental principles. At this stage, the
objective was to include the largest number of suggestions possible, while at the
same time trying to reduce overlap among the candidates.

In Round 2, the experts were asked to rate each of the 16 candidate fundamental
principles from Round 1 on a scale of 1 to 10. Participants were also asked to
comment on their ratings, which most of them did. This also provided them with the
opportunity to contest the way in which their initial five suggestions had been
consolidated into the 16 candidate fundamental principles.

The goal of Round 3 of a Delphi study is to reinforce and confirm the ratings that
emerge. Therefore, the experts were sent the mean scores of each candidate
fundamental principle. They were then asked whether or not they concurred with the
rating and to add more comments if need be.

A second workshop was held at the International Symposium on Software
Engineering Standards of 1997 (ISESS’97) to eliminate or reformulate some of the
principles and the criteria. This second workshop produced a list of improved
criteria, as well as a more refined list of fundamental principles. These improvements
were to be incorporated in the second Delphi study and in a subsequent Web-based
survey.

A second Delphi study was therefore conducted in 1998 among 31 IEEE Computer
Society “software engineering officials” in order to improve the principles. These
officials were members of IEEE Computer Society editorial boards or of sanctioned
committees related to software engineering. The list of participants in this second
Delphi study can be found in [3]. From these two workshops and two Delphi
studies, a list of fifteen candidate fundamental principles of software engineering has
been compiled (See Table 1). Participants were also given the opportunity to
provide comments during the two rounds of this second Delphi study.

Finally, a Web-based survey was conducted in 1999 among the membership of the
Technical Council on Software Engineering (TCSE) of the IEEE Computer Society,
with the cooperation of the IEEE Computer Society, to help verify the relevance of
these candidate principles for practitioners and to help determine which of these
fifteen candidate principles are indeed fundamental. A substantial number of
comments were obtained through this Web-based survey as well. Demographics of
the 574 participants who took part in this survey can also be found in [3].

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

6 Software Measurement Conference

- Apply and use quantitative measurements in decision-making
- Build with and for reuse
- Control complexity with multiple perspectives and multiple levels of

abstraction
- Define software artifacts rigorously
- Establish a software process that provides flexibility
- Implement a disciplined approach and improve it continuously
- Invest in the understanding of the problem
- Manage quality throughout the life cycle as formally as possible
- Minimize software component interaction
- Produce software in a stepwise fashion
- Set quality objectives for each deliverable product
- Since change is inherent to software, plan for it and manage it
- Since tradeoffs are inherent to software engineering, make them

explicit and document them
- To improve design, study previous solutions to similar problems
- Uncertainty is unavoidable in software engineering. Identify and

manage it

Table 1: List of candidate fundamental principles (in alphabetical order) [3]

3 Comment Analysis Framework and Steps

This section presents the framework adopted to analyze the measurement-related
comments and to structure the questions presented in the next section. The steps
followed to analyze the comments are also presented in this section, as well as an
example of the analysis of two software measurement-related comments.

Oman and Pfleeger [8] identify six key reasons for measuring in software
engineering; these reasons were selected as the analysis framework of the software
measurement-related comments:

• Measuring for understanding: Certain measurements allow a better
understanding of the activities of software development and maintenance. It is
possible, therefore, to understand the current situation by establishing
baselines, thus enabling the formulation of objectives for future behaviour.

• Measuring for experimentation: Experimentation is necessary in software
engineering, notably to improve software development methods, to better
understand the effects of various technologies and to identify the areas

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 7

requiring the most improvement. Measurement plays an important role in
experimentation by enabling the creation, and testing, of hypotheses.

• Measuring for project control: Measurement enables project control by
facilitating the evaluation of project status, and by predicting future events in
the project.

• Measuring for process improvement: Measurement helps to improve the
quality of software engineering processes, by better evaluating them and by
understanding more fully the impact of adopted changes to these processes.

• Measuring for product improvement: Measurement provides insight into
how software engineering processes, products, resources, methods and
technologies are interconnected. For example, measurements can help answer
questions regarding the effic iency of techniques and tools, the productivity of
development activities and the quality of products, thereby enabling product
improvement.

• Measuring for prediction: For new activities, it is necessary to predict
required effort, as well as development costs and other factors. Measurement
provides a baseline to predict these activities. Waiting until the end of project
to measure cost and time attributes is clearly unacceptable.

Fenton and Pfleeger [4] identify a seventh reason for measuring: “measuring for
evaluation.” This is somewhat similar to measurement for prediction, since attributes
of entities are measured during the software development process, but by focusing
on the past and the present rather than on the future.

• Measuring for evaluation: It is important to be able to understand what is
occurring now, as well as what has happened in the past.

The methodology designed for the analysis of the software measurement-related
comments is presented in Figure 2. The three inputs to the analysis are the set of
comments from the two Delphi studies and the comments from the Web-based
survey, as well as the measurement categories defined previously. The analysis itself
includes three steps: the selection of comments relevant to measurement and the
classification of these comments using the measurement categories, followed by a
synthesis of these comments. Finally, the outcome of this analysis is a list of issues
identified as underlying the lack of generalized consensus on measurement in
software engineering. These issues are formulated as a set of questions relevant to
measurement in software engineering.

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

8 Software Measurement Conference

Comments from two
Delphi studies

Categories of
measurement

Comments from a
survey

Inputs
Selection of comments

relevant to measurement

Classification of comments
according to measurement

categories

Synthesis of comments

List of questions relevant
to measurement in

software engineering

Process

Outcome

Figure 2: Methodology for Analysis of Comments [10]

The first step, the selection of comments relevant to measurement delivered 85
comments from the full set of comments collected during the two Delphi studies
and from the Web-based survey. These comments were then classified according to
the various reasons for measuring in software engineering. It should be noted that
the comments classified according to the measurement categories are related to
“why” we measure in software engineering. However, some comments could not be
classified based on these categories because they relate to measurement from a
general viewpoint or to the “what and how” of measuring. Comments can also
pertain to the utility itself of measurement in software engineering. An additional
category referred to as “comments about measurement in general” was therefore
added, and, of course, some comments are included in more than one category.

Subsequently, a synthesis of the comments related to measurement was completed.
Comments were grouped together by issue within each category. Some of the
categories have many issues, while others have only a few. The subtle differences
between the comments were also identified. These subtleties were analyzed to verify
whether they would generate new questions, or whether a single question would
cover all subtleties. The last step consisted in producing the list of questions.

As an example, Table 2 presents the analysis of two comments that were
categorized within the “measuring for process improvement” category. Three
questions were produced from these comments.

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 9

ID. Participant Comments Derived Questions

‘i’ This [measurement] is one of the
only mechanisms we have by which
we might hope to improve our
processes to something resembling
an engineering discipline.

 ‘j’ Uncertainty is created by the lack of
engineering and scientific discipline
in the definition of the problem, or
services to be provided by the
system or product(s). To become
an engineering discipline, the future
software engineer must be taught the
same engineering and scientific
fundamentals concerning systems
and products. This means clear
quantification of the performance
required by the process and results
provided by the associated system
or product(s).

• Can a discipline where
measurement does not play
an important role claim to
be a legitimate engineering
discipline?

• Do software engineering
educational programs
emphasize sufficiently the
importance of measurement
in software engineering?

• Does measurement
constitute the only
mechanism enabling
process improvement?

Table 2: Analysis of two comments within the “Measuring for Process
Improvement” category

4 Questions about Measurement in Software Engineering

An illustrative subset of the list of questions is presented in this section. Within each
category or reason for measuring, a summary of the analysis of the relevant
comments followed by the derived questions are presented. Readers are referred to
[10] for the full text of the comments, analysis and derived questions.

Measuring for understanding

The single comment identified within the category of “measuring for understanding”
states that the need to measure is a sign that no one understands the problem,
artifact or technology. This may indicate that either there is a belief that measuring
does indeed help in understanding software engineering problems, artifacts and
technologies or, perhaps the reverse, that it does not help at all. Questions derived
from the analysis of this comment are the following:

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

10 Software Measurement Conference

• What is our level of understanding of the problems, artifacts and technologies
of software engineering?

• To what extent can measurement help us better understand the problems,
artifacts and technologies of software engineering?

• Which aspects of these software entities (e.g. problems, artifacts and
technologies) is it important to measure?

• How much weight should be given to each of these aspects?

Measuring for evaluation

Some comments related to measuring for evaluation deal with the use of evaluation
to minimize the uncertainty of projects in software engineering. Some of the
questions derived from these comments are the following:

• Does software engineering have a higher level of uncertainty in comparison
with other disciplines of engineering, or have these other engineering
disciplines learned over time to better control their uncertainties?

• Could the use of measurement in software-related activities (such as feasibility
studies, architecture definition, risk identification and mitigation, planning, and
cost and schedule estimation) help decrease the level of uncertainty in
software engineering projects?

Measuring for experimentation

No comment on measuring for experimentation was identified in the set of collected
comments. This absence is in itself intriguing and might be related to
experimentation not being present in software engineering to a sufficient degree.

Measuring for project control

One participant asserted that every project should plan and quantitatively specify its
reliability strategies based on its reliability objective(s). Another participant asserted
that every software project should set a reliability objective or objectives for its
deliverable product and that it should be estimated at various points in the project
and compared with the objective(s) set at the outset of the project. Questions
derived from the comments in this category are the following:

• Is it really useful to use quantitative measures in project planning and control?

• Doesn't control necessarily imply measurement?

• Is quantitative measurement necessary for the control of all types of software
engineering projects?

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 11

Measuring for process improvement

A participant suggested that the use of quantitative data should not only guide the
management of the projects themselves, but should also enable senior management
to gauge the progress of process improvement in their organization. Other
participants asserted that the act of measuring the progress and the performance of
software engineering processes is essential for implementing improvements needed
for meeting industry demands. Derived questions are the following:

• Are measurements used for process improvement in software engineering
valid?

• Are there any measurements that enable the control of progress in process
improvement due to the usage of other measurements?

Measuring for product improvement

One participant asserted that software quality evaluation must be scientific and
quantitative. However, results must also be useful and the costs should not exceed
the advantages. The following question is derived:

• Must measuring for product improvement be done at all costs, or it is
essential to calculate return on investment obtained from the use of these
measurements?

Measuring for prediction

Some comments suggested that, in certain projects, it is important to be able to
estimate in advance their cost and schedule because it is simply unacceptable to wait
until the end of the project to know these values. It is also often necessary to know
if a given software product can achieve the required quality objective, such as
reliability. It is then important to obtain measurements to be able to predict what will
occur if the project is carried out. Derived questions are the following:

• In the case of predictions, which are the most reliable: predicted values of
measurements formulated at the beginning of the project or actual
measurements taken during the project?

• Can the use of measurements taken from previous projects enable better
predictions on future projects?

Measurement in general

Measurement plays an important role in engineering. This is why, according to some
participants, if measurement is not used systematically in software engineering, the
discipline cannot be recognized as an engineering discipline. However, another

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

12 Software Measurement Conference

participant pointed out that, despite the importance of measurement, the practice of
software engineering will always remain a combination of art and science. Derived
questions are the following:

• Does measurement truly play a crucial role in software engineering?

• If measurement does not play a crucial role in software engineering, are the
prospects for the discipline being recognized as a branch of engineering by
the various official organizations automatically eliminated?

5 Interpretation, Limitations and Discussion

This analysis of the opinions of experts and experienced practitioners on the use of
measurement and quantitative models in software engineering illustrates the lack of
generalized consensus on the subject. This lack of consensus among experts and
experienced practitioners is of course very puzzling, especially since:

• the IEEE definition of software engineering according to [5] explicitly requires
the application of a quantifiable approach;

• the expression “software engineering” is widely used in research and in
practice, and the extensive use of measurements and quantitative models is a
given in recognized engineering disciplines.

To summarize the measurement-related comments:

• some of the participants asserted that measurement must be an integral and
mandatory part of software engineering and without it there is no engineering
per se;

• others were of the opinion that, while measurement should have an important
role in software engineering, software measurement itself has too many
limitations in its current state for it to be universally applicable or even
universally desirable.

Though the authors of this paper believe that the set of collected comments is
worthy of analysis and indicative of important unresolved issues regarding
measurement in software engineering, limitations of this study must be highlighted.
First, the two Delphi studies and the Web-based survey were not meant to clarify the
role or the importance of measurement in software engineering, but focused instead
on the fundamental principles of the field. Second, even though defined steps were
followed to select and analyze the comments relevant to measurement, this remains a
qualitative approach.

Lack of Consensus on Measurement in Software Engineering

IWSM/MetriKon 2004 13

Further studies focusing directly on the role of measurement in software engineering
are obviously required to verify, refine, delete and add questions to the list produced
by this analysis.

In other disciplines of engineering, measurement methods, measuring instruments
and techniques for measurement have long been established and must satisfy a set
of metrology concepts as documented in the VIM [6]. In addition, quality criteria
about measurement results must be known, such as accuracy, repeatability and
reproducibility.

The issues highlighted in the set of questions documented in the previous section
support the opinion that there is a lack of maturity of measurement in software
engineering. This is not surprising since the majority of software measures proposed
in the literature are not based on verifiable approaches, and therefore cannot be
qualified as measurement methods [9]. Software engineering measures should be
consistent with measurement concepts in other disciplines of engineering. Moreover,
metrology concepts from the physical sciences are applied successfully in other
scientific and engineering fields [1], [2].

The use of measurement and the interpretation of measured data in software
engineering should demand considerable attentio n. The main objective in any
measurement is to establish the values of attributes of some entities. These values
should be meaningful and should be based on the foundations of adequate
measurement methods and related measuring instruments based on traceable
measurement references.

Indeed, analyzing the problem of measurement in software engineering represents a
measurement design problem. What is needed is a more precise definition of
software measurement, perhaps more than in any other engineering field. The
approach taken so far for designing software measurements is not mature regarding
metrology concepts and therefore is insufficient to support adequate
experimentation in software engineering. At some point, measurement standards will
be required to support software engineering as a bona fide engineering discipline.

6 Summary

This paper presents the results of a detailed and rigorous analysis of the software
measurement-related comments collected during a study conducted to identify and
reach a consensus on the fundamental principles of the discipline within the
international software engineering community. To better grasp the underlying
elements of the lack of consensus on measurement in software engineering and to
help move it forward, this paper presented a subset of a list of questions arising

P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran

14 Software Measurement Conference

from the analysis of the collected comments. The derived questions were structured
around seven reasons for measuring in software engineering and an additional
category of “measurement in general”. These questions should be viewed
individually or in groups as research issues to be addressed for measurement in
software engineering to be more widely accepted and practiced. The application of
metrology concepts to software measurement was presented as a research direction
to solve some of the identified issues.

References

1. Abran, A., Software Metrics Need to Mature into Software Metrology. in NIST

Workshop on Advancing Measurements and Testing for Information Technology (IT),
(Gaithersburg (Maryland), 1998).

2. Abran, A., Sellami, A. and Suryn, W., Metrology, Measurement and Metrics in Software
Engineering. in Ninth International Software Metrics Symposium (METRICS'03),
(2003).

3. Bourque, P., Dupuis, R., Abran, A., Moore, J.W., Tripp, L.L. and Wolff, S. Fundamental
Principles of Software Engineering - A Journey. Journal of Systems and Software , 62
(1).

4. Fenton, N.E. and Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Co., 1997.

5. IEEE. Standard Glossary of Software Engineering Terminology, IEEE, 1990.

6. ISO. International Vocubulary of Basic and General Terms in Metrology, International
Organization for Standardization - ISO, Geneva, 1993.

7. Kirby, R.-S., Withington, S., A.-B., D. and Kilgour, F.-G. Engineering in History. Dover
Publications Inc., New York, 1990.

8. Oman, P. and Pfleeger, S.L. Applying Software Metrics. IEEE Computer Society Press,
1997.

9. Sellami, A. and Abran, A., The contribution of metrology concepts to understanding and
clarifying a proposed framework for software measurement validation. in 13th
International Workshop on Software Measurement, (Montreal, 2003).

10. Wolff, S. La Place de la Mesure au Sein des Principes Fondamentaux du Génie
Logiciel, Université du Québec à Montréal, 1999.

