Guide to the Softwar e Engineering Body of K nowledge

A StoneMan Verson

A project of the Software Engineering Coordinating Committee

(Verson 0.7)

April 2000

(Joint IEEE Computer Society - ACM committee)

Corporate support by:

@'ﬂﬂflﬁﬂ'

Rationarl

the e-development company™

Raytheon

I*I Mational Ressarch Conseil national
Council Canada de racharchas Can

! ™
A h'

Project managed by:

UQAM

ada

Executive Editors:

Alain Abran, Université du Québec a Montréa
James W. Moore, The MITRE Corp.

Editors:

Pierre Bourque, Université du Québec a Montreal
Robert Dupuis, Université du Québec a Montréal

Chair of the Software Engineering Coordinating Committee

Leonard L. Tripp, IEEE Computer Society

Copyright © 2000, Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

PREFACE TO THE SWEBOK GUIDE

Software engineering is an emerging discipline
but there are unmistakable trends indicating an
increasing level of maturity:

¢+ McMaster University (Canada), the
Rochester Ingtitute of Technology (US), the
Universty of Sheffield (UK), the
University of New South Wales (Australia)
and other universities around the world now
offer undergraduate degrees in software
engineering.

+ The Software Capability Maturity Model
and ISO 9000 are used to certify
organizationa capability for software
engineering.

¢ In the US, the Computer Science
Accreditation Board (CSAB) and the
Accreditation Board for Engineering and
Technology (ABET) ae cooperating
closely and CSAB is expected to be lead
society for the accreditation of university
software engineering programs.

¢+ The Canadian Information Processing
Society has published criteria to accredit
software engineering undergraduate
university programs.

¢ The Texas Board of Professional Engineers
has begun to license professional software
engineers.

¢ The Association of Professiona Engineers
and Geoscientists of British Columbia
(APEGBC) has begun registering software
professiona engineersand the Professional
Engineers of Ontario (PEO) has aso
announced requirements for licensing.

+ The Assaociation for Computing Machinery
(ACM) and the Computer Society of the
Ingtitute of Electrical and Electronics
Engineers (IEEE) have jointly developed
and adopted a Code of Ethics for software
engineering professionals.

All of these efforts are based upon the
presumption that there is a Body of Knowledge
that should be mastered by practicing software
engineers. This Body of Knowledge existsin the
literature that has accumulated over the past
thirty years. This book provides a Guide to that
Body of Knowledge.

© |EEE— Soneman (Version 0.7) — April 2000

10.
11.

12.

13.

Purpose

The purpose of this Guide is to provide a
consensually-validated characterization of the
bounds of the software engineering discipline
and to provide a topica access to the Body of
Knowledge supporting that discipline. The Body
of Knowledge is subdivided into ten Knowledge
Areas (KA) and the descriptions of the KAs are
designed to discriminate among the various
important concepts, permitting readers to find
their way quickly to subjects of interest. Upon
finding a subject, readers are referred to key
papers or book chapters selected because they
succinctly present the knowledge.

In browsing the Guide, readers will note that the
content is markedly different from Computer
Science. Just as eectrical engineering is based
upon the science of physics, software
engineering should be based upon computer
science. In both cases, though, the emphasis is
necessarily different. Scientists extend our
knowledge of the laws of nature while engineers
apply those laws of nature to build useful
artifacts. Therefore, the emphasis of the Guideis
placed upon the construction of useful software
artifacts.

Readers will aso notice that many important
aspects of information technology, such as
specific programming languages, relationa
databases and networks, are also not covered in
the Guide. This is a conseguence of an
engineering-based approach. In al fields—not
only computing—the designers of engineering
curricula have realized that specific technologies
are replaced much more rapidly than the
engineering work force. An engineer must be
equipped with the essential knowledge that
supports the selection of the appropriate
technology a the appropriate time in the
appropriate circumstance. For example, software
sysems might be built in Fortran using
functional decompoasition or in C++ using object
oriented techniques. The techniques for
integrating and configuring instances of those
systems would be quite different. But, the
principles and objectives of configuration
management remain the same. The Guide
therefore does not focus on the rapidly changing
technologies.

14.

15.

16.
17.

These exclusions demonstrate that this Guide is
necessarily incomplete. Practicing software
engineers will need to know many things about
computer science, project management and
systems engineering—to name a few—that fall
outside the Body of Knowledge characterized by
this Guide. However, dating that this
information should be known by software
engineers is not the same as stating that this
knowledge fals within the bounds of the
software engineering discipline. Instead, it
should be stated that software engineers need to
know some things taken from other disciplines—
and that is the approach adopted by this Guide.
So, this Guide characterizes the Body of
Knowledge falling within the scope of software
engineering and provides references to relevant
information from other disciplines.

The emphasis on engineering practice leads the
Guide toward a strong relationship with the
normative literature. Most of the computer
science, information technology and software
engineering literature provides information
useful to software engineers, but a relatively
smal portion is normative. A normative
document prescribes what an engineer should do
in a specified situation rather than providing
information that might be helpful. The normative
literature is validated by consensus formed
among practitioners and is concentrated in
standards and related documents. From the
beginning, the SWEBOK project was conceived
as having a strong relationship to the normative
literature of software engineering. The two major
standards bodies for software engineering (IEEE
Software Engineering Standards Committee and
ISO/IEC JTCLSCY7) are represented in the
project. Ultimately, we hope that software
engineering practice standards will contain
principlestraceable to the SWEBOK Guide.

Intended Audience

The Guide is oriented toward a variety of
audiences. It a@ms to serve public and private
organizations in need of a consistent view of
software engineering for defining education and
training requirements, classifying jobs, and
developing performance evauation policies. It
also addresses practicing software engineers and
theofficialsresponsiblefor making public policy
regarding licensing and professiona guidelines.
In addition, professiona societies and educators
defining the certification rules, accreditation
policies for university curricula, and guidelines
for professional practice will benefit from

18.
19.

20.

21.

22.

23.

SWEBOK, as well as the students learning the
software engineering profession and educators
and trainers engaged in defining curricula and
course content.

Evolution of the Guide

At this time, the SWEBOK project
(http:/Amww.swebok.org) is nearing the end of
the second of its three phases—caled the
Stoneman. An ealy prototype, Strawman,
demonstrated how the project might be
organized. Development of the Ironman version
will commence after we gain insight through trial
application of the Stoneman Guide.

Since 1993, the IEEE Computer Society and the
ACM have cooperated in promoting the
professionalization of software engineering
through their joint Software Engineering
Coordinating Committee (SWECC). The Code of
Ethics mentioned previoudy was completed
under stewardship of the SWECC primarily
through volunteer efforts.

The SWEBOK project’s scope, the variety of
communities involved, and the need for broad
participation suggested aneed for full-time rather
than volunteer management. For this purpose, the
SWECC contracted the Software Engineering
Management Research Laboratory a the
Université du Québec a Montréal to manage the
effort. It operates under SWECC supervision.

The project team developed two important
principles for guiding the project: transparency
and consensus. By transparency, we mean that
the development process is itself documented,
published, and publicized so that important
dedsions and status are visible to al concerned
parties. By consensus, we mean that the only
practical method for legitimizing a statement of
this kind is through broad participation and
agreement by al significant sectors of the
relevant community. By the time the Stoneman
version of the Guide is completed, literaly
hundreds of contributors and reviewers will have
touched the product in some manner. By thetime
the third phase—the Ironman—is completed, the
number of participants will number in the
thousands and additional efforts will have been
made to reach communities less likely to have
participated in the current review process.

Like any software project, the SWEBOK project
has many stakeholders—some of which are
formaly represented. An Industria Advisory
Board, composed of representatives from
industry (Boeing, National Institute of Standards

© |EEE — Stoneman (Version 0.7) — April 2000

24,

25.

26.

and Technology, Nationa Research Council of
Canada, Rationa Software, Raytheon Systems,
and SAP LabsCanadd) and professional
societies (IEEE Computer Society and ACM),
provides financial support for the project. The
IAB’s generous support permits us to make the
products of the SWEBOK project publicly
avalable without any charge (vist
http://Aww.swebok.org). |AB membership is
supplemented with related standards bodies
(IEEE Software Engineering Standards
Committee and 1SO/IEC JTC1/SC7) and related
projects (the Computing Curricula 2001
initiative). The 1AB reviews and approves the
project plans, oversees consensus building and
review processes, promotesthe pr oject, and lends
credibility to the effort. In general, it ensuresthe
relevance of the effort to real -world needs.

We redlize, however, that an implicit body of
knowledge aready exists in textbooks on
software engineering. Thus, to ensure we fully
take advantage of the current literature, Steve
McConndll, Roger Pressman, and lan
Sommerville—the authors of the three best-
salling textbooks on software engineering—have
agreed to serve on a Panel of Experts, actingasa
voice of experience. In addition, the extensive
review process involves feedback from relevant
communities. In al cases, we seek international
participation to maintain a broad scope of
relevance.

We organized the development of the Stoneman
version into three public review cycles. Thefirst
review cycle focused on the soundness of the
proposed breskdown of topics within each KA.
Thirty-four domain experts completed this
review cycle in April 1999. The reviewer
comments, as well as the identities of the
reviewers, are available on the project’s Web
site.

In the second review cycle completed in October
1999, a considerably larger group of
professionals, organized into review viewpoints,
answered a detailed questionnaire for each KA
description. The viewpoints (for example,
individual practitioners, educators, and makers of
public policy) were formulated to ensure
relevance to the Guide's various intended
audiences. A discussion of the mgor changes
that were applied after this review cycle can be
found in Appendix E. Additiondly, five
thousand comments and their individud
disposition supplied by roughly 200 reviewers
andtheidentities of the reviewersareall publicly

© |EEE— Soneman (Version 0.7) — April 2000

27.

28.
29.

30.

31

32.

33.

34.

available and can be searched on the project’s
Web site.

The focus of the third review cyclewill be onthe
correctness and utility of the Guide and will be
conducted on the entire Guide as an integrated
document rather than on each KA separately.
This review cycle will be completed in the
Spring of 2000 by individuals and organizations
representi ng a cross-section of potential interest
groups.

Limitationsand Next Steps

Even though the current version 0.7 of the Guide
has gone through an elaborate development and
review process, the following limitations of this
process must be recognized and stated:

¢ So far, roughly two hundred and fifty
software engineering professionalsfrom 25
countries and representing various
viewpoints have participated in the project.
Even though this is a significant number of
competent software engineering
professionals, we cannot and do not claim
that this sample is representative of the
entire software engineering community
from around the world and across al
industry sectors

+ Even though complementary definitions of
what congtitutes "generally accepted
knowledge" have been developed, the
identification of which topics meet this
definition within each Knowledge Area
remains a matter for continued consensus
formation

¢ The amount of literature that has been
published on software engineering is
considerable and any selection of reference
materia remains a matter of judgment. In
the case of the SWEBOK, references were
selected because they are written in
English, readily available, easily readable,
and—, taken as a group—, provide
coverage of the topics within the KA

¢ important and highly relevant reference
material written in other languages than
English have been omitted from the
selected reference material

+ Only two out of three review cyclesfor the
Stoneman version have been completed.
Please note that thisisthefirst review cycle
of the entire Guide as an integrated
document

35.

36.
37.

38.

40.
41.

¢ The Guide has not yet been "field-tested"
by its intended audience. For example, no
one yet to our knowledge has attempted to
define a software engineering
undergraduate curricula based on this Guide
nor has any industry group or organization
yet written job descriptionsfrom the Guide.

Additionaly, one must consider that

+ Software engineering is an emerging
discipline. This is especialy true if you
compare it to certain more established
engineering disciplines. This means notably
that the boundaries between the Knowledge
Areas of software engineering and between
software engineering and its Related
Disciplines remain a matter for continued
consensus formation;

The contents of this Guide must therefore be
viewed a an ‘“informed and reasonable"

Alain Abran
Université du Québec aMontréal

39.

Executive Editors of

characterization of the software engineering
Body of Knowledge and as baseline document
for the Ironman phase. Additionally, please note
that the Guide is not attempting nor doesit claim
to replace or amend in any way laws, rules and
procedures that have been defined by officia
public policy makers around the world regarding
the practice and definition of engineering and
software engineering in particular.

To address these limitations, the next (Ironman)
phase will begin by monitoring and gathering
feedback on actua usage of the Stoneman Guide
by the various intended audiences for a period of
roughly two years. Based on the gathered
feedback, development of the Ironman version
would be initiated in the third year and would
follow a still to be determined development and
review process. Those interested in performing
experimental applications of the Guide are
invited to contact the project team.

James W. Moore
The MITRE Corporation

the Guide to the
Software Engineering

Body of Knowledge
Pierre Bourque Editors of the Guide Robert Dupuis
Université du Quéebec a Montréal to the Software Université du Québec aMontréal
Engineering Body of
Knowledge
Leonard Tripp Chair of the Joint
1999 President | EEE Computer
|EEE Computer Society Society —ACM
Software Engineering
Coordinating
Committee
April 2000
The SWEBOK project web siteis http:/mww.swebok.org/
the project team at the Université du Québec a
Acknowledgments Montréal: Simon Bouchard, Francois Cossette,

The SWEBOK editorid team gratefully
acknowledges the support provided by the
members of the Industrial Advisory Board.
Funding for this project is provided by the
Association for Computing Machinery, Boeing,
the IEEE Computer Society, the National
Institute of Standards and Technology, the
National Research Council of Canada, Rationa
Software, Raytheon, and SAP Labs (Canada).
The team also appreciates the important work
performed by the Knowledge Area specidists.
We aso wish to thank the followi ng members of

Michéle Hébert, Vinh T. Ho, Julie Hudon, Louis
Martin, Luis Molinié, Evariste Vaery Bevo
Wandji and Sybille Wolff. Finally, the team
acknowledges the indispensable contribution of
the hundreds of reviewers who have participated
so far. (Please note that the complete list of
reviewers is available on www.swebok.org and
will beincluded here in the final version)

© |EEE — Stoneman (Version 0.7) — April 2000

TABLE OF CONTENTS

PrREFACE TO THE SWEBOK GUIDE

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7

CHAPTER 8:

CHAPTER 9:

CHAPTER 10:

CHAPTER 11:

APPENDIX A:

APPENDIX B:

APPENDIX C:
APPENDIX D:

APPENDIX E:

INTRODUCTION TO THE GUIDE

SOFTWARE REQUIREMENTS
Pete Sawyer, Gerald Kotonya, Lancaster University

SOFTWARE DESIGN
Guy Tremblay, Université du Québec aMontréd

SOFTWARE CONSTRUCTION
Terry Bollinger, The MITRE Corporation
Philippe Gabrini, Louis Martin, Université du Québec a Montréal

SOFTWARE TESTING
Antonia Bertolino, Istituto di Elaborazione dellalnformazione

SOFTWARE MAINTENANCE
Thomas M. Pigoski, Technica Software Services (TECHSOFT), Inc.

SOFTWARE CONFIGURATION MANAGEMENT
John A. Scott, David Nisse, Lawrence Livermore National Laboratory

SOFTWARE ENGINEERING MANAGEMENT
Sephen G. MacDonell, Andrew R. Gray, University of Otago

SOFTWARE ENGINEERING PROCESS
Khaled El Emam, National Research Council

SOFTWARE ENGINEERING TOOLSAND METHODS
David Carrington, The University of Queendand

SOFTWARE QUALITY
DoloresWallace, Larry Reeker, Nationa Institute of Standards and Technology

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS FOR THE STONE MAN VERSION
OF THE GUIDE TO THE SOFTWARE ENGINEERING BODY OF KNOWLEDGE

A LIST OF RELATED DISCIPLINES FOR THE STONE MAN VERSION OF THE GUIDE TO
THE SWEBOK

CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’' S TAXONOMY
IDENTIFICATION OF RELEVANT KNOWLEDGE AREASOF RELATED DISCIPLINES

CHANGES BETWEEN VERSION 0.5 AND VERSION 0.7 OF THE GUIDE

© |EEE— Stoneman (Version 0.7) — April 2000

| mportant Notice

In this version of the Soneman Guide, all paragraphs and entriesin tables
are numbered so that reviewers can identify precisely where in the Guide a
recommended change is applicable. This numbering schema will be
removed in the final version of the Stoneman Guide.

© |EEE — Stoneman (Version 0.7) —April 2000

CHAPTER 1

| NTRODUCTION TO THE GUIDE

In spite of the millions of software professionals
worldwide and the ubiquitous presence of
softwarein our society, software engineering has
not yet reached the status of a legitimate
engineering discipline and a recognized
profession.

Since 1993, the IEEE Computer Society and the
ACM have been actively promoting software
engineering as a professon and a legitimate
engineering discipling, notably through their
Software Engineering Coordinating Committee
(SWECC).

Achieving consensus by the profession on a core
body of knowledge is a key milestone in all

disciplines and has been identified by the
Committee as crucia for the evolution of
software engineering toward a professiond
gtatus. This Guide, written under the auspices of
thiscommittee, isthe part of amulti-year project
designed to reach this consensus.

What is softwar e engineering?

The IEEE Computer Society defines software
engineering asl:
“(1) The application of a systematic,
disciplined, quantifisble approach to the
development, operation, and maintenance of
software; that is, the application of
engineering to software.

(2) The study of approachesasin (1).”2

What isarecognized profession?

For software engineering to be known as a
legitimate engineering discipline and a
recognized profession, consensus on acore body
of knowledge is imperative. This fact is well
illustrated by Starr when he defines what can be
considered a legitimate discipline and a

1 Of course, there are many other definitions of software
engineering. Since this effort is being conducted under a
joint committee of the ACM and the IEEE Computer
Society and since this definition was agreed upon by a
wide consensus within the Computer Society, it was
adopted at the outset of the Stoneman phase

“IEEE Standard Glossary of Software Engineering
Terminology,” |EEE, Piscataway, NJ std 610.12-1990,
1990.

© |EEE — Soneman (Version 0.7) — April 2000

10.

11.

12.

13.

14.

15.

16.

17.

recognized profession. In his Pulitzer-prize-
winning book on the history of the medica
profession inthe USA, he states that:

“the legitimation of professional authority
involves three distinctive claims: first, that
the knowledge and competence of the
professiona have been vdidated by a
community of his or her peers; second, that
this consensually vaidated knowledge rests
on rationd, scientific grounds; and third, that
the professional’s judgment and advice are
oriented toward a set of substantive values,
such as health. These aspects of legitimacy
correspond to the kinds of attributes —
collegia, cognitive and mora — usualy
cited in the term “profession.” 3

The softwar e engineering profession is
gill immature

But what are the characteristics of aprofession?
Gary Ford and Norman Gibbs studied severd
recognized professionsincluding medicine, law,
engineering and accounting’®. They concluded
that an engineering profession ischaracterized by
severa components:

+ An initid professional education in a
curriculum validated by society through
accreditation;

+ Registration of fitness to practice via
voluntary certification or mandatory
licensing;

¢ Specidized skill development and
continuing professional education;

¢+ Communa support via a professional
society;

+ A commitment to norms of conduct often
prescribed in acode of ethics.

5 P Sar, The Sociad Transformation of American
Medicine: Basic Books, 1982. p. 15.

“ P. Naur and B. Randdl, “Software Engineering,’
presented at Report on a Conference sponsored by the
NATO Science Committee, Garmisch, Germany, 1968.

® G. Ford and N. E. Gibbs, “A Mature Profession of
Software Engineering,” Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania,
Technica CMU/SEI -96-TR-004, January 1996.

1-1

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

This Guide directly supports the first three of
these components. Articulating a Body of
Knowledge is an essentid step toward
developing a profession because it represents a
broad consensus regarding what a software
engineering professional should know. Without
such a consensus, no licensing examination can
be vdidated, no curriculum can prepare an
individua for an examination, and no criteria can
be formulated for accrediting a curriculum. The
development of the consensus is the vitd
prerequisite for all of these®

What are the objectives of the
project?

Of course, the Guide should not be confused
with the Body of Knowledge itself. The Body of
Knowledge aready exists in the published
literature. The purpose of the Guide isto describe
what portion of the Body of Knowledge is
generally accepted, to organize that portion, and
to provide atopical accesstoit.

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) was established with
the following five objectives:

1. Promote a consistent view of software
engineering worldwide.

2. Clarify the place—and set the boundary—
of software engineering with respect to
other disciplines such as computer science,
project management, computer engineering,
and mathematics.

3. Characterize the contents of the software
engineering discipline.

4. Provide a topical access to the Software
Engineering Body of Knowledge.

5. Provide a foundation for curriculum
development and individual certification
and licensing material.

The first of these objectives, the consistent
worldwide view of software engineering was
supported by a development process that has
engaged approximately 200 reviewers so far
from 25 countries. (More information regarding
the development process can be found in the
Preface. Professional and learned societies and

Regarding the final two components, it should be
recognized that the SWEBOK guide is ajoint project of
the Software Engineering Coordinating Committee
(SWECC) jointly sponsored by the ACM and the IEEE
Computer Society. The SWECC has aready developed
and published acode of ethics.

1-2

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40,
41.
42.
43,
44,
45,
46,
47.

public agencies involved in software engineering
were officially contacted, made aware of this
project and invited to participate in the review
process. Knowledge Area Specialists or chapter
authors were recruted from North America, the
Pacific Rim and Europe. Presentations on the
project were made to various international
venues and more are scheduled for the upcoming
year.

The second of the objectives, the desire to set a
boundary, motivates the fundamenta
organization of the Guide. The material that is
recognized as being within software engineering
is organized into the ten Knowledge Areas listed
in Table 1. Each of the ten KAs is treated as a
chapter in this Guide. In establishing a boundary,
it is also important to identify what disciplines
share a boundary and often a common
intersection with software engineering. To this
end, the guide aso recognizes seven related
disciplines, listed in Table 2. Software engineers
should of course know material from these fields
(and the KA descriptions may make referencesto
the fields). It is not however an objective of the
SWEBOK Guide to characterize the knowledge
of the related disciplines but rather what is
viewed as specific to software engineering.
Tablel. The SWEBOK knowledge areas (ka).
Software requirements

Software design

Software construction

Software testing

Software maintenance

Software configuration management

Software engineering management

Software engineering tools and methods
Software engineering process

Software quality

Table2. Related disciplines.
Cognitive sciences and human factors
Computer engineering

Computer science

Management and management science
Mathematics

Project management
Systemsengineering

© IEEE — Soneman (Version 0.7) — April 2000

48.

49,

50.
51.

52.
53.

Hierarchical organization

The organization of the Knowledge Area
Descriptions or chapters, shown in Figure 1,
supports the third of the project's objectives—a
characterization of the contents of software

engineering. The detailed specifications provided
by the project’s editorial team to the Knowledge
Area Specidists regarding the contents of the
Knowledge Area Descriptions can be found in
Appendix A.

Matrix of Topics
Breakdown P Reference
: and Reference Material
of Topics Materials aterials
]
—
E— [—
e B
——) —
[E— —
| ———
[E— 11
[m—— W
e °
—] b
= |55 |i
—] °
Topic - Referencesto
Descriptions Ctljasg If g;?;l? sn Related
‘I}/axonomy Disciplines
Figure 1. Theorganization of a KA description.
The Guide uses a hierarchical organization to other well-recognized sources of authoritative
decompose each KA into a set of topics with information. Each KA description also includes a
recognizable labels. A two- or threeleve matrix that relates the reference materials to the
breakdown provides a reasonable way to find listed topics. The total volume of cited literature
topics of interest. The Guide treats the selected isintended to be suitable for mastery through the
topics in a manner compatible with major completion of an undergraduate education plus
schools of thought and with breakdowns four years of experience.
generally found in industry and in software 54. It should be noted that the Guide does not
engineering literature and standards. The atempt to be comprehensive in its citations.
breakdowns of topics does not presume Much material that is both suitable and excellent
particular app||cat|qn domalnS, business uses, is not referenced. Materials were selected, in
management philosophies, development part, because— taken as a collection—they
methods, and so forth. The extent of each topic’s provide coverage of the described topics.
description is only that needed for the reader to
successfully find reference material. After al, the 55. Depth of Treatment
Body of Knowledge is found in the reference .
materials, not in the Guide itself. 56. From the outset, the question arose as to the

Reference materials and a matrix

To provide a topical access to the Knowledge—
the fourth of the project's objectives—the Guide
identifies reference materids for each KA
including book chapters, refereed papers, or

© |IEEE — Soneman (Version 0.7) — April 2000

depth of treatment the Guide should provide. We
adopted an approach that supports the fifth of the
project's objectives—providing a foundation for
curriculum development, certification and
licensing. We applied a criterion of generally
accepted knowledge, which we had to
distinguish from advanced and research

13

57.

58.

59.
60.

61.
62.

knowledge (on the grounds of maturity) and
from speciaized knowledge (on the grounds of
generdity of application). The generdly
accepted knowledge applies to most projects
most of the time, and widespread consensus
validatesits value and effectiveness’

However, generaly accepted knowledge does
not imply that one should apply the designated
knowledge uniformly to all software engineering
endeavors—each project’'s needs determine
that—but it does imply that competent, capable
software engineers should be equipped with this
knowledge for potentia application. More
precisely, generaly accepted knowledge should
be included in the study material for a software
engineering licensing examination that graduates
would take after gaining four years of work
experience. Although this criterion is specific to
the American style of education and does not
necessarily apply to other countries, we deem it
useful. However, both definitions of generaly
accepted knowledge should be seen as
complementary.

Additionally, the descriptions are somewhat
forward-looking—we're considering not only
what is generally accepted today but also what
could be generally accepted in threeto five years.

Ratings

As an aid notably to curriculum developers and
in support of the project’s fifth objective, the
Guide rates each topic with one of a set of
pedagogical categories commonly attributed to
Benjamin Bloonf. The concept is that
educational objectives can be classified into six
categories representing increasing depth:
knowledge, comprehension, application,
analysis, synthesis, and evaluation Results of this
exercise for al KAs can be found in Appendix C.
This Appendix must however not be viewed as a
definitive classification but much more as a
jumpstart document for curriculum developers.

KAsfrom related disciplines

A list of disciplines (Related Disciplines) that
share a common boundary with software
engineering can be found in Appendix B.
Appendix B aso identifies from as authoritative

" Project Management Institute, A Guide to the Project
Management Body of Knowledge, Upper Darby, PA,
1996, http://www.pmi.org/publictn/pmboktoc.htm/

8
See
http://www.val dosta.peachnet.edu/~whuitt/psy 702/cogsy
s/bloom.html for Bloom's taxonomy .

14

63.

64.

65.

66.

67.
68.

69.

70.

a source as possible a list of KAs of these
Related Disciplines.

In support of the project’ sfifth objective, KAs of
Related Disciplines that were deemed relevant to
SWEBOK KAs are identified in Appendix D.
Although these KAs of Related Disciplines are
merely identified without additional description
or references, they should aid curriculum
developers.

Appendix D must however be viewed as a
jumpstart document and as aid to curriculum
developers rather than as a definitive list of
rdlevant Knowledge Areas of Related
Disciplines.

THE KNOWLEDGE AREAS

Figure 2 maps out the 10 KAs and the important
topics incorporated within them. The first five
KAs are presented in traditional lifecycle
sequence. The subsequent are presented in
alphabetical order. This is identica to the
sequence in which they are presented in the
Guide. Brief summaries of the KA descriptions
appear next.

Softwar e requirements

The software requirements (see Figure 2a) KA is
concerned with the acquisition, andysis
specification and management of software
requirements. It is broken down into six subareas
that correspond approximately to process tasks
that are enacted iteratively rather than
sequentially.

The requirements engineering process subarea
introduces the requirements engineering process,
orients the remaining five subareas, and shows
how requirements engineering dovetails with the
overal software engineering process. This
section also deals with contractual and project
organization issues.

The requirements elicitation subarea covers what
is sometimes termed requirements capture,
discovery, or acquisition. It is concerned with
where requirements come from and how they can
be collected by the requirements engineer.
Requirements dicitation is the first stage in
building an understanding of the problem the
software must solve. It is fundamentally a human
activity, and it identifies the stakeholders and
establishes relationships between the
development team and customer.

© IEEE — Soneman (Version 0.7) — April 2000

71.

72.

73.

74.
75.

76.

77.

The requirements analysis subarea is concerned
with the process of analyzing requirements to
detect and resolve conflicts between them, to
discover the boundaries of the system and how it
must interact with its environment; the
requirements analysis subarea also discusses the
elaboration from system requirements to
software requirements. The software
requirements specification subarea is concerned
with the structure, quality and verification of the
requirements document.

The requirements validation subareais concerned
with checking for omissions, conflicts, and
ambiguities and with ensuring that the
requirements follow prescribed quality standards.
The requirements should be necessary, sufficient,
and described in a way that leaves as little room
as possible for misinterpretation.

The requirements management subarea spans the
whole software life cycle. It is fundamentally
about change management and maintaining the
requirementsin a state that accurately mirrorsthe
software to be—or that has been—built.

Software design

Design (see Figure 2b) transforms (software)
requirements—typicaly stated in terms relevant
to the problem domain—into a description
explaining how to solve the software-related
aspects of the problem. It describes how the
system is decomposed and organized into
components, and it describes the interfaces
between these components. Design aso refines
the description of these components into a level
of detail suitable for alowing their construction.

Basic concepts of software design constitute the
first subarea of this KA. Software architectureis
the next subarea and includes topics on structures
and viewpoints, architectura styles and patterns,
design patterns and families of programs and
frameworks. Design qudity andyss and
evaluation congtitute the next subarea and is
divided into quality attributes, quality analysis
and evaluation tools, and metrics.

The design notations subarea discusses notations
for structural and behavioral descriptions. Design
strategies and methods constitute the last
subarea, and it contains four main topics. genera
strategies, function-oriented design, object-
oriented design, data-structure-centered design
and other methods.

© |IEEE — Soneman (Version 0.7) — April 2000

78.
79.

80.

81.

Softwar e constr uction

Software construction (see Figure 2¢) is a
fundamental act of software engineering;
programmers must construct working,
meaningful software through coding, self-
validation, and sdlf-testing (unit testing). Far
from being a simple mechanistic trandation of
good design in working software, software
construction burrows deeply into difficult issues
of software engineering.

The breakdown of topics for this KA adopts two
complementary views of software construction.
The first view comprises three major styles of
software construction interfaces. linguistic,
formal, and visua. For each style, topics are
listed according to four basic principles of
organization that strongly affect the way
software construction is performed: reducing
complexity, anticipating diversity, structuring for
validation, and using external standards.

For example, the topics listed under anticipation
of diversity for linguistic software construction
interfaces are information hiding, embedded
documentation, complete and sufficient method
sets, object-oriented class inheritance, creation of
“glue” languages for linking legacy components,
table-driven software, configuration files, and
sel f-describing software and hardware.

Softwar e testing

82.

83.

84.

Software testing (see Figure 2d) consists of
dynamically verifying a program’s behavior on a
finite set of test cases—suitably selected from the
usually infinite domain of executions—against
the specified expected behavior. These and other
basic concepts and definitions constitute the first
subarea of thisKA.

This KA divides the test levels subarea into two
orthogonal breskdowns; the first of which is
organized according to the traditional phases for
testing large software systems. The second
breakdown concerns testing for specific
conditions or properties.

The next subarea describes the knowledge
relevant to several generally accepted test
techniques. It classifies these techniques as being
intuition-based, specification-based, code-based,
fault-based, usage-based, or based on the nature
of the application. An aternative breakdown of
test techniques as being white-box or black-box
is aso presented. Test-related measures are dealt
with in their own subarea.

1-5

85.

86.
87.

88.

89.

90.
91.

The next subarea expands on issues relative to
the management of the test process, including
management concerns and test activities

Softwar e maintenance

Software maintenance (see Figure 2¢€) is defined
as the totdity of activities required to provide
cost-effective support to a software system.
Activities are performed during the predelivery
stage as well as the postdeivery stage.
Predelivery activities include planning for
postdelivery operations, supportability, and
logistics determination. Postdelivery activities
include software modification, training, and
operating a help desk.

The introduction to software maintenance
subarea discusses the need for software
maintenance and the categories of maintenance.
The maintenance activities subarea addresses the
unigue and supporting activities of maintenance
as well as maintenance planning. As with
software development, process is critical to the
success and understanding of software
maintenance. The next subarea discusses
standard maintenance process models.
Organizing the maintenance area might differ
from devel opment; the subarea on organizational
aspects discusses the differences.

Software maintenance present unique and
different technical and managerial problems for
software engineering, as addressed in the
problems of software maintenance subarea. Cost
is always a critical topic when discussing
software maintenance. The subarea on
maintenance cost and maintenance cost
estimation concerns life-cycle costs as well as
costs for individual evolution and maintenance
tasks. The maintenance measurements subarea
addresses the topics of quality and metrics. The
final subarea, techniques for maintenance,
aggregates many subtopics that the KA
description otherwise fails to address.

Softwar e configur ation management

We can define a system as a collection of
components organized to accomplish a specific
function and/or set of functions. A system’s
configuration is the function or physica
characterigtics of hardware, firmware, software,
or a combination thereof as set forth in technical
documentation and achieved in a product.
Configuration management, then, is the
discipline of identifying the configuration at
distinct points in time to systematically control

1-6

92.

93.
94.

95.

96.

97.
98.

99.

its changes and to maintain its integrity and
traceability throughout the system life cycle.

The concepts of configuration management apply
to al items requiring control, though there are
differences in implementation between hardware
configuration management and software
configuration management. The primary
activities of software configuration management
are used as the framework for organizing and
describing the topics of this KA (see Figure 2f).
These primary activities are the management of
the software configuration management process,
software configuration identification, control,
status accounting, and auditing; and software
release management and delivery.

Softwar e engineering management

The software engineering management (see
Figure 2g) KA addresses the management of
software development projects and the
measurement and modeling of such projects. It
consists of eight subareas, from measurement, to
organizational management and coordination and
then to six additional subareas organized by
lifecycle phases. The measurement subarea
addresses five man topicss measurement
program goals, measuring software and its
development, measurement selection, data
collection, and metric models.

The organizationa management and
coordination subarea considers the notion of
portfolio management, acquisition decisions and
management, policy management, personnel
management and communications. The
remaining subareas are organized according to
stages in the project development life cycle
initiation and scope definition, planning,
enactment, review and evaluation, project close
out and post-closure activities.

An aternative classification of these topics is

also proposed in the KA description based on
common themes.

Softwar e engineering process

The software engineering process (see Figure 2h)
covers the definition, implementation,
measurement, management, change, and
improvement of software processes. The first
subarea—basic concepts and definitions—
establishes the KA concepts and terminology.

The process infrastructure subarea is concerned
with putting in place an infrastructure for
software process engineering. Topics are the
experience factory and software engineering

© IEEE — Soneman (Version 0.7) — April 2000

100.

101.

102.

103.

104.

process groups. The process measurement
subarea discusses quantitative techniques to
diagnose software processes, to identify
strengths and weaknesses. This can be performed
to initiate process implementation and change,
and afterwards to evaluate the consequences of
process implementation and change.

The process definition subarea is concerned with
defining processes in the form of models, plus
the automated support that is available for the
modeling task, and for enacting the models
during the software process. The next subarea,
qualitative process analysis regards qualitative
techniques to analyze software processes, to
identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and &fterwards to evaluate the
consequences of process implementation and
change.

The process implementation and change subarea
contains topics that regard the deployment of
processes for the first time and with the change
of existing processes. It focuses on
organizationd change. It describes the
paradigms, infrastructure, and critical success
factors necessary for successful process
implementation and change. Within the scope of
this subarea, it aso presents some conceptual
issues about the evaluation of process change.

Softwar e
methods

The Software Engineering Tools and Methods
(see Figure 2i) Knowledge Area covers two
topics that cut across the other KAs: software
tools and development methods. Software tools
are the computer-based tools intended to assist
the software engineering process. Tools are often
designed to support particular methods, reducing
the administrative load associated with applying
the method manually. Like methods, they are
intended to make development more systematic,
and they vary in scope from supporting
individual tasks to encompassing the complete
life cycle. The top-level partitioning of the
software tools subareauses the list of KAs of this
Guide as its structure. The remaining categories
cover infrastructure support and other
miscellaneous topics.

Development methods impose structure on the
software development and maintenance activity
with the goal of making the activity systematic
and ultimately more successful. Methods usually
provide a notation and vocabulary, procedures
for performing identifiable tasks, and guidelines

engineering tools and

© |IEEE — Soneman (Version 0.7) — April 2000

105.

106.

107.

108.

109.

for checking both the process and product.
Development methods vary widely in scope,
from asingle life-cycle phase to the complete life
cycle. The Guide divides this subarea into three
nondigointed main topics. heuristic methods
dealing with informa approaches, forma
methods dealing with mathematically based
approaches, and prototyping methods dealing
with approaches based on various forms of
prototyping. The fourth man topic,
miscellaneous, covers issues not previously
covered

Softwar e quality

Production of quality productsiskey to customer
satisfaction. Software without the requisite
features and degree of quality is an indicator of
failed (or at least flawed) software engineering.
However, even with the best of software
engineering processes, requirement
specifications can miss customer needs, code can
fail to fulfill requirements, and subtle errors can
lie undetected until they cause minor or major
problems—even catastrophic failures. This KA
(see Figure 2)) therefore discusses the knowledge
related to software quality assurance and
software verification and validation activities.
The goa of software engineering is a qudlity
product, but quality itself can mean different
things. The first subarea, software quality
concepts, discusses measuring the vaue of
quality, quality attributes as defined in SO 9126,
dependability, specia types of systems and
quality needs, and the quality attributes for the
engineering process.

The software quality assurance process provides
assurance that the software products and
processes in the project life cycle conform to
their specified requirements and adhere to their
established plans. The software verification and
validation process determines whether products
of a given development or maintenance activity
conform to the requirements of that activity and
those imposed by previous activities, and
whether the final software product (through its
evolution) satisfies its intended use and user
needs. These form three additional subareas.

The last subarea discusses measurement as
applied to software quality assurance and
verification and validation.

1-7

Guide to the Software Engineering Body of Knowledge

(version 0.7%)

l

!

}

}

|

|

| !

|

}

Softw Soft Soft Software Software Software Software
Re !L)Jire;reenls — Software Design| Cor?st\rntllac;?on — Software Testing| Mai?ltglagﬁce — Configuration — Engineering — Engineering — Engineering Toolq — Software Qualit;
a Management Management Process and Methods
Requirements . Linguistic y : i i
R N N Basic Concepts and
> Engineering Softyvare Design l» Construction — oncep Introduction to Management of the | » Measurement _’.Basm C_t)l?c_epts and |y software Tools — Software Quality
Process Basic Concepts Methods Definitions > Software SCM Process Definitions Concepts
Maintenance Software Requirements |
Reduction in ComplexitsH iati ools
Maintenance Software Ly M(i;g;n;?:ﬁ?;d Ly Process Software Design Tools Defining SQA and
i : . ' 4 5 oftware Design Tool
l,. Requirements Software Anticipation of Diversit | Test Levels > Activities l,. Configuration Coordination infrastructure V&v
Elicitation Architecture » \dentification Sahwarefggstruuion*
Structuring for Validatiosy Maintenance Initialion_a_n_d Scope Ly Process Planning for SQA
) Software Design Use of External > Process Software Definition Measurement Software Testing Toolse and V&V
> Re}g;’g@gims H»-Quality Analysis and Standards I Test Techniques B Configuration SoﬂwaviMTi"le"a"ce<_ o
Evaluation Organizational Control e ools) Activities and
Formal Construction L > Aspects of > Planning [Process Definition Software Engineering | - Techniques for
Methods — M ‘Pl Process Tools SQA and V&V
Software Software Design Test Related aimenance Software Software Quality Tools4H
> Requirements f 9 i k- Configuration Status Qualitative Process Quality Measurement
P Notations Reduction in ComplexitsH Measures Problems of X X .
specifications > Software Accounting > Enactment Analysis Software Configuration o —» Applied to SQA anc
A Management Tools V&V
Anticipation of Diversits] Maintenance ;
. Process Software Englneermg*
. Software Design . Software . N Management Tools
Requirements . Structuring for Validation Management of the Maintenance Cost H - Review and L»- Implementation and
- L “» Strategies and 9 y P Configuration > N
Validation Methods Test Process —» and Maintenance Auditin Evaluation Change Infrastructure Support g
Use of External Cost Estimation 9 Tools
Standards Miscellaneous @
L Requirements)) MMalnlenanc? L ?Aoftware Retleasae I Project Close Out
Management Visual Construction easurements anagement an Software
Methods 7] Delivery Ly- Development —
- Methods
Reduction n Compleiet % Techniques for L Poes
Maintenance Heuristic Methods -
Anticipation of Diversity Formal Methods
Structuring for Validation Prototyping Methods 4
US;:LE::S;"EI « Miscellaneous
(a) (b) () (d) (e) (f) (©) (h) (0] 0]

138

Figure 2. A mapping of the Guide to the Software Engineering Body of Knowledge

* This refers to the interim draft version number of

the Stoneman Guide.

© |IEEE —Soneman (Version 0.7) — April 2000

CHAPTER 2
SOFTWARE REQUIREMENTS

Pete Sawyer and Gerald Kotonya
Computing Department,
Lancaster University
United Kingdom
{sawyer} {gerald} @comp.lancs.ac.uk

TABLE OF CONTENTS
1. INTRODUCTION

2. DEFINITION OF THE KNOWLEDGE AREA
2.1 What is arequirement?
2.2 System requirements and process drivers
2.3 Requirements analysisin outline
2.4 Requirements engineering in practice
2.5 Products and deliverables
3. SOFTWARE REQUIREMENTS KNOWLEDGE
AREA BREAKDOWN
3.1 The requirements engineering process
3.2 Requirements elicitation
3.3 Requi rements analysis
3.4 Software requirements specification
3.5 Requirements validation
3.6 Requirements management
APPENDIX A — BREAKDOWN RATIONALE

APPENDIX B — RECOMMENDED REFERENCES
FOR SOFTWARE REQUIREMENTS

APPENDIX C1 — RECOMMENDED READING

APPENDIX D — RECOMMENDED FURTHER
READING

APPENDIX E — REFERENCESUSED TOWRITE
AND JUSTIFY THE DESCRIPTION

1. INTRODUCTION

This document proposes a breakdown of the
SWEBOK Software Requirements Knowledge
Area. The knowledge area is concerned with the
acquisition, analysis specification and
management of software requirements. It is
widely acknowledged within the software
industry that software projects are critically
vulnerable when these activities are performed
poorly. This hasled to the widespread use of the
term 'requirements engineering' to denote the
systematic handling of requirements. Thisisthe
term we use in the rest of this document.
Software requirements are one of the products of
the requirements engineering process.

© |EEE— Soneman (Version 0.7) — April 2000

3.

Software requirements express the requirements
and congtraints on a software product that
contributes to the satisfaction of some 'need' in
the red world. This need may, for example, beto
solve some business problem or exploit a
bus ness opportunity offered by a new market. It
isimportant to understand that, except where the
problem is mativated by technology (such asthe
identification of a new market created by a new
technology), the problem is an artifact of the
problem domain and is generaly technology-
neutral. The software product alone may satisfy
this need (for example, if it is a desktop
application), or it may be a component (for
example, a speech compression module in a
mobile phone) of asoftware-intensive system for
which satisfaction of the need is an emergent
property. In fundamenta terms, the way in which
the requirements are handled for stand-alone
products and components of software-intensive
systemsisthe same. It isjust that in systemslike
the mobile phone, only a subset of the
requirements are allocated to software.

One of the main objectives of requirements
engineering is to discover how to partition the
system; to identify which requirements should be
allocated to which components. In some systems,
al the components will be implemented in
software. Others will comprise a mixture of
technologies. Almost dl will have human users
and sometimes it makes sense to consider these
‘components of the system to which
requirementsshould beallocated (for example, to
save costs or to exploit human adaptability and
resourcefulness). Because of this requirements
engineering is fundamentally an activity of
systems engineering rather than one that is
specific to software engineering. In this respect,
the term 'software reguirements engineering' is
misleading because it implies a narrow scope
concerned only with the handling of
requirements that have already been acquired and
allocated to software components. Since it is
increasingly common for practicing software

2-1

10.

11.

12.

13.

engineers to participate in the elicitation and
allocation of requirements, it is essential that the
scope of the knowledge area extends to the
whole of the requirements engineering process.
Tounderscorethisthe prefix 'software' isomitted
from requirements engireering in the remainder
of this document.

One of the fundamental tenets of good software
engineering is that there is good communication
between system users and system developers. It
is the requirements engineer who is the conduit
for this communication. They must mediate
between the domain of the system user (and
other stakeholders) and the technical world of the
software engineer. Thisrequiresthat they possess
technical skills, an ability to quickly acquire an
understanding of the application domain, and the
inter-personal skills to help build consensus
between heterogeneous groups of stakeholders.

We have tried to avoid domain dependency in
the document. The knowledge area document is
really about identifying requirements engineering
practice and identifying when the practiceisand
isn't appropriate. We recognise that desktop
software products are different from reactor
control systemsand the document should beread
in this light. Where we refer to particular tools,
methods, notations, SPI models, etc. it does not
imply our endorsement of them. They are merely
used as examples.

2. DEFINITION OF THE
KNOWLEDGE AREA

This section provides an overview of
requirements engineering in which:

+ thenation of a‘requirement’ is defined;

+ motivations for systems are identified and
their relationship to requirements is
discussed;

¢ a generic process for anaysis of
requirements is described, followed by a
discusson of why, in practice,
organisations often deviate from this
process; and

+ the ddiverables of the requirements
engineering process and the need to manage
requirements are described.

This overview is intended to provide a
perspectiveor ‘viewpoint’ on the knowledge area
that complements the one in section 4 - the
knowledge area breakdown.

22

14.

15.
16.

17.

18.

19.

20.

21.

Readers who are familiar with reguirements
engineering concepts and terms are invited to
skip to section 3.

2.1 What isarequirement?

Atitsmost basic, arequirement isa property that
a system must exhibit in order for it to meet the
system's motivating need. This may be to
automate some part of atask of the people who
will use the system, to support the business
processes of the organisation that has
commissioned the system, to control adevicein
which the software is to be embedded, and many
more. The functioning of the users, or the
business processes or the device will typically be
complex. By extension, therefore, the
requirements on the system will be a complex
combination of requirements from different
people at different levels of an organisation and
from the environment in which the system must
execute.

Requirements vary in intent and in the kinds of
properties they represent. A distinction can be
drawn between product parametersand process
parameter s. Product parameters are requirements
on the system to be developed and can be further
classified as:.

+ Functiona requirements on the system such
as formatting some text or modulating a
signa. Functiona requirements are
sometimes known as capabilities.

+ Non-functional requirements that act to
constrain the solution. Nonfunctiona
requirements are sometimes known as
constraints or quality requirements. They
can be further classified according to
whether they are (for example) performance
requirements, maintainability requirements,
safety requirements, reliability
requirements, electro-magnetic
compatibility requirements and many other
types of requirements.

A process parameter isessentially aconstraint on
the development of the system (e.g. 'the software
shall be written in Add). These are sometimes
known as process reguirements.

Non-functional requirements are particularly
hard to handle and tend to vary from vaguely
expressed godls to specific bounds on how the
software must behave. Two examples of these
might be: that the system must increase the call-
center's throughput by 20%; and a réiability
requirement that the system shal have a
probability of generating afatal error during any

© |EEE — Stoneman (Version 0.7) — April 2000

22.

23.

24,

25.

26.

hour of operation of less than 1 * 10°® The
throughput requirement is at a very high level
and will need to be elaborated into a number of
specific functiona requirements. The reliability
requirement will tightly constrain the system
architecture.

Many nonfunctional requirements are emergent
properties. That is, requirements that can't be
addressed by a single component, but which
depend for their satisfaction on how all the
system components inter-operate. The
throughput requirement for a call-centre given
above would, for example, depend upon how the
telephone system, information system and the
operators all interacted under actual operating
conditions. Emergent properties are crucialy
dependent upon the system architecture.

An essentia property of al requirements is that
they should be verifiable. Unfortunately, norr
functional requirements may be difficult to
verify. For example, it isimpossible to design a
test that will demonstrate that the above
reliability requirement has been satisfied.
Instead, it will be necessary to construct
simulations and perform statistical tests from
which the system’s probabl e reliability can be
inferred. This will be very costly and illustrates
the need to define non-functiona requirements
that are appropriate to the application domain yet
not so stringent asto be beyond the bounds of the
project budget.

Non-functional requirements should be
quantified. If a nonfunctiona requirement is
only expressed qualitatively, it should be further
analysed until it is possible to express it
quantitatively. Nonfunctional requirements
should never be expressed so vaguely as to be
unverifiable (‘the system shall be reliable’, ‘the
user interface shall be user-friendly’).

Stringent nontfunctional requirements often
generate implicit process requirements. The
choice of verification method is one example.
Another might be the use of particularly rigorous
analysistechniques (such asformal specification
methods) to reduce systemic errors that can lead
to inadequate reliability.

In atypica project there will be a large humber
of requirements derived from different sources
and expressed 4 different levels of detal. In
order to permit these to be referenced and
managed, it is essentia that each be assigned a
unique identifier.

© |EEE— Soneman (Version 0.7) — April 2000

27.

28.

29.

30.

31

32.

33.

34.

2.2 System requirements and process
drivers

The literature on requirements engineering
sometimes calls system requirements user
requirements. We prefer arestricted definition of
the term user requirements in which they denote
the requirements of the people who will be the
system customers or endusers. System
requirements, by contrast, are inclusive of user
requirements, requirements of other stakeholders
(such asregulatory authorities) and requirements
that do not have an identifiable human source.

Typica examples of system stakeholdersinclude
(but are not restricted to):

+ Users — the people who will operae the
system. Users are often a heterogeneous
group comprising people with different
roles and requirements.

¢ Customers — the people who have
commissioned the system or who represent
the system’ s target market.

+ Market anaysts — a mass-market product
will not have a commissioning customer so
marketing people are often needed to
establish what the market needs and to act
asproxy customers.

+ Regulators — many application domains
such as banking and public transport are
regulated. Systems in these domairs must
comply with the requirements of the
regulatory authorities.

+ System devel opers—these have alegitimate
interest in profiting from developing the
system. A common requirement is that
costs be shared across product lines so one
customer’ s requirements may bein conflict
with the developer's wish to sdl the
product to other customers. For a mass
market product, the developer will be the
primary stakeholder since they wish to
maintain the product in as large amarket as
possiblefor aslong aspossible.

In addition to these human sources of
requirements, important system requirements
often derive from other devices or systemsin the
environment which reguire some services of the
system or act to constrain the system, or even
from fundamental characteristics of the
application domain. For example, a business
system may be required to inter-operate with a
legacy database and many military systems have
to be tolerant of high levels of electro-magnetic
radiation. We talk of 'diciting' requirements but

23

35.

36.
37.

38.

39.

in practice the requirements engineer discovers
the requirements from a combination of human
stakeholders, the system's environment,
feasibility studies, market analyses, business
plans, analyses of competing products and
domain knowledge.

The dicitation and anaysis of system
requirements needs to be driven by the need to
achieve of the overdl project aims. To provide
thisfocus, abusiness case should be made which
clearly defines the benefits that the investment
must deliver. These should act as a 'redity check'’
that can be applied to the system requirementsto
ensure that project focus does not drift. Where
thereisany doubt about the technical or financial
viability of the project, a feasbility anaysis
should be conducted. Thisis designed to identify
project risks and assess the extent to which they
threaten the system's viability. Typica risks
include the ability to satisfy non-functiona

requirements such as performance, or the
availability of off-the-shelf components. In some
specialised domains, it may be necessary to
design simulations to generate data to enable an
assessment of the project risks to be made. In

domains such as public transport where safety is
an issue, a hazard analysis should be conducted

from which safety requirements can be
identified.

2.3 Requirementsanalysisin outline

Once the goals of the project have been
established, the work of dliciting, analysing and
validating the system requirements can
commence. This is crucial to gaining a clear
understanding of the problem for which the
systemisto provideasolution and itslikely cost.

The requirements engineer must strive for
completeness by ensuring that al the relevant
sources of requirements are identified and
consulted. It will be infeasible to consult
everyone. There may be many of users of alarge
system, for example. However, representative
examples of each class of system stakeholder
should be identified and consulted. Although
individual stakeholders will be authoritetive
about aspects of the system that represent their
interests or expertise, the requirements engineer
will be the only one with the ‘big picture’ and so
the assurance of completenessrestsentirely with
them.

Elicitation of the stakeholders' requirements is
rarely easy and the requirements engineer hasto
learn a range of techniques for helping people

24

40.

41.

42.

articulate how they do their jobs and what would
help them do their jobs better. There are many
social and politica issues that can affect
stakeholders' requirements and their ability or
willingness to articulate them and it is necessary
to be senditive to them. In many cases, it is
necessary to provide acontextua framework that
serves to focus the consultation; to help the
stakeholder identify what is possible and help the
requirements engineer verify their understanding.
Exposing the stakeholders to prototypes may
help, and these don't necessarily have to be high
fidelity. A seriesof rough sketcheson aflip chart
can sometimes serve the same purpose as a
software prototype, whilst avoiding thepitfalls of
distraction caused by cosmetic features of the
software. Walking the stakeholder through a
smal number of scenarios representing
sequences of events in the application domain
can aso help the stakeholder and requirements
engineer to explore the key factors affecting the
requirements.

Onceidentified, the system requirements have to
be validated by the stakeholders and trade-offs
negotiated before further resources are
committed to the project. To enable validation,
the system requirements are rormally kept at a
high level and expressed in terms of the
application domain rather than in technical terms.
Hence the system requirements for an Internet
book store will be expressed in terms of books,
authors, warehousng and credit card
transactions, ot in terms of the communication
protocols, or key distribution agorithmsthat may
form part of the solution. Too much technical
detail at this stage obscures the essentia
characteristics of the system viewed from the
perspective of its customer and users.

Not al of the system requirements will be
satisfiable. Some may be technicaly infeasible,
others may be too costly to implement and some
will be mutually incompatible. The requirements
engineer must analyse the requirements to
understand their implications and how they
interact. They must be prioritised and their costs
estimated. The goal isto identify the scope of the
system and a ‘basdineé set of system
requirementsthat isfeasible and acceptable. This
may necessitate helping stakeholders whose
requirements conflict (with each other or with
cost or other constraints) to negotiate acceptable
trade-offs.

To help the analysis of the system requirements,
conceptual modelsof the system are constructed.
These ad understanding of the logica

© |EEE — Stoneman (Version 0.7) — April 2000

43.

44,

45,

46.

partitioning of the system, its context in the
operationa environment and the data and control
communications between the logical entities.

The system requirements must be analysed in the
context of al the applicable constraints.
Constraints come from many sources, such asthe
business environment, the customer's
organisational structure and the system’'s
operational environment. They include cogt,
technical (nonfunctional requirements),
regulatory and other constraints. Hence, the
requirements engineer’s job is not restricted to
eliciting stakeholders' requirements, but includes
identifying the reasons why their requirements
may be unrealisable.

Unnecessary requirements should be excluded.
The requirements engineer must avoid the
common temptation of both usersand devel opers
to ‘gold plate’ systems. The essential principleis
that the requirements should be necessary and
sufficient — there should be nothing left out or
anything that doesn't need to be included. The
requirements engineer must also establish how
implementation of the system requirements will
be verified. Acceptance tests must be derived
that will assure compliance with the
requirements before delivery or release of the
product.

Eventually, a complete and coherent set of
system requirements will emerge as the result of
the analysis process. At this point, the principal
areas of functionality should be clear and the
system can be partitioned into a st of
subsystems or components to which
responsibility for the satisfaction of subsets of
the requirements are dlocated. Where
requirements are alocated to a software
component, the requirements comprise the
software requirements for that component.

This activity of partitioning and alocation is
architectura design. Architectural design is a
skill that is driven by many factors such as the

© |EEE— Soneman (Version 0.7) — April 2000

47.

48.

recognition of reusable architectural 'patterns or
the existence of off-the shelf components.
Derivation of thesystem architecturerepresentsa
major milestonein the project and it is crucial to
get the architecture right because once defined,
and resources are committed, the architecture is
hard to change. In particular, the interaction of
the system components crucialy affects the
extent to which the system will exhibit the
desired emergent properties. At this point, the
system requirements and system architecture are
documented, reviewed and 'signed off' as the
baseline for subsequent development, project
planning and cost estimation.

Except in small-scale systems, it is generally
infeasible for software developers to begin
detailed design of system components from the
system requirements document. The
requirements alocated to components that are
complex systems in themselves will need to
undergo further cycles of analysisin order to add
more detail, and to irterpret the domain-oriented
system requirements for developers who may
lack sufficient knowledge of the application
domain to interpret them correctly. Hence, a
number of detailed technica requirements are
typicaly derived from each high-level system
requirement. It is crucid to record and maintain
this derivation to enable the impact of any
subsequent changes to the requirements to be
assessed. Thisis called requirements tracing.

Refinement of the requirements and system
architecture is where requirements engineering
merges with software design. There is no clear-
cut boundary but it is rare for requirements
analysis to continue beyond 2 or 3 levels of
architectural decomposition beforeresponsibility
is handed over to the design teams for the
individud components. Figure 1 shows how
software requirements engineering fits into the
systems engineering process.

2-5

49.

50.

51.
52.

53.

54.
55.
56.

S7.

58.

System
requirements
engineering

Architectural
design

. | Requirements
Ll -
allocation

System
validation
A

System
integration

Sub-system
development

Software
| requirements
engineering

F 3

Figure 1 The systems engineering process

Activity Description
System requirements The requirements for the system as a whole are established. These will usudly be
engineering expressed in a high-level fashion and written in naturd language. Some detailed

constraints may be included if these are critical for the success of the system.

Architectural design
Requirements alocation

The system is decomposed into a set of independent sub-systems.
The requirements are andysed and adlocated to these sub-systems. At this stage,

decisons may be made about whether requirements should be hardware or software

requirements.
Software requirements
engineering
Sub-system development
System integration
System validation

The high-levdl software requirements are decomposed into a more detailled set of
requirements for the software components of the system

The hardware and the software subsystems are designed and implemented in pardldl.
The hardware and software subsystems are put together to complete the system

The System is vaidated againgt its requirements.

2.4 Requirementsengineeringin
practice

While the general aims of the analysis process
described above is fairly generic, it will not be
appropriate in every case. There is often
insufficient time, effort or freedom from
implementation constraints to permit an orderly
process such as that described in section 2.3.
There is a genera pressure in the software
industry for ever shorter development cycles,
and this is particularly pronounced in highly
competitive market-driven sectors. Moreover,
relatively few projects are 'greenfield'. Most are
constrained in some way by their environment
and many are upgradesto or revisions of existing
systemswherethe system architectureisagiven.
In practice, therefore, it is amost aways

2-6

59.

60.

impractical to implement requirements
engineering as a linear, deterministic process
where system requirements are elicited from the
stakeholders, baselined, alocated and handed
over to the software development team. It is
certainly a myth that the requirements are ever
perfectly understood or perfectly specified.

Instead, requirements typicaly iterate toward a
level of qudity and detail that is sufficient to
permit design and procurement decisions to me
made. In some projects, this may result in the
requirements being baselined before all their
properties are fully understood. This is not
desirable, but it is often afact of lifein the face
of tight time pressure.

Even where more resources are alocated to
requirements engineering, the level of analysis
will seldom be uniformly applied. For example,

© |EEE — Stoneman (Version 0.7) — April 2000

61.

62.
63.

64.

early oninthe process experienced engineersare
often able to identify where existing or off-the-
shelf solutions can be adapted to the
implementation of system components. The
requirements allocated to these need not be
elaborated further, while others, for which a
solution is less obvious, may need to be
subjected to further anaysis. Critica
requirements, such as those concerned with
safety, must be analysed especialy rigoroudly.
In amost &l cases requirements understanding
evolvesin parald with design and development,
often leading to the revision of requirements late
in the life-cycle. Thisis perhapsthe most crucid
point of understanding about requirements
engineering - a significant proportion of the
requirementswill change. Thisis sometimes due
to errors in the analysis, but it is frequently an
inevitable consequence of change to the
customer's business environment. It isimportant
to recognise the inevitability of change and
adopt measuresto mitigate the effects of change.
Change has to be managed by applying careful
requirements tracing, impact analyss and
version management. Hence, the requirements
engineering process is not merely a front-end
task to software development, but spans the
whole development lifecycle. In a typica
project the activities of the requirements
engineer evolve over time from elicitation to
change management.

2.5 Products and ddiverables

Good requirements engineering requires that the
products of the process - the deliverables - are
defined. The most fundamental of these in
requirements engineering is the requirements
document. This often comprises two separate
documents:

¢ A document that specifies the system
requirements. This is sometimes known as
the requirements definition document, user
requirements document or, as defined by
IEEE od 1362-1998, the concept of
operations (ConOps) document. This
document serves to define the high-level
system requirementsfrom the stakeholders
perspective(s). It also serves as a vehicle
for validating the system requirements and,
in certain types of project, may form the
basis of an invitation to tender. Its typica
readership includes representatives of the
system stakeholders. It must be couched in
termsof the customer'sdomain. In addition
to a list of the system requirements, the

© |EEE— Soneman (Version 0.7) — April 2000

65.

66.

67.

68.

requirements definition needs to include
background information such as statements
of the overall objectives for the system, a
description of its target environment and a
statement of the constraints and non
functional requirements on the system. It
may include conceptua models designed to
illustrate the system context, usage
scenarios, the principal domain entities, and
data, information and work flows.

+ A document that specifies the software
requirements. This is sometimes known as
the software requirements specification
(SRS). The purpose and readership of the
SRS is somewhat different than the
requirements definition document. In crude
terms, the SRS documents the detailed
requirements derived from elaboration of
the system requirements, and which have
been alocated to software. The non
functional requirementsin the requirements
definition should have been elaborated and
quantified. The principa readership of the
SRSistechnical and thiscan bereflectedin
the language and notations used to describe
the requirements, and in the detail of
models used to illustrate the system. For
custom software, the SRS may form the
basis of a contract between the developer
and customer.

This is only a broad characterisation of the
requirements document(s) that may be mandated
by aparticular requirementse ngineering process.
The essential point is that some medium is
needed for communicating the requirements
engineer's assessment of the system
requirements to the stakeholders, and the
software requirements to developers. The
requirements document must be structured to
make information easy to find and standards
such as |EEE std 1362-1998 and IEEE std 830-
1998 provide guidance on this. Such standards
areintended to be generic and need to be tailored
to the context in which they are used.

A requirements document should be easy to read
because this affects the likelihood that the
system will conform to the requirements. It
should also be reasonably modular so that it is
easy to mantain. The dructure of the
requirements document contributes to these
properties but care must also betaken to describe
the requirements as precisely as possible.

Requirements are usualy written in natura
language but in the SRS this may be

2-7

69.

70.
71.

72.

73.
74.

75.

supplemented by forma or semi-formal
descriptions. Selection of appropriate notations
permits particular requirements and aspects of
the system architecture to be described more
precisdly and concisely than natural language.
The general ruleisthat notations should be used
that alow the requirements to be described as
precisely as possible. Thisis particularly crucial
for safety-critical and certain other types of
dependable systems. However, the choice of
notation is often constrained by the training,
skillsand preferences of the document’ s authors
and readers.

Even where formal notations are used, they need
to be paaphrased by naturd language
descriptions. However, natural language has
many serious shortcomings as a medium for
description. Among the most seriousarethat it is
ambiguous and hard to describe complex
concepts precisely. Formal notations such as Z
or CSP avoid the ambiguity problem because
their syntax and semantics are formally defined.
However, such notations are not expressive
enough to adequately describe every system
aspect. Natural language, by contrast, is
extreordinarily rich and able to describe,
however imperfectly, amost any concept or
system property. A natura language is aso
likdly to be the document author and
readerships’ only lingua franca. Because natural
language is unavoidable, requirements engineers
must be trained to use language simply,
concisely and to avoid common causes of
mistaken interpretation. These include:

+ long sentences with complex sub-clauses;

¢ the use of terms with more than one
plausible interpretation (ambiguity);

* presenting severd requirementsasasingle
requirement;

¢ inconsistency in the use of terms.

To counteract these problems, requirements
descriptions often adopt a stylised form and use
a restricted subset of a natural language. It is
good practice, for example, to keep requirement
descriptions short and to standardise on a small
set of modal verbsto indicate relative priorities.
Hence, for example, the use of ‘shall’ in the
requirement ‘The emergency breaks shall be
applied to bring the train to a stop if the nose of
thetrain passesasigna & DANGER' indicatesa
requirement that is mandatory.

Verification of the qudity of the requirements
documents(s) isan essentia part of requirements

28

76.

77.

78.

79.

80.

81.

validation. Hence, requirements validation is not
merely about checking that the requirements
engineer has understood the requirements. It is
aso about checking that the way the
requirements have been documented conformsto
company standards, and is understandable,
consistent and complete. Formal notations offer
the important advantage that they permit the last
two properties to be proven. The document(s)
should be subjected to review by different
stakeholders including representatives of the
customer and devel oper. Crucialy, requirements
documents must be placed under the same
configuration management regime as the other
deliverables of the devel opment process.

The requirements document(s) are only the most
visible manifestation of the requirements. They
exclude information that is not required by the
document readership. However this other
information is needed in order to manage them.
In particular, it is essential that requirements are
traced. Tracing refers to the construction of a
directed asynchronous graph (DAG) that records
the derivation of requirements and provides audit
traills of requirements. As a minimum,
requirements need to be tracable backwards to
their source (e.g. from a software requirement
back to the system requirements from which it
was elaborated), and forwards to the design or
implementation artifacts that implement them
(e.g. from a software requirement to the design
document for a component that implements it).
Tracing dlows the requirements to be managed.
In particular, it alows an impact anaysis to be
performed for a proposed change to one of the
reguirements.

Requirements tracing and the maintenance of
requirements attributes has historically been
grossly under-valued. Part of the reason for this
is that it is an overhead. However, modern
requirements management tools make this much
less so. They typically comprise a database of
requirements and a graphical user interface:

+ to store the requirement descriptions and
attributes;

+ to dlow the trace DAGs to be generated
automatically;

+ to dlow the propagation of requirements
changes to be depicted graphicaly;

+ to generate reports on the status of
requirements (such as whether they have
been analysed, approved, implemented,
€tc.);

© |EEE — Stoneman (Version 0.7) — April 2000

82.

83.

84.

85.

85.

89.

90.

91.

92.

93.

+ to generate requirements documents that
conform to sel ected standards;

¢ and to gpply verson management to the
requirements.

It should be noted that not every organisation has
a culture of documenting and managing

requirements €elicitation and requirements
analysis, aong with requirements engineering-
specific descriptions of management and, to a
lesser degree, organisational processes. Hence,
we identify reguirements validation and
requirements management as separate topics.

requirements. It is common for dynamic start-up 86. We are aware that a risk of this breskdown is
companies which are driven by a strong * product that awaterfall-llke_proc&ss may bemfeyred. To
vison' and limited resources to view guard againdt this, the first topic, the
requirements documentation & an unnecessary requirements engineering process, is designed to
overhead. Inevitably, however, as these provide a high-level overview of requirements
companies expand, as their customer base grows engineering by sefting out the resources and
and as their product starts to evolve, they constraints that requirements engineering
discover that they need to recover the operates under and whlch act to configure the
requirements that motivated product features in requirements engineering process.
order to assess the impact of proposed changes. 87. There are, of course, many other ways to
It is true that requirements documentation and structure the breakdown. For example, instead of
management is an overhead, but it is one that a process-based structure, we could have used a
paysdividendsin the longer term. product-based structure (system requirements,

software reguirements, prototypes, use-cases,

etc). We have chosen the process-based
3. SOFTWARE REQUIREMENTS breakdown to reflect the fact that requirements
KNOWLEDGE AREA BREAKDOWN engineering, if it is to be successful, must be
The knowled breckd have ch considered as a process with comple>§, tightly
he knowledge areéa breekaown we have chosen coupled activities (both sequentid and
ISQ/I EC 12207-1995 that. refer to requirements activity at the outset of a software development
enfgt' neering actlvgg %5 d.-fl;h's Stt?ndgd views the project. The breakdown is compatible with that
Softweare process ITrerent levelsas primary, used by many of the works in the recommended
supporting and organisational life-cycle reading list (Appendices B and C). See appendix
proce@esl - In ﬁgeftht_o slt(eeth) the Preakdm:n A for an itemised rationale for the breakdown.
simple, we conflate this structure into a single . . :
life-cycle processfor requirements engineering. 88. The breskdown comprises 6 topics as shown in
The separate topics that we identify include table 1.
primary life-cycle process activities such as

Requirements engineering topics Subtopics
1. The requirement engineering process Process models
Process actors

Process support and management
Process quality and improvement

2. Requirements icitation

Requirements sources
Elicitation techniques

3. Requirement analysis

Requirements classfication

Conceptud modding

Architectural design and requirements alocation
Requirements regotiation

4. Requirements specification

5. Requirements validation

The requirements definition document

The software requirements specification (SRS)
Document structure and standards

Document quality

The conduct of requirements reviews
Prototyping

Modd vdidation

Acceptance tests

© |EEE— Soneman (Version 0.7) — April 2000

2-9

94.

95.
96.

97.
98.

99.

Reguirements engineering topics

Subtopics

6. Requirements management

Change management
Requirements attributes
Requirements tracing

Table 1 Knowledge are breakdown

Figure 2 shows conceptually, how these activities
comprise an iterative requirements engineering
process. The different activities in requirements
engineering are repeated until an acceptable
requirements specification document is produced
or until external factors such as schedule pressure

or lack of resources cause the requirements
engineering process to terminate. After a final
requirements document has been produced, any
further changes become part of the requirements
management process.

Informal statement of

reauirements

User needs)\

Domain information
Standards

Decision point: Accept
document or reenter spiral

I

Requirements dlicitation

el BN

Requirements andysis
and negotiation

Requirements document Y K [[Start

and validation report \ \

Requirements validation

Agreed
requirements

1

Requirements specification

_//

\l

Draft requirements

document

Figure 2 A spiral modd of the requirements engineering process

3.1 Thereguirementsengineering
process

This section is concerned with introducing the
requirements engineering process, orienting the
remaining 5 topics and showing how
requirements engineering dovetails with the
overal software engineering process. This
section aso deals with contractual and project
organisation issues. The project organisation
issuesin thissection are described with reference
to the early phase in the project concerned with
bounding system requirementsto ensure that an
achievable project isdefined. Thetopicisbroken
down into 5 subtopics.

2-10

100. 3.1.1 Process models

101. This subtopic is concerned with introducing a
small number of generic process models. The
purpose is to lead to an understanding that the
requirements process:

102. < isnot a discrete front-end activity of the
softwarelife-cycle but rather a processthat
isinitiated at the beginning of a project but
continues to operate throughout the life-
cycle;

+ the need to manage requirements under the
same configuration management regime as
other products of the devel opment process,

103.

© |EEE — Stoneman (Version 0.7) — April 2000

104.

105.

106.

107.

108.

116.

117.

118.

119.

+ will need to be tailored to the organisation
and project context.

In particular, the subtopic shows how the
activities of dicitation, analysis, specification,
vaidation and management are configured for
different types of project and congtraints. It
includes an overview of activities provide input
to the process such as marketing and feasibility
studies.

3.1.2 Process actors

This subtopic introduces the roles of the people
who participate in the requirements engineering
process. Requirements engineering is
fundamentally interdisciplinary and the
requirements engineer needs to mediate between
the domains of the user and software
engineering. There are often many people
involved besidesthe requirements engineer, each
of whom have a stake in the system. The
stakeholders will vary across different projects
but alwaysincludes users/operators and customer
(who need not be the same). These need not be
homogeneous groups because there may be many
users and many customers, each with different
concerns. There may also be other stakeholders
who are external to the user’s/customer’s
organisation, such as regulatory authorities,
who's requirements need to be carefully
andysed. The system/software developers are
aso stakeholders because the have a legitimate
interest in profiting from the system. Again,
these may be a heterogeneous group in which
(for example) the system architect has different
concernsfrom the system tester.

It will not be possible to perfectly satisfy the
requirements of every stakeholder and the

109.

110.

111.

112.

113.

114.

115.

requirements engineer’s job is to negotiate a
compromise that is both acceptable to the
principal stakeholders and within budgetary,
technical, regulatory and other constraints. A
prerequisite for this is that all the stakeholders
are indentified, the nature of their ‘stake’ is
analysed and their requirements are elicited.

3.1.3 Process support and management

This subtopic introduces the project management
resources required and consumed by the
requirements engineering process. This topic
merely setsthe context for topic 4 (Initiation and
scope definition) of the software management
KA. It's principa purpose is to make the link
from process activities identified in 3.1.1 to
issues of cost, human resources, training and
tools.

3.1.4 Process quality and improvement

This subtopic is concerned with reguirements
engineering process quality assessment. Its
purpose is to emphasize the key role
requirements engineering plays in terms of the
cost, timeliness and customer satisfaction of
software products. It will help orient the
requirements engineering process with quality
standards and process improvement models for
software and systems. This subtopic covers:
+ requirements engineering coverage by
processimprovement standards and models,
¢ requirements engineering metrics and
benchmarking;
+ improvement planning and implementation;

Linksto common themes

Quadlity

CMMs, the forthcoming

The process quality and improvement subtopic is concerned with quality. It
contains links to SPI standards such as the software and systems engineering
ISO/IEC 15504 (SPICE) and ISO 9001-3.
Requirements engineering is at best periphera to these and only work to
address requirements engineering processes specificdly, is the requirements
engineering good practice guide (REGPG).

Standards

SPI models/standards as above.
engineering standard ISO/IEC 12207-1995 describes software requirements
engineering activities in the context of the primary, supporting and
organisationd life-cycle processes for software.

In addition, the life-cycle software

M easurement

At the process level, requirements metrics tend to be relatively coarse-grained
and concerned with (e.g.) counting numbers of requirements and numbers and
effects of requirements changes. If these indicate room for improvement (as
they inevitably will) it is possble to measure the extent and rigour with which
requirements 'good practice' is used in a process. These measures can serveto
highlight process weaknesses that should be the target improvement efforts.

Tools Genera project management tools. Refer to the software management KA.

© |EEE— Soneman (Version 0.7) — April 2000

2-11

120.

121.

122.

123.

124.

125.

126.

3.2 Requirements dicitation

This topic covers what is sometimes termed
'requirements capture’, 'requirements discovery'
or 'requirementsacquisition'. It isconcerned with
where requirements come from and how they can
be collected by the requirements engineer.
Requirements dlicitation is the first stage in
building an understanding of the problem the
software is required to solve. It is fundamentally
a human activity and is where the stakeholders
are identified and relationships established
between the development team (usudly in the
form of the requirements engineer) and the
customer. Thereare 2 main subtopics.

3.2.1 Requirements sources

Inatypical system, therewill be many sources of
requirements and it is essential that al potentia

sources are identified and evaduated for their

impact on the system. This subtopic is designed
to promote awareness of different requirements
sources and frameworks for managing them. The
main points covered are;

¢ Goals. The term 'Goal' (sometimes called
'business concern' or ‘critical success
factor') refers to the overal, highlevel
objectives of the system. Goals provide the
motivation for a system but are often
vaguely formulated. Requirements
engineers need to pay particular attention to
assessing the impact and feasibility of the
godls. A feasibility study isarelatively low
cost way of doing ths.

¢+ Doman knowledge. The requirements
engineer needs to acquire or to have
available knowledge about the application
domain. This enables them to infer tacit
knowledge that the stakeholders don't
articulate, inform the trade-offs that will be
necessary between conflicting requirements
and sometimes to act asa'user' champion.

¢ System stakeholders (see 3.1.2). Many
systems have proven unsatisfactory because
they have stressed the reguirements for one
group of stakeholders at the expense of
others. Hence, systems are delivered that
are hard to use or which subvert the cultural
or political structures of the customer
organisation. The requirements engineer to
the need to identify, represent and manage
the 'viewpoints of many different types of
stakehol der.

212

127.

128.

¢ Theoperationa environment. Requirements
will be derived from the environment in
which the software will execute. These may
be, for example, timing congraints in a
red-time system or interoperability
congtraints in an office environment. These
must be actively sought because they can
greatly affect system feasibility and cost.

¢ The organizationa environment. Many
systems are required to support a business
process and this may be conditioned by the
structure, culture and internal politics of the
organisation. The requirements engineer
needs to be sensitive to these since, in
generd, new software systems should not
force unplanned change to the business
process.

129. 3.2.2 Elicitation techniques

130.

131.

132.

133.

When the requirements sources have been
identified the requirements engineer can start
eliciting requirements from them. This subtopic
concentrates on techniques for getting human
stakeholdersto articulate their requirements. This
is a very difficult area and the reguirements
engineer needs to be sensitized to the fact that
(for example) users may have difficulty
describing their tasks, may leave important
information unstated, or may be unwilling or
unable to cooperate. It is particularly important
to understand that dicitation is not a passive
activity and that even if cooperative and
aticulate stakeholders are available, the
requirements engineer has to work hard to dicit
the right information. A number of techniques
will be covered but the principal onesare;

+ Interviews. Interviews are a 'traditiond’
means of diciting requirements. It is
important to understand the advantages and
limitations of interviews and how they
should be conducted.

¢ Scenarios. Scenarios are vauable for
providing context to the elicitation of users
requirements. They allow the requirements
engineer to provide a framework for
guestions about users' tasks by permitting
‘what if? and 'how is this done? questions
to be asked. There is a link to 3.3.2.
(conceptual modeing) because recent
modding notations have attempted to
integrate scenario notations with object-
oriented analysistechniques.

+ Prototypes. Prototypes are a valuable tool
for clarifying unclear requirements. They

© |EEE — Stoneman (Version 0.7) — April 2000

134.

136.

137.

138.
139.

can act in a similar way to scenarios by
providing a context within which users
better understand what information they
need to provide. There is a wide range of
prototyping techniques, which range from
paper mock-ups of screen designs to beta
test versions of software products. Thereis
a strong overlap with the use of prototypes
for requirements validation (3.5.2).

+ Facilitated meetings. The purpose of these
is to try to achieve a summative effect
whereby a group of people can bring more
insight to their requirements than by
working individually. They can brainstorm
and refine ideas that may be difficult to
surface using (e.g.) interviews. Another
advantage is that conflicting requirements
are surfaced early on in a way that lets the
stakeholders recognise where there is
conflict. At its best, this technique may
result in aricher and more consistent set of
requirements than might otherwise be

135.

achievable. However, meetings need to be
handled carefully (hence the need for a
facilitator) to prevent phenomena such as
‘groupthink’ or the requirements reflecting
the concerns of a few vociferous (and
perhaps senior) people to the detriment of

others.
¢ Observation. The importance of systems
context within the organizationa

environment has led to the adaptation of
observationa techniques for requirements
elicitation whereby the requirements
engineer learns about users tasks by
immersing themselves in the environment
and observing how users interact with their
systems and each other. These techniques
are relatively new and expensive but are
instructive because they illustrate that many
user tasks and business processes are too
subtle and complex for their actors to
describeeasily.

Linksto common themes

Quadlity

The qudity of requirements dicitation has a direct effect on product qudlity.
The critica issues are to recognise the relevant sources, to $rive to avoid
missing important requirements and to accurately report the requirements.

Standards

on techniques.

Only very genera guidance is avalable for dicitation from current
standards. These typicaly set out the goals of dicitation but have little to say

Measurement

Very little work on metricating requirements elicitation has been carried out.

date.

Tools Elicitation is relatively poorly supported by todls.

Some modern modeling tools support notations for scenarios.
Severd programming environments support prototyping but the applicability
of these will depend on the gpplication domain.

A number of tools are becoming available that support the use of viewpoint
andysis to manage requirements eicitation. These have had little impact to

140. 3.3 Requirementsanalysis

141.

142.

143.

144.

145.

This subtopic is concerned with the process of
analysing requirements to:
¢ detect and resolve conflicts between
requirements;
+ discover the bounds of the system and how
it must interact with its environment;
+ ¢laborate system requirements to software
reguirements.
The traditional view of requirements analysis
was to reduce it to conceptual modeling using
one of a number of anadysis methods such as
SADT or OOA. While conceptua modeling is

important, we include the classification of
requirements to help inform trade-offs between

© |EEE— Soneman (Version 0.7) — April 2000

146.

147.

148.

149.

requirements (requirements classification), and
the process of establishing these trade-offs
(requirements negotiation).

3.3.1 Requirements classification

There is a strong overlap between requirements
classification and requirements attributes (3.6.2).
Reguirements can be classified on a number of
dimensions. Examples include:

+ Whether the reguirement is functiona or
non-functional (see2.1).

+ Whether the requirement is derived from
one or more high-level reguirements, an
emergent property (see 2.4), or a a high
level and imposed directly on the system by
astakeholder or some other source.

2-13

150.

151.

152.

153.

154.

+ Whether the requirement is on the product
(functional or nonfunctiona) or the
process. Requirements on the process
congtrain, for example, the choice of
contractor, the devel opment practicesto be
adopted, and the standards to be adhered to.

¢ The requirement priority. In generd, the
higher the priority, the more essentia the
reguirement isfor meeting the overall goals
of the system. Often classified on a fixed
point scae such as mandatory, highly
desirable, desirable, optional. In practice,
priority often has to be balanced against
cost of implementation.

* The scope of the requirement. Scope refers
to the extent to which a requirement affects
the system and system components. Some
requirements, particularly certain non-
functional ones, have a global scope in that
their satisfaction cannot be allocated to a
discrete component. Hence a requirement
with global scope may strongly affect the
system architecture and the design of many
components, one with a narrow scope may
offer anumber of design choiceswith little
impact on the sdatisfaction of other
requirements.

+ Volatility/stability. Some requirements will
change during the life-cycle of the software
and even during the development process
itself. It is sometimes useful if some
estimate of the likelihood of a requirement
changing can be made. For example, in a
banking application, requirements for
functions to calculate and credit interest to
customers' accounts are likely to be more
stable than a requirement to support a
particular kind of tax-free account. The
former reflect a fundamental feature of the
banking domain (that accounts can earn
interest), while the latter may be rendered
obsolete by a change to government
legidation. Flagging requirements that may
be volatile can help the software engineer
establish a design that is more tolerant of
change.

Other classfications may be appropriate,
depending upon the development organization's
normal practice and the application itself. Note
that in al cases requirements must be
unambiguoudly identified.

2-14

155.

156.

157.

158.

159.

160.

161.

162.

163.

3.3.2 Conceptual modeling

The development of models of the problem is
fundamental to regquirements analysis (see 2.4).
The purpose is to aid understanding of the
problem rather than to initiate design of the
solution. Hence, conceptual models comprise
models of entities from the problem domain
configured to reflect their real-world
relationships and dependencies.

There are several kinds of models that can be
developed. These include data and control flows,
state models, event traces, user interactions,
object models and many others. The factors that
influence the choice of model include:

+ The reture of the problem. Some types of
application demand that certain aspects be
andysed particularly rigorously. For
example, control flow and state models are
likely to be more important for real-time
systems than for an information system.

* The expertise of the requirements engineer.
It is often more productive to adopt a
modeling notation or method that the
requirements engineer has experience with.
However, it may be appropriate or
necessary to adopt a notation that is better
supported by tools, imposed as a process
requirement (see 3.3.1), or simply ‘better’.

+ The process requirements of the customer.
Customers may impose aparticular notation
or method on the requirements engineer.
This can conflict with the last factor.

¢ The avalability of methods and tools.
Notations or methods that are poorly
supported by training and tools may not
reach widespread acceptance even if they
are suited to particular types of problem.

Note that in almost all cases, it is useful to start
by building a model of the 'system boundary'.
This is crucia to understanding the system's
context in its operationa environment and
identify itsinterfaces to the environment.

The issue of modeling is tightly coupled with

that of methods. For practical purposes, amethod
is a notation (or set of notations) supported by a
process that guides the application of the
notations. Methods and notations come and go in
fashion. Object-oriented notations are currently
in vogue (especially UML) but the issue of what
is the 'best' notation is ®€ldom clear. There is
littleempirical evidenceto support claimsfor the
superiority of one notation over another.

© |EEE — Stoneman (Version 0.7) — April 2000

164.

165.

166.

167.

168.

172.

173.

174.

175.

Formal modeling using notations based upon
discrete mathematics and which are tractable to
logical reasoning have made an impact in some
specialized domains. These may be imposed by
customers or standards or may offer compelling
advantages to the analysis of certain critical
functions or components.

This topic does not seek to 'teach’ a particular

modeling style or notation but rather to provide
guidance on the purpose and intent of modeling.

3.3.3 Architectural
requirements allocation

At some point the architecture of the solution
must be derived. Architectural design isthe point
at which reguirements engineering overlaps with
software or systems design and illustrates how
impossibleit isto cleanly decoupleboth tasks. In
many cases, the requirements engineer acts as
system architect because the process of analysing
and eaborating the requirements demands that
the subsystems and components that will be
responsible for satisfying the requirements be
identified. This is requirements alocation — the
assignment of responsibility for satisfying
requirements to subsystems and components.

Allocation is important to permit detailed
analysis of requirements. Hence, for example,
once a set of requirements have been allocated to
a component, they can be further analysed to
discover requirements on how the component
needs to interact with other componentsin order
to satisfy the allocaed requirements. In large
projects, allocation stimulates a new round of
anadysis for each subsystem. As an example,
requirements for a particular breaking
performance for a car (breaking distance, safety
in poor driving conditions, smoothness of
gpplication, pedal pressure required, etc.) may be
adlocated to the bresking hardware (meachanica

design and

169.

170.

171.

and hydraulic assemblies) and an anti-lock
breaking sysem (ABS). Only when a
requirement for an anti-lock system has been
identified, and the requirements are allocated to
it can the capabilities of the ABS, the breaking
hardware and emergent properties (such as the
car weight) be used to identify the detailed ABS
software requirements.

Architectural design is closdly identified with
conceptual modeling and in many cases it is a
natural progression to derive the solution
architecture from the domain architecture. There
is not always a ssimple one-to-one mapping from
red -world domain entities to computational
components, however, so architectural designis
identified as a separate sub-topic. The
requirements of notations and methods are
broadly the same for conceptua modeling and
architectural design.

3.3.4 Requirements negotiation

Another name commonly used for this subtopic
is 'conflict resolution’. It is concerned with
resolving problems with requirements where
conflicts occur; between two stakeholders
requiring mutually incompatible features, or
between requirements and resources or between
capabilities and constraints, for example. In most
cases, it isunwi sefor the requirementsto make a
unilateral decision so it is necessary to consult
with the stakeholder(s) to reach a consensus on
an appropriate trade-off. It is often important for
contractual reasons that such decisions are
traceable back to the customer. We have
classified this as a requirements analysis topic
because problems emerge as the result of
anadlysis. However, a strong case can aso be
made for counting it as part of requirements
vaidation.

Linksto common themes

Qudity

The qudlity of the andyds directly affects product quality. In principle, the
more rigorous the andysis, the more confidence can be attached to the
software quality.

Standards

Software engineering standards stress the need for analyss. Detailed
guidance is provided only by de-facto modeling 'standards (eg. SADT or
UML) which may not be completely domain independent.

Measurement

Part of the purpose of anadysis is to quantify required properties. This is
particularly important for condraints such as rdiability or safety
requirements where suitable metrics need to be identified to alow the
requirements to be quantified and verified.

Tools There are many tools that support conceptuad modeling and a number of
tools that support formal specification.

There are a smdl number of tools that support conflict identification and
requirements negotiation through the use of methods such as quality function

deployment.

© |EEE— Soneman (Version 0.7) — April 2000

2-15

176.

177.

178.

179.

180.

181.

182.

183.

3.4 Softwar e requirements
gpecification

Thistopic is concerned with the structure, quality
and verification of the requirements document.

This may take the form of two documents, or two
parts of the same document with different
readership and purposes (see 2.6). the
requirements definition document and the
software requirements specification. The topic
stresses that documenting the requirementsisthe
most fundamental precondition for successful

requirements handling.

341 The
document

This document (sometimes known as the user
requirements document or concept of operations)
records the system requirements. It defines the
high-level system requirements from the domain
perspective. Its readership includes
representatives of the system users/customers
(marketing may play these roles for market-
driven software) so it must be couched in terms
of the domain. It must list the system
requirements along with background information
about the overall objectives for the system, its
target environment and a statement of the
constraints and non-functional requirements. It
may include conceptual models designed to
illustrate the system context, usage scenarios, the
principad domain entities, and data, information
and work flows.

342 The software
specification (SRS)

The SRS serves an important role in software
systems devel opment. Its benefits include:

+ |t establishes the basis for agreement
between the customers and contractors or
suppliers (in market-driven projects, these
roles may be played by marketing and
development divisons) on what the
software product is to do and as well as
what it should not do.

¢ |t forces a rigorous assessment of
requirements before design can begin and
reduces later redesign.

requirements definition

requirements

2-16

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

+ |t provides a redlistic basis for estimating
product costs and schedules.

+ Organisations can use a SRS to dewdop
their own validation and verification plans
more productively.

* Provides an informed a basis for
transferring a software product to new users
or new machines.

+ Focuses on product rather than project and
therefore provides a basis for product
enhancement

3.4.3 Document structure and standards

This section describes the structure and content
of arequirements document. It isalso concerned
with factors that influence how organisations
interpret document standards to local
circumstances. Severa recommended guidesand
standards for SRS document exist. Theseinclude
|IEEE pl23/D3 guide, |IEEE Std. 1233 guide,
| EEE std. 830-1998, ISO/IEC 12119-1994. |IEEE
std 1362-1998 concept of operations(ConOps) is
a recent standard for a requirements definition
document. Other guides and document template
areaso available.

3.4.4 Document quality

This section is concerned with assessing the
qudity of an SRS. Thisis one areawhere metrics
can be usefully employed in requirements
engineering. There are tangible attributesthat can
be measured. Moreover, the quality of the
requirements document can dramaticaly affect
the quality of the product.

A number of qudity indicators have been
devel oped that can be used to relate the quality of
an SRS to other project variables such as cost,
acceptance, performance, schedule,
reproducibility etc. Quality indicators for
individua SRS statements include imperatives,
directives, weak phrases, options and
continuances. Indicators for the entire SRS
document include size, readability, specification
depth and text structure.

There isastrong overlap with 4.5.1 (the conduct
of requirements reviews).

© |EEE — Stoneman (Version 0.7) — April 2000

194.

195.
196.

197.

198.

199.

200.

201.

202.

203.

Linksto common themes

measured. See 3.4.4.

Quadlity The quality of the requirements documents dramatically affects the
quality of the product

Standards There are many of these. See 3.4.3.

Measurement Quality attributes of requirements documents can be identified and

template.

Tools Tool support for documentation exists in many forms from standard
word processors to requirements management tools that may generate
an SRS from their requirements database according to a standard

Rudimentary quality checking tools ae beginning to become
commercidly available, whils more sophidicated ones are being
piloted in some organisations.

3.5 Requirementsvalidation

Itisnormal for there to be one or more formally
scheduled pointsin the requirements engineering
process where the requirements are validated.
The am is to pick up any problems before
resources are committed to addressing the
requirements.

One of the key functions of requirements
documents is the validation of their contents.
Validation is concerned with checking the
documents for omissions, conflicts and
ambiguities and for ensuring that the
requirementsfollow prescribed quality standards.
The requirements should be necessary and
sufficient and should be described in a way that
leaves as little room as possible for
misinterpretation. There are four important
subtopics.

351 The conduct of
reviews

requirements

Perhaps the most common means of validationis
by the use of formal reviews of the requirements
document(s). A group of reviewersis constituted
with a brief to look for errors, mistaken
assumptions, lack of clarity and deviation from
standard practice. The composition of the group
that conducts the review is important (at least
one representative of the customer should be
included for a customer-driven project, for
example) and it may help to provide guidance on
what to look for in the form of checklists.
Reviews may be constituted on compl etion of the
system requirements definition document, the
software requirements specification document,
the baseline specification for anew release, etc.

© |EEE— Soneman (Version 0.7) — April 2000

204.

205.

206.

207.

3.5.2 Prototyping

Prototyping is commonly employed for
validating the requirements engineer's
interpretation of the system requirements, aswell
as for diciting new requirements. As with
elicitation, there is a range of prototyping
techniques and a number of pointsin the process
when prototype validation may be appropriate.
The advantage of prototypes is that they can
make it easier to interpret the requirements
engineer's assumptions and give useful feedback
on why they are wrong. For example, the
dynamic behaviour of a user interface can be
better understood through an animated prototype
than through textua description or graphica
models. There are also disadvantages, however.
Theseinclude the danger of users attention being
distracted from the core underlying functionality
by cosmetic issues or quality problems with the
prototype. For this reason, severa people
recommend prototypes that avoid software —
such as flip-chart-based mockups. Prototypes
may be costly to develop athough if they avoid
the wastage of resources caused by trying to
satisfy erroneous requirements, their cost can be
more easily justified.

3.5.3 Modd validation

The quality of the models developed during
anadysis should be vdidated. For example, in
object models, it is useful to perform a static
analysisto verify that communication paths exist
between objectsthat, in the stakeholders domain,
exchange data. If formal specification notations
areused, it ispossibleto use formal reasoning to
prove properties of the specification (eg.
compl eteness).

2-17

208.

209.

211

212

213.

214,

215.

216.

217.

218.

219.

220.

221.

3.5.4 Acceptancetests

An essential property of asystem requirement is
that it should be possible to verify that the
finished product satisfies the requirement.
Requirements that can't be verified arereally just
'wishes. An important task is therefore planning
how to verify each requirement. In most cases,
thisis done by designing acceptancetests. One of

210.

the most important requirements quality
atributes to be checked by requirements
validation is the existence of adequate
acceptance tests.

Identifying and designing acceptance test may be
difficult for nonfunctiona requirements (see
3.1). To beverifiable, they must first be analysed
to the point where they can be expressed
quantitetively.

Linksto common themes

Qudlity

Vdidation is dl about quaity - both the qudity of the requirements
and of the documentation.

Standards

Software engineering life-cycle and documentation standards (e.g.
IEEE std 830-1998) exist and are widely used in some domains to
inform validation exercises.

Measurement

Measurement is mportant for acceptance tests and definitions of
how requirements are to be verified.

Tools Some limited tool support is avalable for modd vdidation and
theorem provers can assist developing proofs for formal models.

3.6 Requirements managemert

Requirements management is an activity that
should span the whole software life-cycle. It is
fundamentally about change management and the
maintenance of the requirements in a state that
accurately mirrors the software to be, or that has
been, built.

There are 3 subtopics concerned with
requirements management.

3.6.1 Change management

Change management is centrd to the
management of requirements. This subtopic is
intended to describe the role of change
management, the procedures that need to be in
place and the andysis that should be applied to
proposed changes. It will have strong links to the
configuration management knowledge area.

3.6.2 Requirements attributes

Requirements should consist not only of a
specification of what is required, but aso of
ancillary information that helps manage and
interpret the requirements. This should include
the various classification dimensions of the
requirement (see 3.3.1) and the verification
method or acceptance test plan. It may also
include additional information such as a
summary rationale for each requirement, the
source of each requirement and a change history.
The most fundamental requirements attribute,
however, is an identifier that alows the
requirements to be uniquely and unambiguoudy

2-18

222.

223.

224,

identified A naming scheme for generating these
IDsisan essentia feature of aquality system for
arequirements engineering process.

3.6.3 Requirementstracing

Requirements tracing is concerned with
recovering the source of requirements and
predicting the effects of requirements. Tracingis
fundamental to performing impact analysis when
requirements change. A requirement should be
traceable backwards to the reguirements and
stakeholders that motivated it (from a software
requirement back to the system requirement(s)
that it helps satisfy, for example). Conversely, a
requirement should be traceable forwards into
requirements and design entities that satisfy it
(for example, from a system requirement into the
software requirements that have been elaborated
from it and on into the code modules that
implement it).

The requirements trace for atypical project will
form a complex directed acyclic graph (DAG) of
requirements. In the past, development
organizations either had to write bespoketools or
manage it manualy. This made tracing a short-
term overhead on a project and vulnerable to
expediency when resources were short. In most
cases, thisresulted in it either not being done at
all or being performed poorly. The availability of
modern requirements management tools has
improved this situation and the importance of
tracing (and requirements management in
general) is starting to make an impact in software

quality.

© |EEE — Stoneman (Version 0.7) — April 2000

225.
226.
227.

228.

230.

231
232.

233.
234.

235.
236.

237.

238.

Linksto common themes
Qudlity Requirements management is a level 2 key practice area in the software
CMM and this has boosted recognition of its importance for quaity.
Standards Software engineering life-cycle standards such as of ISO/IEC 12207-1995
exigt and are widdly used in some domains.
Measurement Mature organizations may measure the number of requirements changes and
use quantitative measures of impact assessment.
Tools There are a number of requirements management tools on the market such as
DOORS and RTM.
239. Criterion (d): No specific domains have been
229. APPENDIX A — BREAKDOWN assumed
RATIONALE 240. No specific domains have been assumed
Criteria are definedin Appendix A of the entire Criterion (e): Compatible with various
Guide. schools of though
Criterion (a): Number of topic breakdowns 241. Requirements engineering concept at the process
. level are genera mature and stable.
One breakdown provided
o 242. Criterion (f): Compatible with industry,
Criterion (b): Reasonableness literature and standards
The breskdown is reasonablein that it coversthe 243. The breakdown used here has been derived from
areasdiscussed in most requirements engineering literature and relevant standards to reflect a
texts and standards. However requirements consensus of opinion.
vaidation is normaly combined with
requirements verification. 244, Criterion (g): Asinclusive as possible
Criterion (c): Generally accepted 245. The inclusion of the requirements engj neering
) process A.1 setsthe cortext for all requirements
The breakdowns are generally accepted in that engineering topics. This level is intended to
they cover areastypically in texts and standards. capture the mature and stable concepts in
At level A.1 the breakdown isidentical to that requirements engineering. The subsequent levels
given in most requirements engineering texts, all relate to level 1 but are general enough to
apart from process improvement. Requirements dlow more specific discussion or further
engineering processimprovement isan important breakdown.
emerging area in requirements engineering. We I i .
believe this topic adds great value to any the 246. Cr'te”roemi lsgr;fn%fa‘?ggmy’ tools,
discussion of the requirements engineering asits
directly concerned with process quality 247. The relationship of software requirements
assessment. engineering product quality assurance, tools and
At level A.2 the breskdown is identical to thet standards s provided in the breakdown.
given in most requirements engineering texts. At 248. Criterion (i): 2to 3 levels, 5 to 9 topics at the
level A.3 the breskdown is similar to that first level
discussed in most texts. We have incorporated a o o
reasonably detailed section on requirement 249. The proposed breakdown satisfiesthis criterion.
characterization to take into account the most Tt ; ; ;
commonly discussed ways of characterizing 250. :}:12 telrJ Ii(élr; (1): Topic names meaningful outside
requirements. A.4 the breakdown is similar to 9 _ _ o
that discussed in most texts, apart from document 251. Thetopic names satisfy this criterion
quality assessment. We believe this an important _] . -
aspect of the reguirements specification 252. Criterion (1): Version 0.1 of the description
documem and deservesto be treated asaseparae 253. Criterion (m): Text ontherationale underlying
sub-section. In A.5 and A.6 the breakdown is the proposed breakdowns
similar to that discussed in most texts. i))
254. Thisdocument providestherationale

© |EEE— Soneman (Version 0.7) — April 2000

2-19

255. APPENDIX B — RECOMMENDED

255.

256.

257.

258.

250.

260.

261.

262.

263.
264.
265.
266.
267.

REFERENCES FOR SOFTWARE
REQUIREMENTS

In Table B.1 shows the topic/reference matrix.
The table is organized according to requirements
engineering topics in section 3. A ‘X’ indicates
that the topic is covered to areasonable degreein

the reference. A ‘X’ in appearing in main topic
but not the sub-topic indicates that the main topic
is reasonably covered (in general) but the sub-
topic is not covered to any appreciable depth.
This situation is quite common in most software
engineering texts, where the subject of
requirements engineering is viewed in the large
context of software engineering.

[Bry94]

TOPIC

REFERENCE

[Davo3]

[Gogas]

[Kot98]
[Lou9s]
[Pf]98]
[Rosag]
[Som96]
[Som97]
[Thad7]

Requirements engineering process

x

x

x

Process models

X

x

Process actors

x

X

Process support

Process improvement

XX X[X]|X

Requirementséelicitation

x

x

Requirements sources

Elicitation techniques

Requirements analysis

Reguirements classification

Conceptual modeling

XXX X[X[X]|X

Architectural design and requirements
dlocation

X X|X| X X|X]| X

X | X|X| X

Requirements negotiation

Requirement specification X

x

x

The requirements definition document X

x

X[XXX

x

The software requirements specification X
(SRS

x

Document structure X

X | X

x

Document quality X

x

Requirementsvalidation

x

The conduct of requirements reviews

Prototyping

x

Model validation

X

XX | X[X

Acceptance tests

Requirements management

XX | X| X

Change management

Requirement attributes

Requirements tracing

X[XXX

Table B.1 Topics and their references

Key Reference

[Bry94] [Bryne 1994]

[Dav93] [Davis1993]

[Gog93] [Goguen and Linde 1993]

[Kot98] [Kotonyaand Sommerville 1998]
[Lou95] [Loucopulosand Karakostas 1995]

2-20

268.
269.
270.
271.
272.

[Pfl198] [Pfleeger 1998]

[Ros98] [Rosenberg 1998]

[Som96] [Sommerville 1996]

[Som97] [Sommervelle and Sawyer 1997]
[Tha97] [Thayer and Dorfman 1997]

© |IEEE — Stoneman (Version 0.7) — April 2000

273. APPENDIX C1 — RECOMMENDED
READING

274. [Bryne 1994]. Bryne, E., "IEEE Standard 830:
Recommended Practice for Software
Requirements Specification," IEEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 58.

275. [Davis 1993]. Davis, AM. Software
Requirements. Objects, Functions and States.
Prentice-Hall, 1993.

276. [Goguen and Linde 1993]. Goguen, J,, and C.
Linde, "Techniques for Requirements
Elicitation,” International Symposum on
Requirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1993, pp. 152-164.

277. [Kotonya and Sommerville 1998]. Kotonya, G.,
and |. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley and Sons,
1998.

278. [Loucopulos and Karakostas 1995]. Loucopul os,
P., and V. Karakostas, Systems Requirements
Engineering. McGraw-Hill, pp. 1995.

279. [Pfleeger 1998]. Pfleeger, S.L., Software
Engineering-Theory and Practice. Prentice-Hall,
Chap. 4, 1998.

280. [Rosenberg1998]. Rosenberg, L., T.F. Hammer
and L.L. Huffman, "Requirements, testing and
metrics, " 15th Annua Pacific Northwest
Software Quality Conference, Utah, October
1998.

281. [Sommerville 1996]. Sommerville, |. Software
Engineering (5" edition), Addison-Wesley, pp.
63-97,

282. 117-136, 1996.

283. [Sommerville 1997]. Sommerville, 1., and P.
Sawyer, Requirements engineering: A Good
Practice Guide. John Wiley and Sons, Chap. 1-2,
1997

284. [Thayer and Dorfman 1997]. Thayer, R.H., and
M. Dorfman, Software Requirements
Engineering (2" Ed). IEEE Computer Society
Press, pp. 176-205, 389-404, 1997.

© |EEE— Soneman (Version 0.7) — April 2000 2-21

285. APPENDIX D — RECOMMENDED

286.

287.

288.

289.

290.

291

292.

293.

294.

295,

FURTHER READING

[Agarwa and Jones 1994]. Agarwal, N., and J.
Jones, "Advancing System Engineering with a
Requirements Problem. Reporting Process,”
Fourth International Symposium on Systems
Engineering, Sunnyvale, Cdiforniaz Nationa
Council on Systems Engineering, August 1994,
pp. 959-964.

[Agusa 1984]. Agusa, K., et d., "A Veification
Method for Formal Requirements Descriptions,”
Journal of Information Processing, 7, 4 (1984),
pp. 223-229.

[Al-Saadoon 1995]. Al-Saadoon, O., e 4.,
"AURA-CFG/E: An Object-Oriented Approach
for Acquisition and Decomposition of DFDs
from End Users" Seventh Internationa
Conference on Software Engineering and
Knowledge Engineering, Skokie, lllinois:.
Knowledge Systems Ingtitue, June 1995, pp. 1-
7.

[Amber 1994]. Ambler, C., "Technology
Transfer From the University Laboratory Point
of View," IEEE Internationa Conference on
Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, p. 146.

[Andews and Goeddel 1994]. Andrews, B., and
W. Goeddel, "Using Rapid Prototypes for Early
Requirements Validation," Fourth International
Symposium on Systems Engineering, Sunnyvale,
Cdliforniaz National Council on Systems
Engineering, August 1994, pp. 105-112.
[Andrews 1991]. Andrews, D., "JAD: A Crucid
Dimension for Rapid Application Development,”
Journd of Systems Management, (March 1991),
pp. 23-31.

[Andriole 1992]. Andriole, S., Rapid Application

Prototyping, Welledey, Massachusetts. QED,
1992.

[Andriole 1994]. Andriole, S, "Fast, Chesp
Requirements. Prototype, or Else!" Manager
Column, |EEE Software, 11, 2 (March 1994), pp.
85-87.

[Ardis 1997]. Ardis, M., "Forma Methods for
Telecommunication System Requirements. A
survey of Standardized Languages” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Ashworth 1988]. Ashworth, C. "Structured
Systems Analyss and Design Method

222

296.

297.

298.

299

300.

301.

302.

303.

304.

(SSADM)," Information and Software
Technology, 30, 3 (April 1988), pp. 153-163.

[Agtesiano and Reggio 1993]. Astesiano, and
Reggio, "Specifying Reactive Systems By
Abstract Events" IEEE International Workshop
on Software Specification and Design, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, December 1993.

[Atkinson and Griswold 1996]. Atkinson, D., and
W. Griswald, "The Design of Whole Program
Analysis Tools" Eighteenth |IEEE International
Conference on Software Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1996.

[Aue and Breu 1994]. Aue, A., and M. Brey,
"Digtributed Information Systems. An Advanced
Methodology," |EEE Transactions on Software
Engineering, 20, 8 (August 1994), pp. 594-605.

[Bally, et a. 1977]. Bally, L. et d., "A Prototype
Approach to Information Systems Design and
Development,” Information and Management, 1,
1 (January 1977), pp. 21-26.

[Barroca and McDermid 1993]. Barroca, L., and
J. McDermid, "Specification of Real-Time
Systems -- A ViewOriented Approach,”
unknown, 1993.

[Barros 1993]. Barros, "Requirements Elicitation
and Formalism Through External Design and
Object-Oriented Specification,” |EEE
International Workshop on Software
Specification and Design, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
December 1993.

[Belkhouche and Geraci 1994]. Belkhouche, B.,
and B. Geraci, "Ripple: A Formdly Specified
Prototyping System,” IEEE Internationd
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 150-153.

[Belscher 1995]. Belscher, R., "Evauation of
Red -Time Requirements by Simulation-Based
Andyss" Firsg IEEE International Conference
on Engineering of Complex Computer Systems,
Los Alamitos, Cdlifornia |IEEE Computer
Society Press, November 1995.

[Ben-Abdallah, et a. 1997]. BenAbdalah, H., et
a., "The Integrated Specification and Analysis of
Functional, Temporad, and Resource
Requirements," |EEE International Symposium
on Reguirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1997.

© |EEE — Stoneman (Version 0.7) — April 2000

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

[Bentley 1992]. Bentley, R., T. Rodden, et. al.,
"Ethnographicaly informed Systems Design for
Air Traffic Control,” CSCW'92, Toronto,
Canada, 1992.

[Bento 1994]. Bento, A., "Systems Andysis. A
Decison Approach,” Information and
Management, 27, 3 (September 1994), pp. 185-
193.

[Berdon and Davis 1995]. Berdon, J. D., and A.
Davis, "Multiple-Viewpoint Based Method for
Requirements Engineering,” submitted to IEE
Software Engineering Journal, December 1994.

[Berdon, et al. 1994]. Berdon, J. D., et 4.,
"Inheritance and Adoption in Object-Oriented
Systems," in preparation.

[Bernard and Price 1994]. Barnard, J. and A.
Price, "Managing Code Inspection,” |EEE
Software 11, 2, 1994, pp. 59-69.

[Berzins and Lugi 1988]. Berzins, V., and Ludi,
"Rapid Prototyping Red-Time Systems" |EEE
Software, 5, 5 (September 1988), pp. 25-36.

[Berzins, et a. 1993]. Berzins, V., et d., "Usng
Transformations in Specification-Based
Prototyping,” |EEE Transactions on Software
Engineering, 19, 5 (May 1993), pp. 436-452.

[Berzins, et a. 1997]. Berzins, V., et d., "A
Reguirements Evolution Model for Computer
Aided Prototyping,” Ninth IEEE Internationa
Conference on Software Engineering and
Knowledge Engineering, Skokie, lllinois:
Knowledge Systems I ngtitute, June 1997, pp. 38-
47.

[Bestavros 1991]. Bestavros, A., "Specification
and Veificaion of Rea-Time Embedded
Systems Using Time-Constrained Reactive
Automata," 1991 Red-Time Systems
Symposium, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1991.

[Beyer and Holtzblatt 1995]. Beyer, H., and
Holtzblatt, K., "Apprenticing with the
Customer," Communications of the ACM, 38, 5
(May 1995), pp.45-52.

[Bischofberger and Pomberger 1992].
Bischofberger, W., and G. Pomberger, eds.,
Prototype-Oriented Software Devel opment,
Berlin, Germany: Springer Verlag, 1992.

[Blandford, et a. 1993]. Blandford, A., et d.,
"Integrating User Requirements and System
Specification,” in Computers, Communication
and Usability: Design Issues, Research and
Methodsfor Integrated Services, P. Byerly, et al.,

© |EEE— Soneman (Version 0.7) — April 2000

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

eds., New York, New York: Elsevier Science
Publishers, 1993.

[Blyth, et a. 1993]. Blyth, A., e d., "ORDIT: A
New Methodology to Assist in the Process of
Eliciting and Moddling Organisationa
Requirements,” Conference on Organisationd
Computing Systems, San Jose, Cdifornia,
November 1993. Also available as University of
Newcastle Technica Report #coocs-93.ps,
Newcastle, UK.

[Boehm 1976]. Boehm, B., "Software
engineering,” |EEE Transactions on Computers,
25,12, 1976, pp. 1226-1241.

[Bolton, et a. 1986]. Bolton, D., et 4.,
"Knowledge-Based Support for Regquirements
Engineering,” Journa of Software Engineering
and Knowledge Engineering, 2, 2 (1992), pp.
293-319.

[Booch 1994]. Booch, G., Object-Oriented
Anaysis and Design, Redwood City, California:
Benjamin/Cummings, 1994.

[Borgter and Janning 1992]. Borgter, J., and T.
Janning, "Traceability Between Requirements
and Desgn: A Transformationd Approach,”
IEEE International Conference on Computer
Software and Applications, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1992.

[Bowen 1985]. Bowen, T., Specification of
Software Quality Attributes, RADC Report
#RADGC-TR-85-37, Griffis Air Force Base, New
York: Rome Air Development Center, February
1985.

[Brown, e d. 1994]. Brown, P., e 4.
"Improving the System Software Requirements
Development Process," Fourth International
Symposium on Systems Engineering, Sunnyvale,
Cdliforniaz National Council on Systems
Engineering, August 1994, pp. 691-698.

[Brunet, et a. 1994]. Brunet, J,, et d., "Applying
Object Oriented Andysis on a Case Study,"
Information Systems, 19, 3 (1994), pp. 199-209.

[Bruno and Agarwa 1995]. Bruno, G., and R.
Agarwa, "Vdidating Software Reguirements
Using Operationa Models," Second Sympoium
on Software Quality Techniques and Acquisition
Criteria, Florence, Italy, May 1995.

[Bucci, et a. 1994]. Bucci, G., et d., "An Object-
Oriented Dual Language for Specifying Reactive
Systems," |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1994, pp. 6-15.

2-23

327.

328.

329.

330.

331

332.

333.

335.

[Burgess, et a. 1990]. Burgess, G., et d., "The
Use of Causal Maps as a Requirements Analysis
Tool: A Case Assessment of Research
Propositions,” in Human Factors in Information
Systems Anadysis and Design, A. Finkestein,
ed., Amsterdam: North-Holland-Elsevier Publ.,
1990.

[Burns 1991]. Burns, C., "Pardld Proto: A
Prototyping Tool for Analyzing & Vdidating
Sequential and Parallel Processing Software
Requirements," |EEE Second Internationa
Workshop on Rapid System Prototyping, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, June 1991, pp. 151-160.

[Bustard and Lundy 1995]. Bugtard, D., and P.
Lundy, "Enhancing Soft Systems Analysis with
Formal Modeding," Second Internationd
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[Bustard and Winstanley 1994].Bustard, D., and
A. Winganley, "Making Changes to Formal
Specifications. Requirements and an Example,”
| EEE Transactions on Software Engineering, 20,
8 (August 1994), pp. 562-568.

[Caspi and Halbwachs 1986]. Caspi, P., and N.
Halbwachs, "A Functiond Mocdel for Describing
and Reasoning About Time Behavior of
Computing Systems," Acta Informatica, 22, 6
(March 1986), pp. 596-627.

[Castano and De Antonellis 1993]. Castano, S.,
and V. De Antondlis, "Reuse of Conceptua
Requirements Specification,” International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 121-124.

[Castano and De Antonellis 1994]. Castano, S,
and V. De Antondliss "The F 3 Reuse
Environment for Requirements Engineering,”
ACM Sftware Engineering Notes, 19, 3 (July
1994), pp. 62-65.

[Castano et a. 1994]. Castano, S, e 4.,
"Reusability Based Comparison of Requirements
Specification Methodologies," |FIP Conference
on Methods and Associated Tools for the
Information Systems Life Cycle, Amsterdam,
The Netherlands: North-Holland, September
1994.

[Cerveny, et d. 1986]. Cerveny, R, et d., "The
Application of Prototyping to Systems
Development: A Rationale and Model," Journa
of Management of Information Systems, 3, 2
(1986).

224

336.

337.

339.

341.

342.

[Chambers and Manos 1992]. Chambers, G., and
K. Manos, "Requirements: Their Origin, Format
and Contral," Second Annua Internationa
Symposium on Requirements Engineering,
Seattle, Washington: Nationa Council on
Systems Engineering, July 1992.

[Chechik and Gannon 1994]. Chechik, M., and J.
Gannon, "Automated Verification of
Requirements Implementation,” ACM Software
Engineering Notes, Proceedings of the
International Symposium on Software Testing
and Analysis, Special Issue (October 1994), pp.
1-15.

[Checkland and Scholes 1990]. Checkland, P.
and J. Scholes, Soft Systems Methodology in
Action, Chichester: John Wiley and Sons, 1990.

[Cherry 1993]. Cherry, G. "Class/Object
Stimulus-Response Machines" ACM Software
Engineering Notes, 18 , 2 (April 1993), pp. 86-
95.

[Chou and Chung 1994]. Chou, S., and S. Chung,
"An OOA Modd With System Function
Specifications," |IEEE International Conference
on Requirements Engineering, Los Alamitos,
Cdifornia IEEE Computer Society Press, April
1994, pp. 16-23.

[Chudge and Fulton 1994]. Chudge, J., and D.
Fulton, "Trust and Cooperation in System
Devel opment: Applying Responsibility
Modeling to the Problem of Changing
Requirements,” Conference on Requirements
Elicitation for SoftwareBased Systems, July
1994.

[Chung 1992]. Chung, L., J. Mylopoulos and B.
Nixon, "Representing and using nonfunctiona
requirements -A process-oriented approach,”
| EEE Transactions on software engineering, 8, 6,
(1992), pp. 483-497.

[Chung 1993]. Chung, L., "Deding with Security
Requirements During the Development of
Information Systems' Fifth Conference on
Advanced Information Systems Engineering,
Peris, France, June 1993.

[Chung and Nixon 1995]. Chung, L., and B.
Nixon, "Deding with NonFunctiona
Reguirements. Three Experimental Studies of a
Process-Oriented Approach," Seventeenth |IEEE
International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1995.

[Chung, et d. 1991]. Chung, L., et d., "From
Information Systems Requirementsto Design: A

© |EEE — Stoneman (Version 0.7) — April 2000

346.

347.

349.

350.

351.

352.

353.

354.

355.

Mapping Framework," Information Systems, 16,
4 (April 1991), pp. 429-461.

[Ciaccia, et al., 1995g]. Ciaccia, P., et d., "From
Forma Requirements to Formal Design,”
Seventh International Conference on Software
Engineering and Knowledge Engineering,
Skokie, lllinois: Knowledge Systems Institute,
June 1995, pp. 23-30.

[Ciancarini, et al. 1997]. Ciancarini, P., et d.,
"Engineering Formal Requirements. An Analysis
and Testing Method for Z Documents," Annals
of Software Engineering, 3, N. Mead, ed., 1997.

[Coleman and Baker 1997]. Coleman, D., and A.
Baker, "Synthesizing Structured Andysis and
Object-Based Formal Specifications,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Cooper and Swanson 1979]. Cooper, R., and E.
Swanson, "Management Information
Reguirements Assessment: The State of the Art,"
Database, 11, 2 (February 1979), pp. 5-16.

[Crespo 1994]. Crespo, R., "We Need to | dentify
the Requirements of the Statements of Non-
Functiond Requirements," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994,

[Cucchiarelli, et a. 1994]. Cucchiardlli, A., etdl.,
"Supporting User-Analyst Interaction in
Functional Requirements Elicitation,” First Asia
Pacific Software Engineering Conference, Los
Alamitos, Cdiforniaz IEEE Computer Society,
December 1994, pp. 114-123.

[Curran, et a. 1994]. Curran, P., et d., "BORIS-
R Specification of the Requirements of a Large-
Scd e Softwarel ntensive System," Conference on
Requirements Elicitation for Software-Based
Systems, July 1994,

[Dankel, et d. 1992]. Dankd, D., et d., "A
Mode for Capturing Requirements,” Fifth
Internationa Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

[Dano et a. 1997]. Dano, B., et d., "Producing
Object-Oriented Dynamic Specifications: An
Approach Based on the Concept of 'Use Case',"

|EEE Internationa Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1997.

[Dardenne et al. 1993]. Dardenne, A., €t 4.,
"God-Directed Requirements Acquisition,"”
Science of Computer Programming, 20 (1993),
pp. 3-50.

© |EEE— Soneman (Version 0.7) — April 2000

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

[Darimont and Souquieres 1997]. Darimont, R.,
and J Souquieres, "Reusing Operationa
Requirements:. A Process-Oriented Approach,”
|EEE Internationa Symposium on Requirements
Engineering, Los Alamitos, Cdlifornia |EEE
Computer Society Press, January 1997.

[Dauphin, et a. 1993]. Dauphin, M., et 4.,
"SPECS. An FDT Based Methodology for
Devel opment of Telecommunications Software,"
submitted to |EEE Software, May 1993.

[Davis 1995]. Davis, A., "Object Oriented
Analysis to Object Oriented Design: An Easy
Transformation?' Journa of Systems and
Software, 30, 1 & 2, July-August 1995, pp. 151-
159.

[Davis and Hsa 1994]. Davis, A., and P. Hsa,
"Giving Voice to Requirements Engineering:
Guest Editors Introduction,” |EEE Software, 11,
2 (March 1994), pp. 12-16.

[Davis and Sitaram 1993]. Davis, A., and P.
Sitaram, "A Concurrent Modd for Software
Development,” ACM Software Engineering
Notes, (March 1994).

[Davis, et d. 1993]. Davis, A., et d., "Identifying
and Measuring Qudity in Software
Requirements Specifications," |IEEE-CS
International Software Metrics Symposium, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, May 1993, pp. 141-152.

[De Antonelis and Vandoni 1993]. De
Antondlis, V., and L. Vandoni, "Tempord
Aspects in Reuse of Requirements
Specifications," Fifth Conference on Advanced
Information Systems Engineering, Paris, France,
June 1993.

[De Lemos, et a. 19924]. De Lemos, R, et d.,
"A Tran Set as a Case Study for the
Requirements Analysis of Safety-Critical
Sysems" The Computer Journd, 35, 1
(February 1992), pp. 30-40.

[DeFoe 1994]. DeFoe, J, "Requirements
Engineering Technology in Industrid
Education,” |IEEE International Conference on
Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, p. 145.

[DeFoe and McAuley 1994]. DeFoe, J., and J.
McAuley, "Geneating Operations Based
Requirements," Fourth Internationa Symposium
on Systems Engineering, Sunnyvae, Cadlifornia:
National Council on Systems Engineering,
August 1994, pp. 113-119.

2-25

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

[Delidie and Garlan 1990]. Delidie, N., and
Garlan, D., "A Forma Specification of an
Oscilloscope," |EEE Software, 7, 5 (1990) pp.
29-36.

[DeMarco 1997]. DeMarco, T., The Deadline,
New York, New Y ork: Dorset House, 1997.

[Demirors 1997]. Demirors, E., "A Blackboard
Framework for Supporting Teams in Software
Development,” Ninth |EEE Internationa
Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Ingtitute, June 1997, pp.
232-239.

[Diepstraten 1995]. Diepstraten, M., "Command
and Control System Requirements Analysis and
System Requirements Specification for aTactica
System," First IEEE International Conference on
Engineering of Complex Computer Systerrs, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, November 1995.

[Ding and Katayama 1993]. Ding, and
Katayama, "Specifying Reactive Systems With
Attributed Finite State Machines" |EEE
International Workshop on Software
Specification and Design, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
December 1993.

[Dobson and Strens 1993]. Dobson, J., and M.
Strens, "How Responsibility Modelling Leads to
Security Requirements” New Security
Paradigms Workshop, Little Compton, Rhode
Idand, August 1993. Also avalable as
University of Newcastle Technicad Report
#nspw.93.ps, Newcastle, UK.

[Dobson and Strens 1994] Dobson, J., and R.
Strens, "Organizational Requirements Definition
for Information Technology," |EEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 158-165.

[Doke 1990]. Doke, E., "An Industry Survey of
Emerging Prototyping Methodologies,"
Information and Management, 18, 4 (April
1990), pp. 169-176.

[Dowlatshashi 1994]. Dowlatshashi, J., "Rapid
Prototyping Technique in Requirements
Specification Phase of Software Development
Life Cycle" Fourth International Symposium on
Systems Engineering, Sunnyvale, Cdifornia
Nationad Council on Systems Engineering,
August 1994,

[Drake and Tsai 1994]. Drake, J., and W. Tsai,
"System Bounding Issues for Anayss'" IEEE

2-26

376.

377.

378.

379.

380.

381.

382.

383.

384.

International Conference on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 24-31.

[Dubois 1990]. Dubois, E., "Logical Support for
Reasoning About the Specification and the
Elaboration of Requirements” in Artificid
Intelligence in Databases and Information
Systems, R. Meersman, et a., eds, Oxford,
U.K.: Elsevier Science Publishers, pp. 79-98.

[Dubois, et a. 1986]. Dubois, E., et d., "A
Knowledge-Representation ~ Language ~ for
Requirements Engineering,” Proceedings of the
|EEE, 74, 10 (October 1986), pp. 1431-1444.

[Duffy, et a. 1995]. Duffy, D., et a., "A
Framework for Requirements Andysis Using
Automated Reasoning,” Seventh International
Conference on Advanced Information Systems
Engineering (CAiSE '95), Springer-Verlag, 1995.
[Easterbrook 1993]. Easterbrook, S., "Domain
Modeling with Hierarchies of Alternative
Viewpoints," Internationd Symposum on
Requirements Engineering, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
January 1993, pp. 65-72.

[Easterbrook and Nuseibeh 1995]. Easterbrook,
S., and B. Nuseibeh, "Managing Inconsistencies
in an Evolving Specification,” Second
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1995.

[Eckert 1994]. Eckert, G., "Types, Classes, and
Collections in Object-Oriented Anayss" |IEEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 32-39.

[Edelweiss, et a. 1993]. Edelweiss, N., et al.,
"An Object-Oriented Temporad Modd," Fifth
Conference on Advanced Information Systems
Engineering, Paris, France, June 1993.

[Edwards and White 1994]. Edwards, M., and S.
White, "Requirements Capture Views," Fourth
International Symposium on Systems
Engineering, Sunnyvale, Cdliforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 73-78.

[Edwards, et ad 1995]. Edwards, M., et 4.,
"RECAP. A Reqguirements Elicitation, Capture,
and Analysis Process Prototype Tool for Large
Complex Systems" First |EEE Internationa
Conference on Engineering of Complex
Computer Systems, Los Alamitos, Cdlifornia
|EEE Computer Society Press, November 1995.

© |EEE — Stoneman (Version 0.7) — April 2000

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

[Ege and Villdpando 1992]. Ege, A., and V.
Villdpando, "SILK, An Advanced User Interface
Builder and Prototyper,” 2 IEEE International
Conference on Systems Integration, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, June 1992.

[El Emam and Madhavji 1995g]. El Emam, K.,
and N. Madhavji, "Requirements Engineering
Practices in Information Systems Devel opment:
A Multiple Case Study,” Second International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[Fairley and Thayer 1997]. Farley, R.,, and R.
Thayer, "The Concept of Operations: The Bridge
From Operationa Requirements to Technical
Specifications," Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Fairley, et al. 1994].Technical Specifications,"
|EEE International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 40-47.

[Farbey 1990]. Farbey, B., "Software Quality
Metrics: Considerations About Requirementsand
Requirements Specifications' Information and
Software Technology, 32, 1 (January-February
1990), pp. 60-64; aso in Software Engineering:
A European Perspective, R. Thayer and A.
McGettrick, eds., Los Alamitos, Cdlifornia
|IEEE Computer Society Press, 1993, pp. 138-
142.

[Faulk, @ a. 1992]. Faulk, S, et d., "The Core
Method for Rea-Time Requirements" |IEEE
Software, 9, 5 (September 1992), pp. 22-33.

[Fayad, et d. 1993]. Fayad, M., et al., "Using the
Shlaer-Méellor Object-Oriented Anaysis
Method.," |IEEE Software, 10, 2 (March 1993),
pp. 43-52.

[Feather and Fickas 1991]. Feather, M., and S.
Fickas, "Coping with Requirements Freedom,"
International Workshop on Development of
Intelligent Information Systems, Niagara-on-the-
Lake, Canada, 1991, pp. 42-46.

[Fickas and Feather 1995]. Fickas, S, and M.
Feather, "Requirements Monitoring in Dynamic
Environments," Second International Symposium
on Requirements Engineering, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1995.

[Fidds, et d. 1995]. Fields, R., et d., "A Task-
Centered Approach to Analyzing Human Error
Tolerance Requirements,” Second Internationa
Symposium on Requirements Engineering, Los

© |EEE— Soneman (Version 0.7) — April 2000

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[Fiksel and Dunkle 1991]. Fiksdl, J., "Principles
of Reguirements Management Automation,"
|EEE Reliahility Society Leesburg Workshop on
R&M CAE in Concurrent Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, October 1991.

[Finkelstein 1990]. Finkelstein, A., "Viewpoint
Oriented Software Development,” Third
International Workshop on Software Engineering
and Its Applications, Toulouse, France: EC2,
1990.

[Finkelstein 1991]. Finkelstein, A., "Tracing
Back From Requirements," Colloquium on Tools
and Techniques for Maintaining Traceability
During Design, McGraw Hill, 1992.

[Finkelstein 1991b]. Finkelstein, A., "Tracing
Back From Requirements” Tools and
Techniques for Maintaining Traceability During
Design, London, IEE Digest 1991/180, U.K.:
|EE, 1991, pp. 7/1-7/2.

[Finkelstein and Goldsack 1991]. Finkelstein, A.,
and S. Goldsack, "Requirements Engineering for
Red -Time Systems," |EE Software Engineering
Journal, 6, 3 (March 1991), pp. 101-115.

[Finkelstein, et al. 1994]. Finkelstein, A., et al.,
"Inconsistency Handling in Multiperspective
Specifications," IEEE Transactions on Software
Engineering, 20, 8 (August 1994), pp. 569-578.
[Firesmith 1993]. Firesmith, D., Object-Oriented
Requirement Analysis and Logical Design, New
York, New York: Wiley, 1993.

[Flynn 1992]. Flynn, D., Information Systems
Requirements: Determining and Andyss,
London: |EE Press Digest 1991-190, December
1991.

[Forsgen and Rahkonen 1995]. Forsgen, P., and
T. Rahkonen, "Specification of Customer and
User Requirementsin Industrial Control System
Procurement Projects,” Second International
Symposum on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[Fowler and Scott 1997]. Fowler, M. and Scott,
K., UML Didtlled: Applying the Standard
Object Moddling Language. Reading,
Masschusetts: Addison-Wesley, 1997.

[Fox and Smith 1994]. Fox, A., and H. Smith,
"An Indirect Approach to Information
Requirements Determination in the Devel opment
of Executive Information Systems," Conference

2-27

406.

407.

408.

400.

410.

411.

412.

413.

414,

415.

on Requirements Elicitation for Software-Based
Systems, July 1994,

[Fraser, et a. 1991]. Fraser, M., et d., "Forma
and Informa Requirements Specification
Languages: Bridging the Gep," |IEEE
Transactions on Software Engineering, 17, 5
(May 1991), pp. 454-466.

[Freeman 1981]. Freeman, P., "Why Johnny
Cant Andyze?" Systems Andyss and Design:
A Foundation for the 1980's, W. Cotterman, et
a., eds,, Amsterdam, The Netherlands: North-
Holland, 1981.

[Furbach 1993]. Furbach, U., "Formd
Specification Methods for Reactive Systems,"
The Journal of Systems and Software, 21, 2
(May 1993), pp. 129-139.

[Gabridlian and Franklin 1988]. Gabridian, A.,
and M. Franklin, "State-Based Specification of
Red -Time Systems," 1988 Red - Time Systems
Symposium, Los Alamitos, Cdiforniac |IEEE
Computer Society Press, 1988.

[Galey and Smith 1993]. Galey, D., and J
Smith, "Overview of CORE Techniques' in
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1993, pp. 97-104.

[Gamma 1995]. Gamma, E., HEm, R. €t. 4.,
Design Patterns: Elements of Reusable Object-
oriented software. Reading, Massachusetts:
AddisonWesley, 1995.

[Garcia1994]. Garcia, S., "ICRE Standard Panel:
The SECMM Project, |EEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 59.

[Ghgar-Dowlatshahi and Varnekar 1994].
Ghgar-Dowlatshahi, J,, and A. Varnekar, "Rapid
Prototyping in Requirements Specification Phase
of Software Systems" Fourth Internationa
Symposium on Systems Engineering, Sunnyvale,
Cdliforniaz National Council on Systems
Engineering, August 1994, pp. 135-140.

[Gibson 1995]. Gibson, M., "Domain Knowledge
Reuse During Requirements Engineering,”
Seventh Internationa Conference on Advanced
Information Systems Engineering (CAiSE '95),
Springer-Verlag, 1995.

[Goguen 1993]. Goguen, J., "Socia Issues in
Requirements Engineering," |EEE Internationa
Symposium on Requirements Engineering, Los

2-28

416.

417.

418.

419.

420.

421.

422.

423.

424,

Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 194-195.

[Goguen and Jirotka 1994]. Goguen, J., and M.
Jirotka, eds., Requirements Engineering: Social
and Technical Issues, Boston, Massachusetts:
Academic Press, 1994,

[Goldin and Berry 1994]. Goldin, L., and D.
Berry, "AbstFinder: A Prototype Abstraction
Finder for Natural Language Text for Use in
Requirements Elicitation: Design, Methodology
and Evaluaion," IEEE Internationa Conference
on Reguirements Engineering, Los Alamitos,
Cdifornia IEEE Computer Society Press, April
1994, pp. 84-93.

[Goldman and Narayanaswamy 1992]. Goldman,
N., and K. Narayanaswamy, "Software Evolution
Through Iterative Prototyping,” 14™ |EEE
International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1992.

[Gotel and Finkelstein 1995]. Gotel, O., and A.
Finkelstein, "Contribution Structures,” Second
|EEE Internationa Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, March 1995.

[Gote and Finkdlstein 1997]. Gotdl, O., and A.
Finkelstein, "Extending Requirements
Tracesbility: Lessons Learned from an Industrial
Case Study,” |IEEE International Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
January 1997.

[Grady 1993]. Grady, J, "In Defense of
Traditiona System Requirements Analyss,”
Third Annual Nationa Council on Systems
Engineering I nternationa Symposium,
Sunnyvale, Cdiforniaa NCOSE.

[Gray and Rao 1993]. Gray, E., and G. Rao,
"Software Requirements Andyss and
Specification in Europe An Overview" in
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1993, pp. 78-96.

[Gray and Thayer 1991]. Gray, E, and R
Thayer, "Requirements,” in Aerospace Software
Engineering: A Collection of Concepts, C.
Anderson and M. Dorfman, eds., Washington,
D.C.: AIAA, 1991, pp. 89-121.

[Gray, et d. 1988]. Gray, P., et d., "Dynamic
Reconfigurability for Fast Prototyping of User
Interfaces," Software Engineering Journa, 3, 6
(November 1988).

© |EEE — Stoneman (Version 0.7) — April 2000

425,

426.

427.

428.

429,

430.

431.

432.

[Greenspan 1993]. Greenspan, S., "Pand on
Recording Requirements Assumptions and
Rationale International Symposum on
Requirements Engineering, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
January 1993, pp. 282.

[Greenspan and Feblowitz 1993]. Greenspan, S,
and M. Feblowitz, "Requirements Engineering
Using the SOS Paradigm,” Internationd
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 260-263.

[Greenspan, et a. 1994]. Greenspan, S, etd.,"
On Forma Requirements Modeling Languages:
RML Revisited," Sixteenth Internationa
Conference on Software Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, May 1994, pp. 135-147.

[Grosz 1992]. Grosz, G., "Building Information
System RequirementsUsing Generic Structures,”
IEEE International Conference on Computer
Software and Applications, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1992.

[Hadel and Lakey 1994]. Hadel, J., and P. Lakey,
"A Customer-Oriented Approach to Optimizing
Suballocations of System Requirements," Fourth
Internationa Symposium on Systems
Engineering, Sunnyvae, Cdliforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 29-37.

[Hagelstein 1988]. Hagelstein, J., "Declarative
Approach to Information Systems
Requirements," Knowledge Based Systems, 1, 4
(1988), pp. 211-220; ACM Software Enginesring
Notes, 16, 5 (December 1991), pp. 44-54.

[Hal 1990]. Hal, J A., Usng Z as a
specification calculus for object-oriented
systems. In: VDM and Z - Formal methods in
Softwrae Development. Eds. D. Bjorner, CA.R.
Hoare and H. Langmaack. Heidelberg, Springer-
Verlag, 1990, pp.290-318.

[Hdligan 1993]. Haligan, R., "Requirements
Metrics. The Basis of Informed Requirements
Engineering Management,” 1993 Complex
Systems Engineering and Assessment
Technology Workshop, Nava Surface Warfare
Center, Dahlgren, Virginia, July 1993.

[Harel, et al. 1987]. Harel, D., et d., "On the
Formal Semantics of Statecharts,” Second |EEE
Symposium on Logic in Computer Science, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1987.

© |EEE— Soneman (Version 0.7) — April 2000

436.

437.

439.

441,

442,

[Harker 1991]. Harker, S, "Requirements
Specification and the Role of Prototyping in
Current Practice," in Taking Software Design
Serioudly, J. Karat, ed., Boston, Massachusetts:
Academic Press, 1991.

[Harker, et d. 1993]. Harker, S, et d., "The
Change and Evolution of Requirements as a
Challenge to the Practice of Software
Engineering,” International Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaz IEEE Computer Society Press,
January 1993, pp. 266-272.

[Harris 1988]. Harris, D., "The Knowledge-
Based Requirements Assistant,” |EEE Expert,
(1988).

[Harrison and Barnard 1993]. Harrison, M., and
P. Barnard, "On Defining Requirements for
Interaction,” 1EEE International Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1993, pp. 50-54.

[He and Yang 1992]. He, X., and C. Yang,
"Structured Anadlysis Using Hierarchicd
Predicate Transition Nets," |IEEE International
Conference on Computer Software and
Applications, Los Alamitos, Caifornia. |EEE
Computer Society Press, 1992.

[Heerjee, et a. 1989]. Heerjee, K., et 4.,
"Retrospective Software Specification”
Information and Software Technology, 31, 6
(July/August 1989), pp. 324-332.

[Heimdahl 1996]. Heimdahl, M., "Errors
Introduced during the TACS Il Requirements
Specification Effort: A Retrospective Case
Study,” Eighteenth IEEE Internationa
Conference on Software Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1996.

[Heitmeyer and Labaw 1991]. Heitmeyer, C.,
and B. Labaw., "Reqguirements Specification of
Hard Red-Time Systems. Experience with a
Language and a Verifier," in Foundations of
Red -Time Computing: Forma Specifications
and Methods, van Tilborg, A, and G Koob, eds.,
Norwell, Massachusetts: Kluwer Academic
Publishers, 1991.

[Heitmeyer, et a. 1996]. Heitmeyer, C., et a.,
"Automated Consistency Checking
Requirements Specifications," ACM
Transactions on Software Engineering and
Methodology, 5, 3 (July 1996), pp. 231-261.

[Heitz 1992]. Heitz, M., "Towards More Formal
Developments Through the Integration of

2-29

446.

447.

449,

450.

451.

452.

453.

454,

BehaviorExpression Notations and Methods
Within HOOD Developments," Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

[Henzinger, et d. 1991]. Henzinger, T., et 4.,
"Timed Transition Systems," REX Workshop --
Red - Time Theory and Practice, 1991.

[Herbst 1995]. Herbst, H., "A MetaModel for
Business Rules in Systems Analysis" Seventh
International Conference on Advanced
Information Systems Engineering (CAISE '95),
Springer-Verlag, 1995.

[Hill 1991]. Hill, R., "Enabling Concurrent
Engineering by Improving the Requirements
Process' CALS and CE '91, Washington, D.C.,
June 1991.

[Hofmann and Holbein 1994]. Hofmann, H., and
R. Holbein, "Reaching Out for Quality:
Considering Security Requirements in the
Design of Information Systems,”" International
Workshop on Requirements Engineering:
Foundations of Software Qudlity, June 1994,

[Holbrook 1990]. Holbrook, H., "A Scenario-
Based Methodology ~ for Conducting
Requirements Elicitation,” ACM Software
Engineering Notes, 15, 1 (January 1990), pp. 95-
104.

[Holtzblatt and Beyer 1995]. Holtzblatt, K., and
H. Beyer, "Requirements Gathering: The Human
Factor," Communicatiors of the ACM, 38, 5
(May 1995), pp. 31-32.

[Houghton and Thompson 1994]. Houghton, P.,
and J. Thompson, "Using Enterprise Modeling to
Elicit Requirements for Large Complex
Systems,” Conference on Requirements
Elicitation for SoftwareBased Systems, July
1994,

[Hsa and Yaung 1988]. Hsa, P., and A. Yaung,
"ScreenBased Scenario Generator: A Tool for
Scenario-Based Prototyping," Hawaii
International Conference on Systems Sciences,
Los Alamitos, Cdliforniaa |IEEE Computer
Society Press, 1988, pp. 455-461.

[Hia et a. 1993]. Hsa, P, et a. "Status
Report: Requirements Engineering," |EEE
Software, 10, 6 (November. 1993), pp. 75-79.
[Hsa, et a. 1994]. Hsia, P, et d., "A Formal
Approach to Scenario Andysis," IEEE Software,
11, 2 (March 1994).

[Hudak 1993]. Hudak, G., "Geiting the
Requirements for a Reguirements Tool," Third

455,

456.

457.

458.

450,

460.

461.

462.

463.

464.

Annual Nationd Council on Systems
Engineering Internationa Symposium,
Sunnyvae, Cdiforniat NCOSE.

[Hudlicka 1996]. Hudlicka, E., "Requirements
Elicitation with Indirect Knowledge Elicitation
Techniques. Comparison of Three Methods,"
Second |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1996.

[Hughes, et a. 1994]. Hughes, K., et d., "A
Taxonomy for Requirements Anayss
Techniques," |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1994, pp. 176-179.

[Hughes, et a. 1995]. Hughes, J, et 4.,
"Presenting Ethnography in the Requirements
Process," Second |EEE International Symposium
on Reguirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1995.

[Hunter and Nuseibeh 1997]. Hunter, A., and B.
Nuseibeh, "Andyzing Inconsistent
Specifications," IEEE International Symposium
on Requirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1997.

[Hutt 1994]. Hutt, A., Object-Oriented Anaysis
and Design, New Y ork, New Y ork: Wiley, 1994.

[Ingram 1987]. Ingram, D., "Requirements
Management is Key to Software Quality,” CASE
Outlook, 1, 5 (November 1987).

[Iris, et a. 1992]. Iris, J, et d., "Formalizing
Requirements. The ARC2 Method,” Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

[Ishihara, et a. 1993]. Ishihara, Y., et d., "A
Trandation Method From Natural Language
Specifications into Formal Specifications Using
Contextua Dependencies,” International
Symposium on Requirements Engineering, Los
Alamitos, Cdlifornia IEEE Computer Society
Press, January 1993, pp. 232-239.

[Jackson 1995]. Jackson, M., Software
Requirements and Specifications, Reading,
Massachusetts: Addison Wesley, 1995.

[Jackson 1997]. Jackson, M., "The Meaning of
Requirements," Annals of Software Engineering,
3, N. Mead, ed., 1997.

© |EEE — Stoneman (Version 0.7) — April 2000

465.

466.

467.

468.

469.

470.

471

472.

473.

474,

475.

[Jackson and Zave 1993]. Jackson, M., and P.
Zave, "Domain Descriptions” International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 56-64.

[Jacobson, et al. 1993]. Jacobson, I., et 4.,
Object-Oriented Software Engineering: A Use-
Case Driven Approach, Reading, Massachusetts:
AddisonWesley, 1992.

[Jahanian and Mok 1986]. Jahanian, F., and A.
Mok, "A Graph-Theoretic Approach for Timing
Analysis in Real Time Logic," 1986 Red -Time
Systems Symposium, Los Alamitos, California
|EEE Computer Society Press, 1986.

[Jahanian and Stuart 1988]. Jahanian, F., and D.
Stuart, "A Method for Verifying Properties of
Modechart Specifications,” Ninth Rea-Time
Systems Symposium, Los Alamitos, Caifornia
|EEE Computer Society Press, 1988.

[Jahanian, et a. 1988]. Jahanian, F., et 4d.,
"Semantics of Modechart in Rea Time Logic,"
21t Hawaii International Conference on System
Science, Los Alamitos, Cadlifornia |IEEE
Computer Society Press, 1987.

[Jarke, e d. 19934. Jarke, M. e 4.,
"Requirements Engineering: An Integrated View
of Representation, Process, and Domain," 4th
European Conference on Software Engineering,
September 1993.

[Jeremaes, et a. 1986]. Jeremaes, P, et d., "A
Modal (Action) Logic for Requirements
Specification," in Software Engineering '86, P.
Brown and D. Barnes, eds., Peter Peregrinus,
1986.

[Jirotka and Goguen 1994]. Jirotka, M., and J.
Goguen, eds., Requirements Engineering: Socia
and Technica Issues, London, U.K.: Academic
Press, 1994.

[Jirotka and Heath 1995] Jirotka, M., and C.
Heath, "Ethnography by Video for Requirements
Capture," Second International Symposium on
Requirements Engineering, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1995.

[Johnson, et a. 1991]. Johnson, W., et d., "The
KBSA Reguirements/Specification Facet:
ARIES" Sxth Annud Knowledge-Based
Software Engineering Conference, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
September 1991.

[Johnson, et a. 1992]. Johnson, W., et 4.,
"Representation and Presentation of
Requirements Knowledge," IEEE Transactions

© |EEE— Soneman (Version 0.7) — April 2000

476.

477.

478.

479.

481.

482.

on Software Engineering, 18, 10 (October 1992),
pp. 853-69.

[Jones1994]. Jones, L., "Practical Experiencesin
Automating Requirements in Elicitation: The
Red Issues" Conference on Requirements
Elicitation for SoftwareBased Systems, July
1994.

[Jones and Britton 1996]. Jones, S., and C.
Britton, "Early Elicitation and Definition of
Requirements for an Interactive Multimedia
Information System," Second |EEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1996.

[Jones and Brooks 1994]. Jones, M., and L.
Brooks, "Addressing Organizational Context in
Requirements Analyss Using Cognitive
Mapping,” Conference on Requirements
Elicitation for SoftwareBased Systems, July
1994.

[Kaind 1993]. Kaindl, H., "Missng Link in
Requirements Engineering,” ACM Software
Engineering Notes, 18 , 2 (April 1993), pp. 30-
39.

[Kang and Ko 1995]. Kang, K., and G. Ko,
"PARTS. A Tempord Logic-based Red-Time
Software Specification and Verification Method
Supporting Multiple Viewpoints," Seventeenth
IEEE International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1995.

[Kefer 1994]. Kefer, M., "Improving
Requirements Processing, A Case Study," Fourth
International Symposium on Systems

Engineering, Sunnyvale, Californiaz Nationd
Council on Systems Engineering, August 1994,
pp. 987-990.

[Kent, et a. 1993]. Kent, S, et al., "Formaly
Specifying Temporal Constraints and Error
Recovery," |EEE International Symposium on
Requirements Engineering, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
January 1993, pp. 208-215.

[Kesten and Pnueli 1991]. Kesten, Y., and A.
Pnudli, "Timed and Hybrid Staecharts and Their
Textual Representation,” Forma Techniques in
Red -Time and Fault Tolerant Systems, Berlin:
Springer-Verlag, 1991, pp. 591-620.

[Kim and Chong 1996]. Kim, D-H., and K.
Chong, "A Method of Checking Errors and
Consistency in the Process of Object-Oriented
Andysis" 1996 AsaPacific Conference on
Software Engineering, December 1996.

2-31

486.

487.

489.

490.

491.

492.

493.

494,

495,

496.

[Kirner 1993]. Kirner, T., "Anadysis of Real-
Time System Specification Methods" ACM
Software Engineering Notes, 18, 3 (July 1993),
pp. A-50 -- A-53.

[Kirner and Davis 1995]. Kirner, T., and A.
Davis, "Nonfunctiona Requirements for Real-
Time Systems," Advancesin Computers, 1996.
[Kiskis and Shin 1994]. Kiskis, D., and K. Shin,
"SWSL: A Synthetic Workload Specification
Language for Red-Time Sysems" |EEE
Transactions on Software Engineering, 20, 10
(October 1994), pp. 798-811.

[Klein 1997]. Klein, M., "Handling Exceptionsin
Collaborative Requirements Acquisition,” |EEE
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1997.

[Koch 1993]. Koch, G., "Process assessment: the
'‘BOOTSTRAP gpproach,” Information and
Software Technology 35, 6/7 (1993), pp.387-
403.

[Kosman 1997]. Kosman, R., "A Two-Step
Methodol ogy to Reduce Reguirements Defects,"
Anmnals of Software Engineering, 3, N. Mead,
ed., 1997.

[Kotonya and Sommerville 1992]. Kotonya, G.,
and |. Sommerville, "Viewpoints for
Requirements Definition,” Software Engineering
Journd, 7, 6 (November 1992), pp. 375-387.

[Kovarik 1993]. Kovarik, V. "Automated
Support for Managing System Requirements,"
Third Annual Nationa Council on Systems
Engineering I nternationa Symposium,
Sunnyvale, Cdiforniaa NCOSE.

[Kramer, et a. 1988]. Kramer, J,, et a., "Tool
Support for Requirements Anayss" |IEE
Software Engineering Journd, 3 (May 1988), pp.
86-96.

[Kramer, et d. 1993]. Kramer, B., et 4d.
"Computational Semantics of a Red-Time
Prototyping Language," |EEE Transactions on
Software Engineering, 19, 5 (May 1993), pp.
453-477.

[Krogdtie, et d. 1995]. Krogstie, J, et a.,
"Towards a Deeper Understanding of Quality in
Requirements Engineering," Seventh
International Conference on Advanced
Information Systems Engineering (CAISE '95),
Springer-Verlag, 1995.

[Kuwana and Herbdeb 1993]. Kuwana, E., and J.
Herbsleb, "Representing Knowledge in
Requirements Engineering: An Empirical Study

2-32

497.

498.

499.

501.

502.

503.

505.

of What Software Engineers Need to Know,"
|EEE Internationa Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 273
276.

[Lalioti and Theodoulidis 1995]. Ldiati, V., and
B. Theodoulidis, "Visua Scenarios for
Validation of Requirements Specification,”
Seventh Internationa Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 114-116.

[Lam 1997]. Lam, W., "Achieving Requirements
Reuse: A Domain-Specific Approach from
Avionics" Journa of Systems and Software,
submitted for review May 1996.

[Lamsweerde, et a. 1995]. Lamsweerde, A., et
a., "Goal-Directed Elaboration of Requirements
for a Meeting Scheduler,” Second IEEE
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, March 1995.

[Landes 1994]. Landes, D., "Addressing Non
Functional Requirements in the Devel opment of
Knowledge-Based Systems” International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

[Lano and Haughton 1994]. Lano, K., and H.
Haughton, Object-Oriented Specification Case
Studies, Englewood Cliffs New Jersey: Prentice
Hall, 1994.

[LaSda 1994]. LaSdla, K., "ldentifying Profiling
System Requirements with Quality Function
Deployment," Fourth International Symposium
on Systems Engineering, Sunnyvae, Caifornia:
Nationa Council on Systems Engineering,
August 1994, pp. 249-253.

[Lea and Chung 1990]. Lea, R., and C. Chung,
"Rapid Prototyping From Structured Anaysis:.
Executable Specification Approach," Information
and Software Technology, 32, 9 (September
1990), pp. 589-597.

[Lee 1993]. Lee, J., "Incrementdlity in Rationale
Management,” Internationa Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
January 1993, p. 283.

[Leffingwell 1994]. Leffingwell, D., "Object-
Oriented Software Development and Medical
Devices Medical Device and Diagnostic
Industry Magazine, 14, 11 (November 1994), pp.
80-88.

© |EEE — Stoneman (Version 0.7) — April 2000

506.

507.

509.

510.

511.

512.

513.

514.

515.

516.

[Leffingwell 1997]. Leffingwell, D., "Caculating
the Return on Investment from More Effective
Requirements Management,” American
Programmer, 10, 4 (April 1997), pp. 13-16.

[Leite 1991]. Leite, J. C. P., and P. A. Freeman,
"Requirements vdidation through viewpoint
resolution," Transactions of Software
Engineering, 12, 12, 1991, pp.1253-1269.

[Leite, et a. 1997]. Leite, J,, et d., "Enhancing a
Requirements Basdline with Scenarios," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1997.

[Lerch, et d. 1997]. Lerch, F., et d., "Using
Simulation-Based Experiments for Software
Reguirements Engineering,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[Leveson and Harvey 1983]. Leveson, N. G. and
Havey, P. R, "Andyzing software safety,”
|EEE Transactions on Software Engineering, 9,
5, (1983), pp. 569- 579.

[Leveson, et a. 1994]. Leveson, N., et a.,
" Requirements Specification for Process-Control
Sysems” |IEEE Transactions on Software
Engineering, 20, 9 (September 1994), pp. 684-
707.

[Li 1993]. Li, W. "Theory Revison for
Requirements Capture," 4th Internationa Joint
Conference on the Theory and Practice of
Software Development, Paris, France: AFCET,
April 1993.

[Liang and Pamer 1994]. Liang, J, and J
Pamer, "A Pattern Matching and Clustering
Based Approach for Supporting Requirements
Transformation,” |EEE International Conference
on Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, pp. 180-183.

[Linton, et a. 1989]. Linton, M., et 4.,
"Composing User Interfaces With Interviews,"
| EEE Compuiter, 22, 2 (February 1989).

[Liu 1993]. Liu, S, "A Forma Requirements
Specification Method Based on Data Flow
Analysis" The Journal of Systems and Software,
21, 2 (May 1993), pp. 141-149.

[Liu and Yen 1996]. Liu, F.,, and J Yen, "An
Analytic Framework for Specifying and
Analyzing Imprecise Requirements,”" Eighteenth
IEEE International Conference on Software
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1996.

© |EEE— Soneman (Version 0.7) — April 2000

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

[Loucopoulos and Champion 1990].
Loucopoulos, P., and R. Champion, "Concept
Definition and Anaysis for Requirements
Specification," |EE Software Engineering
Journal, 2 (March 1990).

[Lubars, et a. 1992]. Lubars, M., et a, "Object
Oriented Analysis for Evolving Systems," |IEEE
14th International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, May 1992, pp. 173-185.

[Lubars, et d. 1993]. Lubars, M., e d, "A
Review of the State of the Practice in
Requirements Modeling," IEEE Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 2-14.

[Lubars, et a. 1993g. Lubars, M., et 4,
"Developing Initid OOA Models" 15th |IEEE
International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1993.

[Luff, et a. 1993]. Luff, P, et &, "Task and
Social Interaction: The Relevance of Naturalist
Analyses of Conduct for Requirements
Engineering,” |EEE International Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1993, pp. 187-190.

[Lukeszewski 1994]. Lukaszewski, M.,
"Applying Object-Oriented Methodology to
Commercia Systems Engineering,” Fourth
International Symposum on Systems
Engineering, Sunnyvale, Caiforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 867-872.

[Lugi 1993]. Ludgi, "How to Use Prototyping for
Requirements Engineering,” Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, p. 229.

[Lusman 1997]. Lugman, F., "A Forma
Approach to Scenario Integration,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Lutz and Woodhouse 1996]. Lutz, R., and R.
Woodhouse, "Contributions of SFMEA to
Requirements Anaysis" Second |EEE
International Conference on Requirements
Engineering, Los Alamitos, Cdiforniaz |EEE
Computer Society Press, April 1996.

[Lutz and Woodhouse 1997]. LutzR., and R.
Woodhouse, "Requirements Analysis Using
Forward and Backward Search,” Annas of
Software Engineering, 3, N. Mead, ed., 1997.

2-33

527.

528.

529.

530.

531.

532.

535.

536.

[Mecaulay 1993]. Macaulay, L., "Requirements
Capture as a Cooperative Activity," International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 174-181.

[Macaulay 1996]. Macaulay, L., Requirements
Engineering, London, UK: Springer, 1996.
[Macfarlane and Rellly 1995]. Macfarlane, |.,
and |. Rellly, "Requirements Traceability in an
Integrated Development Environment,” Second
|EEE Internationa Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, March 1995.

[Maiden and Rugg 1994]. Maiden, N., and G.
Rugg, "Knowledge Acquisition Techniques in
Requirements Engineering,"” Software
Engineering Journal, 1995.

[Maiden and Rugg 1995]. Maiden, N., et 4.,
"Computational Mechanisms for Distributed
Reguirements Engineering,” Seventh
International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 8-15.

[Maiden and Sutcliffe 1994]. Maiden, N., and A.
Sutcliffe, "Requirements Critiquing Using
Doman Abdractions” |EEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 184-193.

[Manos 1993]. Manos, K., "Strategies for
Preventing Future 'Requirements Creep," Third
Annua Nationa Council on Systems
Engineering I nternationa Symposium,
Sunnyvale, Californiae NCOSE, pp. 375-380.
[Mar 1994]. Mar, B., "Reguirements for
Development of Software Requirements,” Fourth
International Symposum on Systems
Engineering, Sunnyvale, Californiaz Nationa
Council on Systems Engineering, August 1994,
pp. 39-44.

[Marca and McGowan 1993]. Marca, D., and C.
McGowan, "Specification Approaches Express
Different World Hypotheses," IEEE International
Workshop on Software Specification and Design,
Los Alamitos, Cdlifornia |[EEE Computer
Society Press, December 1993.

[Martin 1993]. Martin, J., "Managing Integrated
Product Teams During the Requirements
Definition ~ Phase” Third Internationa
Symposium on Systems Engineering, Sunnyvale,
Cdiforniaz National Council on Systems
Engineering, July 1993,

2-34

537.

538.

539.

541.

542.

546.

[Martinka 1995]. Martinka, J., "Functiond
Requirements for Client/Server Performance
Modeling: An Implementation Using Discrete
Event Simulaion,” First IEEE Internationa
Conference on Engineering of Complex
Computer Systems, Los Alamitos, Caifornia
|EEE Computer Society Press, November 1995.

[MartinRubio and MartinezBejar 1997].
MartinRubio, F., and R. MartinezBgar, "A
Mathematical Functions-Based for Anadyzing
Elicited Knowledge," Ninth |[EEE Internationa
Conference on Software Engineering and
Knowledge Engineering, Skokie, lllinois.
Knowledge Systems Institute, June 1997, pp. 62-
69.

[Massonet and van Lamsweerde 1997].
Massonet, P, and A. van Lamsweerde,
"Anaogical Reuse of Requirements
Frameworks," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
January 1997.

[Matthews and Ryan 1989]. Matthews, B., and
K. Ryan, "Reguirements Specification Using
Conceptual Graphs," 2nd Internatiord CASE
Conference, London, UK, 1989.

[Mays, et d. 1985]. Mays, R., et d., "PDM: A
Requirements M ethodol ogy for Software System
Enhancements," IBM Systems Journa, 24, 2
(February 1985), pp. 134-149.

[McFarland and Reilly 1995]. McFarland, I., and
I. Reilly, "Requirements Tracesbility in an
Integrated Development Environment,” Second
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1995.

[McGowan 1994]. McGowan, C., "Reguirements
Enginering: A Different Anaogy,” |EEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, p. 147.
[Mead 1993]. Mead, N., "Mostly Theory at First
Requirements Symposium,” IEEE Software, 10,
2 (March 1993), p. 107.

[Mead 1994]. Mead, N., "The Role of Software
Architecture in Requirements Engineering,”
|EEE International Conference on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, p. 242.

[Methlie 1980]. Methlie L., "Systems
Requirements Anaysis -- Methodsand Moddls,"
The Information Systems Environment, H.

© |EEE — Stoneman (Version 0.7) — April 2000

547.

549.

550.

551.

552.

553.

554.

555.

556.

Lucas, et d., eds., Amsterdam, The Netherlands:
North-Holland, 1981.

[Meyer 1985]. Meyer, B., "On Formalism in
Specification," IEEE Software, 2, 1 (January
1985), pp. 6-26.

[Meyers and White 1983]. Meyers, S., and S.
White, Software Requirements Methodology and
Tool Study: A-6E Technology Transfer,
Grumman Aerospace Corporation Technica
Report, prepared for Naval Weapons Center,
Bethpage, New York, July 1983.

[Meziane and Vadera 1997]. Meziane, F., and S.
Vadera, "Tools for Producing Forma
Specifications: A View of Current Architectures
and Future Directions” Annas of Software
Engineering, 3, N. Mead, ed., 1997.

[Might 1993]. Might, R., "Requirements
Andysis: Going From User Needs to Specific
Performance Parameters," Third Annual National
Council on Systems Engineering International
Symposium, Sunnyvale, California NCOSE.

[Miller and Sabor 1994]. Miller, L., and B.
Sabor, "IEEE Draft Standard P1233: Guide for
Devel oping System Requirements Specification,”
|EEE International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |EEE
Computer Society Press, April 1994, p. 61.

[Milovanovic, et a. 1995]. Milovanovic, R., et
a., "Organic Growth via Development: The
Early Life Cycle" in Automated Systems Based
on Human Skill, D. Brandt and T. Martin, eds.,
Berlin, Germany: Pergamon Press, 1995.

[Moreno 1997]. Moreno, A., "Object-Oriented
Analysis From Textua Specifications ," Ninth
IEEE International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1997, pp. 48-55.

[Morgan and Schahczenski 1994]. Morgan, N.,
and C. Schahczenski, "Transitioning to Rigorous
Software Specification,” |EEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 110-117.

[Mogtert and von Solms 1995]. Mogtert, D., and
S. von Solms, "A Technique to Include
Computer Security, Safety, and Reslience
Reguirements as Part of the Reguirements
Specification," Journal of Systems and Software,
31, 1 (October 1995), pp. 45-53.

[Mullery 1979]. Mullery, G., "A method for
controlled requirements specifications', 4th

© |EEE— Soneman (Version 0.7) — April 2000

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

international Conference on Software
Engineering, Munich, Germany, IEEE Computer
Society Press, (1979), pp.126-135.

[Mumford 1985]. Mumford, E., "Defining
System Requirements to Meet Business Needs:
A Case Study Example," Computer Journal, 28,
2 (1985), pp. 97-104.

[Muntz and Lichota 1991]. Muntz, A., and R.
Lichota, "A Requirements Specification Method
for Rea Time Systems," 1991 |IEEE Red Time
Systems Symposium, Los Alamitos, California:
|IEEE Computer Society Press, 1991, pp. 264-
273.

[Mylopoulos, et a. 1992]. Mylopoulos, J, et al.,
"Representing and Using Nonfunctiond
Requirements: A Process-Oriented Approach,”
| EEE Transactions on Software Engineering, 18,
6 (June 1992), pp. 483-497.

[Mylopoulos, et a. 1995]. Mylopoulos, J, et al.,
"Multiple Viewpoints Anaysis of Software
Specification Process,” submitted to IEEE
Transactions on Software Engineering.

[Nakgjima and Davis 1994]. Nekgima, T., and
A. Davis, "Classfying Requirements for
Improved SRS Reviews" Internationa
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

[Nan and Buede 1994]. Nan, J.,, and D. Buede,
"Incorporating Structured Modeling in Object-
Oriented Anayss' Fourth Internationd
Symposium on Systems Engineering, Sunnyvae,
Cdliforniaz National Council on Systems
Engineering, August 1994,

[Naumann, et a. 1980]. Naumann, J, et 4.,
"Determining Information Regquirements. A
Contingency Method for Selection of
Requirements Assurance Strategy,” Journal of
Systems and Software, 1, 4 (June 1980), pp. 273
281.

[Nellborn and Holm 1994]. Nellbomn, C., and P.
Holm, "Capturing Information Systems
Requirements Through Enterprise and Speech
Modding,” Sixth Conference on Advanced
Information Systems Engineering, Utrecht,
Netherlands, June 1994.

[Nishimura and Honiden 1992]. Nishimura, K.,
and S. Honiden, "Representing and Using Nor+
Functional Requirements. A Process-Oriented
Approach," submitted to IEEE Transactions on
Software Engineering, December 1992.

[Nissen, et al. 1997]. Nissen, H., et a., "View
Directed Requirements Engineering: A

2-35

567.

568.

569.

570.

571.

572.

573.

574.

575.

Framework and Metamodd,” Ninth |EEE
International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1997, pp. 366-373.

[Nixon 1993]. Nixon, B., "Deding with
Performance Requirements During the
Development of Information Systems," |IEEE
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 42-
49.

[Nuseibeh, et a. 1994]. Nuseibeh, B., et d., "A
Framework for Expressing the Relationships
Between Multiple Views in Requirements
Specification," IEEE Transactions on Software
Engineering, 20, 10 (October 1994), pp. 760-
773.

[O'Brien 1996]. O'Brien, L., "From Use Case to
Daabase: Implementing a Reguirements
Tracking System," Software Development, 4, 2
(February 1996), pp. 43-47.

[Ohnishi 1994]. Ohnishi, A., "A Visuad Software
Requirements Definition Method,” |EEE
International Conference on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 194-
201.

[Ohnishi 19944]. Ohnishi, A., "Customizable
Software Requirements Languages,” Eighteenth
International IEEE Conference on Computer
Software and Applications, Los Alamitos,
Cdiforniac IEEE Computer Society, November
1994, pp. 5-10.

[Opdahl 1994]. Opdah, A., "Reguirements
Engineering for Software Performance,”
International Workshop on Requirements
Engineering: Foundations of Software Quality,
June 1994.

[Ostroff and Wonham 1987]. Ostroff, J., and W.
Wonham, "Modeling, Specifying, and Verifying
Red - Time Embedded Computer Systems,” 1987
Red -Time Systems Symposium, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1987.
[Ozcan and Siddigi 1993]. Ozcan, M., and J.
Siddigi, "A Rapid Prototyping Environment for
the Validation of Software Systems' 6th
International Conference on Software
Engineering and Its Applications, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, Paris,
France: EC2, 1993.

[Ozcan and Siddigi 1994]. Ozcan, M., and J.
Siddigi, "Vdidating and Evolving Software

2-36

576.

577.

578.

579.

580.

581.

582.

583.

584.

585.

Requirementsin aSystematic Framework," IEEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 202-
205.

[Pamer and Liang 1992]. Pamer, J., and J.
Liang, "Indexing and Clustering of Software
Requirements Specifications,” Information and
Decision Technologies, 18 (1992), pp. 283-299.
[Park, et d., 1995a)]. Park, S, et al., "Text-Based
Requirements Modedling Support System,”
Seventh International Conference on Software
Engineering and Knowledge Engireering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 16-22.

[Paulk 1993]. Paulk, M.C., €. d., "Capability
Maturity Model, Version 1.1, |IEEE Software
10, 4, (1993), pp. 18-27.

[Paulk 1995]. Paulk, M. C, e. d. The
Capability Maturity Model: Guidelines for
Improving the Software Process. Reading,
Massachusetts: AddisonWesley, 1995.

[Pinheiro and Goguen]. Pinheiro,F., and J
Goguen, "An Object-Oriented Tool for Tracing
Requirements," |IEEE Software, 13, 2 (March
1996), pp. 52-64.

[Pinkerton and Fogle 1992]. Pinkerton, M., and
F. Fogle, "Requirements
Management/Tracesbility: A Case Study --
NASA's National Launch System,” Second
Annual International Symposium on
Requirements Engineering, Sesttle, Washington:
National Council on Systems Engineering, July
1992.

[FPiprani and Morris 1993]. Piprani, C., and
Morris, "A Multi-Modd Approach for Deriving
Requirements Specifications for a Mega
Project,” Fifth Conference on Advanced
Information Systems Engineering, Paris, France,
June 1993.

[Playle and Schroeder 1996]. Playle, G., and C.
Schroeder, "Software Requirements Elicitation:
Problems, Tools, and Techniques," Crosstak:
The Journal of Defense Software Engineering, 9,
12 (December 1996), pp. 19-24.

[Pliskin and Shoval 1987]. Pliskin, N., and P.
Shovd, "End-User Prototyping: Sophisticated
Users Supporting Systems Development,”
Database, 18, 4 (April 1987), pp. 7-17.

[Pohl, et a. 1994]. Pohl, K., et d., "Applying Al
Techniques to Requirements Engineering: The
NATURE Prototype” IEEE Workshop on

© |EEE — Stoneman (Version 0.7) — April 2000

586.

587.

588.

589.

590.

591.

592.

593.

594.

595.

Research Issues in the Intersection Between
Software Engineering and Artificia Intelligence,
Los Alamitos, Cdifornia |IEEE Computer
Society Press, May 1994.

[Pohl, et a. 1995]. Pohl, K., et a., "Workshop
Summary: First Internationa Workshop on
Requirements Engineering: Foundation of
Software Qudity," ACM Software Engineering
Notes, 20, 1 (January 1995), pp. 39-46.

[Porter and Votta 1994]. Porter, A., and L. Votta,
"An Experiment to Assess Different Defect
Detection Methods for Software Requirements
Inspections," Sixteenth International Conference
on Software Engineering, Los Alamitos,
Cdifornia IEEE Computer Society Press, May
1994, pp. 103-112.

[Porter, et a. 1995]. Porter, A., et 4.,
"Comparing Detection Methods for Software
Requirements Inspections: A Replicated
Experiment,” |EEE Transactions on Software
Engineering, 21, 6 (June 1995), pp. 563-575.

[Poston 1996]. Poston, R., Automating
SpecificationBased Software Testing , Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1996.

[Potts 1993]. Potts, C., "Pand: | Never Knew my
Requirements were Object-Oriented Until |
Taked to My Andys," International Symposium
on Reguirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1993, p. 226.

[Potts 19934]. Potts, C, "Software Engineering
Research Revisted," |EEE Software, 10, 5
(September 1993).

[Potts 1994]. Potts, C., "Three Architectures in
Search of Requirements" IEEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdifornia IEEE Computer Society
Press, April 1994, p. 243.

[Potts and Hs 1997]. Potts, C., and I. Hs,
"Abdraction and Context in Requirements
Engineering: Toward a Synthesis" Annds of
Software Engineering, 3, N. Mead, ed., 1997.

[Potts and Newstetter 1997]. Potts, C., and W.
Newdtetter., "Naturdigtic Inquiry and
Requirements Engineering: Reconciling Their
Theoreticadl Foundations,” |EEE International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1997.

[Potts and Takahashi 1993]. Potts, C., and K.
Takahashi, "An Active Hypertext Modd for

© |EEE— Soneman (Version 0.7) — April 2000

596.

597.

598.

599.

601.

602.

603.

System Requirements,” 7th International
Workshop on Software Specification and Design,
Los Alamitos, Cdifornia |IEEE Computer
Society Press, December 1993.

[Potts, et a. 1995] Potts, C, e d., "An
Evauation of Inquiry-Based Requirements
Anadysis for an Internet Server,” Second
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1995.

[Quer and Olive 1993]. Quer, C. and A. Olive,
"Object Interactionin Object-Oriented Deductive
Conceptua Models," Fifth Conference on
Advanced Information Systems Engineering,
Paris, France, June 1993.

[Ramesh and Edwards 1993]. Ramesh, B., and
M. Edwards, "Issues in the Development of a
Requiremerts Tracesbility Model," International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 256-259.

[Ramesh and Lugi 1993]. Ramesh, B., and Lugj,
"Process Knowledge Based Rapid Prototyping
for Requirements Engineering," International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 248-255.

[Ramesh, et d. 1995]. Ramesh, B., et a.,
"Implementing Requirements Traceability: A
Case Study," Second International Symposium
on Requirements Engineering, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1995.

[Rauterberg and Strom 1994]. Rauterberg, M.,
and O. Strom, "About the Benefits of User-
Oriented Requirements Engineering,”
International Workshop on Requirements
Engineering: Foundations of Software Quality,
June 1994.

[Ravn, et d. 1993]. Ravn, A., & d., "Specifying
and Veifying Requirements of Red-Time
Sysems” |IEEE Transactions on Software
Engineering, 19, 1 (January 1993), pp. 41-55.

[Reed, et a. 1993]. Reed, M. e 4.,
"Requirements Traceability," Third Annua
National Council on Systems Engineering
International Symposium, Sunnyvae, California
NCOSE.

[Regnell, et a. 1995]. Regnell, B., et 4.,
“Improving the Use Case Driven Approach to
Requirements Engineering," Second |EEE
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1995.

2-37

605.

606.

607.

609.

610.

611.

612.

613.

614.

[Reizer, et d. 1994]. Reizer, N., et d., "Using
Formal Methods for Requirements Specification
of a Proposed POSIX Standard," |EEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 118-
125.

[Reubenstein 1994]. Reubengtein, H., "The Role
of Software Architecture in Software
Requirements Engineering," IEEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 244.

[Robertson and Robertson 1994]. Robertson, J.,
and S. Robertson, Complete Systems Analysis,
Vols. 1 and 2, Englewood Cliffs, New Jersey:
Prentice Hall, 1994.

[Robinson 1988]. Robinson, W., "Integrating
Multiple Specifications Using Domain Goals,"
Fifth Internationa Workshop on Software
Specification and Design, Los Alamitos,
Cdlifornia: IEEE Computer Society Press, 1988,
pp. 216-226.

[Robinson 1990]. Robinson, W., "A Multi-Agent
View of Reguirements” 12th Internationa
Conference on Software Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1990.

[Robinson and Fickas 1994]. Robinson, W., and
S. Fickas, "Supporting Multi-Perspective
Requirements Engineering," |EEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 206-215.

[Rolland 1994]. Rolland, C., "Modding and
Evolution of Artifacts" IEEE Internationd
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, pp. 216-219.

[Rolland 1994g]. Rolland, C., "A Contextud
Approach for the Reguirements Engineering
Process," 6th International Conference on
Software Engineering and Knowledge
Engineering, June 1994.

[Rolland and Prakash 1994]. Rolland, C., and N.
Prakash, " Guiding the Requirements Engineering
Process," First AsiaPacific Conference on
Software Engineering, December 1994,

[Rolland and Proix 1992]. Ralland, C., and C.
Proix, "A Naura Language Approach to
Requirements Engineering,” 4th Internationa
CAIiSE Conference, Manchester, UK, 1992.

615.

616.

617.

618.

619.

620.

621.

622.

623.

624.

[Ross 1985]. Ross, D., "Applications and
extensions of SADT," IEEE Compuiter, 18, 4,
(1985) pp.25-34.

[Rundlet and Miller 1994]. Rundlet, N., and W.
Miller, "Requirements Management: DOORS to
the Battlefild of the Future” Fourth
International Symposum on Systems
Engineering, Sunnyvale, Caiforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 65-72.

[Ryan 1993]. Ryan, K., "The Role of Natura
Language in Regquirements Engineering,”
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 240-
242,

[Ryan and Matthews 1993]. Ryan, M., and B.
Matthews, "Matching Conceptua Graphs to
Requirements Re-use," Internationa Symposium
on Reguirements Engineering, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
January 1993, pp. 112-120.

[Ryan and OBeirne 1994]. Ryan, K., and A.
OBeirne, "An Experiment in Requirements
Engineering Using Conceptual Graphs,”
Conference on Requirements Elicitation for
Software-Based Systems, July 1994.

[Rzepka 1994]. Rzepka, W., "Technology
Transfer a Rome Laboratory,” |IEEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, p. 148.

[Rzepka and Daley 1986]. Rzepka, W., and P.
Ddey, "A Prototyping Tool to Assist in
Reguirements Engineering,” 19th Hawaii
International Conference on Systems Science,
Los Alamitos, Cdliforniaa |IEEE Computer
Society Press, January 1986.

[Rzepka, e a. 1993]. Rzepka, W., e 4.,
"Requirements Engineering Technologies at
Rome Laboratory," |IEEE Internationd
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 15-18.

[Saeed, et a. 1991]. Saeed, A, €t dl., "The Role
of Formal Methodsin the Requirements Anaysis
for Safety-Criticadl Systems. a Tran Set
Example," 21t Symposium on Fault-Tolerant
Computing, June 1991, pp. 478-485.

[Seeed, e a. 1992]. Saeed, A, e d., An
Approach to the Assessment of Requirements
Specifications for Safety-Critica Systems,

© |EEE — Stoneman (Version 0.7) — April 2000

625.

626.

627.

628.

629.

630.

631.

632.

633.

Technical Report 381, Computing Laboratory,
University of Newcastle on Tyne, 1992.

[Seeki, et a. 1996]. Saeki, M., et d., "Structuring
Utterance Records of Requirements Elicitation
Mestings Based on Speech Act Theory," Second
|EEE International Conference on Requirements
Engineering, Los Alamitos, Cdifornia |EEE
Computer Society Press, April 1996.

[Sailor 1992]. Sailor, J., "Building and Managing
the Requirements/Verification Database,"
Second Annuad International Symposium on
Requirements Engineering, Sesttle, Washington:
National Council on Systems Engineering, July
1992.

[Samson 1993]. Samson, D., "Knowledge-Based
Test Planning: Framework for a Knowledge-
Based System to Prepare a System Test Plan
From System Reguirements,” The Journa of
Systems and Software, 20, 2 (February 1993),
pp. 115-124.

[Saeesh 1995]. Sateesh, T., "Making the
Requirements of Process Controlled Systems,”
28th Annual |EEE International Conference on
System Sciences, Redondo Beach, CA: IEEE
Computer Society Press, 1995.

[Scheurer and VVolz 1994]. Scheurer, R., and M.
Volz, "Cagpturing and Taming Derived
Requirements," Fourth Internationa Symposium
on Systems Engineering, Sunnyvae, Cadifornia:
National Council on Systems Engineering,
August 1994, pp. 83-89.

[Schmitt 1993]. Schmitt, J., "Product Modeling
for Requirements Engineering Process
Modding," in Information System Development
Process, N. Prakash, et d., eds., New York, New
York: Elsevier Science Publishers, 1993, pp.
231-245.

[Schneider, et a. 1992]. Schneider, G., et 4d.,
"An Experimental Study of Fault Detection in
Usr Requirements Documents” ACM
Transactions on Software Engineering and
Methodology, 1, 2 (April 1992), pp. 188-204.

[Schoening 1994]. Schoening, W., "The Next
Big Step in Systems Engineering Tools:.
Integrating Automated Requirements Tools with
Computer Smulated Synthesis and Test," Fourth
International Symposum on Systems
Engineering, Sunnyvae, Cdliforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 409-415.

[Selic et a. 1994]. Sdic, B., et d., Red-Time
Object-Oriented Modding, New York, New
York: Wiley, 1994.

© |EEE— Soneman (Version 0.7) — April 2000

634.

635.

636.

637.

638.

639.

641.

642.

[Sfigakis, et a. 1992]. Sfigakis, M., et 4.,
"Mapping Structured Anaysis Semantics to
Hierarchica Object-Oriented Design,” Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

[Shekaran 1994]. Shekaran, M., "The Role of
Software Architecture in Requirements
Engineering," |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1994, p. 245.

[Shim and Kim 1997]. Shim, Y., and H. Shim, et
a., "Specification and Analysis of Security
Requirements for Distributed Applications,”

Ninth IEEE International Conference on
Software Engineering and Knowledge
Engineering, Skokie, Illinois. Knowledge

Systems Institute, June 1997, pp. 374-381.

[Sibley, et a. 1993]. Sihley, E., et d., "The Role
of Policy in Requirements Definition," |EEE
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 277-
280.

[Siddig, et a. 1994]. Siddiqi, J., et a., "Towards
a System for the Construction, Clarification,
Discovery, and Formalization of Requirements,"
|EEE International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 230-
238.

[Siddiqi, et a. 1997]. Siddiqj, J., et d., "Towards
Quaity Requirements Via Animated Formal
Specifications," Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Smon 1994]. Simon, B., "Requirements
Management Implementation Roadblocks,"
Fourth International Symposium on Systems
Engineering, Sunnyvale, Caiforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 79-82.

[Sindre and Opdahl 1993]. Sindre, G., and A.
Opdahl, "Concepts for Red-World Moddling,"
Fifth Confaence on Advanced Information
Systems Engineering, Paris, France, June 1993.

[S-Sad, et a. 199]. Si-Said, S, et d., "Mentor:
A Computer Aided Requirements Engineering
Environment," Eighth Conference on Advanced
Information Systems Engineering (CAISE 96),
Heraklion, Crete, Greece, May 1996,.

[Smith 1991]. Smith, M., Software Prototyping,
New York, New York: McGraw Hill, 1991.

2-39

646.

647.

649.

650.

651.

652.

[Smith 1993]. Smith, T., "READS A
Requirements Engineering Tool," Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cadliforniaz IEEE Computer Society
Press, January 1993, pp. 94-97.

[Smith, et a. 1992]. Smith, J, "Systems
Engineering with the Right Requirements. An
Approach for Assessing User Needs," Second
Annua International Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

[Soares 1994]. Soares, J., "Underlying Concepts
in Process Specification," IEEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdliforniaz IEEE Computer Soci ety
Press, April 1994, pp. 48-52.

[Souquieres and Levy 1993]. Souquieres, J., and
N. Levy, "Description of Specification
Developments,” Internationd Symposium on
Requirements Engineering, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
January 1993, pp. 216-223.

[Spanoudakis and Finkelstein 1997].
Spanoudakis, G., and A. Finkdgen,
"Reconciling Reguirements: A Method for
Managing Interference, Inconsistency, and
Conflict," Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[Stamper and Blackhouse 1988]. Stamper, R.,
and J Blackhouse, "MEASUR: Method for
Eliciting Anayzing Specifying User
Requirements,” in Computerized Assistance
During the Information Systems Life Cycle, T.
Olle, et d., eds., North-Holland, 1988.

[Stephens and Bates 1990]. Stephens, M., and P.
Bates, "Requirements Engineering by
Prototyping: Experiences in Development of
Estimating System,”" Information and Software
Technology, 32, 4 (May 1990), pp. 253-7; alsoin
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1993, pp. 105-111.

[Stevens 1994]. Stevens, R., "Structured
Requirements,”" Fourth International Symposium
on Systems Engineering, Sunnyvale, Caifornia:
National Council on Systems Engineering,
August 1994, pp. 99-104.

[Stevens and Putlock 1997]. Stevens, R., and G.
Putlock, "Improving the Industrial Application of
Requirements Management,” American
Programmer, 10, 4 (April 1997), pp. 17-22.

2-40

653.

654.

655.

656.

657.

658.

659.

660.

661.

662.

[Stokes 1991]. Stokes, D., "Requirements
Andysis" in Software Engineer's Reference
Book, J. McDermid, ed., Boca Raton, Florida:
CRC Press, 1991.

[Stuart and Clements 1991]. Stuart, D., and P.
Clements, "Clairvoyance, Capricious Timing
Faults, Causdlity, and Real- Time Specifications,”
1991 Real-Time Systems Symposium, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1991.

[Suh, et a. 1992]. Suh, S, et d., "Requirements
Specification for a Real-Time Embedded Expert
Sysem for Repid Prototyping,” Third
International Workshop on Rapid System
Prototyping, Los Alamitos, Cdiforniac IEEE
Computer Society Press, June 1992, pp. 172-180.

[Sutcliffe 1997]. Sutcliffe, A, "A Technique
Combination Approach to Requirements
Engineering," |IEEE Internationad Symposium on
Requirements Engineering, Los Alamitos
California: IEEE Computer Society Press, March
1997.

[Sutcliffe and Maiden 1990]. Sutcliffe, A., and
N. Maiden, "How Specification Reuse can
Support Requirements Analysis" Software
Engineering '90, P. Hal, ed., Brighton, UK:
Cambridge University Press, July 1990.
[Sutcliffe and Maiden 1993]. Sutcliffe, A., and
N. Maiden, "Bridging the Requirements Gap:
Policies, Goals, and Domans" |EEE
International Workshop on Software
Specification and Design, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
December 1993.

[Sutton, et a. 1991]. Sutton, S, et 4d.
"Programming a Software Requirements
Specification Process," First International
Conference on the Software Process, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, October 1991, pp. 68-89.

[Sveeney 1994]. Swveeney, T., "MIL-STD-499B:
Sysems Engineering," |EEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 62.

[Takahashi, et a. 1996]. Takahashi, K., €t d.,
"Hypermedia Support for Collaboration in
Requirements Analysis" Second IEEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1996.

[Tokeda, e d. 1993]. Takeda, N., et 4.,
"Requirements Analysis by the KJ Editor,"

© |EEE — Stoneman (Version 0.7) — April 2000

663.

664.

665.

666.

667.

668.

669.

670.

671.

672.

International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 98-
101.

[Tama and Irou 1993]. Tama, T., and A. lrou,
"Requirements and Design Change in Large-
Scale Software Development: Analysis from the
Viewpoint of Process Backtrack," 15th |IEEE
International Conference on Software
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, May 1993, pp. 167-176.

[Tanik and Yeh 1989]. Teanik, M., and R. Yeh,
"The Role of Rapid Prototyping in Software
Devdopment,” IEEE Computer, 22, 5 (May
1989), pp. 9-10.

[Teng and Sethi 1990]. Teng, J,, and V. Sethi, "A
Comparison of Information Requirements
Analyss Methods: An Experimenta Study,”
Database, 20, 3(March 1990), pp. 27-39.

[Trienekens 1994]. Trienekens, J, "Quality
Requirements Engineering: First Specification
Then Redisation,” International Workshop on
Requirements Engineering: Foundations of
Software Quality, June 1994,

[Tsai and Weigert 1993]. Tsa, J, and T.
Weigert, Knowledge-Based Software
Development for Red-Time Distributed
Systems, World Scientific, 1993 .

[Tsa, et d. 1992]. Tsa, J, et a., "A Hybrid
Knowledge Representation as a Basis of
Reguirements Specification and Specification
Andyss' |EEE Transctions on Software
Engineering, 18, 12 (December 1992), pp. 1076-
1100.

[Tse and Ping 1991]. Tse, T., and L. Fing, "An
Examination of Requirements Specification
Languages,”" Computer Journal, 34 (April 1991),
pp. 143-152.

[Valusek and Fryback 1992]. Vausek, J.,, and D.
Fryback, "Information Requirements
Determination: Obstacles Within, Among, and
Between Participants” ACM End-User
Computing Conference, 1985.

[van Lamsweerde, et a. 1995] van Lamsweerde,
A., e d. "God-Directed Elaboration of
Requirementsfor aMeeting Scheduler: Problems
and Lessons Learnt,” Second Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[van Schouwen 1992]. van Schouwen, A., The
A-7 Requirements Model: RExamination for

© |EEE— Soneman (Version 0.7) — April 2000

673.

674.

675.

676.

677.

678.

679.

680.

681.

Red-Time Systems and an Application to
Monitoring Systems, McMaster University
Telecommunications Research Ingtitute of
Ontario CRL Report #242, Hamilton, Ontario,
Canada, February 1992.

[van Schouwen, et a. 1993]. van Schouwen, A.,
et a., "Documentation of Requirements for
Computer Systems” |IEEE Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 198-207.

[Vassilouy, et d. 1990]. Vassiloy, Y., et d., "IRIS
-- A Mapping Assistant for Generating Designs
from Reguirements," 2nd Nordic Conference on
Advanced Information Systems Engineering
(CAISE '90), Stockholm, Sweden, pp. 307-338,
1990.

[Vessey and Conger 1994]. Vessey, |., and S.
Conger, "Requirements Specification: Learning
Object, Process, and Data Methodologies,"
Communications of the ACM, 37, 5 (May 1994),
pp. 102-113.

[von der Beeck 1993]. Von der Beeck, M.,
"Integration of Structured Analysis and Times
Statecharts for Red-Time and Currency
Specification," Software Engireering - ESEC '93
Conference, L ecture Notesin Computer Science,
DCCXVII, Berlin: Springer Verlag, pp. 313-328,
1993.

[von der Beeck 1994]. Von der Beeck, M.,
"Method Integration and Abstraction From
Detalled Semantics to Improve Software
Quadlity," International Workshop on
Requirements Engineering: Foundations of
Software Quality, June 1994,

[Wang and Chen 1993]. Wang, J,, and H. Chen.,
"A Forma Technique to Andyze Red-Time
Systems," |EEE International Conference on
Computer Software and Applications, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1993.

[Wang, et d. 1992]. Wang, W., et d., "Scenario-
Driven Requirements Anaysis Method," 2nd
IEEE Internationa Conference on Systems
Integration, Los Alamitos, Cdifornia |EEE
Computer Society Press, June 1992, pp. 127-136.

[Weinberg 1995]. Weinberg, G., "Just Say No!
Improving the Requirements Process, "
American Programmer, October 1995.

[Welke 1977]. Welke, R., "Current Information
Systems Analysis and Design Approaches:
Framework, Overview, Comments, and
Conclusions," Education and Large Information

2-41

682.

683.

684.

685.

686.

687.

688.

689.

690.

691.

692.

693.

Systems, R. Buckingham, ed., Amsterdam, The
Netherlands: North-Holland, 1977.

[Weller 1993]. Weller, E.F., "Lessons from
Three Years of Inspection Data," |EEE Software
10,5, (1993), pp. 38-45.

[White 1994]. White, S., "Traceability for
Complex Systems Engineering," Fourth
International Symposum on Systems
Engineering, Sunnyvale, Californiaz Nationd
Council on Systems Engineering, August 1994,
pp. 49-55.

[White 19944]. White, S, "ECBS Task Force
Standardization Efforts" |EEE Internationa
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 63.

[White and Edwards 1995]. White, S., and M.
Edwards, "A Reguirements Taxonomy for
Specifying Complex Systems" First |EEE
International Conference on Engineering of
Complex Computer Systems, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
November 1995.

[Whitten, et al. 1994]. Whitten, J., et d., Systems
Analyss and Design Methods, Burr Ridge,
lllinois: Irwin, 1994,

[Wieringa 1996]. Wieringa, R., Requirements
Engineering: Frameworks for Understanding,
New Y ork: John Wiley & Sons, 1996.

[Wiley 1999]. Wiley, B., Essentid System
Requirements: A Practicad Guide to Event-
Driven Methods, Addison-Wesley, 1999.

[Wilson 1996]. Wilson, W., "Automated
Analysis of Requirement Specifications,”
Fourteenth Annual Pacific Northwest Software
Quality Conference, Los Alamitos, California
|EEE Computer Society Press, October 1996.

[Wood, et al. 1989]. Wood, W., et dl., "Avionics
Systems/Software Requirements Specification,"
Tenth Annua |EEE/AIAA Dayton Chapter
Symposium, 1989, pp. 61-70.

[Wood, et a. 1994]. Wood, D., e 4d., "A
Multimedia Approach to Requirements Capture
and Modeling," |IEEE International Conference
on Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, pp. 53-56.

[Wood-Harper, et a. 1985]. Wood-Harper, T, et
al., Information Systems Definition: The Multi-
View Approach, London: Blackwell, 1985.

[Woods and Yang 1996]. Woods, S., and Q.
Yang, "The Problem Understanding Problem:

2-42

694.

695.

696.

697.

698.

699.

700.

701.

702.

703.

Analysis and a Heuristic Approach,” Eighteenth
IEEE Internationa Conference on Software
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1996.

[Wright, et al. 1994]. Wright, P., et a., "Deriving
Human-Error Tolerance Reguirements From
Task Andyss" IEEE International Conference
on Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, pp. 135-142.

[Wyder 1996]. Wyder, T. "Captuing
Requirements With Use Cases" Software
Development, 4, 2 (February 1996), pp. 36-40.

[Yamamoto, et a. 1994]. Yamamoto, J., et d.,
"Object-Oriented Andysis and Design Support
System Using Algebraic Specification
Techniques," Firs AsaPacific Conference on
Software Engineering, December 1994.

[Yen and Tiao 1997]. Yen, J, and W. Tiao, "A
Systematic Tradeoff Analysis for Conflicting
Imprecise Reguirements," |EEE International
Symposium on Requirements Engineering, Los
Alamitos, Cdifornia |[EEE Computer Society
Press, March 1997.

[Yourdon 1994]. Yourdon, E., Object-Oriented
Systems Design, Englewood Cliffs, New Jersey:
Prentice-Hall, 1994.

[Yu 1993]. Yu, E., "Modding Organizations for
Information Systems Requirements
Engineering,” |EEE Internationa Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
January 1993, pp. 34-41.

[Yu 1997]. Yu, E, " Towards Modding and
Reasoning Support for Early-Phase
Requirements Engineering," |EEE Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, March 1997.

[Zave and Jackson 1996]. Zave, P., and M.
Jackson, "Where Do Operations Come From? A
Multiparadigm Specification Technique," |IEEE
Transactions on Software Engineerirg, 22,, 7
(July 1996), pp. 508-528.

[Zave and Jackson 1997]. Zave, P, and M.
Jackson, "Requirementsfor Telecommunications
Services: An Attack on Complexity," IEEE
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, March 1997.

[Zowghi and Offen 1997]. Zowghi, D., and R.
Offen, "A Logica Framework for Modeling and

© |EEE — Stoneman (Version 0.7) — April 2000

704.

Reasoning About the Evolution of
Requirements," |EEE International Symposium
on Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, March
1997.

[Zucconi 1993]. Zucconi, L., "I Never Knew my
Requirements were Object-Oriented Until |
Taked to My Andyst," International Symposium
on Reguirements Engineering, Los Alamitos,
Cdliforniaz |IEEE Computer Society Press,
Jenuary 1993, p. 230.

© |EEE— Soneman (Version 0.7) — April 2000

2-43

705.

706.

707.

708.

709.

710.

711.

712.

713.

714.

715.

APPENDIX E — REFERENCES USED
TO WRITE AND JUSTIFY THE
DESCRIPTION

[Acosta 1994]. Acosta, R., et d., "A Case Study
of Applying Rapid Prototyping Techniquesin the
Requirements Engineering Environment," IEEE
International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, pp. 66-73.

[Alford 1994]. Alford, M., "Attacking
Requirements Complexity Using a Separation of
Concerns,” |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdliforniac IEEE Computer Society Press, April
1994, pp. 2-5.

[Alford 1994]. Alford, M., "Panel Session Issues
in Requirements Engineering Technology
Transfer: From Researcher to Entrepreneur,”
|EEE International Conference on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, April 1994, p. 144.

[Anderson 1985]. Anderson, T., Software
Requirements. Specification and Testing,
Oxford, UK: Blackwell Publishing, 1985.

[Anderson and Durney 1993]. Anderson, J., and
B. Durney, "Using Scenarios in Deficiency-
Driven Requirements Engineering,” International
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 134-141.

[Andriole 1992]. Andriole, S, "Storyboard
Prototyping For Requirements Verification,"
Large Scale Systems, 12 (1987), pp. 231-247.
14.[Andriole 1992]

[Andriole 1995]. Andriole, S., “Interactive
Collaborative Requirements Management,"
Software Devel opment, (September 1995).

[Andriole 1996]. Andriole, S. J, Managing
Systems Requirements. Methods, Tools and
Cases. McGran-Hill, 1996.

[Anton and Potts 1998]. Anton, A., and C. Potts,
"The Use of Goals to Surface Requirements for
Evolving Sysems" Twentieth International
Conference on Software Engineaing, Los
Alamitos, Cdifornia IEEE Computer Society,
1998.

[Ardis, et d. 1995]. Ardis, M., e d. "A
Framework for Evauating Specification
Methods for Reactive Systems,” Seventeenth
IEEE International Conference on Software

2-44

716.

717.

718.

719.

720.

721.

722

723.

724.

725.

Engineering, Los Alamitos, Cdiforniaz IEEE
Computer Society Press, 1995.

[Bickerton and Siddigi 1993]. Bickerton, M., and
J. Siddiqi, "The Classification of Requirements
Engineering Methods," |EEE Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdliforniaz IEEE Computer Society
Press, January 1993, pp. 182-186.

[Blanchard and Fabrycky 1998]. Blanchard, B.
and Fabrycky, W. J, Systems Engineering
Analysis, Prentice Hall, 1998.

[Blum 1983]. Blum, B., "Still More About
Prototyping,” ACM Software Engineering Notes,
8,3 (May 1983), pp. 9-11.

[Blum 1993]. Blum, B., "Representing Open
Reguirements with a Fragment-Based
Specification,” IEEE Transaction on Systems,
Man and Cybernetics, 23, 3 (May-June 1993),
pp. 724-736.

[Blyth, et a. 19934). Blyth, A., & 4d., "A
Framework for Modelling Evolving
Requirements," IEEE Internationa Conference
on Computer Software and Applications, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1993.

[Boehm 1994]. Boehm, B., P. Bose, et 4.,
"Software Requirements as Negotiated Win
Conditions," Proc. 1* International Conference
on Requirements Engineering (ICRE), Colorado
Springs, Co, USA, (1994), pp.74-83.

[Boehm, et a. 1995]. Boehm, B., e 4d.,
"Software Regquirements Negotiation and
Renegotiation Aids: A Theory-W Based Spird
Approech,” Seventeenth |EEE Internationa
Conference on Software Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1995.

[Brown and Cady 1993]. Brown, P, and K.
Cady, "Functiona Anaysis vs. Object-Oriented
Anaysis. A View From the Trenches" Third
International Symposum on Systems
Engineering, Sunnyvale, Cdliforniaz Nationd
Council on Systems Engineering, July 1993.

[Bryne 1994]. Bryne, E., "IEEE Standard 830:
Recommended Practice for Software
Requirements Specification,” |EEE International
Conference on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, April 1994, p. 58.

[Burns and McDermid 1994]. Burns, A., and J.
McDermid, "Red -Time Safety-Critical Systems:
Andyss and Synthesis" I|EE Software

© |EEE — Stoneman (Version 0.7) — April 2000

726.

727.

728.

729.

730.

731.

732.

733.

734.

735.

736.

Engineering Journal, 9, 6 (November 1994), pp.
267-281.

[Checkland and Scholes 1990]. Checkland, P.,
and J. Scholes, Soft Sysems Methodology in
Action. John Wiley and Sons, 1990.

[Chung 19914]. Chung, L., "Representation and
Utilization of Nonfunctional Requirements for
Information System Design," Third International
Conference on Advanced Information Systems
Engineering (CAISE '90), Springer-Verlag, 1991,
pp. 5-30.

[Chung 1999]. Chung, L., Nixon, B.A., Yu. E.,
Mylopoulos, J., Non-functional Requirementsin
Software Engineering, Kluwer Academic
Publishers, 1999.

[Chung, et d. 1995]. Chung, L., e d., "Using
Non-Functional Requirements to Systematically
Support Change" Second International
Symposium on Requirements Engineering, Los
Alamitos, Cdifornia IEEE Computer Society
Press, 1995.

[Connell and Shafer 1989]. Connell, J., and L.
Shafer, Structured Rapid Prototyping,
Englewood Cliffs, New Jersey, 1989.

[Coombes and McDermid 1994]. Coombes, A.,
and J. McDermid, "Using Quantitetive Physicsin
Requirements Specification of Safety Critical
Systems' Workshop on Research Issues in the
Intersection Between Software Engineering and
Artificia Intelligence, Sorrento, Italy, May 1994.

[Costello and Liu 1995]. Costdlo, R., and D.
Liu, "Metrics for Requirements Engineering,”
Journa of Systems and Software, 29, 1 (April
1995), pp. 39-63.

[Curtis 1994]. Curtis, A., "How to Do and Use
Requirements Traceability Effectively," Fourth
Internationa Symposium on Systems
Engineering, Sunnyvale, Californiaz Nationd
Council on Systems Engineering, August 1994,
pp. 57-64.

[Davis 1993]. Daviss, AM. Software
Requirements: Objects, Functions and States.
Prentice-Hall, 1993.

[Davis 1995g]. Davis, A., 201 Principles of
Software Development, New York, New York:
McGraw Hill, 1995.

[Davis 1995h]. Davis, A., "Software
Prototyping,” in Advances in Computing, 40, M.
Zdkowitz, ed., New York, New York: Academic
Press, 1995.

© |EEE— Soneman (Version 0.7) — April 2000

737.

738.

739.

740.

741.

742.

743.

744,

745,

746.

747.

748.

[Davis, et d. 1997]. Davis, A., et d., "Elements
Underlying Requirements Specification," Annals
of Software Engineering, 3, N. Mead, ed., 1997.

[De Lemos, et d. 1992]. De Lemos, R., et d.,
"Analysis of Timeliness Requirementsin Safety-
Criticd Systems" Symposum on Formal
Techniques in Red-Time and Fault Tolerant
Systems, Nijmegen, The Netherlands. Springer
Verlag, January 1992, pp. 171-192.

[Dobson 1991]. Dobson, J., "A methodology for
analysing human computer-related issues in
secure systems,” International Conference on
Computer Security and Integrity in our Changing
World, Espoo, Finland, (1991), pp. 151-170.

[Dobson, & a. 1992]. Dobson, J, et d., "The
ORDIT Approach to Requirements
Identification," IEEE International Conference
on Computer Software and Applications, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, 1992, pp. 356-361.

[Dorfman and Thayer 1997]. Dorfman, M., and
R. H. Thayer, Software Engineering. IEEE
Computer Society Press, 1997.

[Easterbrook and Nuseibeh 1996]. Easterbrook,
S, and B. Nuseibeh, "Using viewpoints for
inconsistency management," Software
Engineering Journal, 11, 1, 1996, pp.31-43.

[Ebert 1997]. Ebert, C., "Deding with Non
Functional Reguirements in Large Software
Systems," Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[El Emam 1997]. EL Amam K., J. Drouin, et d.,
SPICE: The theory and Practice of Software
Process Improvement and Capability
Determination. IEEE Computer Society Press,
1997.

[El Emam and Madhavji 1995]. El Emam, K.,
and N. Madhavji, "Measuring the Success of
Requirements Engineering,” Second
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia IEEE
Computer Society Press, 1995.

[Fagan 1986]. Fagan, M.E., "Advances in
Software Ingpection,” IEEE Transactions on
Software Engineering 12, 7, 1986, pp. 744-51.

[Feather 1991]. Feather, M., "Requirements
Engineering: Getting Right from Wrong," Third
European Software Engineering Conference,
Springer Verlag, 1991.

[Fenton 1991]. Fenton, N. E., Software metrics:
A rigorous approach. Chapman and Hall, 1991.

2-45

749.

750.

751.

752.

753.

754.

755.

756.

757.

758.

759.

760.

[Fikse 1991]. Fiksd, J, "The Requirements
Manager: A Tool for Coordination of Multiple
Engineering Disciplines," CALS and CE '91,
Washington, D.C., June 1991.

[Finkelstein 1992]. Finkelstein, A., Kramer, J,
B. Nuseibeh and M. Goedicke, "Viewpoints. A
framework for integrating multiple perspectives
in systems development,” International Journa
of Software Engineering and Knowledge
Engineering, 2, 10, (1992), pp.31-58.

[Garlan 1994]. Garlan, D., "The Role of
Software Architecture in Requirements
Engineering," |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1994, p. 240.

[Gause and Weinberg 1989]. Gause, D.C., and

G. M. Weinberg, Exploring Reguirements :
Quiality Before Design, Dorset House, 1989.

[Gilb and Graham 1993]. Gilb, T., and D.
Graham, Software Inspection. Wokingham:
AddisonWesley, 1993.

[Goguen and Linde 1993]. Goguen, J., and C.
Linde, "Techniques for Requirements
Elicitation,” International Symposium on
Requirements Engineering, Los Alamitos,
Cdliforniaa |IEEE Computer Society Press,
January 1993, pp. 152-164.

[Gomaa 1995]. Gomaa, H., "Reusable Software
Reguirements and Architectures for Families of
Systems," Journal of Systems and Software, 28,
3 (March 1995), pp. 189-202.

[Grady 19934]. Grady, J., Systems Requirements
Analysis, New York, New York: McGraw Hill,
1993.

[Graham 1998]. Graham, 1., Requirements
Engineering and Rapid Deveopment : An
Object-Oriented Approach, Addison Wedey,
1998.

[Hadden 1997]. Hadden, R., "Does Managing
Requirements Pay Off?," American Programmer,
10, 4 (April 1997), pp. 10-12.

[Hdl 1996]. Hall, A., "Using Forma Methods to
Deveop an ATC Information System," IEEE
Software 13, 2, 1996, pp.66-76.

[Hansen, et a. 1991]. Hansen, K., & 4.,
"Specifying and Verifying Requirements of
Red-Time Sysems” ACM SIGSOFT
Conference on Software for Critical Systems,
December 1991, pp. 44-54.

2-46

761.

762.

763.

764.

765.

766.

767.

768.

769.

770.

771

772.

[Hardl 1988]. Hare, D., "On Visud
Formalisms," Communications of the ACM, 31,
5 (May 1988), pp. 8-20.

[Harel 1992]. Harel, D., "Biting the Silver Bullet:
Towards a Brighter Future for System
Development," IEEE Computer, 25, 1 (January
1992), pp. 8-20.

[Hard and Kahana 1992]. Hard, D., and C.
Kahang, "On Statecharts with Overlapping,”
ACM Transactions on Software Engineering and
Methodology, 1, 4 (October 1992), pp. 399-421.

[Harwell 1993]. Harwell, R., et d, "What is a
Requirement,” Proc 3% Ann. Intl Symp. Natl
Council Systems Eng., (1993), pp.17-24.

[Heimdahl and Leveson 1995]. Heimdahl, M.,
and N. Leveson, "Completeness and Consistency
Andyss of StateBased Requirements,”
Seventeenth |EEE International Conference on
Software Engineering, Los Alamitos, Cdlifornia:
|EEE Computer Society Press, 1995.

[Hofmann 1993]. Hofmann, H., Reguirements
Engineering: A Survey of Methods and Tools,
Technicd Report #TR-93.05, Institute for
Informatics, Zurich, Switzrland: University of
Zurich, 1993.

[Honour 1994]. Honour, E., "Requirements
Management Cost/Benefit Selection Criteria,"
Fourth International Symposium on Systems
Engineering, Sunnyvae, Cdliforniaz Nationd
Council on Systems Engineering, August 1994,
pp. 149-156.

[Hooks and Stone 1992] Hooks, 1., and D. Stone,
"Requirements Management: A Case Study --
NASA's Asaured Crew Return Vehicle" Second
Annua I nternational Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

[Hsia, et d. 1997]. Hsia, P. et d., "Software
Requirements and Acceptance Testing," Annas
of Software Engineering, 3, N. Mead, ed., 1997.

[Humphery 1988]. Humphery, W.S,
"Characterizing the Software Process" |EEE
Software 5, 2 (1988), pp. 73-79.

[Humphery 1989]. Humphery, W., Managing the
Software Process, Reading, Massachusetts:
Addison Wesley, 1989.

[Hutchings 1995]. Hutchings, A., and S. Knox,
"Cregting products customers demand,"
Communications of the ACM, 38, 5 (May
1995), pp. 72-80.

© |EEE — Stoneman (Version 0.7) — April 2000

773.

774,

775.

776.

7.

778.

779.

780.

781.

782.

783.

784.

[[EEE Standards 1999]. |EEE Software
Engineering Standards, Vol 1-4, IEEE, 1999,

[Ince 1994]. Ince, D., 1SO 9001 and Software
Quality Assurance. London: McGraw-Hill, 1994.

[Jackson and Zave 1995]. Jackson, M., and P.
Zave, "Deriving Specificatiors from
Requirements: An Example," Seventeenth |EEE
International Conference on Software
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, 1995.

[Jarke and Pohl 1994]. Jarke, M., and K. Pohl,
"Requirements Engineering in 2001: Virtualy
Managing a Changing Redity," |IEE Software
Engineering Journd, 9, 6 (November 1994), pp.
257-266.

[Jarke, et al. 1993]. Jarke, M., et d., "Theories
Underlying Requirements Engineering: An
Overview of NATURE a Geness" IEEE
International Symposum on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 19-
31.

[Jenkins 1994]. Jenkins, M., "Requirements
Capture,” Conference on Reguirements
Elicitation for SoftwareBased Systems, July
1994.

[Jrotka 1991]. Jirotka, M., Ethnomethodology
and Requirements Engineering, Centre for
Requirements and Foundations Technica
Report, Oxford, UK: Oxford University
Computing Laboratory, 1991.

[Kotonya 1999]. Kotonya, G., "Practica
Experience with Viewpoint-oriented
Requirements Specification,” Requirements
Engineering, 4, 3, 1999, pp.115-133.

[Kotonya and Sommerville 1996]. Kotonya, G.,
and |. Sommerville, "Requirements Engineering
with viewpoints," Software Engineering, 1, 11,
1996, pp.5-18.

[Kotonyaand Sommerville 1998]. Kotonya, G.,
and |I. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley and Sons,
1998.

[Lam, et d. 1997g]. Lam, W., et d., "Ten Steps
Towards Systematic Requirements Reuse," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1997.

[Leveson 1986]. Leveson, N. G., "Software
safety - why, wha, and how," Computing
surveys, 18, 2, (1986), pp. 125-163.

© |EEE— Soneman (Version 0.7) — April 2000

785.

786.

787.

788.

789.

790.

791.

792.

793.

794.

795.

[Leveson 1995]. Leveson, N. G., Safeware
Sysem Safety and Computers. Reading,
Massachusetts; Addison-Wesley, 1995.

[Loucopulos and Karakostas 1995]. L oucopulos,
P., and V. Karakostas, Systems Requirements
Engineering. McGraw-Hill, 1995.

[Lutz 1993]. Lutz, R., "Analyzing Software
Requirements Errors in Safety-Critical,
Embedded Systems” |EEE Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdiforniaz IEEE Computer Society
Press, January 1993, pp. 126-133.

[Lutz 1996]. Lutz, R., "Targeting Safety-Related
Errors During Software Requirements Analysis,”
The Journal of Systems and Software, 34, 3
(September 1996), pp. 223-230.

[Maiden and Sutcliffe 1993]. Maiden, N., and A.
Sutcliffe, "Requirements Engineering By
Example An Empiricd Study,” Internationa
Symposium on Requirements Engineering, Los
Alamitos Cdliforniat IEEE Computer Society
Press, January 1993, pp. 104-111.

[Maiden, et d., 1995] Maiden, N., et d., "How
People Categorise Requirements for Reuse: A
Natura Approach,” Second Internationa
Symposium on Requirements Engineering, Los
Alamitos, Cdifornia IEEE Computer Society
Press, 1995.

[Mazza 1996]. Mazza, C., J. Farclough, B.
Médton, D. DePablo, A. Scheffer, and R.
Stevens, Software Engineering Standards,
Prentice-Hall, 1996.

[Mazza 1996]. Mazza, C., J. Farclough, B.
Méton, D. DePablo, A. Scheffer, R. Stevens, M.
Jones, G. Alvis, Software Engineering Guides,
Prentice-Hall, 1996.

[Modugno, et ad. 1997]. Modugno, F., et 4.,
"Integrating Safety Anaysis of Reguirements
Specification,” |IEEE Internationa Symposium
on Requirements Engineering, Los Alamitos,
Cdlifornia |IEEE Computer Society Press,
January 1997.

[Morris, et a. 1994]. Morris, P., et 4.,
"Requirements and Traceability," Internationa
Workshop on Requirements Engineering:
Foundations of Software Qudlity, June 1994,

[Paulk 1996]. Paulk, M. C., C. V. Weber, et d.,
Capability Maturity Model: Guidelines for
Improving the Software Process. Addison
Wesley, 1995.

2-47

796.

797.

798.

799.

800.

801.

802.

803.

804.

805.

806.

807.

808.

[Pfleeger 1998]. Pfleeger, SL., Software
Engineering-Theory and Practice. Prentice-Hall,
1998.

[Pohl 1994]. Pohl, K., "The Three Dimensions of
Requirements Engineering: A Framework and Its
Applications,”" Information Systems 19, 3 (1994),
pp. 243-258.

[Pohl 1999]. Pohl, K., Processcentered
Requirements Engineering, Research Studies
Press, 1999.

[Potts 1993]. Potts, C., "Choices and
Assumptions in Requirements Definition,"
International Symposium on Requirements
Engineering, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, p. 285.

[Potts 1994]. Potts, C., K. Takahashi, et. d.,
"Inquiry-based Requirements Andysis" |IEEE
Software, 11, 2, 1994, pp. 21-32.

[Pressman 1997].Pressman, R.S. Software
Engineering: A Practitioner’'s Approach (4
edition). McGraw-Hill, 1997.

[Ramesh et d. 1997]. Ramesh, B., et 4d.,
"Requirements Tracesbility: Theory and
Practice Annd s of Software Engineering, 3, N.
Mead, ed., 1997.

[Roberston and Robertson 1999]. Robertson, S,
and J. Robertson, Mastering the Requirements
Process, Addison Wesley, 1999.

[Rosenberg 1998]. Rosenberg, L., T.F. Hammer
and L.L. Huffman, "Requirements, testing and
metrics, 15th Annua Pecific Northwest
Software Quality Conference, Utah, October
1998.

[Ruddand Isense1994]. Rudd, J, and S
lsense, "Twenty-two Tips for a Happier,
Healthier Prototype" ACM Interactions, 1, 1,
1994.

[Rzepka 1992]. Rzepka, W., "A Requirements
Engineering Testbed: Concept and Status," 2nd
IEEE International Conference on Systems
Integration, Los Alamitos, Cdifornia |EEE
Computer Society Press, June 1992, pp. 118-126.
[SEl 1995]. A Systems Engineering Capability
Model, Verson 1.1, CMU/SEI95-MM-003,
Software Engineering Institute, 1995.

[Sddigi and Shekaran 1996]. Siddiqi, J., and
M.C. Shekaran, "Requirements Engineering: The
Emerging Wisdom," |IEEE Software, pp.15-19,
1996.

2-48

809.

810.

811.

812.

813.

814.

815.

816.

817.

[Sommerville 1996]. Sommerville, l.
Software Engineering (5" edition), Addison
Wesley, pp. 63-97, 117-136, 1996.

[Sommerville and Sawyer 1997]. Sommerville,
I, and P. Sawyer, "Viewpoints. Principles,
Problems, and a Practicd Approach to
Requirements Engineering,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.
[Sommerville, et a. 1993]. Sommerville, 1., et
a., ‘“Integrating Ethnography into the
Requirements Engineering Process,"
International Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 165
173.

[Sommerville 1997]. Sommerville, 1., and
P. Sawyer, Requirements engineering: A Good
Practice Guide. John Wiley and Sons, 1997
[Stevens 1998]. Stevens, R., P. Brook, K.
Jackson and S. Arnold, Systems Engineering,
Prentice Hall, 1998.

[Thayer and Dorfman 1990]. Thayer, R., and M.
Dorfman, Standards, Guidelines and Examples
on System and Software Requirements
Engineering. |EEE Computer Society, 1990.

[Thayer and Dorfman 1997]. Thayer, R.H., and
M. Dorfman, Software Requirements
Engineering (2" Ed). IEEE Computer Society
Press, 1997.

[White 1993]. White, S, "Requirements
Engineering in Systems Engineering Practice,”
|EEE Internationa Symposium on Requirements
Enginegring, Los Alamitos, Cdifornia |IEEE
Computer Society Press, January 1993, pp. 192-
193.

[White 1994]. White, S., "Comparative Analysis
of Embedded Computer System Requirements
Methods," |EEE International Conference on
Requirements Engineering, Los Alamitos,
Cdifornia: IEEE Computer Society Press, April
1994, pp. 126-134.

© |EEE — Stoneman (Version 0.7) — April 2000

CHAPTER 3
SOFTWARE DESIGN

Guy Tremblay
Département d’ informatique
Université du Québec a Montréa
C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada, H3C 3P8
tremblay.guy@ugam.ca

TABLE OF CONTENTS

1. INTRODUCTION

2. DEFINITION OF THE SOFTWARE DESGN
KNOWLEDGE AREA

3. BREAKDOWN AND DESCRIPTION OF TOPICS
FOR THE SOFTWARE DESIGN KA

3.1 Breakdown outline

3.2 Description of the Software Design
breakdown topics

4. RATIONALE FOR THE BREAKDOWN OF
TOPICS

5. MATRIX OF SOFTWARE DESIGN TOPICS VS.
RECOMMENDED REFERENCE MATERIAL

6. RECOMMENDED REFERENCE MATERIAL FOR
THE SOFTWARE DESIGN KA
6.1 Brief description of the recommended
references
6.2 Recommended references for each of the
KA topic
7. L1ST OF FURTHERREADINGS
8. REFERENCES

1. INTRODUCTION

This document presents a description of the
Software Design Knowledge Area for the Guide
to the SWEBOK (Stone Man version). It has been
developed in accordance with the “Knowledge
AreaDescription Specificationsfor the StoneMan
Version of the Guide to the Software Engineering
Body of Knowledge” (version 0.25, March 1999)
and with the “Proposed changes to the KA
description specifications for version 0.7”
(December 1999 and January 2000). Various
congraints had to be satisfied by the resulting
Knowledge Area (KA) description to respect the
above requirements. Among the major constraints
were the followings: the KA description had to
describe “generally accepted” knowledge not

© |EEE— Soneman (Version 0.7) — April 2000

specific to any application domains or
development methods; it had to suggest a list of
“Proposed reference materia” with areasonably
limited number of entries. As it will be seen, the
first constraint led to the exclusion of certain
topics which, at first, might seem to have been
part of Software Design. As for the latter
constraint, it led to some difficult choices
regarding the selection of reference material,
especially since the numerous reviewers of a
previous version of this KA description, from
which the precious feedback is acknowledged,
suggested their own additions to this list of
reference material.

2. DEFINITION OF THE SOFTWARE
DES GN KNOWLEDGE AREA

Software design, from (software) requirements
typically stated in terms relevant to the problem
domain, produces a description of a solution that
will solve the softwarerelated aspects of the
problem. Software design describes how the
system is decomposed and organized into
components and describes the interfaces between
these components (architectural design). Software
design also refines the description of these
components into a level of detail suitable for
alowing their construction (detailed design).

In a classical software development life cycle,
eg., ISO/IEC 12207 [1SO95h], software design
fits between software requirements anadysis and
software coding and testing (software
construction). Software design encompasses both
software architectural design (sometime called
top-level design) and software detailed design.
Software design plays an important role in the
development of a software system inthat it allows
the developer to produce a model, a blueprint of
the solution to be implemented. Such amodel can
be analyzed and evaluated to determine if it will
allow the various requirements to be fulfilled.

31

10.

This model can aso be used to plan the
subsequent development activities, in addition to
being used as input and darting point of the
coding and testing activities.

It is important to note that certain areas — for
example, User Interface Design or Red-time
Design — were specificaly excluded from the
Software Design KA (Guide to the SWEBOK —
Srav Man Version), thus are not explicitly
discussed in the proposed KA breakdown.
However, it is clear that some of the topics
included in the present Software Design KA
description may aso apply to these specidized
areas. Finaly, some additional “Design” topics
were also excluded from the present description,
as they were considered to be outside of
“Software Design” in the sense mentioned above.
Those various issues are discussed in more detail
in the Breakdown Rationale section.

3. BREAKDOWN AND DESCRIPTION
OF TOPICS FOR THE SOFTWARE
DESIGNKA

This section presents brief descriptions of each of
the magor topics of the Software Design
Knowledge Area These brief descriptions
(section 3.2) should be sufficient to guide the
reader, in section 6, to the appropriate reference
material. But first (section 3.1), to give an overall
picture of the Software Design KA, an outline of
the KA breskdown together with an
accompanying figure are presented.

3.1 Breakdown outline

Figure 1 givesagraphica presentation of the top-
level decomposition of the breakdown for the
Software Design Knowledge Area. The detailed
breakdown is presented in the following pages.

© |EEE — Stoneman (Version 0.7) — April 2000

Software Design

|. Software
Design Basic
Concepts

General design
concepts

The context of
software design

The software
design process

Basic software
design concepts

Key issues in
software design
Concurrency

Control and
handling of events

Distribution
Exception handling
Interactive systems

Modularity and
practitioning

Persistence

Platform
independence

A

A b4 4

A

Il. Software

Architecture

lll. Software
Design Quality

Architectural
structures and
viewpoints

-

Architectural
styles and
patterns (macro-
architecture)

Design patterns
(micro-
architecture)

—>

Design of families

—» of programs and
frameworks

© |IEEE — Stoneman (Version 0.7) — April 2000

—>

—

Analysis and
Evaluation

Quiality attributes

Quality analysis
and evaluation —
tools

Software design
review

Static analysis -

Simulation and
prototyping

Metrics —

Functional
(structured) design -
metrics

IV. Software
Design Notations

V. Software
Design

>

Object-oriented
design metrics

L »

Structural
descriptions
(static view)

Behavioral
descriptions
(dynamic view)

Strategies and
Methods

—» General strategies

Funtion-oriented
design

Object-o'nented
design
Data-structure
centered design

L—» Other methods

3-3

11.

12.
13.

14.

15.

16.

17.

18.

3.2 Description of the Software Design
breakdown topics

|. Software Design Basic Concepts

*

Generd design concepts = Notions and
conceptsrelevant to designin general: godls,
constraints, alternatives, representations, and
solutions. Design as wicked problem solving
— no definitive solution, only good vs. bad
solutions.

The context of software design = The
context (software development life cycle) in
which software design fitss software
requirements analysis vs. software design;
software design vs. software construction;
software design and testing. Traceability
between the work products of the various
phases.

The software design process = The generd
process by which software is designed:
Architectural and detailed design as the two
classical phases of software design: whereas
architectural design describes how the
system is decomposed and organized into
components, detailed design describes the
specific behavior of these components.
Ancther distinction is the one between
software architecture and architectura
design: whereas the goa of architectural
design is to define the software architecture
of aspecificsystem, the process of defining a
software architecture is considered more
generic.

Basic software design concepts = Key
notions generally considered fundamental to
software design, as they form kind of a
foundation for understanding many of the
proposed approaches to software design:
abstraction, modularity (including notions
like cohesion and coupling), encapsulation
and information hiding, hierarchy, interface
vs. implementation, separation of concerns,
locality, etc.

Key Issues in Software Design = The key
issues which must be deat with when
designing asoftware system:

- Concurrency considerations; how to
decompose the systems into processes,
tasks and threads and ded with -related
atomicity, synchronization and
scheduling issues.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

- Control issues and handling events: how
to organize the flow of control, how to
handle reactive and tempora events
through various mechanisms, eg,
implicit invocation and call-backs, etc.

- Didribution: how the software is
distributed on the hardware, the role of
middlevare when deding with
heterogeneous systems, etc.

- Handling of faults and exceptions. how to
prevent and tolerate faults and deal with
exceptional conditions.

- Interactive systems and diaogue
independence: how to separate the details
of the user-interface from the business
logic. (Note: the details of User Interface
design per se are not discussed in the
current KA.)

- Modularity and partitioning: how to
ensure the software is constructed in a
modular way, in order to make it
understandable and modifiable.

- Persistence: how long-lived dataisto be
handled, eg. inteface with the
appropriate databases.

- Platform independence: how to ensure
the software is relatively independent of
the platform (hardware, oS,
programming language) on which it will
run.

I1. Software Architecture

This section on software architecture includes
topics dedling both with “generic” software
architecture issues and the architectura design of
a “gpecific” software system, as the frontier
between the two is not always clear-cut and many
of the topics mentioned below apply to both.

+ Architectura structures and viewpoints: The
different high-level facets of a software
design that should be described and
documented. For some authors, these views
pertainto different issues associated with the
design of software, for example, the logical
view (satisfying the functional requirements)
vs. the process view (concurrency iSsues) vs.
the physica view (distribution issues) vs. the
development view (how the design is
implemented). Other authors use different
terminologies, e.g., behavioral vs. functional
vs. structural vs. data modeling views. The
key idea is that a software design document

© |EEE — Soneman (Version 0.7) — April 2000

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

is multi-faceted, being made of relatively
i ndependent and orthogonal views.

Architectural styles and patterns (macro-
architecture): The notion of architectura
style — an architecturd style is a
paradigmatic architectural pattern that can be
used to develop the high-level organization
of a software system — is becoming an
important notion of the field of software
architecture. This section presents some of
the mgjor styles that have been identified by
variousauthors. These styles are (tentatively)
organized asfollows:

- Genera structure (e.g., layers, pipes and

filters, blackboards);

*

- Didtributed systems (e.g., client-server,
three-tiers, broker);

- Interactive systems (e.g., Mode-View-
Controller, Presentation-Abstraction-
Contral)

- Adaptable systems (e.g., micro-kernel,
reflection);

- Other styles (eg., batch, interpreters,
process control, rule-based).

Design patterns (micro-architecture): In the
last few years, the field of software design
patterns has emerged as an important
approach to describing, and thus reusing,
design knowledge. Whereas architectura
styles can be seen as patterns describing the
high-level organization of software systems,
itsmacro-architecture, other design patterns
can be used to describe details at a lower-
level, & a micro-architecture level. Such
design patterns can (tentatively) be
categorized asfollows:

- Cregtional patterns. builder, factory,
prototype, singleton, etc.

- Structural patterns. adapter, bridge,
composite, decorator, facade, flyweight,
proxy, etc.

- Behaviora patterns: command,
interpreter, iterator, mediator, memento,
observer, state, strategy, template, visitor,
etc.

Design of families of programs and
frameworks. One approach to alow the
reuse of softwaredesignisto designfamilies
of systems; this can be done by identifying
exploitable commonalities among members
of such families. Particularly in the field of
OO programming, this has been made

© |EEE— Soneman (Version 0.7) — April 2000

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.
50.

possible by the notion of framework: a
framework is a partially complete software
subsystem which can be extended by
appropriately instantiating some specific
plug-ins (also known as hot points).

I1l. Software Design Quality Analysis and
Evaluation

¢ Quadlity attributes: Various attributes are
generally considered important for obtaining
a design of good quality, eg., various
“ilities’ (e.g., maintainability, testahility,
tracedbility, plus many others), various
“nesses’ (e.g., correctness, robustness),
including “fitnessof purpose”. Becausethere
are so many of them, no specificlistisgiven
here.

¢ Quadity analyss and evauation todls:
Conceyptud or technical tools and techniques
that can help ensure the quality of adesign:

- Software design reviews. informa or
semi-formal, often group-based,
techniques to verify and ensure the
quality of design documents, e.g., critical
design reviews, active design reviews,
inspections, scenario-based techniques.

- Static andysis: formal or semi-forma
static (non-executable) anaysis that can
be used to evaduate a design, e.g., fault-
tree anaysis, dataflow anomaly analyss.

- Simulation and prototyping: dynamic
techniques to evduate a design, eg.,
performance simulation, feasibility
prototype.

+ Maetrics: Formal metrics that can be used to
estimate various aspects of the size, structure
or quality of a design. Most such metrics
generaly depend on the approach used for
producing the design:

- Functiona (structured) design metrics:
e.g., structural complexity, morphology
metrics, etc.

- Object-oriented design metrics:
weighted methods per class, depth of
inheritance tree, etc.

IV. Software Design Notations

A large number of notations and languages exist
to represent software design artifacts. Some are
used mainly to describe the structural organization
of a design, whereas others are used to represent
the behavior of such software systems.

3-5

51.

52.

53.
54.

55.

¢ Structural descriptions (static view):

Notations, mostly graphical, that can be used
to describe and represent the structural
aspects (static view) of a software design,
that is, to describe what the maor
components are and how they are
interconnected. Such notations can be used
to describe various views of a software
design: the logica view (e.g., Architecture
Description Languages (ADL), class and
object diagrams, Entity-Relationship
Diagrams (ERD), subsystems and packages),
the process view (active objects and classes)
or the physica view (eg., deployment
diagrams).

Behaviora descriptions (dynamic view):
Notations and languages used to describe the
dynamic behavior of systems and
components. These include various graphical
notations (e.g., activity diagrams, Data Flow
Diagrams (DFD), sequence diagrams, state
trangtion diagrams) and various textua
notations (eg., forma specification
languages, pseudo-code and Program Design
Languages (PDL)).

V. Software Design Strategies and Methods
+ Genera strategies. Genera strategies that

can be used to design a system, e.g., divide-
and-conquer, information hiding, use of
heuristics, use of patterns and pattern
languages, iterative and incrementd
approach to design, etc. Methods, in contrast
with genera strategies, are more specific in
that they generdly provide i) a set of
notations to be used with the method; ii) a
description of the process to be used when
following the method; iii) a set of heuristics
that provide guidance in using the method. A
number of methods are described in the
following paragraphs.

Functionoriented (structured) design: One
of the classical approach to software design,
where the decomposition is centered around
the identification of the major systems
functions and their eaboration and
refinement in atop-down manner. Structured
design is generally used after structured
andyss (viz, usng DFDs and Entity-
Relationship Diagrams (ERDs)) has been
performed. Various strategies (eg.,
transformation analysis, transaction analysis)
and heuristics (fan-in/fan-out, scope of effect
vs. scope of control, etc) have been
proposed to transform a DFD into a software

56.

57.

58.

architecture generally represented by a
structure chart (identifying which modules
uses/calls which other).

+ Object-oriented design: Thisis probably the
most (still?!) flourishing field of software
design in the last 10-15 years, as numerous
software design methods based on objects
have been proposed. The field evolved from
the early object-based design of the mid
1980's (noun = object; verb = method;
adjective= attribute) through object-oriented
design, where inheritance and polymorphism
play a key role, and to the now emerging
field of component-based design, where
various metainformation can be defined and
accessed (e.g., through reflection). Although
object-oriented design's deep roots stem
from the concept data abstraction, the notion
of responsibility-driven design has dso
become an important approach to object-
oriented design.

¢ Daastructure centered design: Although
less popular in North America than in
Europe, there has been some interesting
work (eg., M. Jackson, Warnier-Orr) on
designing a program starting from the data
structures it manipul ates rather than from the
function it performs. The structures of the
input and output dataare first described (e.g.,
using Jackson structure diagrams) and then
the program is devel oped based on these data
structure diagrams. Various heuristics have
been proposed to deal with special cases, for
example, when there is mismatch between
theinput and output structures.

¢ Other methods: Although software design
based on functiona decomposition or on
object-oriented design are probably the most
well-known approaches to software design,
other interesting approaches, dthough
probably less “mainstream”, do exit, eg.,
forma and rigorous methods (e.g., VDM and
Cleanroom), knowledge-based approaches,
transformational methods, etc.

59. 4. RATIONALE FOR THE

60.

BREAKDOWN OF TOPICS

The following section briefly goes through the
various requirementsdescribed in the “ Knowledge
AreaDescription Specificationsfor the StoneMan
Version of the Guide to the SWEBOK” (version
0.25) and describe how most of these

© |EEE — Soneman (Version 0.7) — April 2000

61.

62.

63.

requirements are satisfied by the present KA
description.

First and foremost, the breakdown of topics must
describe “ generaly accepted” knowledge, that is,
knowledge for which there is a “widespread
consensus’. Furthermore, and thisisclearly where
this becomes difficult, such knowledge must be
“generally accepted” today and expected to be so
in a3 to 5 years timeframe. This explains why

elements related with software architecture (e.g.,
“Software Architecture in Practice”, Bass,
Clements and Kazman, 1998; “Pattern-oriented
software architecture”, Buschmann et a., 1996),
including notions related with architectural styles
have been included, even though these are
relatively recent topics that might not yet be
generally accepted. Note that although “UML”

(Unified Modeling Language) is not explicitly
mentioned in the Design Notations section, many
of its elements are indeed present, for example:
class and object diagrams, collaboration diagrams,
deployment diagrams, sequence diggrams,
statecharts.

The need for the breakdown to be independent of
specific application domains, life cycle models,
technologies, development methods, etc., and to
be compatible with the various schools
(churches?) within software engineering, is
particularly apparent within the “ Software Design
Strategies and Methods’ section. In that section,
numerous approaches and methods have been
included and references given. This is aso the
case in the “Software Design Notations’, which
incorporates pointers to many of the existing
notations and description techniques for software
design artifacts. Although many of the design
methods use specific design notations and
description techniques, most of these notationsare
generally useful independently of the particular
method that uses them. Note that this is aso the
gpproach used in many software engineering
books, including the recent UML series of books
by the three amigos, which describe “ The Unified
Modding Language’ apart from “The Unified
Software Devel opment Process”.

The specifications document also specificaly
asked that the breskdown be as inclusive as
possible and that it includes topics related with
quality and measurements. Thus, a certain number
of topics have been included in the list of topics
even though they may not yet be fully considered
as generaly accepted. For example, although
there are a number of books on mretrics, design
metricsper seisrarely discussedin detail and few
“mainstream” software engineering books

© |EEE— Soneman (Version 0.7) — April 2000

64.

65.

66.

formaly discuss this topic. But it is indeed
discussed in some books and may become more
mainstream in the coming years. Note that
dthough those metrics can sometimes be
categorized into high-level (architectural) design
vs. component-level (detailed) design, the use of
such metrics generaly depend on the approach
used for producing the design, for example,
structured vs. object-oriented design. Thus, the
metrics sub-topics have been divided into
function (structured-) vs. object-oriented design.

Asrequired by the KA Description Specifications,
the breakdown is at most three levels deep and use
topic names which, after surveying the existing

literature and having made a number of

modifications suggested by the various reviewers,
should be meaningful when cited outside Guide to
the SWEBOK.

By contrast with the previous version (0.50) of the
Software Design KA Description, and following
suggestions nade by a number of reviewers, the
“Software Design Basic Concepts’ section has
been expanded to include topics related with
design in general and topics introducing the
context and process of software design. A totally
new subsection has also been recently added:
“Key Issues in Software Design”. The reason for
this new subsection is that a number of reviewers
suggested that certain topics, not explicitly
mentioned in the previous version, be added, e.g.,
concurrency and multi-threading, exception
handling. Although some of these aspects are
addressed by some of the existing design methods,
it seemed appropriate that these key issues be
explicitly identified and that more specific
references be given for them, thus the addition of
this new subsection. (Important note: thisisafirst
attempt at such a description of this topic and the
author of the Software Design KA Description
would gladly welcome any suggestions that could
improve and/or refine the content of this
subsection.)

In the KA breskdown, as mentioned earlier, an
explicit “ Software Architecture” section has been
included. Here, the notion of “architecture” isto
be understood in the large sense of defining the
structure, organization and interfaces of the
components of a software system, by opposition
to producing the “detailed design” of the specific
components. Thisiswhat redly is at the heart of
Software Design. Thus, the “Software
Architecture” section includes topics which
pertain to the macro-architecture of a system —
what is now becoming kiown as “Architecture”
per se, including notions such as “architectural

37

67.

68.

styles’ and “family of programs’ — as well as
topics related with the micro-architecture of the
smaller subsystems — for example, lower-level
design patterns. Although some of thesetopics are
relatively new, they should become much more
generally accepted within the 3-5 yearstimeframe
expected from the Guide to the SWEBOK
specifications. By contrast, note that no explicit
“Detailed Design” section has been included:
topicsrelevant to detailed design canimplicitly be
found in the “Software Design Notations’ and
“Software Design Strategies and Methods’
sections, as well as in “The software design
process’ subsection.

The “Software Design Strategies and Methods’
section has been divided as is done in many
books discussing softwaredesign, in afirst section
that presents general strategies, followed by
subsequent sections that present the various
classes of approaches (data:, function-, object-
oriented or other approaches). For each of these
approaches, numerous methods have been
proposed and can be found in the software
engineering literature. Because of the limit on the
number of references, mostly general references
have been given, which can then be used as
starting point for more specific references. In the
particular case of Object-Oriented Design (OOD),
the Unified Software Development Process
recently proposed by the UML group, which can
be considered a kind of synthesis of many earlier
well-known approaches (Booch, OMT, OOSE),
was a must, even though it is quite recent (1999).
For similar reasons, the “Software Design
Notations” section mentions most of the elements
that can be found in UML.

Another issue, aluded to in the introduction but
worth explaining in more detail, is the exclusion
of a number of topics which contain “Design” in
their name and which, indeed, pertain to the
development of software systems. Among these
are the followings: User Interface Design, Real-
time Design, Database Design, Participatory
Design, Collaborative Design. Thefirst two topics
were specificaly excluded, in the Straw Man
document, from the Software Design KA. User
Interface Design was considered to be a related
discipline (see section 9: Relevant knowledge
areas of related disciplines, both Conputer
Science and Cognitive Sciences) whereas Real-
time Design was considered a specialized sub-
field of software design, thus did not have to be
addressed in this KA description. The third one,
Database Design, can adso be considered a
relevant (specialized) knowledge area of arelated

69.

70.

72.

discipline (Computer Science). Note that issues
related with user-interfaces and databases till
have to be dedlt with during the software design
process, which is why they are mentioned in the
“Key Issues in Software Design’ section.
However, the specific tasks of designing the
details of the user interface or database structure
are not considered part of Software Designper se.
As for the last two topics — Participatory and
Collaborative Design -, they are more
appropriately related with the Software
Requirements KA, rather than Software Design.
In the terminology of DeMarco (DeM99), these
latter two topics belong more appropriately to I-
Design (invention design, done by system
anadysts) rather than D-design (decomposition
design, done by designers and coders) or FP-
design (family pattern design, done by
architecture groups). It is mainly Ddesign and
FP-design, with a magjor emphasis on Ddesign,
which can be considered as generally accepted
knowledge related with Software Design.

Concerning the topic of standards, there seemsto
be few standardsthat directly pertain to the design
task or work product per se. However, standards
having some indirect relationships with various
issues of Software Design do exist, e.g., OMG

standards for UML or CORBA. Since the need for
the explicit incluson of standards in the KA
breakdown has been put aside (“ Proposed changes
tothe[...] specifications|...]”, Dec. 1999), afew
standards having a direct connection with the
Software Design KA were included in the
recommended reference material section. A
number of standards related with design in a
dlightly more indirect fashion were also added to
the list of further readings. Finaly, additional

standards having only an indirect yet not empty
connection with Design were Ssmply mentioned in
the general References section. As for topics
related with tools, they were excluded from the
Software Design breskdown based aso on the
Dec. 1999 changes to the KA Description
Specifications.

5. MATRIX OF SOFTWARE DESIGN
TOPICS VS RECOMMENDED
REFERENCE MATERIAL

The figure below presents a matrix showing the
coverage of the topics of the Software Design KA
by the various recommended reference material

described in more detail in the following section.
A number in an entry indicates a specific section

© |EEE — Soneman (Version 0.7) — April 2000

74.

75.

or chapter number. A “*” indicates ato the whole 73. Note: Except for the “Key Issues in Software
document, generally either a journa paper or a Design” section, only the top two level of the
gandard. An interval of the form “nl-n2* breskdown have been indicated in the matrix.
indicates a specific range of pages, whereas an Otherwise, especially in the “Software Design
interval of the form “n1:n2" indicates a range of Notations’ subsections, this would have lead to
sections. For Mar94, the lettersrefer to one of the very sparse lines (in an dready quite sparse
encyclopedia’'s entry: “D” = Design; “DR" = matrix).
Design Representation; “DD” = Design of
Distributed systems”.

B B B B D F I I J M M P P S

C M R u T W E S A a e f r B

K R J d 9 8 E (0] | r y I e 9

9 + 9 9 7 3 9 9 9 9 9 9 9 3

8 9 9 4 8 5 7 4 7 8 7

6 b

|. Softwar e Design
Basic Concepts
Generd design 1 *
concepts
The context of * D 22 | 22:27
software design
The softwaredesign | 21, 2 [266 | 22| * * D
process 2.3, 276

24
Basic software 61 | 63 * 51, 55 | 134135,
design concepts 562 232
Key Issuesin
software design
Concurrency DD | 30 213
Contral and events 52 324, 53

25

Distribution 83 | 23 DD | 0 281

84
Exceptions 12 | 55
Interaction 62 | 24 322
independence
Modularity and 63 3 | 55
partitioning
Persistence 31
Hatform 25 322
independence
1. Software
architecture
Architectura 25 61 [3L *
structuresand
viewpaints
Architecturd styles 5L | 1 | 28 53

52, | 13
Zrnéihgatterns (macro- ol B
Design patterrs 133 11 | 28
(micro-arch.) 13
Families of 6.2 28
programs and
frameworks

© |EEE— Soneman (Version 0.7) — April 2000

3-9

76.

7.

78.

79.

80.

B B B B D F I I J M M P P S
C M R u T W E S A a e f r B
K R J d 9 8 E O | r y I e 9
9 + 9 9 7 3 9 9 9 9 9 9 9 3
8 9 9 4 8 5 7 4 7 8 7
6 b
I11. Softwaredesign
quality analysis
and evaluation
Qudlity atributes 41 | 64 i.é: D 3 [55
Qudity andyssand | 91, 542 55, 556,
evauation 9.2, 576 73 57
102,
103
Metrics 5.6, 184,
6.5, 234,235
74
1V. Software design
notations
Structurd 7, 48] 6 53, | DR 123124
descriptions (static) | 122 E 6.3
14,
30,
31
Behaviord 18, 6 | 181 | 485 53, | DR | 11 1410
descri mi ons 19, 192 | 490, 72 125
(dynamic) 24 %(g
V. Software design
strategiesand
methods
Generd drategies 5L 71, 304 D 22
54 8 320,
533
539
Function+oriented 170 | 328 54 135,
design 180 | 352 136,
143145
OO design 148 | 420 64 D 192,
159, | 436 193,
160- 211213
169
Data-oriented design 514 D
532
Other methods 14 | 18% | 3% T | 22
192 | 407,
461-
468
topics, anumber of global referencesare givenfor
6 RECOMMENDED REFERENCE anon-leaf topic, rather a specific reference for
) each particular leaf topic. This seemed preferable
MATERIAL FOR THE SOFTWARE because some of these topics were discussed in a
DESIGN K A number of interesting references
81. Note that few references to existing standards

Inwhat follows, reference materia for the various
topics presented in the proposed breakdown of
topics are suggested. Section 6.1 gives a brief
presentation of each of the recommended
reference. Then, in section 6.2, specific and
detailed references are given for each of the major
topics of the breskdown. Note that, for some

3-10

have been included in this list, for the reasons
explained earlier. Also note that amost no
specific references have been given for the various
design methods except very genera ones. Seethe
list of further readings in section 7 for more

© |EEE — Soneman (Version 0.7) — April 2000

82.

83.

84.

85.

86.

87.

88.

89.
90.

precise and detailed references on such methods,
especialy for referencesto OO design methods.

6.1 Brief description of the
recommended references

[BCK9g] L. Bass, P. Clements, and R. Kazman.
Softwar e Architecture in Practice.

A recent and magor work on software
architecture. It covers al the major topics
associated with software architecture: what
software architecture is, quality attributes,
architectura styles, enabling concepts and

techniques (caled unit operations),
architecture description languages,
development of product lines, etc.

Furthermore, it present a number of case
studies illustrating major architectural
concepts, including a chapter on CORBA and
one on the WWW.

[BMR+96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, and M. Std. Pattern-
oriented Software Architecture — A System of
Patterns.

According to the Software Design KA
Description author’s humble opinion, this is
probably the best and clearest introduction to
the notions of software architecture and
patterns (both architectural and lower-level
ones). Digtinct chapters are dedicated to
architectural patterns, design patterns and
lower-level idioms. Another chapter discusses
the relationships between patterns, software
architecture, methods, frameworks, etc. This
chapter adso includes an interesting
presentation of so-caled “ enabling techniques
for software architecture”, discussing many of
the elements of the “Basic software design
concepts’ section, eg.,, abstraction,
encapsulation, information hiding, coupling
and cohesion, etc.

[BRJ99] G. Booch, J. Rumbauch, and |. Jacobson.
The Unified Modeling Language User Guide.

A comprehensive and thorough presentation of
UML, which incorporates many of the
notations mentioned in the “ Software Design
Notations’ section.

[Bud94] D. Budgen. Software Design.

One of the few books known to the author —
maybe the only one — which is neither a
general software engineering textbook nor a
book describing a specific software design
method. This is probably the book that comes
closest to the current Software Design KA

© |EEE— Soneman (Version 0.7) — April 2000

91.

92.

93.

94.

95.

96.

97.

98.
99.

100.

description, as it discusses topics such as the
followings:. the nature of design; the software
design process; design qualities; design
viewpoints, design representations; design
srategies and methods (including brief
presentations of a number of such methods,
eg., JSP, SSASD, JSD, OOD, etc.) The only
drawback might be its availability — at least in
Canada, as the author of the Software Design
KA description only managed to get hold of a
copy of thisbook afew days before ddlivering
the final version of the current KA description
(version 0.70) — but it isworth reading.

[DT97] M. Dorfman and RH. Thayer (eds).
Software Engineering.

This book contains a collection of papers on
software engineering in genera. Two chapters
deal more specifically with software design.
One of them contains ageneral introduction to
software design, briefly presenting the
software design process and the notions of
software design methods and design
viewpoints. The other chapter contains an
introduction to object-oriented design and a
comparison of some existing OO methods.
The following articles are particularly
interesting for Software Design:

- D. Budgen, Software Design: An
Introduction, pp. 104-115.

- L.M. Northrop, Object-Oriented
Development, pp. 148-159.

- A.G. Sutcliffe, Object-Oriented Systems
Development: A Survey of Structured
Methods, pp.160-169.

- C. Ashworth, Structured Systems Analysis
and Design Method (SSADM), pp. 170-
180.

- R Vienneau, A Review of Forma
Methods, pp. 181-192.

- JD. Pamer, Traceability, pp. 266-276.

[FW83] P. Freeman and A.l. Wasserman. Tutorial
on Software Design Techniques, fourth edition.

Although this is an old book, it is a very
interesting one because it alows to better
understand the evolution of the software
design field. This book is a collection of
papers where each paper presents a software
design technique. The techniques range from
basic strategies like stepwise refinement to, at
the time, more refined method such as
structured design a la Yourdon and
Congtantine. An higtorically important

3-11

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

reference. The following articles are
particularly interesting for Software Design:

- P. Freeman, Fundamentas of Design, pp.
2-22.

- D.L. Parnas, On the Criteriato be Used in
Decomposing Systems into Modules, pp.
304-309.

- D.L. Parnas, Designing Software for Ease
of Extension and Contraction, pp. 310-320.

- WP Sevens, GJ Myes and L.L.
Congtantine, Structured Design, pp. 328
352.

- G. Booch, Object-Oriented Design, pp.
420-436.

- SH. Cane and EK. Gordon, PDL — A
Tool for Software Design, pp. 485-490.

- CM. Yoder and M.L. Schrag, Nass-
Schneiderman Charts: An Alternative to
Flowchartsfor Design, pp. 506-513.

- M.A. Jackson, Constructive Methods of
Program Design, pp. 514-532.

- N. Wirth, Programn Development by
Stepwise Refinement, pp. 533-539.

- P. Freeman, Toward Improved Review of
Software Design, pp. 542-547.

- M.E. Fagan, Design and Code Inspections

to Reduce Errorsin Program Development,
pp. 548-576.

[IEE98] IEEE Sd 1016-1998. |IEEE
Recommended Practice for Software Design
Descriptions.

This document describes the information
content and recommended organization that
should be used for software design
descriptions. The attributes describing design
entities are briefly described: identification,
type, purpose, function, subordinates,
dependencies, interfaces, resources, processing
and data. How these different elements should
be organized is then presented.

[ISO95h] ISO/IEC Std 12207. Information
technology — Software life cycle processes.

A detailed description of the ISO/IEC-12207
life cycle model. Clearly shows where
Software Design fits in the whole software
development life cycle.
[Ja97] P. Jdote. An integrated approach to
software engineering, 2nd ed.
A generd software engineering textbook with
a good coverage of software design, as three

312

118.

119.

120.

121.

122.

123.

chapters discuss this topic: one on function-
oriented design, one on object-oriented design,
and the other on detailed design. Another
interesting point isthat all these chapters have
ametrics section.

[Mar94] JJ Marciniak. Encyclopedia of
Software Engineering.

A general encyclopediathat contains (at least)
three interesting articles discussing software
design. Thefirst one, “Design” (K. Shumate),
is a general overview of design discussing
dternative development processes (eg.,
waterfal, spiral, prototyping), design methods
(structured, datercentered, modular, object-
oriented). Some issues related with
concurrency are also mentioned. The second
one discusses the “Design of didributed
systems’ (R.M. Adler): communication
models, client-server and servicesmodels. The
third one, “Design representation” (J. Ebert),
presents a number of approaches to the
representation of design. It is clearly not a
detailed presentation of any method; however,
it is interesting in that it tries to explicitly
identify, for each such method, the kinds of
components and connectors used within the
representation.

[Mey97] B. Meyer. Object-Oriented Software
Construction (Second Edition).

A detailed presentation of the Eiffel OO
language and its associated Design-By-
Contract approach, which is based on the use
of formal assertions (pre/post-conditions,
invariants, etc). It introduces the basic
concepts of OO design, aong with a
discussion of many of the key issues
asociated with software design, eg., user
interface, exceptions, concurrency,
persistence, etc.

[Pfl98] S.L. Pfleeger. Software Engineering —
Theory and Practice.

A general software engineering book with one
chapter devoted to design. Briefly presentsand
discusses some of the major architectural
styles and strategies and some of the concepts
associated with the issue of concurrency.
Another section presents the notions of
coupling and cohesion and aso deals with the
issue of exception handling. Techniques to
improve and to evaluate a design are aso
presented: design by contract, prototyping,
reviews. Although this chapter does not delve
into any topic, it can be an interesting starting
point for a number of issues not discussed in

© |EEE — Soneman (Version 0.7) — April 2000

124.

125.

126.

127.

128.

129.

130.

131.
132.
133.
134.
135.
136.

some of the other general software engineering
textbooks.

[Pre97] R.S. Pressman. Software Engineering— A
Practitioner's Approach (Fourth Edition).

Probably the classic among al the general

software engineering textbooks (4th edition!)
It contains over 10 chapters that deal with
notions associated with software designin one
way or another. The basic concepts and the
design methods are presented in two distinct
chapters. Furthermore, the topics pertaining to
the function-based (structured) approach are
separated (part 111) from those pertaining to the
object-oriented approach (part V).
Independent chapters are aso devoted to
metrics applicableto each of those approaches,
a specific section addressing the metrics
specific to design. A chapter discusses forma
methods and another presents the Cleanroom
approach. Finaly, another chapter discusses
client-server systems and distribution issues.

[SB93] G. Smith and G. Browne. Conceptua
foundations of design problem-solving.

An interesting paper that discusses what is
design in generd. More specificdly, it
presents the five basic concepts of design:
goals, congtraints, dternatives, representations,
and solutions. The bibliography is a good
starting point for obtaining additional
referenceson design in general.

6.2 Recommended references for each
of the KA topic

Note: The numbers after the reference key
indicate the appropriate chapter. In the case of
Mar94, the appropriate entry of the encyclopedia
is indicated as follows: “D” = Design; “DR” =
Design Representation; “DD” = Design of
Distributed systems’. Note that, contrary, to the
matrix presented in section 5, we have only
indicated the appropriate chapter (or part) humber,
not the specific sections or pages.

|. Software Design Basic Concepts

General design concepts
[Bud94: 1][SB93]
The context of software design
[1SO95b][Mar94: D][Pfl98: 2][Pre97: 2]
The software design process

[BCK98: 2][DT97: 7][FW83:
[1S095b][Mar94]

I[|EE98]

© |EEE— Soneman (Version 0.7) — April 2000

137.
138.

139.
140.
141.
142.
143.
144.
145.

146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.

157.
158.
159.

160.

161.
162.
163.
164.

165.

166.
167.

168.
169.

170.
171.

Basic software design concepts

[BCKY8: 6][BMR+96: 6][IEE98][Ja97: 5,
6][Pf198: 5][Pre97: 13, 23]

Key Issuesin Software Design

Concurrency considerations

[Mar94: DD][Mey97: 30][Pre97: 21]
Control and handling of events

[BCK98: 5][Mey97: 32][Pf198: 5]
Distribution

[BCK98: 8][BMR+96:

DD][Mey97: 30][Pre97: 28]
Exception handing

[Mey97: 12][Pfl98: 5]
Interactive systems and dia ogue independence

[BCK98: 6][BMR+96: 2.4][Mey97: 32]
Modularity and partitioning

[BMR+96: 6][Mey97: 3][Pfl98: 5]
Persistence

[Mey97: 31]
Platform independence

[BMR+96: 2][Mey97: 32]

2][Mar94:

1. SoftwareArchitecture

Architectural structures and viewpoints
[BCK98: 2][BMR+96: 6][BRI99: 31][IEE98]

Architectural styles and patterns (macro-
architecture)

[BCK98:
28] [Pf198: 5]

Design patterns (micro-architecture)
[BCK98: 13][BMR+96: 1][BRJ99: 28]
Design of families of programs and frameworks
[BMR+96: 6][BRJ99: 28]

5[BMR+96: 1, 6][BRJ99:

1. Software Design Quality Analysis and
Evaluation

Quality attributes

[BCK98: 4][BMR+96: 6][Mar94: D][Mey97:
3][Pf198: 5]

Quality analysis and evaluation tools

[BCK98: 9-10][FW83: VIII][Jd97: 5,
7][Pf198: 5]
Metrics
[Jal97: 5-7][Pre97: 18, 23]
3-13

172.
173.
174.
175.
176.
177.
178.

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.

190.
191
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.
207.
208.
209.
210.

IV. Software Design Notations

Structura descriptions (static view)
ADL (Architecture Description Languages)
[BCK98: 12]
Class and objects diagrams
[BRJ99: 8, 14][Jal97: 5,6]

CRC (Class-Responsihilities-Collaborators)
Cards

[BRJ99: 4][BMR+96]

Deployment diagrams
[BRJ99: 30]

ERD (Entity-Relationship Diagrams)
[DTO7: 4 [Mar%4: DR]

IDL (Interface Description Languages)
[BCK98: 8][BJR99: 11]

Jackson structure diagrams
[DTO7: 4][Ma94: DR]

Structure charts

[DT97: 45][Ja97: 5][Mar94: DR][Pre97:
12, 14]

Subsystems (packages) diagrams
[BRJ99: 12, 31][DW99: 7]
Behaviora descriptions (dynamic view)
Activity diagrams
[BRJ99: 19]
Collaboration diagrams
[BRJ99: 18]
Dataflow diagrams
[Jal97: 5, 7][Mar94: DR][Pre97: 14]
Decision tables and diagrams
[Pre97: 14]
Flowcharts and structured flowcharts
[FW83: VII][Mar94: DR][Pre97: 14]
Formal specification languages
[Bud94: 14][DT97: 5][Mey97: 11]

Pseudo-code and PDL (Program Design
Language)

[FW83: VII[Jd9T7: 7][Pred7: 14]
Sequence diagrams
[BRJ99: 18]
State transition diagrams and statecharts
[BRJ99: 24][Mar94: DR][Jal97: 7]

3-14

211

211.
212.

213.

214,
215.
216.

217.
218.
219.
220.

221.
222.
223.
224

225,

226.

227.

228.

229

230.

231.

V. Software Design Strategies and Methods

General strategies [Bud94: 8][Mar94: D]

Divide-and-conquer and stepwise refinement
[FW83: VII]

Data abstraction and
[FW83: V]

Iterative and incremental design [Pf198: 2]
Heuristics-based design [Bud94: 7]

Pattern-based design and pattern languages
[BMR+96: 5]

Function-oriented design
[DT97: 5][FW83: V][Jd 97: 5][Pre97: 13-14]
Object-oriented design

[DT97: 5|[FW83: VI][Ja97:
D][Pre97: 19, 21]

Data-structure centered design
[FW83: 111, VII][Mar94: D]
Other methods

Forma and rigorous methods [Bud94:
14][DT97: 5][Mey97: 11]

Transformational methods[Pfl98: 2]

information hiding

6][Mar94:

7. L1ST OF FURTHER READINGS

The following section suggests alist of additional
interesting reading material related with Software
Design. A number of standards are mentioned;
additional standards that may be pertinent or
applicable to Software Design, dthough in a
somewhat less direct way, are also mentioned,
athough not further described, in the generd
References section at the end of the document.

[Boo94] G. Booch. Object Oriented Analysisand
Design with Applications, 2nd ed.

A classic in the field of OOD. The book
introduces a number of notations that were to
become part of UML (although sometimes
with some dight modifications): class vs.
objects diagrams, interaction diagrams,
statecharts-like diagrams, module and
deployment, processstructure diagrams, etc. It
also introduces a process to be used for OOA
and OOD, both a higher-level (life cycle)
process and alower-level (micro-) process.

[Cro84] N. Cross (ed.). Developmentsin Design
Methodol ogy.
Thisbook consistsin aseries of papersrelated
to design in general, that is, design in other
contexts than Software Design. Still, many

© |EEE — Soneman (Version 0.7) — April 2000

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

notions and principles discussed in some of
these papers do apply to Software Design, e.g.,
the idea of design awicked-problem solving.

[CY91] P. Coad and E. Y ourdon. Object-Oriented

Design.
Thisisyet another classicin the field of OOD
— note that the second author is one of the
father of classical Structured Design. An OOD
model developed with their approach consists
of the following four components, trying to
separate how some of the key issues should be
handled: problem domain, human interaction,
task management and data management.

[DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML — The
Catalysis Approach.

A thorough presentation of a specific OO
approach with an emphasis on component
design. The development of static, dynamic
and interaction models is discussed. The
notions of components and connectors are
presented and illustrated with various
approaches (Java Beans, COM, Corba); how to
use such components in the development of
frameworksis also discussed. Another chapter
discusses various aspects of software
architecture. The last chapter introduces a
pattern system for dealing with both high-level
and detailed design, the latter level touching
on many key issues of design such as
concurrent, distribution, middleware, dialogue
independence, etc.

[FPO7] N.E. Fenton and S.L. Pfleeger. Software

Metrics — A Rigorous & Practical Approach

(Second Edition).
This book contains a detailed presentation of
numerous software metrics. Although the
metrics are not necessarily presented based on
the software development life cycle, many of
those metrics, especialy in chapter 7 and 8,
are applicable to software design.

[GHIVO5] E. Ganmaet al. Design Patterns —

Elements of Reusable Object-Oriented Software.
The seminal work on design patterns. A
detailed catalogue of patterns related mostly
with the micro-architecture level.

[Hut94] A.T.F. Hutt. Object Analysis and Design

— Description of Methods. Object Analysis and

Design— Comparison of Methods.
These two books describe (first book) and
compare (second book), in a very outlined
manner, a large number of OO analysis and

© |EEE— Soneman (Version 0.7) — April 2000

242

243.

244,

245.

246.

247.

248.

249,

design methods. Useful as a starting point for
obtaining additional pointers and referencesto
OOD methods, not so much as a detailed
presentation of those methods.

[IEE9Q] |IEEE Std 610.12-1990. |IEEE Standard
Glossary of Software Engineering Terminology.

This standard is not specificaly targeted to
Software Design, which iswhy it has not been
included in the recommended references. It
describes and briefly explains many of the
common terms used in the Software
Engineering field, including many terms from
Software Design.

[ISO91] ISO/NEC Std 9126. Information
technology — Software product evaluation —
Quality characteristics and guidelines for their
use.

This dandard describes six high-level
characteristics that describe software quality:
functiondlity, reliability, usability, efficiency,
maintainability, portability.
[JBP+91] J. Rumbaugh et al. Object-Oriented
Modeling and Design.

This book is another classic in the field of
OOA and OOD. It was one of the first to
clearly introduce the distinction between
object, dynamic and functional modeling.
However, contrary to [Boo94] whose emphasis
is mostly on design, the emphasis here is
dightly more on analysis, athough a number
of elements do apply to design too.

[JBR99] |. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Devel opment Process.

A detailed and thorough presentation of the
Unified Software Development Process
proposed by the Rationa amigos. The notion
of architecture plays a centra role in this
development process, the processbeing said to
be architecture-centricc. However, the
associated notion of achitecture is dightly
different from the traditional purely design-
based one: an architecture description is
supposed to contain views not only from the
design model but also from the use-case,
deployment and implementation models. A
whole chapter is devoted to the presentation of
the iterative and incremental approach to
software development. Another chapter is
devoted to design per se whose god is to
produce both the design model, which includes
the logica (eg., class diagrams,
collaborations, etc.) and process (active

3-15

250.

251.

252.
253.

254,

255.

256.

257.

258.

objects) views, and the deployment model
(physical view).
[Kru95] P.B. Kruchten. The 4+1 view model of
architecture.

A paper that explains in a clear and insightful
way the importance of having multiple views
to describe an architecture. Here, architecture
is understood in the UML Process sense
mentioned earlier, not in its strictly design-
related way. The first four views discusses in
the paper arethelogical, process, development
and physical views, wheress the fifth one (the
“+1") is the use case view, which binds
together the previous views. The views more
intimately related with Software Design are
thelogical and process ones.

[McC93] S. McConnell. Code Compl ete.

Although this book is probably more closdly
related with Software Construction, it does
contain a section on Software Design with a
number of interesting chapters, eg.,
“Characterigtics of a High-Quality Routines’,
“Three out of Four Programmers Surveyed
Prefer Modules’, “High-Level Design in
Congtruction”. One of these chapters
(“Characteritics|...]") containsan interesting
discussion on the use of assertionsin the spirit
of Meyer's Design-by-Contract; another
chapter (“Three[...]") discusses cohesion and
coupling as well as information hiding; the
other chapter (“High-Leve [...]") givesabrief
introduction to some design methodologies
(structured design, OOD).

[Pre95] W. Pree. Design Patterns for Object-
Oriented Software Development.

This book is particularly interesting for its
discussion of framework design using what is
caled the “hot-spot driven” approach to the
design of frameworks. The more specific topic
of design patterns is better addressed in
[BMR+96].

[Rie96] A.J. Riel. Object-Oriented Design

Heuristics.
This book, targeted mainly towards OO
design, presents alarge number of heuristics
that can be used in software design. Those
heuristics address a wide range of issues, both
a the architectural level and at the detailed
design level.

[WBWWOQ] R. Wirfs-Brock, B. Wilkerson, and
L. Wiener. Designing Object-Oriented Software.

3-16

259,

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271

Interesting as it introduced the notion of
responsibility-driven design to OOD. Before
that, OOD was often considered synonymous
with data abstraction-based design. Although it
istrue that an object does encapsul ate data and
associated behavior, focusing strictly on this
aspect may not lead, according to the
responsibility-driven design approach, to the
best design.

[Wie98] R. Wieringa. A Survey of Structured and

Object-Oriented Software Specification Methods
and Techniques.

An interesting survey article that presents a
wide range of notations and methods for
specifying software systems and components.
It also introduces an interesting framework for
comparison based on the kinds of system
propertiesto be specified: functions, behavior,
communication or decomposition.

8. REFERENCES

[BCK9g] L. Bass, P. Clements, and R. Kazman.
Software Architecture in Practice. SEl Seriesin
Software Engineering. AddisonWesley, 1998.

[BDA+98] P. Bourque, R. Dupuis, A. Abran, JW.
Moore, L. Tripp, J. Shyne, B. Pflug, M. Maya,
and G. Tremblay. Guide to the software
engineering body of knowledge — a straw man
version. Technica report, Dépt. d'Informatique,
UQAM, Sept. 1998.

[BMR+96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, and M. Stal. Pattern-
oriented Software Architecture — A System of
Patterns. Wiley, West Sussex, England, 1996.
[Boo94] G. Booch. Object Oriented Analysisand
Design with Applications, 2nd ed. The
Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1994.

[BRI99] G. Booch, J. Rumbauch, and |. Jacobson.
The Unified Modeling Language User Guide.
AddisonWesley, Reading, MA, 1999.

[Bud94] D. Budgen. Software Design. Addison
Wedey, Wokingham, England, 1994.

[Cop99] J. Coplien. Multi-Paradigm Design for
C++. AddisonWesley, 1999.

[Cro84] N. Cross (ed.). Developmentsin Design
Methodol ogy. John Wiley, 1984.

[CY91] P. Coad and E. Y ourdon. Object-Oriented
Design. Y ourdon Press, 1991.

© |EEE — Soneman (Version 0.7) — April 2000

272.

273.

274,

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

[DeM99] T. DeMarco. The Paradox of Software
Architecture and Design. Stevens Prize Lecture,
August 1999.

[DT97] M. Dorfman and RH. Thayer. Software
Engineering. |IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML — The
Catalysis Approach. AddisonWedey, Reading,
MA, 1999.

[FPO7] N.E. Fenton and S.L. Pfleeger. Software
Metrics — A Rigorous & Practical Approach
(Second Edition). International Thomson
Computer Press, 1997.

[FW83] P. Freeman and A.l. Wasserman. Tutorial
on Software Design Techniques, fourth edition.
|EEE Computer Society Press, Silver Spring, MD,
1983.

[GHIV95] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Professional
Computing Series. AddisonWedey, Reading,
MA, 1995,

[Hut94] A.T.F. Hutt. Object Analysis and Design
— Comparison of Methods. Object Analysis and
Design — Description of Methods. John Wiley &
Sons, New Y ork, 1994.

[IEE8S8] IEEE. IEEE Standard Dictionary of
Measures to Produce Reliable Software. |EEE Std
982.1-1988, |EEE, 1988.

[[EE88h] IEEE. IEEE Guide for the Use of
Standard Dictionary of Measures to Produce
Reliable Software. IEEE Std 982.2-1988, |EEE,
1988.

[IEE9Q] IEEE. IEEE Standard Glossary of
Software Engineering Terminology. |IEEE Sd
610.12-1990, |EEE, 1990.

[IEE98] |EEE. IEEE Recommended Practice for

Software Design Descriptions. |EEE Std 1016-
1998, |EEE, 1998.

[1SO91] ISO/EC. Information technology —
Software product evauation - Qudlity
characteristics and guidelines for their use.
ISO/IEC Std 9126: 1991, I SO/IEC, 1991.

[1S095] ISO/IEC. Open distributed processing —
Reference model. ISO/IEC Std 10746: 1995,
ISO/IEC, 1995.

[1SO95b] ISO/IEC. Information technology —

Softwarelife cycle processes. |ISO/IEC Std 12207:
1995, ISO/IEC, 1995.

© |EEE— Soneman (Version 0.7) — April 2000

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

[Ja97] P. Jdote. An Integrated Approach to
Software Engineering, 2nd ed. Springer, New
York, NY, 1997.

[JBP+91] J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
AddisonWesley, Reading, Ma, 1999.

[JCIO92] I. Jacobson, M. Christerson, P. Jonsson,
and G. Overgaard. Object-Oriented Software
Engineering — A Use Case Driven Approach.
AddisonWesley, 1992.

[Kru9s] P.B. Kruchten. The 4+1 view modd of
architecture. | EEE Software, 12(6):42-50, 1995.

[Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons, Inc., New Y ork,
NY, 1994.

[McCro3] S. McConnell. Code Complete.
Microsoft Press, Redmond, WA, 1993.

[Mey97] B. Meyer. Object-Oriented Software
Construction (Second Edition). Prentice-Hall,
Upper Saddle River, NJ, 1997.

[OMGO8] OMG. The common object request
broker: Architecture and specification. Technical
Report Revision 2.2, Object Management Group,
February 1998.

[OMG99] UML Revison Task Force OMG
Unified Modeling Language specification, v. 1.3.
document ad/99-06-08, Object Management
Group, June 1999.

[otSESC98] Architecture Working Group of the
Software Engineering Standards Committee. Draft
recommended practicefor information technology
— system design — architectural description.
Technical Report IEEE P1471/D4.1, |IEEE, New
York, NY, December 1998.

[Pfl198] S.L. Pfleeger. Software Engineering —
Theory and Practice. Prentice-Hall, Inc., 1998.

[Pre95] W. Pree. Design Patterns for Object-
Oriented Softwar e Devel opment. AddisonWedey
and ACM Press, 1995.

[Pre97] R.S. Pressman. Software Engineering—A
Practitioner's Approach (Fourth Edition).
McGraw-Hill, Inc., 1997.

[Rie96] A.J. Riel. Object-Oriented Design
Heuristics. AddisonWesley, Reading, MA, 1996.
[SB93] G. Smith and G. Browne. Conceptua
foundations of design problemsolving. |IEEE

3-17

Trans. on Systems, Man, and Cybernetics,
23(5):1209-1219, 1993.

302. [WBWW9Q] R. Wirfs-Brock, B. Wilkerson, and
L. Wiener. Designing Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

303. [Wie98] R. Wieringa. A Survey of Structured and
Object-Oriented Software Specification Methods
and Techniques. ACM Computing Surveys, 30(4):
459-527, 1998.

3-18 © |EEE — Soneman (Version 0.7) — April 2000

CHAPTER 4
SOFTWARE CONSTRUCTION

Terry Bollinger
The MITRE Corporation

TABLE OF CONTENTS

1. SOFTWARE CONSTRUCTION

1.1 Software Construction and Software
Design
1.2 The Role of Toolsin Construction
1.3 The Role of Integrated Self-Evauation in
Construction
1.4 The Role of Standardsin Construction
1.5 The Spectrum of Construction
Techniques
1.6 Computer Languages
1.7 Construction Languages

2. STYLESOF CONSTRUCTION

3. PRINCIPLESOF ORGANIZATION

A TAXONOMY OF SOFTWARE CONSTRUCTION
METHODS

RECOMMENDED REFERENCES
FURTHER READINGS

STANDARDS RELEVANT TO SOFTWARE
CONSTRUCTIONS

MATRIX OF REFERENCE MATERIAL VERSUS
Torics

1. Softwar e Construction

Software construction is the most fundamental
act of software engineering: the construction of
working, meaningful software through a
combination of coding, self-validation, and self-
testing (unit testing) by a programmer. Far from
being asimple mechanistic “trandation” of good
design into working software, software
congtruction burrows deeply into some of the
most difficult issues of software engineering. It
requiresthe establishment of ameaningful dialog
between a person and a computer — a
“communication of intent” that must reach from
the dow and falible human to a fast and
unforgivingly literal computer. Such a dialog
requires that the computer perform activities for
which it is poorly suited, such as understanding
implicit meanings and recognizing the presence
of nonsensical or incomplete statements. On the

© IEEE - Soneman (Version 0.7) — April 2000

Philippe Gabrini and LouisMartin
Université du Québec a Montréal

{ gabrini.philippe} {martin.louis} @ugam.ca

human side, software construction requires that
forgetful, Sloppy, and unpredictable peopletrain
themselves to be precise and thorough to the
point that, at the least, they do not appear to be
completely insane from the viewpoint of a very
literd computer. The relationship works only
because each side possesses certain capabilities
that the other lacks. In the symbiosis of disparate
entities that is software construction, the
computer provides astonishing reliability,
retention, and (once the need has been explained)
speed of performance. Meanwhile, the human
side provides something utterly lacking on the
part of the computer: Creativity and insight into
how to solve new, difficult problems, plus the
ability to express those solutions with sufficient
precision to be meaningful to the computer.
Perhaps the most remarkable aspect of software
construction isthat it is possible at all, given the
strangeness of the symbiosisonwhichitisbased.

11 Software Congruction and
Softwar e Design

Software construction is closdly related to
software design (see Knowledge Area
Description for Software Design). Software
designisacollection of skillsand techniquesfor
bresking up a large, complex problems into
structured collections of smaller, easier-to-solve
problems. Software design methods can be
applied repeatedly until the resulting
subproblems are small enough to be handled with
confidence by a single developer. It is a this
point — that is, when the design process has
broken the larger problem up into easier-to-
handle chunks — that software construction is
generally understood to begin. This definition
also implies the distinction that while software
construction necessarily produces executable
software, software design does not necessarily
produce any executable products at all.

In practice, however, the boundary between
design and construction is seldom this clearly
defined. Firstly, software construction is greatly
influenced by the scale or size of the software

4-1

product being constructed. Very small projectsin
which the design problems are aready
“construction size” may neither require nor need
an explicit design phase, and very large projects
may require amuch moreinteractive relationship
between design and construction as different
prototyping aternatives are proposed, tested, and
discarded or used. Secondly, many of the
techniques of software design also apply to
software construction, since dividing problems
into smaller parts is just as much a part of
construction as it is design. Thirdly, effective
design techniques always contain some degree of
guessing or approximation in how they define
their subproblems. A few of the resulting
approximations will turn out to be wrong, and
will require corrective actions during software
construction. These corrective actions are most
easily takenif constructionis capable of applying
the same techni ques. (While another seemingly
obvious solution would be to remove guessing
and approximation atogether from design
methods, that would contradict the premise that
the original problem was too large and complex
to be solved in one step. Effective design
techniques instead acknowledge risk, work to
reduce it, and help make sure that effective
aternatives will be available when some choices
eventually prove wrong.)

Finaly, there is a common misconception that
software design solvesall of the“hard” problems
in software development, making software
construction into little more than a mechanistic
trandation of software designs into fina
software. Thisis simply not the case. Design and
construction both require sophisticated problem
solving skills, athough the two activities have
somewhat different emphases. In design the
emphasis is on how to divide up a complex
problem effectively, while in construction the
emphasisison finding acomplete and executable
solution to a problem. When software
construction techniques do become so well-
defined that they can be applied mechanigtically,
the proper route for the software engineer isto
automate those techniques and move on to new
problems, ones whose answers are not so well
defined. This trend toward automation of well-
defined tasks began with the first assemblers and
compilers, and it has continued unabated as new
generations of tools and computers have made
increasingly powerful levels of construction
automation possible. Projects that do contain
highly repetitive, mechanistic software
construction steps should examine their designs,
processes, and toolssetsmore closely for waysto

42

10.

10.

automate such needlessly repetitive steps out of
existence.

1.2 The Role of Toolsin Construction

In software engineering, a tool may be broadly
defined as any hardware or software device that
provides significant productivity or quality
improvements to the overall development
process (see Knowledge Area Description for
Engineering Tools and Methods). Thisisavery
inclusve definition, however, since it
encompasses genera -purpose hardware devices
such as computers and peripherasthat are part of
an overal software-engineering environment.
Software construction tools are amore specific
category of tools that are both software-based
and used primarily within the construction
process. Common examples of software
construction tools include compilers, version
control systems, design tools, and documentation
tools.

The best software construction tools bridge the
gap between method cal computer efficiency and
forgetful human crestivity. Such tools alow
creative minds to express their thoughts easily,
but also enforce alevel of rigor that keeps that
same creativity from seriousdy damaging the
overall construction process. Good tools also
improve quality by keeping people from doing
repetitive or precise work for which a computer
is better suited.

1.3 The Role of Integrated Self-
Evaluation in Congtruction

Another important theme of software engineering
is the integrated self-eval uation of processes
This concept encompasses such diverse activities
as testing, software quality assurance, and
metrics (see Knowledge Area Description for

Testing and Knowledge Area Description for

Software Quality). Integrated self-evaluation
means that a process (in this case a development
process) includes explicit continuous or periodic
internal “self-checks’ to ensure that it is still

working correctly. These self-checks usualy
consist of evaluations of intermediate work
products such as documents, designs, source
code, or compiled modules, but they may aso
look at characteristics of the development
process itself. Examples of product evaluations
include design reviews, module compilations,
and unit tests. An example of processlevel self-
evaluation would be periodic re-assessment of a

© IEEE - Soneman (Version 0.7) — April 2000

11.

12.

13.

19.
20.
21.
22.

codelibrary to ensureitsaccuracy, compl eteness,
and self-consistency.

Integrated sdlf-evaluation in software
engineering parallels the concept of integrated
self-test logic and built-in error recovery in
complex integrated circuits. Such features were
first added to integrated circuits when it was
realized the circuits had become so complex that
the assumption of perfect doart-to-finish
reliability was no longer tenable. Similarly,
software engineering processes and products
have become so complex that even the illusion
that they can move from start (requirements) to
finish (delivery) without incurring significant
serious process errors along the way isno longer
plausible — and probably never was even in the
earliest days of computing. As with integrated
circuits, the purpose of integrated self-checking
in software processes is to ensure that they can
operate for long periods without generating
nonsensical answers.

Historically, software construction has tended to
be one of the software engineering stepsin which
developers were particularly prone to omitting
self-checks of the process. While nearly al
devel opers practice somedegree of informal self-
evaluation when constructing software, it is al
too common for authors to skip needed self-
evaluation steps because they are too confident
about the reliability and quality of their own
software constructions. Nonetheless, a wide
range of automated, semi-automated, and manua
sel f-evaluation methods have been developed for
use in the software construction phase.

The smplest and best-known form of software
construction self-evaluation is the use of unit
testing after completion of each well-defined
software unit. Automated techniques such as
compile-time checks and run-time checks help
verify the basic integrity of software units, and
manual techniques such as code reviews can be
used to search for more abstract classesof errors.
Tools for extracting metrics on code quality and
structure can also be used during construction,
athough such measurement tools are more
commonly applied during integration of large

Manual Construction

Usually procedura (i.e., order-dependent)
Very large number of descriptive options
Emphasis on finding new problem solutions
Processis defined by user (versus by tools)

© IEEE - Soneman (Version 0.7) — April 2000

ARV N

suitesof software units. When collecting metrics,
it is particularly important that there be a well-
defined link between the metrics that are
collected and the self-evaluation god that is
being pursued.

14. 14 The Rode of Sandards in
Congruction

15. All formsof successful communication requirea
common language. Sandards are in many ways
best understood as agreements by which both
conceptsand technol ogies can becone part of the
shared “language’ of a broader community of
users (see Softwar e Evol ution and Management).
While it is possible in principle to do software
construction without adhering to any standard
beyond the design of the computer hardware,
such an goproach would be very dow,
remarkably painful, and phenomenaly
expensive. It would, for example, require at least
the creation of a new computer language, of
operating system software, of tools to support
development, and of hardware drivers for al
devices A much more practical approach is to
choose as broad and enduring a set of standards
as possible. Determining what this set should be
can be adifficult task, but it isonethat is almost
aways worth the trouble in the long term.

16. Software congtruction is particularly sensitive to
the selection of standards, which directly affects
such construction-critical issues as programming
languages, databases, communication methods,
platforms, and tools. Although such choices are
often made before construction begins, it is
important that the overall software development
process take the needs of construction into
account when standards are selected.

17. 15 The Spectrum of Congruction
Techniques

18. Software construction techniques can be broadly
grouped in terms of how they fall between two
endpoints: manual construction techniques, and
automated construction techniques.

Automated Construction

Often non-procedurd (e.g., descriptive)
Limited number of descriptive options
Emphasis on reusing old problem solutions
Processis defined mostly by the tools used

4-3

23.
24,

25.
26.

27.

28.

29.

Manual Construction Goal:

9
Expensive, risky, and usable by few people >
More likely to be defined by a standard >

Manual Construction

Manual construction means solving complex
problems in a language that a computer can
execute. Practitioners of manua construction
need arich mix of skills that includes the ability
to break complex problems down into smaller
parts, adisciplined formal-proof-like approach to
problem analysis, and the ability to “forecast”
how constructions will change over time. Expert
manual constructors thus need not only the skills
of advanced logicians, but also the ability to
apply those skills within a complex, changing
environment such as acomputer or network.

It would be easy to directly eguate manua
construction to coding in a procedura
programming language, but it would also be an
incomplete definition. An effective manud
construction process should result in code that
fully and correctly processes data for its entire
problem space, anticipates and handles all
plausible (and some implausible) classes of
errors, runs efficiently, and is structured to be
resilient and easy-to-change over time. An
inadeguate manual construction process will in
contrast result in code like an amateurish
painting, with critica details missing and the
entire construction stitched together poorly.

Automated Construction

While no form of software construction can be
fully automated, much or al of the overall
coordination of the software construction process
can be moved from peopl e to the computer— that
is, overall control of the construction processcan
be largely automated. Automated construction
thus refers to software construction in which an
automated tool or environment is primarily
responsible for overal coordination of the
software construction process. This removal of
overal process control can have a large impact
on the complexity of the software construction
process, since it alows human contributions to
be divided up into much smaller, less complex
“chunks’ that require fewer problem solving
skills to solve. Automated construction is aso
reuse-intensive construction, since by limiting
human options it alows the controlling software

Automated Construction

L owcost, safe, and usable by many people
More likely to be custom to application area

30.

31

32.
33.

34.

to makemore effective use of itsexisting store of
effective software problem solutions.

Initsmost extreme form, automated construction
consists of little more than configuring a
predefined set of options. For example, an
accounting application for small businesses
might lead users through a series of questions
that will result in a customized installation of the
application. When compared to using manua
construction for the same type of problem, this
form of automated construction “swallows’ huge
chunks of the overdl software engineering
process and replaces them with automated
selections that are controlled by the compulter.
Toolkits provide a less extreme example in
which developers ill have a great ded of
control over the construction process, but that
process has been greatly constraned and
simplified by the use of predefined components
with well-defined rel ationships to each other.

Automated construction is necessarily tool-
intensive construction, since the objective is to
move a much of the overal software
development process as possible away from the
human developer and into automated processes.
Automated construction tools tend to take the
form of program generators and fully integrated
environments that can more easily provide
automated control of the construction process. To
be effective in coordinating activities, automated
construction tools aso need to have easy,
intuitive interfaces.

Moving Towards Automation

As indicated by the table, an important goa of
software engineering is to move construction
continually towards higher levels of automation.
That is, when sdlection from a simple set of
options is al that is realy required to make
software work for a business or system, then the
goal of software engineers should continually be
to make their systems come as close to that level
of simplicity as possible. This not only makes
software more accessible, but also makesit safer
and more reliable by removing a plethora of
needless opportunitiesfor error.

The concept of moving towards higher levels of
construction automation is so fundamenta to
good design that it permeates nearly every aspect

© IEEE - Soneman (Version 0.7) — April 2000

35.
36.

37.

of software construction. When simple selections
from alist of options will not suffice, software
engineers often can ill develop application
specific tool kits (that is, sets of reusable parts
designed to work with each other easily) to
provide a somewhat lesser level of control. Even
fully manual construction reflects the theme of
automation, since many coding techniques and
good programming practices are intended to
make code modification easer and more
automated. For example, even a concept as
simple as assigning a value to a constant at the
beginning of a software module reflects the
automation theme, since such constants
“automate” the appropriate irsertion of new
values for the congtant in the event that changes
to the program are necessary. Similarly, the
concept of class inheritance in object-oriented
programming helps automate and enforce the
conveyance of appropriate sets of methods into
new, closely related or derived classesof objects.

1.6 Computer Languages

Since the fundamental task of software
construction is to communicate intent
unambiguoudy between two very different types
of entities (people and computers), it is not too
surprising that the interface between the two is
most commonly expressed as languages. The
resulting computer languages, such as Ada,
Python, Fortran, C, C++, Java, and Perl, are close
enough in form to human languages to alow
some “borrowing” of innate skills of
programmers in naural languages such as
English or French. However, computer languages
are aso very literal from the perspective of
natural languages, since no computer yet built
has sufficient context and understanding of the
natural world to recognize invdid language
statements and congtructions that would be
caught immediately in a naturad language
context. As will be discussed below, computer
languages can aso borrow from other non
linguistic human skills such as gpatid
visualization.

Computer languages are often created in
response to the needs of particular application
fields, but the quest for more universa or
encompassing programming language is
ongoing. As in many relatvely young
disciplines, such quests for universality are as
likely to lead to short-lived fads as they are to
genuine insights into the fundamentals of
software construction. For this very reason, it is
important that software construction not be tied

© IEEE - Soneman (Version 0.7) — April 2000

38.

39.

40.

41.

42.

too greatly on any programming language or
programming methodology.

1.7 Construction Languages

Construction languages include al forms of
communication by which a human can specify an
executable problem solution to a computer. The
simplest type of construction language is a
configuration language, in which developers
choose from a limited set of predefined options
to create new or custom installations of software.
The text-based configuration files used in both
Windows and Unix operating systems are
examples, and the menu-style selection lists of
some program generators are another. Toolkit
languages are used to build applications out of
toolkits (integrated sets of application-specific
reusable parts), and are more complex than
configuration languages. Toolkit languages be
explicitly defined as application programming
languages (eg., scripts), or may smply be
implied by the collected set of interfaces of a
toolkit. Asdescribed earlier, computer languages
are the most flexible type of construction
languages, but they aso contain the least
information about both application areas and
development processes, and so require the most
training and skill to use effectively.

2. Styles of Construction

A good congtruction language moves detailed,
repetitive, or memory-intensive construction
tasks away from people and into the compuiter,
where such tasks can be performed faster and
more reliably. To accomplish this, construction
languages must present and receive information
in ways that are readily understandable to human
senses and capabilities. This need to rely on
human capabilities leads to three major styles of
software construction interfaces:

A. Linguistic. Linguistic construction
languages make statements of intent in the
form of sentences that resemble natura
languages such as French or English. In terms
of human senses, linguistic constructions are
generally conveyed visually as text, athough
they can (and are) aso sometimes conveyed
by sound. A mgor advantage of linguigtic
construction interfacesisthat they are nearly
universal among people. A disadvantage is
the imprecision of ordinary languages such a
English, which makes it hard for people to
express needs clearly with sufficient
precision when using linguistic interfaces to

4-5

43.

44,

computers. An example of thisproblemisthe
difficulty that most early students of
computer science have learning the syntax of
even fairly readable languages such as Pascd,
Ada, or Python.

B. Formal: The precision and rigor of
formal and logica reasoning make this style
of human thought especially appropriate for
conveying human intent accurately into
computers, as well as for verifying the
completeness and accuracy of a construction.
Unfortunately, formal reasoning is not nearly
as universal a skill as natural language, since
it requires both innate skills that are not as
universd as language skills, and dso many
years of training and practice to use
efficiently and accurately. It can aso be
argued that certain aspects of good formal
reasoning, such asthe ability toreaizedll the
implications of anew assertion on al parts of
a system, cannot be learned by some people
no matter how much training they receive. On
the other hand, formal reasoning styles are
often notorious for focusing on a problem so
intently that all “complications’ arediscarded
and only a very small, very pristine subset of
the overall problem is actually addressed.
This kind of excessively narrow focus at the
expense of any complicating issues can be
disastrous in software construction, since it
can lead to software that is incapable of
dedling with the unavoidable compl exities of
nearly any usable system.

C. Visual: Ancther very powerful and
much more universal construction interface
style is visual, in the sense of the ability to
use the same very sophisticaed and
necessarily natural ability to “navigate” a
complex three-dimensiona world of images,
as perceived primarily through the eye (but
aso through tactile senses). The visua
interface is powerful not only as a way of
organizing information for presentation to a
human, but also as a way of conceiving and
navigating the overall design of a complex
software system. Visud methods are
particularly important for systemsthat require
many people to work on them — that is, for
organizing a software design process —since
they adlow a naturd way for people to
“understand” how and where they must
communicate with each other. Visud
methods are also deeply important for single-
person software construction methods, since
they provide ways both to present options to

45,

46.

47.

48.

49.

50.

people and to make key details of a large
body of information “pop out” to the visua
system.

Construction languages seldom rely solely on a
single style of construction. Linguistic and
formal stylein particular are both heavily used in
most traditional computer languages, and visual
styles and models are a mgor part of how to
make software constructions manageable and
understandable in computer languages.
Relatively new “visual” construction languages
such as Visua Basic and Visud Java provide
examplesthat intimately combineall three styles,
with complex vi sual interfaces often constructed
entirely through non-textua interactionswith the
software congtructor. Data processing
functionality behind the interfaces can then be
constructed using more traditiona linguistic and
formal styles within the same construction
language.

3. Principles of Organization

In addition to the three basic human-oriented
styles of interfacing to computers, there are four
principles of organizationthat strongly affect the
way software construction is performed. These
principles are:

Reduction of Complexity: This principle of
organization reflectstherelatively limited ability
of people to work with complex systems that
have many parts or interactions. A mgjor factor
in how people convey intent to computersis the
severely limited ability of people to “hold”
complex structures and information in their
working memory, especially over long periods of
time. This need for simplicity in the human-to-
computer interface leads to one of the strongest
drivers in software construction: reduction of
complexity. The need to reduce complexity
appliesto essentialy every aspect of the software
construction, and is particularly critical to the
process of self-verification and self-testing of
software constructions.

There are three main techniques for reducing
complexity during software construction:

Removal of Complexity: Although trivia in
concept, one obvious way to reduce complexity
during software construction is to remove
features or capabilities that are not absolutely
required. This may or may not be the right way
to handle a given situation, but certainly the
general principle of parsimony — that is, of not

© IEEE - Soneman (Version 0.7) — April 2000

51.

52.

53.

adding capabilities that clearly will never be
needed when constructing software—isvalid.

Automation of Complexity: A much more
powerful technique for removal of complexity is
to automate the handling of it. That is, a new

construction language is created in which
features that were previoudly time-consuming or
error-prone for ahuman to perform are migrated
over to the computer intheform of new software
capabilities. The history of software is replete
with examples of powerful software tools that

raised the overall level of development capability
of people by alowing them to address a new set
of problems. Operating systems are one example
of this principle, since they provide a rich
construction language by which efficient use of
underlying hardware resources can be greatly
smplified. Visual construction languages
similarly provide automation of visual aspects of
software that aherwise could be very laborious
to build.

L ocalization of Complexity: If complexity can
neither be removed nor automated, the only
remaining option is to localize complexity into
small “units’ or “modules’ that are small enough
for a person to understand in their entirety, and
(perhaps moreimportantly) sufficiently isolated
that meaningful assertions can be made about
them. This might even lead to components that
can be re-used. However, one must be careful, as
arbitrarily dividing avery long sequence of code
into small “modules’ does not help, because the
relationships between the modules become
extremely complex and difficult to predict.
Localization of complexity has a powerful
impact on the design of computer languages, as
demonstrated by the growth in popularity of
object-oriented methodsthat seek to strictly limit
the number of ways to interface to a software
module, even though that might end up making
components more dependent. Locdizationisalso
a key aspect of good design of the broader
category of construction languages, since new
feature that are too hard to find and use are
unlikely to be effective astools for construction.
Classical design admonitions such as the goa of
having “cohesion” within modules and to
minimize “coupling” are aso fundamentally
localization of complexity techniques, sincethey
strive to make the number and interaction of
parts within a module easy for a person to
understand.

Anticipation of Diversity: This principle has
more to do with how people use software than
with differences between computers and people.

© IEEE - Soneman (Version 0.7) — April 2000

54.

55.

56.

Itsmotiveissimple: Thereisno such thing asan
unchanging software construction. Any truly
useful software construction will change in
various ways over time, and the anticipation of
what those changes will be turns out to be one of
the fundamental drivers of nearly every aspect of
software construction Useful software
constructions are unavoidably part of a changing
external environment in which they perform
useful tasks, and changes in that outside
environment trickle in to impact the software
constructions in diverse (and often unexpected)
ways. In contrast, forma mathematica
constructions and formulas can in some sense be
stable or unchanging over time, since they
represent abstract quantities and relationships
that do not require direct “attachment” to a
working, physical computational machine. For
example, even the software implementations of
“universal” mathematical functions must change
over time dueto external factors such asthe need
to port them to new machines, and the
unavoidable issue of physical limitations on the
accuracy of the software on a given machine.

Anticipation of the diversity of ways in which
softwarewill change over timeisone of the more
subtle principles of software construction, yet it
is vitally important for the creation of software
that can endure over time and add value to future
endeavors. Since it includes the ability to
anticipate changes due to design errors (bugs) in
software, it is adso a fundamental part of the
ability to make software robust and error-free.
Indeed, one handy definition of “aging” software
is that it is software that no longer has the
flexibility to accommodate bug fixes without
breaking.

There are three main techniques for anticipating
change durirg software construction:

Generalization: Itisvery common for software
construction to focus first on highly specific
problems with limited, rather specific solutions.
Thisis common because the more general cases
often smply are not obvious in the early stages
of analysis. Generalization is the process of
recognizing how afew specific problem casesfit
together as part of some broader framework of
problems, and thus can be solved by a single
overarching software construction in place of
several isolated ones. Generalization of
functionality is a digtinctly mathematical
concept, and not too surprisingly the best
generdizations that are developed are often
expressed in the language of mathematics. Good
design is equaly an aspect of generalization,

4-7

57.

58.

59.

60.

however. For example, software constructions
that use stacks to store data are amost always
more generdized than similar solutions using
fixed-sized arrays, since fixed sizesimmediately
place artificid (and usualy unnecessary)
constraints on the range of problem sizesthat the
construction can solve.

Generalization anticipates diversity because it
creates solutions to entire classes of problems
that may not have even been recognized as
existing before. Thus just as Newton's genera
theory of gravity made a smal number of
formulas applicable to a much broader range of
physics problems, a good generalization to a
number of discrete software problems often can
leed to the easy solution of many other
development problems. For example, developing
an easily customizable graphics user interface
could solve a very broad range of development
problems that otherwise would have required
individual, labor-intensive development of
independent solutions.

The greatest difficulty with generalization as a
technique for anticipating diversity is that it
depends very strongly on the ability of the
individual developer to find generaizations that
actually correspond to the eventua uses of the
software. Developers may have no particular
interest (or time) to develop the necessary
generalizations under the schedule pressures of
typical commercial projects. Even when thetime
needed is available, it is surprisingly easy to
develop thewrong set of generalizations—that is,
to create generalizations that make the software
easier to change, but only in ways that prove not
to correspond to what isreally needed.

For these reasons, generdization is both safer
and easier if it can be combined with the next
technique of experimentation. Change
experimentation makes generalization safer by
capturing realistic data on which generaizations
will be needed, and makes generalization easier
by providing schedule-conscious projects with
specific data on how generalizations can improve
their products.

Experimentation: Experimentation meansusing
ealy (sometimes very ealy) software
constructions in as many different user contexts
as possible, and as early in the development
process as possible, for the explicit purpose of
collecting data on how to generdlize the
congtruction. Experimentation effectively
acknowledges the sizable difficulty of
anticipating all the ways in which software

61.

62.

63.

64.

constructions can change, and uses
experimentation to fill the gap in knowledge.

Obvioudly, experimentation is a processlevel
technique rather than a code-level technique,
since its goal is to collect data to help guide
code-level processes such asgeneraization. This
means that it is constrained by whether the
overall development process allowsiit to be used
a the construction level. Constructionlevel
experimentation is most likely to be found in
projects that have incorporated experimentation
into their overall development process. The
I nternet-based open source devel opment process
that Linus Torvalds used to creste the Linux
operating system is an example of aprocess that
both alowed and encouraged construction-level
use of experimentation. In Torvalds approach,
individual code constructions were very quickly
incorporated into an overal product and then
redistributed via the Internet, sometimes on the
same day. This encouraged further use,
experimentation, and updates to the individua
constructions.

Localization: Localization means keeping
anticipated changes as locdized in a software
construction as possible. It is actually a specid
case of the earlier principle of localization of
complexity, since change is a particularly
difficult class of complexity. A software
congtruction that can be changed in a common
way by making only one change a one location
within the congtruction thus demonstrates good
locality for that particul ar class of modifications.

Localizetion is very common in software
congtruction, and often is used intuitively as the
“right way” to construct software. Objects are
one example of a localization technique, since
good object designs localize implementation
changes to within the object. An even simpler
example is using compile-time constants to
reduce the number of locationsin a program that
must be changed manually should the constant
change. Layered architectures such as those used
in communication protocols are yet another
example of localization, since good layer designs
keep changes from crossing layers.

Structuring for Validation: No matter how
carefully a person designs and implements
software, the creative nature of nortrivial
software construction (that is, of softwarethat is
not simply a re-iimplementation of previoudy
solved problems) means that mistakes and
omissionswill occur. Sructuring for validation
means building software in such a fashion that

© IEEE - Soneman (Version 0.7) — April 2000

65.

such errors and omissions can be ferreted out
more easily during unit testing and subsequent
testing activities. One of the single most
important implications of structuring for
validation is that software must generaly be
modular in a least one of its magor
representation spaces, such as in the overdl
layout of the displayed or printed text of a
program. This modularity allows both improved
anadysis and thorough unit-level testing of such
components before they are integrated into
higher levels in which their errors may be more
difficult to identify. As a principle of
congtruction, structuring for validation generally
goes hand-in-hand with anticipation of diversity,
since any errors found as a result of validation
represent an important type of “diversity” that
will require sftware changes (bug fixes). It is
not particularly difficult to write software that
cannot really be validated no matter how much it
is tested. This is because even moderately large
“useful” software components frequently cover
such a large range of outputs that exhaustive
testing of al possible outputs would take eons
with even the fastest computers. Structuring for
validation thusbecomesafundamental constraint
for producing software that can be shown to be
acceptably reliable within a reasonable time
frame. The concept of unit testing paralels
structuring for validation, and is used in paralel
with the construction process to help ensure that
validation occurs before the overall structure gets
“out of hand” and can no longer be readily
validated.

Use of External Standards: A natura language
that is spoken by one person would be of little
value in communicating with the rest of the
world. Similarly, a construction language that
has meaning only within the software for which
it was constructed can be a serious roadblock in
the longterm use of that software. Such
construction languages therefore should either
conform toexter nal standar dssuch asthoseused
for computer languages, or provide a sufficiently
detailed internal “grammar” (eg.,
documentation) by which the construction
language can later be understood by others. The
interplay between reusing externa standards and
creating new ones is a complex one, as it
depends not only on the availability of such
standards, but also on realistic assessmerts of the
long-term viability of such external standards.
With the advent of the Internet as a mgjor force
in software development and interaction, the
importance of selecting and using appropriate
externa standards for how to construct software

© IEEE - Soneman (Version 0.7) — April 2000

66.

67.

68.

is more goparent than ever before. Software that
must share data and even working modules with
other software anywhere in the world obviously
must “share” many of the same languages and
methods as that other software. The result is that
selection and use of external standards — that is,
of standards such as language specifications and
data formats that were not originated within a
software effort — is becoming an even more
fundamental constraint on software construction
than it was in the past. It is a complex issue,
however, because the selection of an externd
standard may need to depend on such difficult-
to-predict issues as the long-term economic
viability of a particular software company or
organization that promotes that standard.
Stability of the standard is especialy important.
Also, selecting onelevel of standardization often
opens up an entire new set of standardization
issues. An example of thisisthe data description
language XML (eXtensible Markup Language).
Selecting XML as an externd standard answers
many questions about how to describe datain an
application, but it also opens up the issue of
whether one of the growing numbers of
customizations of XML to specific problem
domains should also be used.

A Taxonomy of Software

Construction Methods

Let us begin by stating that it is not possible to
create a taxonomy of software construction
methods that provides much insight into the
relationships of software construction methods.
The problem is that traditional taxonomies use
exclusive tree structuresto place eachitemin a
unique position on the tree. However, techniques
such as modularity are often so pervasivein their
impacts on software construction that any
attempt to force them into a single category of a
taxonomic breakdown will result in a taxonomy
that failsto explain the breadth of impact.

For this reason the taxonomy given here is more
properly understood as ataxonomy of principles
to which the impacts of individua construction
methods can be mapped. In this taxonomy, an
individua construction method may show up in
many different locations in the taxonomy, rather
than smply in one location. The number of
locations in which a method shows up indicates
its breadth of application, and thus an indication
of its importance to software construction as a
whole. Modularity is one example of a
construction method that has such broad impacts.

4-9

Software Construction

Linguistic
Construction
Methods

v

¥

v

[

Formal
Construction
Methods

v

!

!

v

Visual
Construction
Methods

1

v

!

1

Reduction in

_| Anticipation of|

Structuring for

Use of External

Reduction in

__| Anticipation of]

Structuring for

Use of Externall

Reduction in

_| Anticipation of|

Structuring for

Use of External

Complexity Diversity Validation Standards Complexity Diversity Validation Standards Complexity Diversity validation Standards
Design Information H» Modular design Standardized Traditional Functional Assertion-based POSIX Object-oriented H» Object classes "Complete and Object-oriented
Ll patterns hiding programming H» functions and parameteri- programming > standards programming sufficient” - language
Structured B languages procedures zation ™ (static and . . Visual P design of standards
Software Embedded programming (e.g. Ada 95, dynamic) Data Visual creation | configuration object-oriented .
templates documentation C++) Ly Functional Macro H» communication and specification class method Standadized
. - Style guides . programmig parameteri- Ly State machine standards H- customization . . visual interface
Functions, "Complete and Standardized zation logic of user Separation of Dynamic B~ models (e.g.
M- procedures, - sufficient” Stepwise data Logic Hardware interfaces GUI design and validation of Microsoft
and code block method sets refinement H»- description l programming Generics Redundant B interface) functionality 9 visual requests Windows)
. . languages l,. Systems, self- standards Visual (e.g. implementation in visual
= Data structures Object-oriented (e.g. XML) Concurrent Objects diagnosis, and _ H= visual C++) languages |, ~Standardized
-~ class and real-time failover methods Standardized programming screen widgets
Encapsulation inheritance Standardized [* programming Extensible mathematical
= and abstract . alphabet techniques mathematical Hot-spot analysis b representation "Style" (visual L Visual Markup
data type Creation of P representation framework L» and performance languages formatting) languages
"glue s (e.g. > Spreadsheets tuning (e.g. MathmML) = aspect of
> Objects > languages" for Unicode) structured
linking legagy Mathematical Mathematical programming
Component components Standardized L libraries of L» libraries of
e libraries and H» documentation functions functions
frameworks Table-driven (e.g. JavaDoc)
software
Higher-level Inter-process
and domain- N Configuration communication
specific files # standards
languages (e.g. COM,
Self-describing CORBRA)
» software and
hardware l,. Component-
based software
Foundation
4 classes (e.g.
MFC, JFC)
410 © IEEE - Stoneman (Version 0.7) — April 2000

69.
70.

71.

72.

A. Linguistic Construction Methods

Linguistic construction methods are
distinguished in particular by the use of
word-likestringsof text to represent complex
software constructions, and the combination
of such word-like strings into patterns that
have a sentence-like syntax. Properly used,
each such dtring should have a strong
semantic connotation that provides an
immediate intuitive understanding of what
will happen when the underlying software
construction is executed. For example, the
term “search” has an immediate, readily
understandable semantic meaning in English,
yet the underlying software implementation
of such a term in software can be very
complex indeed. The most powerful
linguistic construction methods allow usersto
focus amost entirely on the language-like
meanings of such term, as opposed (for
example) to frittering away mental efforts on
examining minor variations of what “search”
meansin a particular context.

Linguistic construction methods are further
characterized by similar use of other
“natural” language skills such as using
patterns of words to build sentences,
paragraphs, or even entire chaptersto express
software design “thoughts.” For example, a
pattern such as* search table for out-of -range
values’ uses word-like text strings to imitate
natural language verbs, nouns, prepositions,
and adjectives. Just as having an underlying
software structure that alows a more natural
use o words reduces the number of issues
that a user must address to create new
software, an underlying software structure
that also alows use of familiar higher-level
patterns such as sentence further simplifies
the expression process.

Finaly, it should be noted that as the
complexity of a software expression
increases, linguistic construction methods
begin to overlap unavoidably with visua
methods that make it easier to locate and
understand large sequences of statements.
Thus just as most written versions of natural
languages use visua clues such as spaces
between words, paragraphs, and section
headings to make text easier to “parse”’
visudly, linguistic construction methods rely
on methods such as precise indentation to
convey structural information visualy.

© IEEE - Soneman (Version 0.7) — April 2000

73.

74.
75.

76.
7.
78.

79.
80.
81.
82.
83.

84.
85.

86.
87.

88.
89.
90.

91.

The use of linguistic construction methodsis
aso limited by our inability to program
computers to understand the levels of
ambiguity typicdly found in naturd
languages, where many subtle issues of
context and background can dragtically
influence interpretation. As a result, the
linguistic model of construction usudly
begins to wesken at the more complex levels
of construction that correspond to entire
paragraphs and chapters of text.
1. Reduction in Complexity (Linguistic)

The man technique for reducing

complexity in linguistic construction isto

make short, semantically “intuitive’ text

strings and patterns of text stand in for the

much more complex underlying software

that “implement” the intuitive meanings.

Techniques that reduce complexity in

linguistic construction include:

+ Design patterns

* Software templates

+ Functions, procedures, and code

blocks

¢ Datastructures
+ Encapsulation and abstract data types
+ Objects
+ Component libraries and frameworks
¢ Higher-level and domain-specific
languages

2. Anticipation of Diversity (Linguistic)
Linguistic ~ construction anticipates
diversity both by permitting extensible
definitions of “words,” and aso by
supporting flexible “ sentence structures’
that allow many different types of
intuitively understandable statements to
be made with the available vocabulary.
An excellent example of using linguistic
construction to anticipate diversity is the

use of human-readable configuration files
to specify software or system settings.

+ |Information hiding

Embedded
(commenting)

* “Completeand sufficient” method sets
+ Object-oriented classinheritance

¢ Creation of “glue languages’ for
linking legacy components
+ Table-driven software

*

documentation

4-11

92.
93.

94.
95.

96.
97.
98.
99.

100.
101.

102.

103.

104.

105.

106.

107.
108.
109.
110.

¢ Configurationfiles
¢ Sdf-describing software and hardware
(eg. plug and play)
3. Structuring for Validation (Linguistic)

Because natural language in generd istoo
ambiguous to alow safe interpretation of
completely freeform statements,
structuring for vaidation shows up
primarily as rules that at least partidly
congrain the free use of naturd
expressions in software. The objective is
to make such constructions as “natura”
sounding as possible, while not losing the
structure and precision needed to ensure
consistent interpretations of the source
code by both human users and computers.

+ Modular design
¢ Structured programming

Style guides
+ Stepwise refinement
4, Use of External Sandards (Linguistic)

Traditiondly, standardization of
programming languages was one of the
first areas in which externa gandards
gppeared. The god was (and is) to
provide standard meanings and ways of
usng “words’ in each sandardized
programming language, which makes it
possible both for usersto understand each
other’s software, and for the software to
be interpreted consistently in diverse
environments.
¢ Standardized programming languages
(e.g., Ada 95, C++, etc.)
¢ Standardized data
languages (e.g., XML)
¢ Standardized a phabet representations
(e.g., Unicode)
¢ Standardized documentation (eg.,
JavaDoc)

¢ Inter-process communication
standards (e.g., COM, CORBA)

¢ Component-based software
+ Foundation classes (e.g., MFC, JFC)
B. Formal Construction Methods

Formal construction methods rely less on
intuitive, everyday meanings of words and text
strings, and nore on definitions that are backed
up by precise, unambiguous, and fully formal (or
mathematical) definitions. Formal construction

*

description

412

111.

112.

113.
114.

methods are at the heart of most formsof system
programming, where precision, speed, and
verifiability are more important than ease of
mapping into ordinary language. Forma
constructions also use precisely defined ways of
combining symbols that avoid the ambiguity of
many natura language constructions. Functions
are an obvious example of formal constructions,
with their dired paradld to mathematica
functionsin both form and meaning.

Formal construction techniques aso include the
wide range of precisely defined methods for
representing and implementing “unique’
computer problemssuch as concurrent and multi-
threaded progranming, which are in effect
classes of mathematical problems that have
specia meaning and utility within computers.
The importance of the formal syle of
programming cannot be understated. Just as the
precision of mathematics is fundamenta to
disciplines such as physics and the hard science,
the formd style of programming is fundamental
to building up a reliable framework of software
“results’ that will endure over time. While the
linguistic and visual styles work well for
interfacing with people, these less precise styles
can be unsuitable for building the interior of a
software system for the same reason that stained
glass should not be used to build the supporting
arches of a cathedral. Formal construction
provides a foundation that can eliminate entire
classes of errors or omissions from ever
occurring, whereas linguistic and visud
construction methods are much more likely to
focus on isolated instances of errors or
omissions. Indeed, one very real danger in
software quality assurance is to focus too much
on capturing isolated errors occurring in the
linguistic or visual modes of construction, while
overlooking the much more grievous (but harder
to identify and understand) errors that occur in
the formal style of construction.

1. Reduction in Complexity (Formal)

As is the case with linguistic construction
methods, formal construction methodsreduce
complexity by representing complex software
congtructions assimpletext strings. Themain
differenceisthat in this case the text strings
follow the more precisely defined rules and
syntax of formal notations, rather than the
“fuzzier” rules of naturd language. The
reading, writing, and congtruction of such
expressions requires generally moretraining,
but once mastered, the use of forma

© IEEE - Soneman (Version 0.7) — April 2000

115.
116.
117.
118.

119.
120.
121.
122.

123.
124.
125.
126.
127.
128.
129.

constructions tends to keep the ambiguity of
what is being specified to an absolute
minimum. However, as with linguistic
construction, the qudity of a forma
congtruction isonly as good asits underlying
implementation. The advantage is that the
precision of the forma definitions usually
trandatesinto amore preci se specification for
the software benezth it.

* Traditiona functions and procedures

+ Functiond programming

¢ Logic programming

¢ Concurrent and red -time programming
techniques

+ Spreadsheets
+ Mathematical libraries of functions
2. Anticipation of Diversity (Formal)

Diversity in formal constructionishandledin
terms of precisely defined sets that can vary
greatlly in size While mathematica
formalizations are capable of very flexible
representations of diversity, they require
explicit anticipation and preparation for the
full range of values that may be needed. A
common problem in software constructionis
to use a formd technique — eg., a fixed
length vector or array — when what is redlly
needed to accommodate future diversity isa
more generic solution that anticipates future
growth — e.g., an indefinite variable-length
vector. Sincemore generic solutionsare often
harder to implement and harder to make
efficient, it is important when using forma
construction techniques to try to anticipate
the full range of future versions.

* Functiona parameterization

+ Macro parameterization

* Generics

¢ Objects

+ Extensible mathematica frameworks
3. Structuring for Validation (Formal)

Since mathematics in genera is oriented
towards proof of hypothesis from a set of
axioms, forma construction techniques
provide a broad range of techniques to help
validate the acceptability of a software unit.
Such methods can aso be used to
“instrument” programs to look for failures
based on sets of preconditions.

© IEEE - Soneman (Version 0.7) — April 2000

130.

131.
132.

133.
134.
135.

136.
137.
138.
139.

140.
141.
142.

143.

144.

* Assertion-based programming (static and
dynamic)

* State machinelogic

¢ Redundant systems, self-diagnosis, and
failover methods

+ Hot-spot analysis and performance tuning
4, Use of External Sandards(Formal)

For formal construction techniques, external
standards generaly address ways to define
precise interfaces and communication
methods between software systems and the
machinesthey reside on.

+ POSIX gandards
+ Data communication standards
+ Hardware interface standards

* Standardized mathematical representation
languages (e.g., MathML)
+ Mathematicd libraries of functions
C. Visual Construction Methods

Visua construction methods rely much less on
the text-oriented constructions of both linguistic
and forma construction, and instead rely on
direct visua interpretation and placement of
visual entities (e.g., “widgets’) that represent the
underlying software. Visua construction tendsto
be somewhat limited by the difficulty of making
“complex” statements using only movement of
visua entities on a display. However, it can also
be a very powerful tool in cases where the
primary programming task is smply to build and
“tweak” a visua interface to a program whose
detailed behavior was defined earlier.

Object-oriented languages are an interesting
case. Although object-oriented languages use
text and words to describe the detailed properties
of objects, the style of reasoning that they
encourage is highly visual. For example,
experienced object-oriented programmerstendto
view their designs literally as objectsinteracting
in spaces of two or more dimensions, and a
plethora of object-oriented design tools and
techniques (e.g., Universal Modding Language,
or UML) actively encourage this highly visua

style of reasoning.

However, object-oriented methods can also
suffer from the lack of precision that is part of
the more intuitive visua approach. For example,
it is common for new — and sometimes not-so-
new — programmers in object-oriented languages
to define object classes that lack the formal

precision that will alow them to work reliably

4-13

145.

146.
147.

148.
149.

150.
151.

152.
153.

154.

over user-time (that is, long-term system support)
and user-space (e.g., relocation to new
environments). The visua intuitions that object-
oriented languages provide in such cases can be
somewhat mideading, because they can make the
real problem of how to define a class to be

efficient and stable over user-time and user-space
seem to be simpler than it really is. A complete
object-oriented construction model therefore
must explicitly identify the need for formal

construction methods throughout the object
design process. The dternative can be an object-
based system design that, like a complex stained
glass window, looks impressive but istoo fragile
to be used in any but the most carefully designed
circumstances.

More explicitly visual programming methods
such as those found in Visud C++ and Visud

Basic reduce the problem of how to make precise
visua datements by “instrumenting” screen
objects with complex (and formally precise)
objectsthat lie behind the screen representations.
However, this is done at a substantial loss of

generality when compared to using C++ with
explicit training in both visua and forma

construction, since the screen objects are much
more tightly constrained in properties.

1. Reduction in Complexity (Visual)

Especially when compared to the steps

needed to build a graphical interface to a

program using text-oriented linguistic or

formal construction, visual construction can

provide drastic reductions in the total effort

required. It can aso reduce complexity by

providing asmple way to select between the

elements of asmall set of choices.

¢ Object-oriented programming

+ Visua creation and customization of user
interfaces

+ Visud (eg., visua C++) programming

¢ “Style” (visua formatting) aspects of
structured programming

2. Anticipation of Diversity (Visual)

Provided that the total sets of choices are not

overly large, visua construction methods can

provide a good way to configure or select

options for software or a system. Visud

construction methods are analogous to

linguistic configuration files in this usage,

since both provide easy ways to specify and

interpret configuration information.

+ Object classes

4-14

155.
156.

157.
158.

159.

160.

161.
162.

163.
164.

165.
166.

+ Visual configuration specification
¢ Separation of GUI desgn and
functionality implementation

3. Structuring for Validation (Visual)
Visual construction can provide immediate,
active validation of requests and attempted
configurations when the visual constructs are
“instrumented” to look for invalid feature

combinations and warn users immediately of
what the prablemis.

¢ “Complete and sufficient” design of
object-oriented class methods

¢ Dynamic validation of visua requests in
visual languages
4. Use of Externa Standards (Visual)

Standards for visua interfaces greatly ease
the totd burden on users by providing
familiar, easily understood “look and feel”
interfaces for those users.

+ Object-oriented language standards

* Standardized visua interface models (e.g.,
Microsoft Windows)

¢ Standardized screen widgets
+ Visua Markup Languages

167. Recommended Refer ences

168.

169.

170.

171.

172.

173.

174.

[BENOO] Bentley, Jon, Programming Pearls
(Second Edition). Addison-Wesley, 2000.
(Chapters 2, 3,4, 11, 13 14)

[BOO94] Booch, Grady, and Bryan, Doug,
Software Engineering with Ada (Third edition).
Benjamin/Cummings, 1994. (Parts II, 1V,
V)[HOR99] Horrocks, lan, Constructing the
User Interface with Satecharts. Addison
Wedley, 1999. (Partsll, 1V)

[KER99] Kernighan, Brian W., and Pike, Rob,
The Practice of Programming. Addison-Wesley,
1999. (Chapters 1, 2,3,5,6,9)

[MAGI3] Maguire, Steve, Writing Solid Code.
Microsoft Press, 1993.

[McCO093] McConnell, Steve, Code Complete.
Microsoft Press, 1993.

[MEY97] Meyer, Bertrand, Object-Oriented
Software Construction (Second Edition).
Prentice-Hall, 1997. (Chapters 6, 10, 11)
[SET96] Sethi, Ravi, Programming Languages—
Concepts & Constructs (Second Edition).
AddisonWesley, 1996. (Patsll, I11, 1V, V)

© IEEE - Soneman (Version 0.7) — April 2000

175.

176.

177.

178.

179.

180.

181.

182.

[WAR99] Warren, Nigdl, and Bishop, Philip,
Java in Practice— Design Stylesand I diomsfor
EffectiveJava. Addison-Wesley, 1999. (Chapters
1,2,34,5,10)

Further Readings

[BAR98] Barker, Thomas T., Writing Software
Documentation — A TaskOriented Approach.
Allyn & Bacon, 1998.

[FOW99] Fowler, Martin,
Improving the Design of
AddisonWesley, 1999.

[GLA95] Glass, Robert L., Software Creativity.
Prentice-Hall, 1995.

[HEN97] Henricson, Mats, and Nyquist, Erik,
Industrial Strength C++. Prentice-Hall, 1997.
[HOR99] Horrocks, lan, Constructing the User
Interface with Statecharts. AddisonWedey,
1999.

[HUM97] Humphrey, Watts S., Introduction to

the Persona Software Process. Addison-Wesley,
1997.

Refactoring —
Existing Code.

© IEEE - Soneman (Version 0.7) — April 2000

183.

184.

185.

186.

187.

188.

189.

190.

[HUNOO] Hunt, Andrew, and Thomas, David,
The Pragmatic Programmer. Addison-Wesley,
2000.

[MAZ96] Mazza, C., e 4d., Software
Engineering Guides. Prentice-Hall, 1996. (Part
V)

Standards Relevant to Software
Constructions

|EEE Std 829-1983 (Reaff 1991), | EEE Standard
for Software Test Documentation (ANSI)

IEEE Std 10081987 (Reaff 1993), |IEEE
Standard for Software Unit Testing (ANS!)

IEEE Std 10281988 (Reaff 1993), |EEE
Standard for Software Reviews and Audits
(ANS)

IEEE Std 1063-1987 (Reaff 1993), |EEE
Standard for Software User Documentation

(ANSI)
IEEE Std 12191992, |IEEE Standard for
Software Maintenance (ANS!)

4-15

191. Matrix of Reference Material versus Topics

192.

193.

194.

195.
196.
197.
198.
199.
200.
201.

202.

203.

204.

205.

206.

207.

208.

2009.
210.

211
212.

213.

Topics Proposed reference material
Softwar e Construction and Software Design [GLA9S] Pat I, IV
[MAZ96] Part IV
McCQO93] Chap. 1, 2, 3
TheRoleof Toolsin Construction HUNOQ] Chep. 3
[MAG93] Chap. 4
[MAZ96] Part IV
McCO93] Chap. 20
The Role of Integrated Self-Evaluation in Construction HUM97]
[MAG93] Chap. 8
[McCO093] Chap. 31, 32, 33
TheRoleof Standardsin Construction |EEE]
The Spectrum of Construction Techniques HUNOO] Chap. 3
Computer Languages SET96]
Construction L anguages HUNOQ] Chep. 3
SET96]
A. Linguistic Construction Methods SET96] Part 11
1. Reduction in Complexity (Linguistic) [BENOQ] Chap. 2, 3
[KER99] Chap. 2, 3
McCO93] Chap. 4to 19
2. Anticipation of Diversity (Linguistic) BOOHA] Part VI
McCO93] Chap. 30
3. Structuring for Vaidation (Linguistic) BENOQ] Chap. 4
[KER99] Chap. 1,5, 6
[MAGQ3] Chep. 2,5, 7
McCO93] Chap. 23, 24, 25, 26
4. Use of External Standards (Linguistic) http://mww.xml.org/
http://Mmww.omg.org/corbalbeginners.html
B. Formal Construction Methods [SET96] Pat 1V and V
1. Reduction in Complexity (Formal) [BOOYA] Pat Il and V
[MAG93] Chap. 6
MEY97] Chap. 6, 10
2. Anticipation of Divergty (Formal) BENOO] Chap. 11, 13, 14
KER99] Chap. 2, 9
3. Structuring for Vaidation (Formal) MAG93] Chap. 3
[MEY97] Chap. 6, 11
4. Use of Externd Standards (Formal) Object Constraint Language:
http://www.omg.org/uml/
C. Visual Construction Methods [SET96] Part 111
1. Reduction in Complexity (Visual) [HOR99] Part 1
[WAR99] Chap. 1, 2,3,4,5,10
2. Anticipation of Diversity (Visual) WAR99] Chap. 1, 2, 3, 4, 5, 10
3. Structuring for Validation (Visua) HORQ99] Part IV
[MEY97] Chap. 11
4. Use of External Standards (Visua) http://Amww.omg.org/uml/
4-16 © IEEE - Soneman (Version 0.7) — April 2000

CHAPTER 5
SOFTWARE TESTING

A.Bertolino

Istituto di Elaborazione ddlla Informazione
Consiglio Nazionale delle Ricerche
Pisa Research Area
ViaAlfieri, 1, 56010 S. Giuliano Terme - PISA (Itay)
bertolino@iei.pi.cnr.it

TABLE OF CONTENTS
1. INTRODUCTION

2. DEFINITION OF THE SOFTWARE TESTING
KNOWLEDGE AREA
2.1 Conceptua Structure of the Breakdown
2.2 Overview
3. BREAKDOWN OF TOPICSFOR SOFTWARE
TESTING
A. Testing Basic Concepts and Definitions
B. Test Levels
C. Test Techniques
D. Test related measures
E. Managing the Test Process
4. BREAKDOWN RATIONALE

5. MATRIX OF TOPICSVS. REFERENCE
MATERIAL

6. CORE REFERENCESFOR SOFTWARE TESTING
7. L1ST OF FURTHER READINGS

1. INTRODUCTION

Testing is an important, mandatory part of
software development, for improving and
evaluating product quality.

In the Software Quality (SQ) Knowledge Areaof
the Guide to the SWEBOK, activities and
techniques for quality analysis are categorized
into: static techniques (no code execution), and
dynamic technigues (code execution). Both
categories are useful. Although this chapter
focuses on testing, that is dynamic (see Sect. 2),
static techniques are asimportant for the purpose
of building quality in a software product. Static
techniques are covered into the SQ Knowledge
Area description.

In the years, the view of Software Testing has
evolved towards a more constructive attitude.
Testing isno longer seen as an activity that starts
only after the coding phase is complete, with the

© |EEE— Soneman (Version 0.7) — April 2000

limited purpose of detecting failures. Software
testing is nowadays seen as an activity that
encompasses the whole development process,
and is an important part itself of the actual
product construction. Indeed, planning for testing
should start since the early stages of requirement
analysis, and test plans and procedures must be
systematically and continuoudly refined as the
development proceeds. These activities of
planning and designing tests congtitute
themsdves a useful input to designers for
highlighting potentia weaknesses.

As more extensively discussed in the SQ
Knowledge Area, the right attitude towards
quality is one of prevention: it is obviousy much
better to avoid problems, rather than repairing
them. Testing must be seen as ameans primarily
for demonstrating that the prevention has been
effective, but also for identifying anomalies in
those cases in which, for some reason, it has
been not. Finaly, it is worth recognizing that
even after agood testing, the software could still
contain faults. The remedy to system failuresthat
are experienced after delivery is provided by
(corrective) maintenance actions. Maintenance
topics are covered into theSoftware Maintenance
chapter of the Guide to the SWEBOK.

2. DEFINITION OF THE SOFTWARE
TESTING K NOWLEDGE AREA

Software testing consists of the dynamic
verification of the behavior of a program on a
finite set of test cases, suitably selected from the
usualy infinite executions domain, against the
specified expected behavior.

In the doove definition, and in the following as
well, underlined words correspond to key issues
in identifying the Knowledge Area of Software
Testing. In particular:

5-1

10.

11.

12.

13.

14.

¢ dynamic this term means testing always
implies executing the program on valued
inputs. Static analysis techniques, such as
peer review and inspection (that sometimes
are improperly referred to as "satic
testing"), are not considered as part of this
Knowledge Area (nor is program execution
on symbolic inputs, or symbolic
evaluation);

+ finite: clearly the tests are not selected
literally from an infinite set of possible
tests, but a very large finite one (the set of
al bit strings shorter than some length).
Nonetheless, for even simple programs, so
many test cases are theoretically possible
that exhaustive testing could require even
yearsto execute. Thisiswhy in practice the
number of tests can generally be considered
infinite. However, t he number of executions
which can redligtically be observed in
testing must obvioudly be finite, and -more
then this- it must be manageable. Indeed,
testing always implies a trade-off between
limited resources and schedules, and
inherently unlimited test requirements: this
conflict points to well known problems of
testing, both technical in nature (criteriafor
deciding test adequacy) and managerial in
nature (estimating the effort to put in
testing);

+ selected the many proposedtest techniques
essentially differ in how they select the
(finite) test set, and testers must be aware
that different selection criteria may yield
largely different effectiveness. The problem
of identifying the most suitable selection
criterion under given conditions is till
under research;

+ expected it must be possible to decide
whether the observed outcomes of program
execution are aceptable or not, otherwise
the testing effort would be useless. The
observed behavior may be checked against
user's expectations (commonly referred to
as testing for validation) or against a
functional specification (testing for
verification). The test pass/fail decision is
referred to astheoracl e problem which can
be addressed with different approaches.

21 Conceptual Structure of the
Breakdown

Softwaretesting isusually performed atdifferent
levels along the development process. That isto

15.

16.

17.

18.

sy, the object of the test can vary: a whole
program, part of it (functionaly or structurally
related), asingle module.

The testing is conducted in view of a specific
purpose (test objective), which is stated more or
less explicitly, and with varying degrees of
precision. Stating the objective in precise,
quantitative terms allows for establishing control
over the test process.

One of testing aims is to expose failures (as
many as possible), and many popular test
technigues have been developed for this
objective. These techniques varioudly attempt to
"bresk" the program, by running identified
classes of (deemed equivalent) executions: the
leading principle underlying such techniques is
being as much systematic as possible in
identifying a representative set of program
behaviors (generally in the form of subclasses of
the input domain). However, a comprehensive
view of the Knowledge Area of Software Testing
as a means for quality must include other as
important objectives for testing, e.g., reliability
measurement, usability evaluation, contractor’s
acceptance, for which different approaches
would be taken. Note that the test objective
varies with the test object, i.e, in generd
different purposesare addressed at the different
levels of testing.

The test objective determines how the test set is
identified, both with regard to its consistency -

how much testing is enough for achieving the
stated objective?- and its composition-whichtest
cases should be sel ected for achieving the stated
objective?- (dthough usualy the 'for achieving
the stated objective' part isleft implicit and only
thefirst part of the two italicized questions above
is posed). Criteria for addressing the first
question arereferred to astest adequacy criteria,
while for the second astest selection criteria.

Sometimes, it can happen that confusion is made
between test objectives and techniques. For
instance, branch coverage is a popular test
technique. Achieving a <specified branch
coverage measure should not be considered per
se as the objective of testing: it is a means to
improve the chances of finding failures (by
systematically exercising every program branch
out of a decison point). To avoid such
misunderstandings, a clear distinction should be
made between test measures which evaluate the
thoroughness of the test set, like measures of
coverage, and those which instead provide an
evaluation of the program under test, based on
the observed test outputs, like reliability.

© |EEE — Stoneman (Version 0.7) — April 2000

19.

20.

21.
22.

23.

24,

25.

32.
33.
34.
35.
36.

Testing concepts, strategies, techniques and
metrics need to be integrated into a defined and
controlled process, which is run by people. The
test process supports testing activities and
provide guidance to testing teams, from test
planning to test outputs evauation, in such away
as to provide justified assurance that the test
objectives are met cost-effectively.

Software testing is a very expensive and labor-
intensive part of development. For this reason,
tools are instrumental to support test activities.
Moreover, in order to enhance cost-effectiveness
ratio, a key issue has aways been pushing test
automation as much as possible.

2.2 Overview

Following the above-presented conceptua
scheme, this description is organized asfollows.

Part A deals with Testing Basic Concepts and
Definitions. It covers the basic definitions within
the Software Tedting field, as well as an
introduction to the terminology. In the same part,
the scope of the Knowledge Area is laid down,
also in relation with other activities.

Part B deals with Test Levels. It consists of two
(orthogonal) subsections. B.1 lists the levels in
which the testing of large software systems is
traditionaly subdivided. In B.2 testing for
specific conditions or properties is instead
considered, and is referred to as "Objectives of
testing". Clearly not all types of testing apply to
every system, nor has every possible type been
listed, but those most generally applied.

As said, severad Test Techniques have been
developed in the last two decades according to
various criteria, and new ones are till proposed.
"Generally accepted" techniques are covered in
Part C.

26.
27.

28.

29.

30.

31

Test-related Measures are dealt in Part D.

Finaly, issues relative to Managing the Test
Process are covered in Part E.

Existing tools and concepts related to supporting
and automating the activitiesinto the test process
are not addressed here. They are covered within
the Knowledge Area description of Software
Engineering Methods and Tools in this Guide.

3. BREAKDOWN OF TOPICS FOR
SOFTWARE TESTING

This section gives the list of topics identified for
the Software Testing Knowledge Area, with
succinct descriptions and references. Two levels
of references are provided with topics: the core
reference material within brackets, and additional
references within parentheses. The core
references have been reasonably limited,
according to the guideline that they should
consist of the study material for a software
engineering licensing exam that a graduate
would pass after completing four years of work
experience. In particular, the core reference
material for Software Testing has been identified
into selected book chapters (for instance, Chapter
1 of reference Be is denoted as Be:cl), or, in
some cases, sections (for instance, Section 1.4 of
Chapter 1 of Be is denoted as Be:clsl.4). The
Further Readings list includes severa refereed
journa or conference papers and relevant
Standards, for a deeper study of the pointed
arguments.

The breakdown is also visually described by the
following tables (note that two decompositions
are proposed for the level 1 topic of Testing
Techniques)

Table 1: Level 1 Topics for Software Testing

A. Testing Basic Concepts and Definitions

B. Test Levels

Software

Testing

C. Test Techniques

D. Test related measures

E. Managing the Test Process

© |IEEE — Stoneman (Version 0.7) — April 2000

5-3

37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

Table 1-A: Decomposition for Testing Basic Concepts and Definitions

A. Testing
Basic
Conceptsand
Definitions

A.1 Testing-related terminology

Definitions of testing and related terminology

Faultsvs. Failures

A.2 Theoretical foundations

Ted selection criterial Test adequacy criteria (or stopping rules)

Tegting effectiveness/Objectives for testing

Testing for defect removal

The oracle problem

Theoreticd and practica limitations of testing

The problem of infeesible paths

Testability

Relationships of tegting to other activities

Table 1-B:

Decomposition for Test Levels

B. Test Levels

Unit testing

B.1 The object of the test

Integration testing

System testing

Acceptance/qudification testing

Ingtallation testing

Alphaand Betatesting

Conformance testing/ Functiond testing/ Correctness testing

Reliahility achievement and evaluation by testing

B.2 Objectives of testing

Regression testing

Performance testing

Stress testing

Back-to-back testing

Recovery testing

Configuration testing

Usahility testing

Table 1-C": Decomposition for Test Techniques (criterion “base on which tests are generated”)

C. Test
Techniques

C1.1 Based on tester's intuition

Adhoc

C1.2 Specification-based

Equivaence partitioning

Boundary-vaue andyss

Decision table
Finite-state machine-based

Tegting from formal specifications

Random testing

C1.3 Code-based

Reference models for code-based testing (flow graph, call graph)
Contral flow-based criteria
Data flow-based criteria

© |EEE — Stoneman (Version 0.7) — April 2000

64.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.

90.
91
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.

Table 1-C: Decomposition for Test Techniques (criterion “base on which tests are generated”)

C1.4 Fault-based

Error guessing

Mutation testing

C1.5 Usage-based

Operationa profile

SRET

C1.6 Based on nature of
application

Object-oriented testing

Component-based testing

GUI testing

Testing of concurrent programs

Protocol conformance testing

Tegting of distributed systems

Testing of reattime systems

Tegting of scientific software

C3 Selecting and combining
techniques

Functiond and structural

Coverage and operational/Saturation effect

Table 1-C”: Additional decomposition for Test Techniques
(criterion “ignorance or knowledge of implementation”)

C2.1 Black-box techniques

C. Test
Techniques

Equivaence partitioning

Boundary-vdue andysis

Decision table

Fnite-state machine-based

Testing from forma specifications

Error guessing

Random testing

Operationd prafile

SRET

C2.2 White-box techniques

Reference models for code-based testing (flow graph, call graph)

Control flow-based criteria

Data flow-based criteria

Mutation testing

© |EEE— Soneman (Version 0.7) — April 2000

55

103.
104.
105.
106.
107.
108.
109.
110.
111
112.

113.
114.

115.
116.
117.
118.
119.
120.
121.

122.

123.
124,
125,
126.

127

128.

129.

130.

Table 1-D: Decompodtion for Test Related Measures

D. Test
Related
M easur es

D.1 Evaluation of the program
under test

Program measurementsto aid in planning and designing testing

Types, classification and gtatistics of faults

Remaining number of defects/Fault density

Life test, reliability evaluation

Rdiahility growth models

D.2 Evaluation of the tests
performed

Coverage/thoroughness mesasures

Fault seeding

Mutation score

Comparison and relative effectiveness of different techniques

Table 1-E: Decomposition for Managing the Test Process

E. Managing
the Test
Process

E.1 Management concerns

Attitudes/Egol ess programming

Test process

Test documentation

Internd vs. independent test team

Cogt/effort estimation and other process metrics

Test reuse

E.2 Test activities

Planning

Test case generation

Test environment development

Execution

Test results evauation

Trouble reporting/Test log

Defect tracking

A. Teding Basc Concepts and
Definitions

A.1 Testing-related terminology

+ Definitionsof testing and related terminology
[Be:cl; Jo:cl,2,3,4; Ly:c2s2.2] (610)

A comprehensive introduction to the Knowledge
Area of Software Testing is provided by the core
references. Moreover, the |EEE Standard
Glossary of Software Engineering Terminology
(610) defines terms for the whole field of
software engineering, including testing-related
terms.

131.

132.

¢ Faults vs. Failures [Ly:c2s2.2; Jo:cl; Pecl;
Pf:.c71 (FH+, Mo, ZH+:s35; 610;
982.2:fig3.1.1-1; 982.2:fig6.1-1)

Many terms are used in the software literature to
speak of mafunctioning, notably fault, failure,
error, and several others. Often these terms are
used interchangeably. However, in some cases
they are given a more precise meaning
(unfortunately, not in consistent ways between
different sources), in order to identify the
subsequent steps of the cause-effect chain that
originates somewhere, eg., in the head of a
designer, and eventualy leads to the system's
user observing an undesired effect. This
terminology is precisely defined in the IEEE Std
610.12-1990, Standard Glossary of Software
Engineering Terminology (610) and is also

© |EEE — Stoneman (Version 0.7) — April 2000

133.

134.

135.

136.

137.

138.

139.

140.

141.

discussed in more depth in the SQ Knowledge
Area. What is essentid in order to discuss
Software Testing, as a minimum, is to clearly
distinguish between the cause for a
malfunctionirg, for which the term fault is used
here, and an undesired effect observed in the
system delivered service, that will be caled a
failure. Testing can reved failures, but then to
remove them it isthe faults that must be fixed.

However, it should be recognized that not always
the cause of a failure can be univocaly
identified, i.e., no theoretical criteria exists to
uniquely say what the fault was that caused a
failure. One may choose to say the fault was
"what was changed", but other things could have
been changed just as well. This is why some
authors instead of faults prefer to speak in terms
of failure-causing inputs(FH+), i.e., those setsof
inputs that when executed cause afailure.

A.2 Theoretical foundations

+ Test selection criteria/Test adequacy criteria
(or stopping rules) [Pf:c7s7.3; ZH+:s1.1]
(We-b; WW+; ZH+)

A test criterion is a means of deciding which a
suitable set of test cases should be. A criterion
can be used for selecting the test cases, or for
checking if a selected test suite i sadeguate, i.e.,
to decide if the testing can be stopped. In
mathematical terminology it would be adecision
predicate defined on triples (P, S, T), where Pis
aprogram, Sis the specification (intended here
to mean in genera sense any relevant source of
information for testing) and T isatest set.

+ Testing effectiveness/Objectives for testing
[Be:clsl.4; Peic21] (FH+)

Testing amounts a observing a sample of
program executions. The selection of the sample
can be guided by different objectives: it is only
in light of the objective pursued that the
effectiveness of the test set can be evauated.
Thisimportant issue is discussed at some length
in the references provided.

¢ Tegting for defect identification [Beicl;
KF+:cl]

In testing for defect identificaion a successful

test is one that causes the system to fail. Thisis
quite different from testing to demonstrate that
the software mests its specification, or other

desired properties, whereby testing is successful
if no (important) failures are observed.

+ Theoracle problem [Becl] (We-g BS)

© |EEE— Soneman (Version 0.7) — April 2000

142.

143.

144.

145.
146.

147.
148.

149.

150.

151.

An oracle is any (human or mechanical) agent
that decides whether a program behaved
correctly on a given test, and produces
accordingly a verdict of "pass' or "fal". There
exist many different kinds of oracles, oracle
automation still poses several open problems.

¢ Theoreticad and practica limitations of
testing [KF+:¢c2] (Ho)

Testing theory warns against putting a not
justified level of confidence on series of passed
tests. Unfortunately, most established results of
testing theory are negative ones, i.e., they state
what testing can never achieve (as opposed to
what it actualy achieved). The most famous
quotation in this regard is Dijkstra aphorism that
"program testing can be used to show the
presence of bugs, but never to show their
absence”. The obvious reason is that complete
testingisnot feasiblein real systems. Because of
this, testing must be driven based on risk, i.e,
testing can also be seen as a risk management
strategy.

¢ Theproblem of infeasible paths [Be:c3]

Infeasible paths, i.e, control flow paths which
cannot be exercised by any input data, are a
significant problem in path-oriented testing, and
particularly in the automated derivation of test
inputs for code-based testing techniques.

+ Tedability [Be:c3,c13] (BM; BS, VM)
Theterm of softwaretestability has been recently
introduced in the literature with two related, but
different meanings. on the one hand as the
degreetowhichitiseasy for asystemtofulfill a
given test coverage criterion, asin (BM); on the
other hand, as the likelihood (possibly measured
statistically) that the system exposes a failure
under testing, if it isfaulty, asin (VM, BS). Both
meanings are important.

A.3 Relationships of testing to other
activities

Here the relation between the Software Testing
and other related activities of software
engineering is considered. Software Testing is
related to, but different from, static analysis
techniques, proofs of correctness, debugging and
programming. On the other sicg, it isinformative
to consider testing from the point of view of
software quality anaysts, users of CMM and
Cleanroom processes, and of certifiers. A non
exhaustivelist of interesting

¢ Teding vs. Static Anaysis Techniques
[Be:cl; Pe:c17p359-360] (1008:p19)

57

152.

153.

154.
155.

156.
157.
158.

159.
160.

161.

162.
163.

164.
165.

166.
167.

168.

¢ Testing vs. Correctness Proofs [Be:cls5;
Pf:c7]

¢ Teding vs
(1008:p19)

¢ Testing vs. Programming [Be:c1s2.3]

+ Testing within SQA (see the SQ Knowledge
Areain this Guide to the SWEBOK)

+ Testing within CMM (Po:p117-123)
+ Testing within Cleanroom [Pf:c8s8.9]
+ Testing and Certification (WK+)

B. Test Levels

Debugging [Becls?.1]

B.1 The object of the test

Testing of large software systems usualy
involves more steps [Be:cl; Jo:c12; Pf.c7]

+ Unittesting [Be:cl; Pe:c17; Pf:c7s7.3] (1008)

Unit testing verifies the functioning in isolation
of software pieces that are separately testable.
Depending on the context, these could be the
individual subprograms or a larger component
made of tightly related units. A test unit is
defined more precisely in the IEEE Standard for
Software Unit Testing [1008], that also describes
an integrated approach to systematic and
documented unit testing. Clearly, unit testing
starts after aclean compile.

¢ Integration testing [Jo:c12,13; Pf:c7s7.4]

Integration testing is the process of verifying the
interaction between system components
(possibly already tested inisolation). Systematic,
incremental integration testing strategies, such as
top-down or bottom-up, are to be preferred to
putting all units together a once, that is
pictorialy said "big-bang" testing.

+ System testing [Jo:c14; Pf:c8]

System testing is concerned with the behavior of
awhole system, and at this level the main goal is
not to find functional failures (most of them
should have been aready found at finer levels of
testing), but rather to demonstrate performancein
general. External interfacesto other applications,
utilities, hardware devices, or the operating
environment are also evaluated at this level.

There are many system properties one may want
to verify by testing, including conformance,
reliability, usability among others. These are
discussed below under part "Objectives of
testing".

169.

170.

171.

172.

173.

174.
175.

176.
177.

178.

179.

180.

B.2 Objectives of Testing [Pec8;
Pf:c8s8.3]

Testing of a software system (or subsystem) can
be aimed at verifying different properties. Test
cases can be designed to check that the
functional specifications are correctly
implemented, which is varioudly referred to in
the literature as conformance testing,
"correctness’ testing, functiona testing.
However severd other non-functional properties
need to be tested as well. References cited above
give essentiadly a collection of the potential
different purposes. The topics separately listed
below (with the same or additiona references)
are those most often cited in the literature.

Note that some kinds of testing are more
appropriate for custom made packages, eg.
installation testing, while others for generic
products, e.g. betatesting.

+ Acceptance/qudification testing [Pe:clO;
Pf:c8s8.5] (12207:55.3.9)

Acceptance testing checks the system behavior
against the customer's requirements (the
"contract"), and is usually conducted by or with
the customer.

+ Installation testing [Pe:c9; Pf:c8s8.6]

After completion of system and acceptance
testing, the system isverified upon installationin
the target environment, i.e.,, system testing is
conducted according to the hardware
configuration requirements. Installation
procedures are also verified.

¢ Alphaand Betatesting [KF+:c13]

Before releasing the system sometimes it is
given in use to a smal representative set of
potential users, inhouse (apha testing) or
external (beta testing), who report to the
developer potential experienced problems with
use of the product. Alpha and beta use is
uncontrolled, i.e.,, the testing does not refer to a
test plan.

B3. Conformance testing/Functional
testing/Correctness testing [KF+:c7;
Pec8] (WK+)

Conformance testing is aimed at verifying

whether the observed behavior of the tested
system conformsto its specification.

+ Rdianility achievement and evduation by
testing [Pf:c8s.8.4; Ly:c7] (Ha, Musa and
Ackermann in Po:pl46-154)

© |EEE — Stoneman (Version 0.7) — April 2000

181.

182.

183.

184.

185.

186.
187.

188.

189.

190.

191.

192.
193.

194.
195.

196.

197.

By testing failures can be detected. If the faults
that are the cause of the identified failures are
efficaciously removed, the software will be more
reliable. In this sense, testing is a means to
improve rdigbility. On the other hand, by
randomly generating test cases accordingly to the
operational profile, statistical measures of
rdiability can be derived. Using reliability
growth models both objectives can be pursued
together (seeaso part D.1).

+ Regression testing [KF+:c7; Pecll,cl2;

Pf:c8s8.1] (RH)

According to (610), regression testing is the
"selective retesting of a system or component to
verify that modifications have not caused
unintended effects [...]". Regression testing can
be conducted at each of the test levelsin B.1.
[Be] definesit as any repetition of testsintended
to show that the softwares behavior is
unchanged except insofar as required.

+ Peaformance testing [Pecl?; Pf:c8s8.3]

(WK+)

This is specifically amed at verifying that the
system meets the specified performance
requirements, e.g., capacity and responsetime. A
specific kind of performance testing is volume
testing (Pe:pl85, p487; Pf:p349), in which
internal program or system limitations are
proved.

¢ Stresstesting [Pe:c17; Pf:c8s8.3]

Stresstesting exercises asystem at the maximum
design load aswell as beyond it.

+ Back-to-back testing

A sametest set is presented to two implemented
versions of a system, and the results are
compared with each other.

+ Recovery testing [Pe:c17; Pf:c8s8.3]

Itisaimed at verifying system restart capabilities
after a"disaster”.

¢ Configuration testing [KF+:c8; Pf:c8s8.3]

In those cases in which asystem is built to serve
different users, configuration testing analyzesthe
system under the various specified
configurations.

+ Usability testing [Pe:c8; Pf:c8s8.3]

It evaluates the ease of using and learning the
system by the end users.

C. Test Techniques

In this section, two alternative classifications of
test techniques are proposed. It isarduousto find

© |EEE— Soneman (Version 0.7) — April 2000

198.

199.

200.

201.

202.

203.

204.

205.
206.

207.

a homogeneous criterion for classifying all
techniques, as there exit many and very
disparate.

The first classification, from C1.1 to C1.6, is
based on how tests ae generated, i.e,
respectively from: tester'sintuition and expertise,
the specifications, the code structure, the (real or
artificial) faults to be discovered, the field usage
or finaly the nature of application, which in
some case can require knowledge of specific test
problems and of specific test techniques.

The second classification is the classica
distinction of test techniques betweenblack-box
and white-box (pictoria terms derived from the
world of integrated circuit testing). Test
techniques are here classified according to
whether the tests rely on information about how
the software has been designed and coded
(white-box, somewhere also said glass-box), or
instead only rely on the input/output behavior,
without no assumption about what happens in
between the “pins’ of the system (black box).
Clearly this second classification is more coarse
than the first one, and it does not allow us to
categorize the techniques specialized on the
nature of application (section C1.6) nor ad hoc
approaches, because these can be either black-
box or white-box.

A fina section, C3, deals with combined use of
more techniques.

C1: CLASSIFICATION “base on which tests
are generated”

Cl1 Based on
[KF+:cl]

Perhaps the most widely practiced technique
remains ad hoc testing: test cases are derived
relying on the tester skill and intuition
(“exploratory” testing), and on his/her experience
with similar programs. While a more systematic
approach is advised, this remains very useful to
identify special tsts, not easily "captured” by
formalized techniques.

C1.2 Soecification-based

¢ Equivaence partitioning [Jo:c6; KF+:c7]
The input domain is subdivided into a collection
of subsets, or "equivalent classes’, which are
deemed equivalent according to a specified
relation, and a representative set of tests

(sometimes even one) is taken from within each
class.

¢ Boundary-value analysis[Jo:c5; KF+:c7]

tester's intuition

59

208.

209.
210.

211.

212.

213.

214.

215.
216.

217.

218.

219.

Test cases are chosen on and near the boundaries
of the input domain of variables, with the
underlying rationale that many defects tend to
concentrate near the extreme values of inputs. A
smple, and often worth, extension of this
technique is Robustness Testing, whereby test
cases are also chosen outside the domain, in fact
to test program robustness to unexpected,
€rroneous inputs.

+ Decisiontable[Be:c10s3] (Jo:c7)

Decision tables represent logical relationships
between conditions (roughly, inputs) and actions
(roughly, outputs). Test cases are systematicaly
derived by considering every possible
combiretion of conditions and actions. A related
techniques isCause-effect graphing [Pf:c8].

¢ Finite-state machine-based [Bexcly;
Jo:c4s4.3.2]

By modeling a program as afinite state machine,
tests can be selected in order to cover states and
trangitions on it, applying different techniques.
This technique is suitable for transaction
processing, reactive, embedded and real-time
systems.

¢ Tedting from forma
[ZH+:82.2] (BG+; DF; HP)
Giving the specifications in a forma language
(i.e, one with precisdly defined syntax and
semantics) alows for automatic derivation of
functional test cases from the specifications, and
at the same time provides a reference output, an
oracle, for checking test results. Methods for
deriving test cases from model-based (DF, HP)
or agebraic specifications (BGt+) are
distinguished.
+ Random testing [Be:c13; KF+:c7]

Tests are generated purely random (not to be
confused with dtatistical testing from the
operationa profile, wherethe random generation
is biased towards reproducing field usage, see
C15). Actualy, therefore, it is difficult to
categorize this technique under the scheme of
"base on which tests are generated”. It is put
under the Specification-based entry, as at least
which is the input domain must be known, to be
ableto pick random pointswithinit.

C1.3 Code-based

+ Reference models for code-based testing
(flowgraph, call graph) [Be:c3; Jo:c4].

In code-based testing techniques, the control

structure of aprogramis graphically represented

specifications

5-10

220.

221

222.

223.

224,

225,

226.
227.

228.
229.

using a flowgraph, i.e, a directed graph whose
nodes and arcs correspond to program elements.
For instance, nodes may represent statements or
uninterrupted sequences of statements, and arcs
the transfer of control between nodes.

¢ Control flow-based criteria [Be:c3; Jo:c9|
(ZH+:s2.1.1)

Control flowbased coverage criteria am at
covering all the statements or the blocks in a
program, or proper combinations of them.
Severa coverage criteria have been proposed
(like Decision/Condition Coverage), in the
attempt to get good approximations for the
exhaustive coverage of al control flow paths,
that isunfeasiblefor all but trivia programs.

+ Data flow-based criteria [Beic5] (Jo:clO;
ZH+:52.1.2)

In data flow-based testing, the control flowgraph
is annotated with information about how the
program varigbles are defined and used.
Different criteria exercise with varying degrees
of precision how avaue assigned to avariableis
used aong different control flow paths. A
reference notion isadefinitionruse pair, whichis
atriple (d,u,V) such that: V isavariable, disa
node in which V is defined, and u is a node in
which V isused; and such that there exists a path
between d and u in which the definition of V ind
isusedinu.

C1.4 Fault-based (M0)

With different degrees of formalization, fault
based testing techniques devise test cases
specifically aimed at revealing categories of
likely or pre-defined faults.
¢ Error guessing [KF+:c7]

In error guessing, test cases are ad hoc designed
by testerstrying to figure out those, which could
be the most plausible faults in the given program.
A good source of information is the history of
faults discovered in earlier projects, as well as
tester's expertise.

+ Mutation testing [Pe:c17; ZH+:53.2-s3.3]

Origindly conceived asatechniqueto evaluate a
test sat (see D.2.2), mutation testing is also a
testing criterion in itself: either tests are
randomly generated until enough mutants are
killed or tests are specifically designed to kill
(survived) mutants. In the latter case, mutation
testing can also be categorized as a code-based
technique. The underlying assumption of
mutation testing, the coupling effect, is that by

© |EEE — Stoneman (Version 0.7) — April 2000

230.

231.

232.

233.
234.

235.

236.

237.

238.
239.
240.
241.

242,
243.
244,
245.

246.

247.
248.
249.
250.

looking for simple syntactic faults, also more
complex, (i.e., real) faultswill be found.

C1.5 Usage-based

¢ Operationa profile [Jo:c14s14.7.2; Ly:c5;
Pf:c8]
In testing for reliability evauation, the test
environment must reproduce as closely as
possible the product use in operation. In fact,
from the observed test results one wants to infer
the future meliability in operation. To do this,
inputs are assigned a probability distribution, or
profile, according to their occurrence in actual
operation.
¢ (Musas) SRET [Ly:c8]
Software Reliability Engineered Testing (SRET)
is a testing methodology encompassing the
whole development process, whereby testing is
"designed and guided by rdiability objectives
and expected relative usage and criticality of
different functionsin thefield".

C1.6 Based on nature of application

The above techniques apply to al types of

software, and their classification is based on how

test cases are derived. However, for some kinds

of applications some additional know-how is

required for test derivation. Here below alist of

few "specialized" testing techniques is provided,

based on the nature of the application under test.

¢ Object-oriented testing [Jo:c15; Pf:c7s7.5]
(Bi)

¢ Component-based testing

+ GUI testing (OA+)

1. Testing of concurrent programs (CT)

2. Protocol conformance testing (Sidhu and

Leung in Po:p102-115; BP)

¢ Testing of distributed systems

¢ Testing of real-time systems (Sc)

¢ Testing of scientific software

C2. CLASSIFICATION “ignorance or
knowledge of implementation”

C2.1 Black-box techniques

+ Equivaence partitioning [Jo:c6; KF+:c7]
¢ Boundary-vaue analysis[Jo:c5; KF+:c7]
+ Decisiontable[Be:c10s3] (Jo:c7)

+ Finite-state machine-based
Jo:c4s4.3.2)]

[Bexcly;

© |EEE— Soneman (Version 0.7) — April 2000

251.

252.
253.
254.

255.

256.

257.

258.

259,

260.

261.

262.

263.

264.

265.

266.

267.

¢ Testing from forma
[ZH+:82.2] (BG+; DF; HP)

¢ Error guessing [KF+:¢7]

+ Random testing [Be:c13; KF+:c7]

¢ Operationa profile [Jo:c14s14.7.2; Ly:c5;
Pf:c8]

¢+ (Musas) SRET [Ly:c6]

specifications

C2.2 White-box techniques

+ Reference models for code-based testing
(flowgraph, cdl graph) [Be:c3; Jo:c4].

¢ Control flow-based criteria [Be:c3; Jo:c9]
(ZH+:s2.1.1)

+ Data flow-based criteria [Be:ic5] (Jo:clO0;
ZH+:52.1.2)

¢ Mutation testing [Pe:c17; ZH+:53.2-s3.3]

C3 Salecting and combining techniques

¢ Functional and structural [Be:cl1s.2.2; Jo:cl,
c11s11.3; Pe:cl7] (Po:p3-4; Po: Appendix 2)
Functional and structural approaches to test
selection are not to be seen as dternative, but
rather as complementary: in fact, they use
different sources of information and highlight
different kinds of problems. They should be used
in combination, compatibly with budget
availability.
+ Coverage and operational/Saturation effect
(Ha; Ly:p541-547; Ze)
This topic discusses the differences and
complementarity of deterministic and statistical
approaches to test case selection.

D. Test related measures

Measurement is instrumental to quality analysis.
Indeed, product evaluation is effective only when
based on quantitative measures. This section
specifically focuses on measures that are
obtained from data collected by testing. A wider
coverage of the topic of quality measurement,
including fundamentals, metrics and techniques
for measurement, is provided in the SQ
Knowledge Area of the Guide to the SWEBOK.
A comprehensive reference is provided by the
IEEE Std. 982.2 "Guide for the Use of IEEE
Standard Dictionary of Measures to Produce
Reliable Software’. It has been originally
conceived as a guide to using the companion
standard 982.1, that is the Dictionary. However,
the guideisaso avalid and very useful reference

5-11

268.

269.

270.

271.

272.

273.

274.

275.

by itself, for selection and application of
measures in a project.

Test related measures can be divided into two
classes: those relative to evaluating the program
under test, and those relative to evauating the
test set. The first class, for instance, includes
measures that count and predict either faults

(e.g., fault density) or failures (e.g., reliability).

The second classinstead evaluates the test suites
againgt selected test criteria; notably, thisiswhat
is usually done by measuring the code coverage
achieved by the executed tests. Measuresrelative
to the test process for management purposes are
instead considered in part E.

D.1 Evaluation of the program under
test (982.2)

¢ Program measurementsto aidin planning and
designing testing. [Bec7s4.2; Jo:c9]
(982.2:sA16, BMa)

Measures based on program size (e.g., SLOC,
function points) or on program structure (e.g.,
complexity) is useful information to guide the
testing. These are aso covered in the SQ
Knowledge Area.

+ Types, classification and statistics of faults
[Bec2; Jo:cl; Pf:c7] (1044, 1044.1; Be:
Appendix; Ly:c9; KF+:c4, Appendix A)

Thetesting literatureisrich of classificationsand

taxonomies of faults. Testing alows for

discovering defects. To make testing more
effective it is important to know which types of
faults could be found in the application under
test, and the relative frequency with which these
faults have occurred in the past. Thisinformation
can be very useful to make quality predictions as
well as for process improvement. The topic

"Defect Characterization” is also covered more

deeply in the SQ Knowledge Area. An IEEE

standard on how to classify software"anomalies’

(1044) exists, with a relative guide (1044.1) to

implement it. An important property for fault

classification is orthogonality, i.e., ensuring that
each fault can be univocaly identified as
belonging to oneclass.

¢ Remaining number of defects/Fault density
[Pec20] (982.2:sA1; Ly:c9)

In common industrial practice a product under
test is assessed by counting and classifying the
discovered faults by their types (see dso Al).
For each fault class, fault density is measured by
the ratio between the number of faultsfound and
the size of the program.

512

276.

277.

278.

279.

280.
281.

282.

283.¢
284.

285.
286.

+ Lifetedt, reliability evaluation [Pf:c8] (Musa
and Ackermann in Po:pl46-154)

A statistical estimate of software reliability, that
can be obtained by operationd testing (see in
B.2), can be used to evduate a product and
decideif testing can be stopped.

+ Reliability growth models [Ly:c7; Pf:c8]
(Ly:c3, c4)

Reliability growth models provide a prediction of
reliability based on the failures observed under
operational testing. They assume in general that
the faults that caused the observed failures are
fixed (although some models aso accept
imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There
exist now tensof published models, laid down on
some common assumptions as well as on
differing ones. Notably, the models are divided
into failures-count and time-between-failures
models.

D.2 Evaluation of the tests performed

¢ Coverage/thoroughness measures [Jo:c9;
Pf:c7] (982.2:5A5-5A6)

Severa test adequacy criteria require the test
casesto systematically exerciseaset of elements
identified in the program or in the specification
(see Part C). To evaluate the thoroughness of the
executed tests, testers can monitor the elements
covered, so that they can dynamically measure
the ratio (often expressed as afraction of 100%)
between covered elements and the total number.
For example, one can measure the percentage of
covered branches in the program flowgraph, or
of exercised functional requirements among
thoselisted in the specification document. Code-
based adequacy criteria require appropriate
instrumentation of the program under test.

Fault seeding [Pf:c7] (ZH+:s3.1)

Some faults are artificially introduced into the
program before test. By monitoring then which
and how many of the artificia faults are
discovered by the executed tests, this technique

allows for measuring testing effectiveness, and
for estimating how many (original) faultsremain.

+ Mutationscore [ZH+:53.2-s3.3]

A mutant is a dightly modified version of the
program under test, differing from it by a small,
syntactic change. Every test case exercises both
the original and all generated mutants: for the
technique to be effective, a high number of
mutants must be automaticaly derived in
systematic way. If a test case is successful in

© |EEE — Stoneman (Version 0.7) — April 2000

287.

288.

289.
290.

291.

292.

293.

294.

identifying the difference between the program
and a mutant, the latter is said to be killed.
Strong and weak mutation techniques have been
developed.

¢ Comparison and relative effectiveness of

different techniques [Jo:c8,c1l; Peccl7;

ZH+:s5] (FW; Weyuker in Po p64-72; FH+)
Severa studies have been recently conducted to
compare the relative effectiveness of different
test techniques. It is important to be precise
relative to the property against which the
techniques are being assessed, i.e, what
"effectiveness’ is exactly meant for. Possible
interpretations are how many tests are needed to
find the first failure, or theratio of the number of
faults found by the testing to all the faults found
during and after the testing, or how much
reliability is improved. Analytica and empirical
comparisons between different techniques have
been conducted according to each of the above
specified notions of "effectiveness'.

E. Managing the Test Process

E.1 Management concerns

+ Attitudes/Egoless programming [Be:c13s3.2;
Pf:c7]

A very important component of successful
testing is a positive and collaborative attitude
towards testing activities. Managers should
revert a negative vison of testers as the
destroyers of developers work and as heavy
budget consumers. On the contrary, they should
foster a common culture towards software
qudity, by which early failure discover is an
objective for al involved people, and not only of
testers.

+ Test process[Be:cl3; Pe:cl,c2,c3,c4; Pf.c8]
(Po:p10-11; Po:Appendix 1
12207:55.3.9;85.4.2;56.4,56.5)

A process is defined as "a set of interrelated

activities, which transform inputs into

outputs'[12207]. Test activities conducted a

different levels (see B.1) must be organized,

together with people, tools, policies,
measurements, into a well defined process,
which is integral part to the life cycle. In the

IEEE/EIA Standard 12207.0 testing is not

described as a stand alone process, but principles

for testing activities are included aong with the
five primary life cycle processes, aswell asaong
with the supporting process.

© |EEE— Soneman (Version 0.7) — April 2000

295,

296.

297.

298.

299,

300.

301.

302.

¢ Test documentation and workproducts
[Be:c13s5; KF+:¢12; Pe:cl9; Pf:c8s8.8] (829)

Documentation is an intega part of the
formalization of the test process. As The |IEEE
standard for Software Test Documentation [829]
provides a good description of test documents
and of their relationship with one ancther and
with the testing process. Test documents
includes, among others, Test Plan, Test Design
Specification, Test Procedure Specification, Test
Case Specification, Test Log and Test Incident or
Trouble Report. These documents should be
produced and continually updated, at the same
standards as other types of documentation in
development. Unfortunately, this is not yet
common practice.

The object of testing, with specified version and
identified hw/sw requirements before testing can
begin, is documented asthe test item.

¢ Internal vs. independent test team
[Be:cl32.2-2.3; KF+:c15; Pe:c4; Pf:c8]

Formalization of the test process requires
formalizing the test team organization as well.
The test team can be composed of members
internal to the project team, or of external
members, in the latter case bringing in an
unbi ased, independent perspective, or finaly of
both interna and external members. The decision
will be determined by considerations of costs,
schedule and application criticality.

+ Cost/effort estimation and other process
metrics [Peic4, c21] (PeAppendix B;
P0:p139-145; 982.2:5A8-5A9)

In addition to those discussed in Part D, severa
metricsrelative to the resources spent ontesting,
as well as to the relative effectiveness in fault
finding of the different test phases, are used by
managersto control and improvethetest process.
Evaluation of test phase reports is often
combined with root cause analysis to evaluate
test process effectiveness in finding faults as
early as possible. Moreover, the resources that
are worth spending in testing should be
commensurate to the use/criticality of the
application: the techniques listed in part C have
different costs, and yield different levels of
confidencein product reliability. “ Good enough”
testing should be planned.

¢ Test Reuse [Be:c13s5]

303. E.2 Test Activities

304.

¢ Planning [KF+:cl12; Pecl9; Pf.c7s7.6]
(829:¢4; 1008:s1, 2, s3)

5-13

305.

306.
307.
308.

309.

310.

¢ Test case generation [KF+:.c7] (Po:c2;
1008:s4, s5)

¢ Test environment development [KF+:c11]

+ Execution [Be:c13; KF+:c11] (1008:s6, s7;)

¢ Testresultsevaluation [Pe:c20,c21] (Po:pl8-
20; Po:p131-138)

+ Trouble reporting/Test log [KF+:¢5; Pe:c20]
(829:59-s10)

+ Defect tracking [KF+:c6]

311. 4. BREAKDOWN RATIONALE

312.

313.

The conceptual schemefollowed in decomposing
the Software Testing Knowledge Area is
described in Section 2.1. Leve 1 topics include
five entries, labeled from A to E, that correspond
to the fundamental and complementary concerns
forming the Software Testing knowledge: Basic
Concepts and Definitions, Levels, Techniques,
Measures, and Process. There is not a standard
way to decompose the Software Testing
Knowledge Area, each book on Software Testing
would structure its table of contents in different
ways. However any thorough book on Software
Testing would cover these five topics. A sixth
level 1 topic would be Test Tools. These are not
covered here, but in a specific section of the
Software Engineering Methods and Tools
chapter of the Guide to the SWEBOK.

The breakdown is three levels deep. The second
level is for making the decomposition more
understandable. The selection of level 3 topics,
that are the subjects of study, has been quite
difficult. This description is expected to be as
inclusive as possible (too many topics are
deemed better than having relevant topics
missing). On the other side, the proposed
breekdown should be compatible with
breakdowns generaly found in industry, in
literature and in standards, and the selected
topics should be “generdly accepted"

5-14

314.

315.

knowledge. Finding a breakdown of topicsthat is
"generally accepted” by adl different
communities of potential users of the Guide to
the SWEBOK is chdlenging for Software
Testing, because there still exists a wide gap

between the literature on Software Testing and
current industrial test practice. There are topics
that have been taking a relevant position in the
academic literature for many years now, but are
not generally used in industry, for example data
flow based or mutation testing. The position
taken in writing this document has been to
include any relevant topicsin the literature, even
those that are likelynot considered so relevant by
practitioners at the current time. The proposed
breakdown of topics for Software Testing isthus
considered as an inclusive list, from which each
stakeholder can pick according to hisher needs.

However, under the precise definition for
"generally accepted” adopted in the Guide to the
SWEBOK, i.e., knowledge to beincluded in the
study material of a software engineering with
four years of work experience, some of the
included topics (like the examples above) would
be lightly covered in a curriculum of a software
engineering with four years of experience. The
ratings in the Bloom's taxonomy of topicsin an
Appendix of the entire Guide reflect this
guideline, and the core References have been
selected accordingly, i.e., they provide reading
material for the topics according to this precise
meaning of "generally accepted’. Advanced
topics are more deeply covered in the Further
Reading list.

Finaly, the reader should understand the high
difficulty of being selectivein limiting topcsand
referencesto areasonable amount. As spelled out
in the specifications for the Stone Man Version
of the Guideto the SWEBOK , the breakdowns of
topics are expected to be “ reasonable”, not
“ perfect”, and definitely they are to be seen as
documents undergoing continuous improvement.

© |EEE — Stoneman (Version 0.7) — April 2000

316.5. M ATRIX OF TOPICSVS. REFERENCE MATERIAL

317. |A.Testing Basic Conceptsand
Dgcfinittions S—— [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
318. | Definitionso
taminology g Cl Cl234 | C2s22
319. |[Fadtsvs. Failures C1l C232.2 C1 C7
320. | Test sdection criterialTest
adequecy criteria (or stopping C7S7.3 S11
rules)
321. fTOersttg ridgfec’uvene&/Obj ectives clisia o1
322. | Tedting for defect identification C1 C1
323. | Theoracle problem C1
324. 'I_'hgor_etlcd and practlcd c2
limitations of testing
325. | The problem of infeesible paths C3
326. | Teddbility C313
327. | Teding vs. Static Andysis
Techn?ques g cl Cc17
328. | Testing vs. Correctness Proofs Cls Cc7
329. | Teding vs. Debugging Cis2.1
330. | Testing vs. Programming C12.3
331. | Teding within SQA
332. | Teging within CMM
333. | Tedting within Cleenroom C838.9
334. | Teding and Certification

335. |B.Test Levels [Bel [Jo] [Ly] [KF+] [Pe] [Pf]
336. [Unittesting Cl C17 C75S7.3
337. [Integration testing C12,13 C7S7.4
338. | Sygemteding Cl4 C8
339. | Acceptance/qudification testing C10 C8385
340. | Ingdlationtesting C9 C838.6
341. | Alphaand Betatesting C13
342. | Conformance tesfing/ Functiond c7 cs

testing/ Correctnesstesting
343. Eftlilllr:tgy achievement and evduation c7 c8ss4
345. | Regression testing Cc7 Cl1112 C88.1
346. | Performancetesting C17 C838.3
347. | Stresstesting C17 C88.3
348. | Back-to-back testing
349. | Recovery testing C17 C838.3
350. [Configuration testing cs8 C838.3
351. |[Usability testing C8 C883

© |EEE— Soneman (Version 0.7) — April 2000 5-15

352. | C. Test Techniques [Be] [Jo] [Ly] | [KFH] [Pe] [Pf] [ZHH]
353. [Adhoc C1
354, | Equivdence patitioning C6 Cc7
355. | Boundary-vaue andysis C5 c7
356. | Decisontable C103
357. | Finite-state machine-based C11 CA4.3.2
358. | Tedting from formal specifications S2.2
359. | Random testing C13 c7
360. |Reference modds for code-based c3 ca
testing (flow graph, cal graph)
361. | Contro flow-based criteria C3 C9 Cc7
362. | Daaflow-based criteria C5
363. | Error guessing c7
364. | Mutaiontesting C17 32,33
365. | Operationd profile C14s14.72 | C5 Cc8
366. | SRET C6
367. | Object-oriented testing C15 C7515
368. | Component-based testing
369. | GUI tegting
370. | Tedting of concurrent programs
371. | Protocol conformance testing
372. | Teding of distributed systems
373. | Testing of reattime systems
374. | Tedting of scientific software
375. | Functiond and structural Cls2.2 | C1L11S11.3 C17
376. | Coverage and operationd/Saturation
effect
377. |D. Test Related Measures [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZHH]
378. [Program messurements to ad in
planning and designing testing. ST &
379. ;I;/JLI)S classfication and ddidtics of o c1 c7
380. | Remaning number of defectsFault c20
density
381. | Lifeted, riability evaluation Cc8
382. | Rdianility growth models C7 Cc8
383. [Coverage/thoroughness measures C9 c7
384, | Fault seeding Cc7
385. | Mutation score 3.2,3.3
386. | Comparison and rdaive effectiveness
of different techniques 11 c17 5
387. |E.Managingthe Test
Process [Be] [Jo] [Ly] | [KF+] | [Pe] [Pf]
338 Attitudes/Egoless programming C13s3.2 Cc7
389, Test process C13 Cl234 C8
390 Test documentation and workproducts C135 C12 C19 C8s8.8
L Internal vs. independent test team C13832.2,2. C15 c4 C8

5-16 © |EEE — Stoneman (Version 0.7) — April 2000

8
N

EEEBEE BEB B

401.

402.

403.

404.

405.

406.

407.

408.

4009.

410.
411.

E. Managingthe Test
Process [Be] [Jo] [Ly] [KF+] [Pe] [Pf]
Cog/effort estimation and other ca
process metrics '
Test reuse C13
Panning C12 C19 C7S7.6
Test case generation (074
Test environment development Cl1
Execution C13 Cl11
Test results evduation C20,21
Trouble reporting/Test log C5 Cc20
Defect tracking C6
412. [Jo] Jorgensen, P.C., Software Testing A
6. C ORE REFERENCES FOR Craftsman's Approach, CRC Press, 1995.
SOFTWARE TESTING 413. [KF+] Kaner, C, Fak, J, and Nguyen, H. Q.,
Testing Computer Software, 2nd Edition, Wiley,
[Be] Beizer, B. Softwar e Testing Techniques2nd 1999.
Edition. Van Nostrand Reinhold, 1990. [Chapters 414. [Ly] Lyu, M.R. (Ed), Handbook d Software
1,2,3,5,74,10s3, 11, 13] Reliability Engineering, Mc-Graw-Hill/IEEE,
[Jo] Jorgensen, P.C., Software Testing A 1996.
Craftsman's Approach, CRC Press, 1995. 415. [Pe] Perry, W. Effective Methods for Software
[Chapters 1, 2,3,4,5,6,7,8,11, 12, 13, 14, 15] Testing, Wiley, 1995,
[I'g%gKggrib (t:er gflff\m‘;rea]zcjnc;\llgéj};%qn F\;Vlcgy 416. [Po] Poston, R.M. Automating Specification-
! u ’ ion, Vviley, based Software Testing, |EEE, 1996.
1999, [Chapters 1, 2, 5, 6, 7. 8, 11, 12, 13, 15] W 'ng
[Ly] Lyu, M.R. (Ed.), Handbook of Software 417. Survey Papers
iegeg(‘;‘b['(':':]y g '\%C'Gra""H'”/ IEEE, 418, [Bi] Binder, RV. Tesing Object-Oriented
- L-hap e Softwaree a Survey. Software Testing
[Pe] Perry, W. Effective Methods for Software Verification and Reliability, 6, 3/4 (Sept-Dec.
Testing, Wiley, 1995. [Chapters 1, 2, 3,4, 9, 10, 1996) 125-252.
11,12, 17,19, 20, 21} . . 419. [ZH+] Zhuy, H., Hdl, PAV., and May, JH.R.
[Pf] Pfleeger, S.L. Software Engineering Theory Software Unit Test Coverage and Adequacy.
g?d Practice, Prentice Hall, 1998. [Chapters 7, ACM Computing Surveys, 29, 4 (Dec. 1997) 366-
427.
[ZH+] Zhu, H., Hdl, PAV., and May, JHR. .
Software Unit Test Coverage and Adequacy. 420. Specific Papers
ﬁgm[g&rggﬂqg Srveys 29, 4(Dec. 1997) 366- 421, [BGH Benot, G., Gaudd, M.C., and Marre, B.
' P e Software Testing Bassd On Forma
Specifications: a Theory and a Tool. Software
7. L 1ST OF FURTHER READINGS Engineering Journal (Nov. 1991) 387-405.
422. [BM] Bache, R., and Mllerburg, M. Measures

Books

[Be] Beizer, B. Software Testing Techniques2nd
Edition. Van Nostrand Reinhold, 1990.

© |EEE— Soneman (Version 0.7) — April 2000

of Testability as a Basis for Quality Assurance.
Software Engineering Journal,5 (March 1990)
86-92.

5-17

423.

424,

425,

426.

427.

428.

429.

430.

431.

432.

[Bma Bertolino, A., Mare, M. “How many
paths are needed for branch testing?’, The
Journal of Systemsand Software, Vol. 35,No. 2,
1996, pp.95-106.

[BP] Bochmann, G.V., and Petrenko, A. Protocol
Testing: Review of Methods and Relevance for
Software Testing. ACM Proc. Int. Symposium on
Sw Testing and Analysis (ISSTA’ 94), (Sesttle,
Washington, USA, August 1994) 109-124.

[BS] Bertalino, A., and Strigini, L. On the Use of
Testability Measures for Dependability
Assessment. |EEE Transactions on Software
Engineering, 22, 2 (Feb. 1996) 97-108.

[CT] Caver, RH., and Ta, K.C., Replay and
testing for concurrent programs. |EEE Software
(March 1991) 66-74

[DF] Dick, J, and Faivre, A. Automating The
Generation and Sequencing of Test Cases From
Model-Based Specifications. FME'93:
Industrial -Strenght Formal Method, LNCS670,
Springer Verlag, 1993, 268-284.

[FH+] Frankl, P., Hamlet, D., Littlewood B., and
Strigini, L. Evaluating testing methods by
delivered rdliability. IEEE Transactions on
Software Engineering, 24, 8, (August 1998),
586-601.

[FW] Frankl, P., and Weyuker, E. A forma
analysis of the fault detecting ability of testing
methods. |EEE Transactions on Software
Engineering, 19, 3, (March 1993), 202-

[Ha] Hamlet, D. Are we testing for true
reliability? |EEE Software (July 1992) 21-27.

[Ho] Howden, W.E., Rdliability of the Path
Analysis Testing Strategy. | EEE Transactions on
Software Engineering, 2, 3, (Sept. 1976) 208-215

[HP] Horcher, H., and Peleska, J. Using Formal
Specifications to Support Software Testing.
Software Quality Journal, 4 (1995) 309-327.

[Mo] Mordl, LJ. A Theory of Fault-Based
Testing. |IEEE Transactions on Software
Engineering 16, 8 (August 1990), 844-857.
[MZ] Mitchell, B., and Zeil, S.J. A Reliahility
Model Combining Representative and Directed
Tedting. ACM/IEEE Proc. Int. Conf. Sw
Engineering ICSE 18 (Berlin, Germany, March
1996) 506-514.

[OA+] Odrand, T., Anodide, A., Foster, H., and
Goradia, T. A Visud Test Development
Environment for GUI Systems. ACM Proc. Int.
Symposiumon Sw Testing and Analysis (ISSTA’
98), (Clearwater Beach, Florida, USA, March
1998) 82-92.

5-18

436.

437.

439.

441,

442,

446.

447.

449,

450.

451.

[OB] Odrand, T.J, and Bdcer, M. J. The
Category-Partition Method for Specifying and
Generating Functional Tests. Communications of
ACM, 31, 3 (June 1988), 676-686.

[RH] Rothermel, G., and Harrold, M.J,
Analyzing Regresson Test Selection
Techniques. |IEEE Transactions on Software
Engineering, 22, 8 (Aug. 1996) 529-

[Sc] Schitz, W. Fundamenta Issues in Testing
Distributed Real-Time Systems. Real-Time
Systems Journal. 7, 2, (Sept. 1994) 129-157.

[VM] Voas, JM., and Miller, K.W. Software
Testability: The New Veification. |EEE
Software, (May 1995) 17-28.

[We-a] Weyuker, E.J. On Testing Non-testable
Programs. The Computer Journal, 25, 4, (1982)
465-470

[We-b] Weyuker, EJ. Assessing Test Data
Adequacy through Program Inference. ACM
Trans. on Programming Languagesand Systems,
5, 4, (October 1983) 641-655

[WK+] Wakid, SA., Kuhn D.R., and Wallace,
D.R. Towad Credible IT Tesing and

Certification, |EEE Software, (August 1999) 39-
47.

[WW+] Weyuker, E.J., Weiss, SN, and Hamlet,
D. Comparison of Program Test Strategies in
Proc. Symposium on Testing, Analysis and
Verification TAV 4 (Victoria, British Columbia,
October 1991), ACM Press, 1-10.

Sandards

[610] IEEE Std 610.12-1990, Standard Glossary
of Software Engineering Terminology.

[829] IEEE Std 829-1998, Standard for Software
Test Documentation.

[982.2] IEEE Std 982.2-1998, Guide for the Use
of IEEE Standard Dictionary of Measures to
Produce Reliable Software.

[1008] IEEE Std 1008-1987 (R 1993), Standard
for Software Unit Testing.

[1044] IEEE Std 1044-1993,
Classification for Software Anomalies.

[1044.1] IEEE Std 1044.1-1995, Guide to
Classification for Software Anomalies.

Standard

[12207] |EEE/EIA 12207.0-1996, Industry
Implementation of Int. Std. ISO/IEC
12207:1995, Standard for Information

Technology-Software Life cycle processes

© |EEE — Stoneman (Version 0.7) — April 2000

ok wDd

CHAPTER 6
SOFTWARE M AINTENANCE

Thomas M. Pigoski
Technica Software Services (TECHSOFT), Inc.
31 West Garden Street, Suite 100
Pensacola, Florida 32501

USA
+1 850 469 0086
tmpigoski @techsoft.com
TABLE OF CONTENTS
Acronyms 7. 1. INTRODUCTION
1. INTRODUCTION) i
Software maintenance is part of the software
2. DEFINITION OF KNOWLEDGE AREA engineering life cycle and is a misunderstood
3. BREAKDOWN OF TOPICS FOR SOFTWARE area of software engineering. Although systems
MAINTENANCE have been maintained for years, relatively little
Introduction to Software Maintenance is written about software maintenance. Funding
Maintenance Activities for research is essentially non-existent and thus
M ai ntenance Process the academic researchers publish very little
Organization Aspect of Maintenance about software maintenance. Practitioners
Problems of Software Maintenance publish even less because of corporate fear of
Maintenance Cost and Maintenance Cost 3.7 giving away the “competitive edge.” Whereas
Estimation they are many book devoted to software
Software Maintenance M easurements engineering, there are very few books written
Rationale for the breakdown exclusively about maintenance.
Coverage of the software breakdown topics by 0. Schneidewind [31] stressed the need for
the recommended references standardization of maintenance and, as a result,
4. RECOMMENDED REFERENCES FOR SOFTWARE the |EEE Computer Society Software
MAINTENANCE Engineering Standards Subcommittee published
References the “IEEE Standard for Software Maintenance”
5. L|ST OF FURTHER READINGS [14] in 1993. Later in 1995 the International
References .Organlz.anon for Standards (1S0), deve!oped an
international standard for software life-cycle
6. REFERENCES USED TO WRITE AND JUSTIFY THE processes, 1SO/IEC 12207 [15], which included
DESCRIPTION FOR SOFTWARE MAINTENANCE amaintenance process, |SO/IEC 14764 [16], the
References ISO/IEC Standard for Software Maintenance,
APPENDIX A — COVERAGE OF THE BREAKDOWN €laborates the maintenance process of 1SO/IEC
TOPICSBY THE RECOMMENDED REFERENCES 12207 [15].
APPENDIX B — BREAKDOWN RATIONALE 10. Software engineering is the application of
engineering to software. The classic life-cycle
Acronyms paradigm for software engineering includes:
CASE Computer Aided Software Engineering system engineering, analysis, design, code,
)) testing, and maintenance. This paper addresses
CM Configuration Management the maintenance portion of software engineering
CMM Capability Maturity Model and the software life-cycle.
ICSM International Conference on Software 11. This paper presents an overview of the

Maintenance
SCM Software Configuration Management

© IEEE —Stoneman (Version 0.7) — April 2000

Knowledge Area of software maintenance. Brief
descriptions of the topics are provided so that

12.

13.

14.

15.

16.

17.

18.

the reader can select the appropriate reference
material according to hisher needs.

2. DEFINITION OF KNOWLEDGE
AREA

This section provides a definition of the
Software Maintenance Knowledge Area
Definitions are derived from appropriate
standards and current usage.

Software maintenance is defined in the |IEEE
Standard for Software Maintenance, IEEE 1219
[14], as the modification of a software product
after delivery to correct faults, to improve
performance, or to adapt the product to a
modified environment. It does, however, address
maintenance activities prior to delivery of the
software product but only in an information
annex of the standard. Sommerville [33] states
that maintenance means evolution.

The ISO/IEC 12207 Standard for Life Cycle
Processes [15], essentially depicts maintenance
as one of the primary life cycle processes and
describes maintenance as the process of a
software product undergoing “modification to
code and associated documentation due to a
problem or the need for improvement. The
objective is to modify existing software product
while preserving its integrity.” [15] Of note is
that |SO/IEC 12207 describes an activity called
“Process Implementation.” That activity
establishes the maintenance plan and procedures
that are later used during the maintenance
process.

ISO/IEC 14764 [16], the International Standard
for Software Maintenance, defines software
maintenance in the same terms as ISO/IEC
12207 and places emphasis on the predelivery
aspects of maintenance, e.g., planning.

A current definition generally accepted by
software researchers and practitioners, is as
follows:

SOFTWARE MAINTENANCE: The totdity
of activities required to provide cost-
effective support to a software system.
Activities are performed during the
predelivery stage as well as the postdelivery
stage. Predelivery activities include planning
for postdelivery operations, supportability,
and logistics determination. postdelivery
activities include software modification,
training, and operating a help desk [28].

62

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.
31
32.
33.
34.
35.

A similar definition is used by the Research
Institute in Software Evolution, formerly named
the Centre for Software Maintenance.

A maintainer is defined by ISO/IEC 12207 as an
organization that performs maintenance
activities[15].

ISO/IEC 12207 identifies the primary activities
of software maintenance as. process
implementation; problem and modification
analysis; modification implementation;
maintenance review/acceptance; migration; and
retirement. These activities are discussed in a
later section. They are further defined by the
tasksin the standard.

3. BREAKDOWN OF TOPICS FOR
SOFTWARE MAINTENANCE

The breakdown of topics for software
maintenance is a decomposition of software
engineering topics that are “generally accepted”
in the software maintenance community. They
are genera in nature and are not tied to any
particular domain, model, or business needs.
The presented topics can be used by small and
medium sized organizations, as well as by larger
software organizations. Organizations should
use those topics that are appropriate for their
unigue situations. The topics are consistent with
what is found in current software engineering
literature and standards. The common themes of
quality, measurement, tools, and standards are
included in the breakdown of topics. The
breakdown of topicsis provided in this section.

The breskdown of topics, along with a brief
description of each, is provided in this section.
Key references are provided. Table 2.1
describes the breakdown.

TABLE 2-1. SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

Introduction to Software Maintenance

Need for Maintenance

Categories of Maintenance

Maintenance Activities

Unique Activities

Supporting Activities

Configuration Management

Qudity

Maintenance Planning Activity

© |IEEE —Stoneman (Version 0.7) — April 2000

26.

36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.
67.

68.

SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

M aintenance Process

Maintenance Process Models

Organization Aspect of Maintenance

The Maintainer

Outsourcing

Organizational Structure

Problems of Software Maintenance

Technical

Limited Understanding

Testing

Impact Analysis

Maintainability

Management

Alignment with organizational issues

Staffing

Process issues

Maintenance Cost and Maintenance Cost
Estimation

Cost

Cost estimation

Parametric models

Experience

Softwar e M aintenance M easurements

Establishing a Metrics Program

Specific Measures

Techniques for Maintenance

Program Comprehension

Re-engineering

Rever se Engineering

Impact Analysis

Resour ces

Introduction to Softwar e M aintenance

The area of software maintenance and evolution
of systems was first addressed by Lehman in
1969. His research led to an investigation of the
evolution of OS/360 [19] and continues today
on the Feedback, Evolution, and Software
Technology (FEAST) research a Imperia
College, England.

Over a period of twenty years, that research led
to the formulation of eight Laws of Evolution
[20]. Simply put, Lehman dated that
maintenance is really evolutionary
developments and that maintenance decisions
are aded by understanding what happens to
systems (and software) over time. Others state
that maintenance is redly continued
development, except that there is an extra input

© IEEE —Stoneman (Version 0.7) — April 2000

69.

70.

71.

72.

73.

(or constraint) — the existing software system.

Lehman's Laws of Evolution are generaly
accepted by the software engineering
community and these clearly depict what
happens over time. Key points from Lehman
include that large systems are never complete
and continue to evolve. As they evolve, they
grow more complex unless some action is taken
to reduce the complexity. As systems
demonstrate regular behavior and trends, these
can be measured and predicted. Pfleeger [25],
Sommerville [33], and Arthur [3] have excellent
discussions regarding software evolution.

A common perception of maintenance is that it
is merely fixing bugs. However, studies over the
years have indicated that the majority, over 80%,
of the maintenance effort is used for non-
corrective actions [33] [29] [28]. This
perception is perpetuated by users submitting
problem reports that in reality are maor
enhancements to the system. This “lumping of
enhancement requests with problems’
contributes to some of the misconceptions
regarding maintenance. Software evolves over
its life cycle, as evidenced by the fact that over
80% of the effort after initial delivery goes to
implement non-corrective actions. Thus,
maintenance is similar to software development.
There is, however, another input or constraint —
the existing system.

The focus of software development is to solve
problems through producing code. The
generated code implements stated requirements
and should operate correctly. Maintenance is
different than development [25]. Maintainers
look back at development products and aso the
present by working with users and operators.
Maintainers also look forward to anticipate
problems and to consider functional changes.
Pfleeger [25] states that maintenance has a
broader scope, with more to track and control.
Thus, configuration management is an important
aspect of software evolution and maintenance.

Maintenance, however, must learn from the
development effort. For the maintenance effort
to succeed there should be contact with the
developers and early involvement is encouraged.
Maintenance must take the products of the
development, eg., code, documentation, and
evolve/maintain them over thelife cycle.

Need For Maintenance

74.

75.
76.
77.

78.
79.
80.
81.
82.
83.
84.

85.

86.
87.

88.

89.
90.

91.

92.

Maintenance is needed to ensure that the system
continues to satisfy user requirements. The
system changes due to corrective and non-
corrective software actions. Maintenance must
be performed in order to:

¢ Correct errors.
¢ Correct design flaws.

+ Interface with other systems that are new
or changed.

+ Make enhancements.

+ Make necessary changes to the system.
+ Make changesin files or databases.

+ |mprovethe design.

¢ Convert programs so that different
hardware, software, system features, and
telecommunications facilities can be used.

The four maor aspects that evolution and
maintenance focus on are [25]:

+ Maintaining control over the system’s day-
to-day functions.

+ Maintaining
modification.
+ Perfecting existing acceptable functions.

¢ Preventing system performance from
degrading to unacceptable levels.

Accordingly, software must evolve and be
maintai ned.

control over system

Categories of maintenance

Lehman developed the concept of software
evolution. E. B. Swanson of UCLA was one of
the first to examine what realy happens in
evolution and maintenance, using empirical data
from industry maintainers. Swanson believed
that, by studying the maintenance phase of the
life cycle, a better understanding of the
maintenance phase would result. Swanson was
able to create three different categories of
maintenance. These are reflected in software
maintenance standards such as, IEEE 1219 [14]
and ISO/IEC 14764 [16], as well as numerous
texts. Swanson’s categories of maintenance and
his definitions are as follows:

+ Corrective maintenance. Reactive
modification of a software product
performed after delivery to correct
discovered faults.

¢ Adaptive maintenance. Modification of a

93.

94.

95.

96.
97.

98.
99.

software product performed after delivery
to keep a computer program usable in a
changed or changing environment.

+ Perfective maintenance. Modification of a
software product after delivery to improve
performance or maintainability.

The SO Standard on Software Maintenance [16]
refers to Adaptive and Perfective maintenance
as enhancements. Another type of maintenance,
preventive maintenance, is defined in the |IEEE
Standard on Software Maintenance [14] and the
ISO Standard on Software [16]. Preventive
maintenance is defined as maintenance
performed for the purpose of preventing
problems before they occur. This type of
maintenance could easily fit under corrective
maintenance but the international community,
and in particular those who are concerned about
safety, classify preventive as a separate type of
maintenance.

Of note is that Pfleeger [25], Sommerville [33],
and others address that the corrective portion of
maintenance is only about 20% of the tota
maintenance effort. The remaining 80% is for
enhancements, i.e., the adaptive and perfective
categories of maintenance. This further
substantiates L ehman’ s Laws of Evolution.

M aintenance Activities

Maintenance activities are similar to those of
software development. Maintainers perform
analysis, design, coding, testing, and
documenting. Maintainers must track
requirements just as they do in development.
However, for software maintenance, the
activities involve processes unique to
maintenance.

Unique Activities

Maintainers must possess an intimate
knowledge of the code's structure and content
[25]. Unlike software development, maintainers
must perform impact anaysis. Anaysis is
performed in order to determine the cost of
maeking a change. The change request,
sometimes called a modification request and
often called a problem report, must first be
analyzed and trandlated into software terms[11].
The maintainer then identifies the affected
components. Several potential solutions are
provided and then a recommendation is made as
to the best course of action.

© |IEEE —Stoneman (Version 0.7) — April 2000

100.

101.

102.

103.

104.

105.

106.
107.
108.

109.

Supporting Activities

Maintainers must aso perform supporting
activities such as configuration management
(CM), verification and vdidation, quality
assurance, reviews, audits, operating a help desk,
and conducting user training. The IEEE Standard
for Software Maintenance, |IEEE 1219 [14],
describes CM as a critical element of the
maintenance process. CM procedures should
provide for the verification, validation, and
certification of each step required to identify,
authorize, implement, and release the software
product. Training of maintainers, a supporting
process, is aso a needed activity [28] [33] [24].
Maintenance aso includes activities such as
planning, migration, and retiring of systems[14]
[28] [16] [15].

Configuration Management. It is not sufficient
to simply track modification requests or
problem reports. The software product and any
changes made to it must be controlled. This
control is established by implementing and
enforcing an approved software configuration
management process (SCM). The SCM process
is implemented by developing and following a
CM Plan and operating procedures.

Quality. Quality should be built into the
software maintenance processes. The
complexity of the software should be reduced to
improve the quality of the software product.
Software inspections should be used to improve
quality. Quality of Service Agreements should
be used to aid in quality improvement.

Maintenance Planning Activity

An important activity for software maintenance
is planning. Whereas developments typically can
last for 1-2 years, the operation and
maintenance phase typicaly lasts for many
years. Maintenance is performed during the
operation and maintenance phase [25].
Maintenance planning should begin with the
decision to develop a new system. A concept
and then a maintenance plan should be
developed. The concept for maintenance should
address:

+ The scope of software maintenance.
+ Thetailoring of the postdelivery process.

¢ The designation of who will provide
mai ntenance.

+ Anestimate of life cycle costs.

© IEEE —Stoneman (Version 0.7) — April 2000

110.

111.

112.

113.

114.

115.

Once the maintenance concept is determined,
the next step is to devel op the maintenance plan.
The maintenance plan should be prepared during
software development and should specify how
users will request modifications or report
problems. Maintenance planning [28] is
addressed in |IEEE 1219 [14] and ISO/IEC
14764 [16]. ISO/IEC 14764 [16] provides
guidelines for amaintenance plan.

M aintenance Process

The need for software processes is well
documented. The Software Engineering
Ingtitute’ s Software Capability Maturity Model
(CMM) provides a means to measure levels of
maturity. Of importance, is that there is a direct
correlation between levels of maturity and cost
savings. The higher the level of maturity, the
greater the cost savings. The CMM applies
equally to maintenance and maintainers should
have a documented maintenance process

Maintenance Process Models

Process models provide needed operations and
detailed inputs/outputs to those operations.
M aintenance process models are provided in the
software maintenance standards, |EEE 1219 [14]
and ISO/IEC 14764 [16].

The maintenance process model described in
IEEE 1219 [14], the Standard for Software
Maintenance, starts the software maintenance
effort during the post-delivery stage and
discusses items such as planning for
maintenance and metrics outside the process
model. That process model with the |EEE
maintenance phasesis depicted in Figure 3.1.

6-5

Modification

Request

‘Classification’
&

Identification

Design
Implementation

Acceptance
Test

116. Figure3.1: Thel EEE Maintenance Process

117

ISO/IEC 14764 [16] is an elaboration of the
maintenance process of ISO/IEC 12207 [15].
The activities of the maintenance process are
similar although they are aggregated a little
differently. The maintenance process activities
developed by I SO/IEC are shown in Figure 3.2.

Maintenance
Process

r

L9

Process
Implementatio

™ .
Maintenance

Review and
Acceptance

Modification

Implementatio
o

Software
Retirement

118.

119.

120.
121.
122.
123.
124,

Problem and

Modification
Andysis

Migration

Figure 3.2 IEEE Maintenance Process

Activities
Each of these primary software maintenance
activitiesis further broken down into tasks.
Process |mplementation tasks are;

+ Maintenance planning and procedures.

+ Proceduresfor Modification Requests.

+ Interface with CM.
Problem and Modification tasks are:

66

125.
126.
127.

128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

138.
139.
140.
141.
142.
143.
144,
145.
146.
147.
148.
149.
150.

151.

152,

153.
154.

+ Performinitia analysis.
+ Verify the problem.

+ Develop options for implementing the
modification.

+ Document the results.

+ Obtain approval for modification option.
Modification | mplementation tasks are:

+ Perform detailed analysis.

+ Deveop, code, and test the modification.
Maintenance Review/A cceptance tasks are:

+ Conduct reviews.

+ Obtain approval for modification.
Migration tasks are:

+ Ensurethat migration isin accordance with
the Standard.

+ Develop amigration plan.

+ Notify users of migration plans.

¢ Conduct parallel operations.

+ Notify user that migration has started.

¢ Conduct a post-operation review.

+ Ensurethat old datais accessible.
Software Retirement tasks are:

+ Develop aretirement plan.

+ Notify users of retirement plans.

¢ Conduct parallel operations.

+ Notify user that retirement has started.

+ Ensurethat old dataiis accessible.

Takang and Grubb [35] provide a history of
maintenance process models leading up to the
development of the IEEE and ISO/IEC process
models. A good overview of a generic
maintenance process is given by Sommerville
[33].

Organization Aspect of Maintenance

The team that develops the software is not
aways used to maintain the system once it is
operational.

The Maintainer

Often, a separate team (or maintainer) is
employed to ensure that the system runs
properly and evolves to satisfy changing needs
of the users. There are many pros and cons to
having the original developer or a separate team

© |IEEE —Stoneman (Version 0.7) — April 2000

155.
156.

157.
158.

159.

160.

161.
162.

163.

maintain the software [25] [28] [24]. That
decision should be made on a case-by-case
basis.

Outsourcing

Outsourcing of maintenance is becoming a
major industry. Large corporations are
outsourcing entire operations, including
software maintenance. Dorfman and Thayer [11]
provide some guidance in the area of
outsourcing maintenance.

Organizational Structure

Based on the fact there are aimost as many
organizational structures as there are software
maintenance organizations, an organizationa
structure for maintenance is best developed on a
case-by-case basis. What is important is the
delegation or designation of maintenance
responsibility to a group [28], regardless of the
organizational structure.

Problems of Software M aintenance

It is important to understand that software
evolution and maintenance provides unique
technical and management problems for
software engineers. Trying to find a defect in a
500K line of code system that the maintainer
did not develop is a challenge for the maintainer.
Similarly, competing with software developers
for resources is a constant battle. The following
discusses some of the technical and
management problems relating to software
evolution and maintenance.

Technical

Limited Understanding [25]. Several studies
indicate that some 40% to 60% of the
maintenance effort is devoted to understanding
the software to be modified. Thus, the topic of
program comprehension is one of extreme
interest to maintainers. It is often difficult to
trace the evolution of the software through its
versions, changes are not documented, and the
developers are usually not around to explain the
code. Thus, maintainers have a limited
understanding of the software and must learn the
software on their own.

Testing. The cost of repeating full testing on a
major piece of software can be significant in
terms of time and money. Thus, determining a
sub-sets of tests to perform in order to verify

© IEEE —Stoneman (Version 0.7) — April 2000

164.

165.

166.

167.

168.

169.

170.

171.

changes are a constant challenge to maintainers
[11]. Finding timeto test is often difficult [25].

Impact Anaysis. The software and the
organization must both undergo impact analysis.
Critical skills and processes are needed for this
area. Impact analysis is necessary for risk
abatement.

Maintainability. The IEEE Computer Society
defines maintainability as the ease with which
software can be maintained, enhanced, adapted,
or corrected to satisfy specified requirements.
Maintainability features must be incorporated
into the software development effort to reduce
life-cycle costs. If this is done, the quality of
evolution and maintenance of the code can
improve. Maintainability is often a problem in
maintenance because maintainability is not
incorporated into the software development
process, documentation is non-existent, and
program comprehension is difficult. Means to
improve maintainability, and thereby constrain
life-cycle costs, is to define coding standards,
documentation standards, and standard test tools
in the software development phase of the life-
cycle.

Management

Alignment with organizational issues. Dorfman
and Thayer [11] relate that return on investment
is not clear with maintenance. Thus, there is a
constant struggle to obtain resources.

Staffing. Maintenance personnel often are
viewed as second class citizens [25] and morale
suffers [11]. Maintenance is not viewed as
glamorous work. Deklava provides a list of
staffing related problems based on survey data
[10].

Process issues. Maintenance requires severa
activities that are not found in software
development, e.g. , help desk support. These
present challenges to management [11].

Maintenance Cost and Maintenance
Cost Estimation

Maintenance costs are high due to al the
problems of maintaining a system [25]. Software
engineers must understand the different
categories of maintenance, previousy
discussed, in order to address the cost of
maintenance. For planning purposes, estimating

172.
173.

174.

175.
176.

177.
178.

179.
180.

costs is an important aspect of software
maintenance.

Cost

Maintenance now consumes a major share of the
life cycle costs. Prior to the mid-1980s, the
majority of costs went to development. Since
that time, maintenance consumes the majority
of lifecycle costs. Understanding the
categories of maintenance helps to understand
why maintenance is so costly. Also
understanding the factors that influence the
maintainability of a system can help to contain
costs. Pfleeger [25] and Sommerville [33]
address some of the technical and non-technical
factors affecting maintenance.

Impact analysis identifies all systems and
system products affected by a change request
and develops an estimate of the resources
needed to accomplish the change [3]. It is
performed after a change request enters the
configuration management process. It isused in
concert with the cost estimation techniques
discussed below.

Cost estimation

Maintenance cost estimates are affected by
many technical and non-technical factors.
Primary approaches to cost estimating include
use of parametric models and experience. Most
often a combination of these is used to estimate
costs.

Parametric models

The most significant and authoritative work in
the area of parametric models for estimating
was performed by Boehm [5]. His COCOMO
model, derived from COnstructive COst MOdel,
puts the software life cycle and the quantitative
life-cycle relationships into a hierarchy of
software cost-estimation models [25] [33] [28].
Of significance is that data from past projectsis
needed in order to use the models. Jones [18]
discusses all aspects of estimating costs
including function points, and provides a
detailed chapter on maintenance estimating.

Experience

Experience should be used to augment data from
parametric models. Sound judgement, reason, a
work breakdown structure, educated guesses,
and use of empirical/historical data are several
approaches. Clearly the best approach to

68

181.
182.

183.

184.
185.

186.

187.

maintenance estimation is to use empirical data
and experience. That data should be provided as
aresult of a metrics program. In practice, cost
estimation relies much more on experience than
parametric models.

Softwar e M aintenance M easur ements

Software life cycle costs are growing and a
strategy for maintenance is needed. Software
measurement or software metrics need to be a
part of that strategy. Software measurement is
the result of a software measurement process.
Software metrics are often synonymous with
software measurement. Grady and Caswell [12]
discuss establishing a corporate-wide metrics
program. Software metrics are vital for software
process improvement but the process must be
measurable.

Takang and Grubb [35] state that measurement is
undertaken for evaluation, control, assessment,
improvement, and prediction. A program must
be established with specific goalsin mind.

Establishing a metrics program

Successful implementation strategies were used
a Hewlett-Packard [12] and a the
NASA/Software Engineering Laboratory [8].
Common to many approaches is to use the Goal,
Question, Metric (GQM) paradigm put forth by
Basili [34]. This approach states that a metrics
program would consist of: identifying
organizational gods, defining the questions
relevant to the goals, and then selecting
measures that answer the questions.

The IEEE Standard For a Software Quality
Metrics Methodology, ANSI/IEEE 1061-1998,
[1] provides a methodology for establishing
quality requirements and identifying,
implementing, analyzing and validating process
and product software quality metrics. The
methodology appliesto all software at al phases
of any software life cycle and is a valuable
resource for software evolution and
maintenance.

There are two primary lessons learned from
practitioners about metrics programs. The first
is to focus on a few key characteristics. The
second is not to measure everything. Most
organizations collect too much. Thus, a good
approach is to evolve a metrics program and to
use the GQM paradigm.

© |IEEE —Stoneman (Version 0.7) — April 2000

188.
189.

190.

191.

192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.

204.
205.

206.
207.

Specific Measures

There are metrics that are common to al efforts
and the Software Engineering Institute (SEI)
identified these as: size; effort; schedule; and
quality [28]. Those metrics are a good starting
point for amaintainer.

Takang and Grubb [35] group metrics into areas
of: size; complexity; quality; understandability;
maintainability; and cost estimation.
Documentation regarding specific metrics to
use in maintenance is not often published.
Typically generic software engineering metrics
are used and the maintainer determines which
ones are appropriate for their organization. |IEEE
1219 [14] provides suggested metrics for
software programs. Stark, et a [34] provides a
suggested list of maintenance metrics used at
NASA’s Mission Operations Directorate. That
list includes:

+ Softwaresize

+ Software staffing

+ Maintenance request processing
+ Software enhancement processing
+ Computer resource scheduling

+ Fault density

+ Softwarevolatility

+ Discrepancy report open duration
+ Break/fix ration

+ Softwarereliability

+ Design complexity

+ Fault typedistribution

Techniques for Maintenance

Effective software maintenance is performed
using techniques specific to maintenance. The
following provides some of the best practice
techniques used by maintainers.

Program Comprehension

Studies indicate that 40% to 60% of a
maintenance programmer’s time is spent trying
to understand the code. Time is spent in reading
and comprehending programs in order to
implement changes. Browsers are a key tool in
program comprehension. Based on the
importance of this subtopic, an annua |EEE
workshop is now held to address program
comprehension [11]. Additiona research and
experience papers regarding comprehension are

© IEEE —Stoneman (Version 0.7) — April 2000

208.

209.

210.
211.

212.
213.

214,

215.

216.

217.

found in the annua proceedings of the |IEEE
Computer Society’s International Conference
on Software Maintenance (ICSM). Takang and
Grubb [35] provide a detailed chapter on
comprehension.

Re-engineering

Re-engineering is the examination and alteration
of the subject system to reconstitute it in a new
form, and the subsequent implementation of the
new form. Dorfman and Thayer [11] state that
re-engineering is the most radica (and
expensive) form of ateration. Others believe
that re-engineering can be used for minor
changes. Re-engineering is often not undertaken
to improve maintainability but is used to replace
aging legacy systems. Arnold [2] provides a
comprehensive compendium of topics, eg.,
concepts, tools and techniques, case studies, and
risks and benefits associated with re-
engineering.

Rever se engineering

Reverse engineering is the process of analyzing
a subject system to identify the system's
components and their inter-relationships and to
create representations of the system in another
form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the
system, or result in anew one. A simple reverse
engineering effort may merely produce call
graphs and control flow graphs from source
code. One type of reverse engineering is
redocumentation. Ancther type is design
recovery [11].

Impact Analysis

Impact analysis identifies all systems and
system products affected by a change request
and develops an estimate of the resources
needed to accomplish the change [3]. It is
performed after a change request enters the
configuration management process. Arthur [3]
states that the objectives of impact analysis are:

+ Determine the scope of a change in order
to plan and implement work.

+ Develop accurate estimates of resources
needed to perform the work.

+ Analyze the cost/benefits of the requested
change.

¢ Communicate to others the complexity of
agiven change.

6-9

218.
219.

220.

221.

222.

223.

224,

225.

226.

227.

228.

229.

Resources

Beside the references listed in this paper, there
are other resources available to learn more

about software maintenance. The |EEE
Computer Society sponsors the annual
International Conference on Software

Maintenance (ICSM). That conference started in
1983 and continues today. ICSM provides a
Proceedings, which incorporates numerous
rescarch and practica industry papers
concerning evolution and maintenance topics.
Other venues, which address these topics,
include:

+ The Workshop on Software Change and
Evolution (SCE).

¢ The Internationa Workshop on the
Principles of Software Evolution (IWPSE).

¢ Manny Lehman's work on the FEAST
project at the Imperial College in England
continues to provide valuable research into
software evolution.

¢ The Research Ingtitute for Software
Evolution (RISE) a the University of
Durham, England, concentrates its research
on software maintenance and evolution.

The Journal of Software Maintenance,
published by John Wiley & Sons, aso is an
excellent resource.

Rationalefor the breakdown

The breskdown of topics for software
maintenance is a decomposition of software
engineering topics that are “ generally accepted”
in the software maintenance community. They
are general in nature. There is agreement in the
literature and in the standards on the topics.

A detailed discussion of the rationale for the
proposed breakdown, keyed to the SWEBOK
development criteria, is given in Appendix B.
The following is a narrative description of the
rationale for the breakdown.

The Introduction to Software Maintenance was
selected as theinitial topic in order to introduce
the topic. The subtopics are needed to emphasis
why there is a need for maintenance. Categories
are critical to understand the underlying
meaning of maintenance. All pertinent texts use
asimilar introduction.

The Maintenance Activities topic is needed to
differentiate maintenance from devel opment and

6-10

230.

231.

232.

233.

234,

235.

236.

237.

238.

to show the relationship to other software
engineering activities. Maintenance Process is
needed to provide the current references and
standards needed to implement the maintenance
process.

Every organization is concerned with who will
perform maintenance. The Organizational
Aspect of Maintenance provides some options.
There is always a discussion that maintenance is
hard. The topic on the Problems of Software
Maintenance was chosen to ensure that the
software engineers fully comprehended these
problems.

Every software maintenance reference discusses
the fact that maintenance consumes a large
portion of the life cycle costs. The topic on
Cost and Cost Estimation was provided to
ensure that the readers select references to help
with this difficult task.

The Software Maintenance Measurements topic
is one that is not addressed very well in the
literature. M ost maintenance books barely touch
on the topic. Measurement information is most
often found in generalized measurement books.
This topic was chosen to highlight the need for
unigue maintenance metrics and to provide
specify maintenance measurement references.

The Techniques topic was provided to introduce
some of the generally accepted techniques used
in maintenance operations.

Finaly, there are other resources besides
textbooks and periodicals that are useful to
software engineers who wish to learn more
about software maintenance. The Resources
topic was provided to list these additional
resources.

Coverage of the software breakdown
topics by the recommended refer ences

The cross-reference is shown in Appendix A.

4. RECOMMENDED REFERENCES
FOR SOFTWARE MAINTENANCE

The following set of references provides the
best reading material to acquire knowledge on
specific topics identified in the breakdown.
They were chosen to provide coverage of all
aspects of software maintenance. Priority was
given to standards, maintenance specific

© |IEEE —Stoneman (Version 0.7) — April 2000

239.

240.

241.

242.

243.

244,

245,

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

publications, and then generad software
engineering publications.

Refer ences

[1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. |EEE
Computer Society Press, 1998, pp. 3-13.

[2] R. S. Arnold. Software Reengineering. |IEEE
Computer Society, 1992, pp. 3-22

[3] L. J Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988, pp. 1-6, 39-57.

[5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981, pp. 534-553.

[8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990,
pp. 15-22.

[10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the
International Conference on Software
Maintenance, 1992, pp. 10-17.

[12] M. Dorfman and R. H. Thayer. Software
Engineering. |IEEE Computer Society Press,
1997, pp. 289-307.

[12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program Prentice-Hall, 1987, Chapter 1.

[14] IEEE STD 1219: Sandard for Software
Maintenance, 1993, pp. 1-17.

[15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995, pp. 6-9.

[16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000, pp. 1-35.

[18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998, pp. 595-636.

[19] M. M. Lehman and L. A. Belady, Program
Evolution — Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

[20] M . M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997, pp 108-124, pp.
108-124.

[24] G. Paikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986, pp.
361, 126-129.

[25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998, pp.
420-422, 422-423, 424, 425, 424-431, 427-
436.

© IEEE —Stoneman (Version 0.7) — April 2000

256.

257.

258.

259.

260.

261.

262.

263.

264.
265.

266.

267.

268.

269.

270.

[28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997, pp. 20-
27, 29-36, 89-99, 92-93, 103-106, 223-225,
309-322.

[29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997, pp. 762-763

[31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the |EEE, 77(4),
1987, pp. 618-624.

[33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996, pp. 121-124,
660-661, 662-663, 664-666, 666-670.

[34] G.E. Stark, L. C. Kern,and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

[35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997,
117-126, 117-130, 155-156.

5. LIST OF FURTHER READINGS

A list of additional readings, called Further
Readings, is provided to provide additiona
reference material for the Knowledge Area of
Software Maintenance. These references also
contain generally accepted knowledge.

Refer ences

[1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. |EEE
Computer Society Press, 1998.

[2] R. S. Arnold. Software Reengineering. |IEEE
Computer Society, 1992.

[3] L. J Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988.

[4 V. R. Basili, “Quantitative Evauation of
Software Methodology,” Proceedings First
Pan-Pacific Computer Conference, September
1985.

[5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981.

[6] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The
AMES Approach to Application Understanding:
A Case Study,” Proceedings of the

6-11

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

International Conference on Software
Maintenance-1995, |IEEE Computer Society
Press, Los Alamitos, CA, 1995.

[71 MA. Cepretz and M. Munro, “Software
Configuration Management Issues in the
Maintenance of Existing Systems,” Journal of
Software Maintenance, Vol 6, No.2, 1994.

[8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990.

[9] J Cardow, “You Cant Teach Software
Maintenance!,” Proceedings of the Sixth
Annual Meeting and Conference of the
Softwar e Management Association, 1992.

[10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the
International Conference on Software
Maintenance, 1992.

[12] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press,
1997.

[12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987.

[13] R.B. Grady, Practical Software Metrics for
Project Management and Process
Improvement, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1992.

[14] IEEE STD 1219: Sandard for Software
Maintenance, 1993.

[15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

[16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

[17] ISO/IEC TR 15271, Information
Technology - Guide for ISO/IEC 12207,
(Software Life Cycle Process)

[18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998.

[19] M. M. Lehman and L. A. Belady, Program
Evolution — Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

[20] M. M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997.

[21] T.M. Khoshgoftaar, R.M. Szabo, and JM.
Voas, “Detecting Program Module with Low
Testability,” Proceedings of the International
Conference on Software Maintenance-1995,

6-12

286.

287.

288.

289.

290.

201.

292.

293.

294,

295,

296.

297.

298.

299.

300.

IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[22] PW. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software
Maintainability, University of Idaho, Software
Engineering Test Lab, Technica Report, 91-08
TR, November 1991.

[23] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,”
Proceedings of the International Conference
on Software Maintenance-1992, |IEEE
Computer Society Press, Los Alamitos, CA,
1992.

[24] G. Paikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986.

[25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998.

[26] T.M. Pigoski, “Maintainable Software: Why
You Want It and How to Get It,” Proceedings of
the Third Software Engineering Research
Forum-November 1993, University of West
Florida Press, Pensacola, FL, 1993.

[27] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John
Wiley & Sons, New York, NY, 1994,

[28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997.

[29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997.

[30] S. R. Schach, Classical and Object-
Oriented Software Engineering With UML and
C++, McGraw-Hill, 1999

[31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the |IEEE, 1987.
[32] S. L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

[33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996.

[34] G.E. Stark, L. C. Kern,and C. V. Vowell. A
Software Metric Set for Program Maintenance

Management. Journal of Systems and Software,
1994.

[35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997.

[36] JD. Vallett, SE. Condon, L. Briand,
Y.M. Kim and V.R. Basli, “Building on

© |IEEE —Stoneman (Version 0.7) — April 2000

301.

302.

303.
304.

305.

306.

307.

308.

300.

310.

311

312.

313.

Experience Factory for Maintenance,”
Proceedings of the Software Engineering
Workshop, Software Engineering Laboratory,
1994.

6. REFERENCES USED TO WRITE
AND JUSTIFY THE DESCRIPTION FOR
SOFTWARE MAINTENANCE

The following set of references was chosen to
provide coverage of all aspects of software
evolution and maintenance. Priority was given to
standards, maintenance specific publications,
and then general software engineering
publications.

Refer ences

[1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. |EEE
Computer Society Press, 1998.

[2] R. S. Arnold. Software Reengineering. |IEEE
Computer Saciety, 1992.

[3] L. J Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988.

[4 V. R Basli, “Quarntitative Evaluation of
Software Methodology,” Proceedings First
Pan-Pacific Computer Conference, September
1985.

[5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981.

[6] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The
AMES Approach to Application Understanding:
A Case Study,” Proceedings of the
International Conference on Software
Maintenance-1995, |IEEE Computer Society
Press, Los Alamitos, CA, 1995.

[71 MA. Cepretz and M. Munro, “Software
Configuration Management Issues in the
Maintenance of Existing Systems,” Journal of
Software Maintenance, Vol 6, No.2, 1994.

[8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990.

[9] J Cardow, “You Can't Teach Software
Maintenance!,” Proceedings of the Sixth
Annual Meeting and Conference of the
Softwar e Management Association, 1992.

[10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the

© IEEE —Stoneman (Version 0.7) — April 2000

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

International Conference on Software

Maintenance, 1992.

[12] M. Dorfman and R. H. Thayer. Software
Engineering. |IEEE Computer Society Press,
1997.

[12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987.

[13] R.B. Grady, Practical Software Metrics for
Project Management and Process
Improvement, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1992.

[14] IEEE STD 1219: Sandard for Software
Maintenance, 1993.

[15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

[16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

[17] ISO/IEC TR 15271, Information
Technology - Guide for ISO/IEC 12207,
(Software Life Cycle Process).

[18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998.

[19] M . M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997.

[20] M. M. Lehman and L. A. Belady, Program
Evolution — Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

[21] T.M. Khoshgoftaar, R.M. Szabo, and JM.
Voas, “Detecting Program Module with Low
Testability,” Proceedings of the International
Conference on Software Maintenance-1995,
IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[22] PW. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software
Maintainability, University of Idaho, Software
Engineering Test Lab, Technical Report, 91-08
TR, November 1991.

[23] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,”
Proceedings of the International Conference
on Software Maintenance-1992, |EEE
Computer Society Press, Los Alamitos, CA,
1992.

[24] G. Paikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986.

6-13

328.

329.

330.

331

332.

333.

334.

335.

336.

337.

338.

3309.

[25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998.

[26] T.M. Pigoski, “Maintainable Software: Why
You Want It and How to Get It,” Proceedings of
the Third Software Engineering Research
Forum-November 1993, University of West
Florida Press, Pensacola, FL, 1993.

[27] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John
Wiley & Sons, New York, NY, 1994,

[28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997.

[29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997.

[30] S. R. Schach, Classical and Object-
Oriented Software Engineering With UML and
C++, McGraw-Hill, 1999

[31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the |IEEE, 1987.

[32] S. L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

[33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996.

[34] G.E. Stark, L. C. Kern,and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

[35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997.

[36] J.D. Vdllett, S.E. Condon, L. Briand, Y.M.
Kim and V.R. Basili, “Building on Experience
Factory for Maintenance,” Proceedings of the
Software Engineering Workshop, Software
Engineering Laboratory, 1994.

6-14

© |IEEE —Stoneman (Version 0.7) — April 2000

340. APPENDIX A — COVERAGE OF THE BREAKDOWN TOPICS BY THE RECOMMENDED REFERENCES

REFERENCE
Al Arn Art Boe CcG Dek DT GC |EEE 1SO 1SO Jon LB Leh Par Pl Pig Pre Sch Som SKV TG
TOPIC 98 92 88 81 %0 922 97 87 1219 12207 14764 98 85 97 86 98 97 97 87 % 94 97
[1 [2 [3l 91 8] [10] [11] [12] [14] [19] [16] [18] [19] [20] [24] [25] [28] [29] [31] [33] [341 [35]
Introduction to Software X X X X X X X X X X X X X
. X X X X
Maintenance
Need for Maintenance X X X X X X X
Categories of X X
R X X
Maintenance
Maintenance Activities X X X X X X X X
Unigue Activities X X X X X X
Supporting Activities X X X X X X X X X X X X
Configuration X X X X X X
X X X
Management
Qudity X X X X X X X X X
Maintenance Planning X X X X
L X
Activity
M aintenance Process X X X X X X X X X X
Maintenance Process X X X X X
X
Models
Organization Aspect of X X X X X
- X X
Maintenance
The Maintainer X X X X X X
QOutsourcing X X X
Organizational Structure X
Problems of Software X
K X X
Maintenance
Technical X X X
Limited Understanding X X X X
Testing X X X
Impact Analysis X X X
Maintainability X X X X X
Management X X X
Alignment with X X X X
organizationd issues
Staffing X X X X X
Processissues X
Maintenance Cost and X X X X X X
Maintenance Cost X
Estimation
Cost X X X X X X
Cost estimation X X X X X X

© |IEEE —Stoneman (Version 0.7) — April 2000 6-15

REFERENCE

Al Arn Art Boe cG Dek DT GC |EEE 1SO 1SO Jon LB Leh Par Pfl Pig Pre Sch Som SKV TG
TOPIC 98 92 88 81 9 92 97 87 1219 12207 14764 98 85 97 86 98 97 97 87 9 9% 97
1 [2 [3l 9l [8 [101 [11] [12] [14] [15] [16] [18] [191 [20] [24] [25] [28] [29] [31] [33] [34] [35]
Parametric models X X X X X X X
Experience X X X X
Software Maintenance X X X X X
X X X
M easur ements
Establishing a Metrics X X X X
Program
Specific Measures X X X X X X X X
Techniquesfor Maintenance X X X
Program Comprehension X X X X
Re-engineering X X X X X X X X
Rever se Engineering X X X X X X
Impact Analysis X X
Resour ces X X X X X X
6-16 © |EEE —Stoneman (Version 0.7) — April 2000

341. APPENDIX B —

342.
343.
344,

345.
346.

347.
348.
349.

350.
351.

352.
353.

354.

355.
356.

357.
358.
359.

360.
361.

362.

363.

BREAKDOWN
RATIONALE

Please note that criteria are defined in Appendix
A of entire Guide

Criterion (a): Number of topic breakdowns
One breakdown is provided.

Criterion (b): Reasonableness

The breakdowns are reasonable in that they
cover the areas typically discussed in texts and
standards, although there is less discussion
regarding the pre-maintenance activities, e.g.,
planning. Other topics such as metrics are also
often not addressed although they are getting
more attention now.

Criterion (c): Generally Accepted

The breakdowns are generaly accepted in that
they cover the areas typically discussed in texts
and standards.
Criterion (d):
Domains

No specific application domains are assumed.
Criterion (e): Compatibility with Various
Schools of Thought

Software maintenance concepts are stable and
mature.

Criterion (f): Compatible with Industry,
Literature, and Standards

The breakdown was derived from the literature
and key standards reflecting consensus opinion.
The extent to which industry implements the
software maintenance concepts in the literature
and in standards varies by company and project.
Criterion (g): AslInclusive asPossible

The primary topics are addressed within the page
constraints of the document.

No specific Application

Criterion (h): Themes of Quality,
M easurement, and Standar ds

Quality, Measurement and standards are
discussed.

Criterion (i): 2 to 3 levels, 5to 9 topics at
thefirst level

The proposed breakdown satisfies this criterion.
Criterion (j): Topic Names Meaningful
Outsidethe Guide

Wording is meaningful. Version 0.5 review
indicates that the wording id meaningful.
Criterion (I): Topics only sufficiently described
to allow reader to select appropriate material

© IEEE —Stoneman (Version 0.7) — April 2000

364.

365.

366.

367.

368.

369.

370.

371.

372.

A tutoriad on maintenance was not provided.
Generally accepted concepts were introduced
with appropriate references for additional
reading were provided.

Criterion (m): Text on the Rationale
Underlying the Proposed Breakdowns

The Introduction to Software Maintenance was
selected as theinitial topic in order to introduce
the topic. The subtopics are needed to emphasis
why there is a need for maintenance. Categories
are critical to understand the underlying
meaning of maintenance. All pertinent texts use
asimilar introduction.

The Maintenance Activities topic is needed to
differentiate maintenance from development and
to show the relationship to other software
engineering activities. Maintenance Process is
needed to provide the current references and
standards needed to implement the maintenance
process.

Every organization is concerned with who will
perform maintenance. The Organizational
Aspect of Maintenance provides some options.
There is always a discussion that maintenance is
hard. The topic on the Problems of Software
Maintenance was chosen to ensure that the
software engineers fully comprehended these
problems.

Every software maintenance reference discusses
the fact that maintenance consumes a large
portion of the life cycle costs. The topic on
Cost and Cost Estimation was provided to
ensure that the readers select references to help
with this difficult task.

The Software Maintenance Measurements topic
is one that is not addressed very well in the
literature. M ost maintenance books barely touch
on the topic. Measurement information is most
often found in generalized measurement books.
This topic was chosen to highlight the need for
unique maintenance metrics and to provide
specify maintenance measurement references.
The Techniques topic was provided to introduce
some of the generally accepted techniques used
in maintenance operations.

Finaly, there are other resources besides
textbooks and periodicals that are useful to
software engineers who wish to learn more
about software maintenance. This topic is
provided to list these additional resources.

6-17

CHAPTER 7/
SOFTWARE CONFIGURATION M ANAGEMENT

John A. Scott and David Nisse
Lawrence Livermore Nationa Laboratory
7000 East Avenue
P.O. Box 808, L-632
Livermore, CA 94550, USA
(925) 423-7655

scott7@lInl.gov
TABLE OF CONTENTS 12. SCSA Software Configuration Status Accounting
13. SDD Software Design Description
INTRODUCTION " A Softw ity A
Acroryms 15- is Software SU I‘ . Sﬂijrance'f'cat'
DerINITIONOF THE SCM KNOWLEDGE AREA ' e Requirements Specification
BRBEA;'EWN OFfTTOP',CSFOR M 16. DEFINITION OF THE SCM
reakdown of Topics
Rationale for the Breakdown KNOWLEDGE AREA
RECOMMENDED REFERENCESFOR SCM 17. A system can be defined as a collection of
Cross Reference Matrix components organized to accomplish a specific
Recommended References function or set of functions [IEEE 610]. The
Further Reading configuration of a system is the function and/or
physicd characteristics of hardware, firmware,
APPENDIX A. CROSS REFERENCE TABLE software or a combination thereof as set forthin
APPENDIX B. RATIONALE DETAILS technical documentation and achieved in a
product [Buckley]. It can also be thought of asa
collection of specific versions of hardware,
INTRODUCTION firmware, or software items combined according
This paper presents an overview of the to specific build procedures to accomplish a
knowledge area of software configuration particular purpose. Configuration management
management for the Guide to the Software (CM), then, is the discipline of identifying the
Engineering Body of Knowledge (SWEBOK) configuration of a system at distinct points in
project. A breakdown of topics is presented for timefor the purpose of systematically controlling
materials that provide more in-depth coverage of throughout the system life cycle [Bersoff, (3)].
the key areas of software configuration CM isformally defined [IEEE 610] as:
management. Important knowledge areas of 18. “A discipline applying technica and
related disciplines are a so identified. adminigrative direction and surveillance to:
identify and document the functionad and
Acronyms.) physical characteristics of a configuration
CCB Configuration Control Board item, control changesto those characteristics,
CM Configuration Management record and report change processing and
FCA Functiond Configuration Audit implementation status, and verify compliance
PCA Physica Configuration Audit with specified requirements.
19. Theconceptsof configuration management apply

SCl Software Configuration Item

SCR Software Change Request

SCM Software Configuration Management
SCMP Software Configuration Management Plan

© |EEE— Soneman (Version 0.7) — April 2000

to all items to be controlled although there are
some differences in implementation between
hardware CM and software CM.

7-1

20.

21.

22.

23.

24.

25.

This paper presents a breskdown of the key
software configuration management (SCM)
concepts along with a succinct description of
each concept. The concepts are generaly
accepted in that they cover the areas typically
addressed in texts and sandards. The
descriptions cover the primary activities of SCM
and are only intended to be sufficient for
allowing the reader to sdlect appropriate
reference material according to the reader's
needs. The SCM activities are: the management
of the software configuration management
process, software configuration identification,
software configuration control, software
configuration status accounting, software
configuration auditing, and software release
management and delivery.

Figure 1 shows a stylized representation of these
activities.

Coordination of Change Activities (*Code Management”)

Authorization of Changes Supports
(Should changes be made?) Customer
Maintenance Team

Status for: Project Management
Product Assurance
Development Team

Physical &
Functional
Completeness

Mgmt. & Control Status Release Auditing
Planning Accounting| | Processing

Management

Development
SCMP Team

[Configuration Identification

Figure1l. SCM Activities
Following the breakdown, key references for
SCM are listed adong with a cross-reference of
topics that each listed reference covers. Finaly,
topicsin related disciplines that are important to
SCM areidentified.

BREAKDOWN OF TOPICS FOR
SCM

Breakdown of Topics

An outline of the breakdown of topics is shown
below. The following sections provide a brief

description of each topic. The breakdown covers
the concepts and activities of SCM. The variety

of SCM tools and tool systems now available, as
well as the variety of characteristics of the
projects to which they are applied, may make the
implementation of these concepts and the nature
of the activities appear quite different from

72

26.

ERRBRBREBBNY

588X

4.

& &R

50.

61.
62.

63.

65.

project to project. However, the underlying
concepts and types of activities till apply.

|. Management of the SCM Process

A. Organizational Context for SCM

B. Congtraints and Guidance for SCM

C. Planning for SCM
1. SCM Organization and Responsibilities
2. SCM Resources and Schedules
3. Tool Sdection and Implementation
4. Vendor/Subcontractor Control
5. Interface Control

D. Software Configuration Management Plan

E. Survelllance of Software Configuration
Management

1. SCM Metrics and Measurement
2. In-Process Audits of SCM
Il. Software Configuration |dentification

A. ldentifying Itemsto be Controlled
1. Software Configuration
2. Software Configuration Item
3. Software Configuration Item

Relaionships

4. Software Versions
5. Badine

6. Acquiring Software Configuration
Items

B. Software Library
I11. Software Configuration Control
A. Requesting, Evaluaing and Approving
Software Changes
1. Software Configuration Control Board
2. Software Change Request Process
B. Implementing Software Changes
C. Deviations & Waivers
1V. Software Configuration Status Accounting
A. Software Configuration Status Information
B. Software Configuration Status Reporting
V. Software Configuration Auditing
A. Software Functional Configuration Audit
B. Software Physical Configuration Audit
C. In-process Audits of a Software Baseline
V1. Software Release Management and Delivery
A. Software Building

B. Software Release Management

|. Management of the SCM Process

Software configuration management is a
supporting software life cycle process that
benefits project and line management,
development and maintenance activities,
assurance activities, and the customers and users
of the end product. From a management
perspective, SCM controls the evolution of a

© |EEE — Stoneman (Version 0.7) — April 2000

66.
67.

68.

69.

70.

71.

product by identifying its elements, managing
and controlling change, and verifying, recording
and reporting on configuration information.
From the developer's perspective, SCM
facilitates the development and change
implementation activities. A successful SCM
implementation requires careful planning and
management. This, in turn, requires an
understanding of the organizational context for,
and the congtraints placed upon, the design and
implementation of the SCM process.

|.A Organizational Context for SCM

To plan an SCM process for a project, it is
necessary to understand the organizationa
sructure and the relationships among
organizational elements. SCM interacts with
severa other activities or organizationa
elements.

SCM, like other processes such as software
qudity assurance and software verification and
validation, is categorized as a supporting life
cycle process [ISO/NEC 12207]. The
organizational elements responsible for these
processes may be structured in various ways.
Although the responsibility for performing
certain SCM tasks might be assigned to other
organizations, such as the development
organization, the overall responsibility for SCM
typically rests with a distinct organizationa
element or designated individual.

Software is frequently aveloped as part of a
larger system containing hardware and firmware
elements. In this case, SCM activities take place
in pardld with hardware and firmware CM
activities and must be consistent with system
level CM. Buckley [5] describes SCM within this
context.

SCM s closely related to the software quaity
assurance (SQA) activity. The goals of SQA can
be characterized [Humphrey] as monitoring the
software and its development process, ensuring
compliance with standards and procedures, and
ensuring that product, process, and standards
defects are visble to management. SCM
activities are closdly related to these SQA goals
and, in some project contexts, eg. see [IEEE
730], specific SQA requirements prescribe
certain SCM activities.

SCM might aso interface with an organization’s
quality assurance activity on issues such as
records management and nor+conforming items.
Regarding the former, some items under SCM

control might also be project records subject to

© |EEE— Soneman (Version 0.7) — April 2000

72.

73.

74.

75.
76.
77.
78.

79.
80.

81.

provisons of the organization's quality
assurance program. Managing non-conforming
itemsis usually the responsibility of the quality
assurance activity, however, SCM might assist
with tracking and reporting on software items
that fall in this category.

Perhaps the closest relationship is with the
software devdlopment and maintenance
organizations. The environment for engineering
software includes such things asthe:

+ software life cycle model and its resulting
plans and schedules,

¢ project strategies such as concurrent or
distributed development activities,

+ softwarereuse processes,
¢ development and target platforms, and
+ software development tools.

This environment is also the environment within
which many of the software configuration
control tasks are conducted. Frequently, the same
tools support development, maintenance and
SCM purposes.

|.B Constraints and Guidance for SCM

Constraints affecting, and guidance for, the SCM
process come from anumber of sources. Policies
and procedures set forth at corporate or other
organizationa levelsmight influence or prescribe
the design and implementation of the SCM
process for a given project. In addition, the
contract between the acquirer and the supplier
might contain provisions affecting the SCM
process. For example, certain configuration
audits might be required or it might be specified
that certain items be placed under configuration
management. When software products to be
developed have the potentia to affect the public
safety, external regulatory bodies may impose
congtraints. For example, see [USNRC]. Finaly,
the particular software life cycle model chosen
for a software project and the tools selected to
implement the software affect the design and
implementation of the SCM process [Bersoff,
(4)].

Guidance for designing and implementing an
SCM process can aso be obtained from ‘best
practice’ as reflected in standards and process
improvement or process assessment modelssuch
as the Software Engineering Institute’s
Capability Maturity Model [Paulk] or the 1SO
SPICE project [El Emam]. ‘Best practice’ isalso
reflected in the standards on software
engineering issued by the various standards

7-3

82.
83.

84.
85.

86.
87.

88.
89.

organizations. Moore [31] provides aroadmap to
these organi zations and their standards.

|.C Planning for SCM

The planning of an SCM process for a given
project should be consistent with the
organizational context, applicable congtraints,
commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major
activities covered are Software Configuration
Identification, Software Configuration Control,
Software Configuration Status Accounting,
Software Configuration Auditing, and Software
Release Management and Ddlivery. In addition,
issues such as organization and responsibilities,
resources and schedules, tool selection and
implementation, vendor and subcontractor
control, and interface control are typically
considered. The results of the planning activity
are recorded in a Software Configuration
Management Plan (SCMP). The SCMP is
typicaly subject to SQA review and audit.

I.C.1 SCM Organization and Responsibilities

To prevent confusion about who will perform
given SCM activities or tasks, organizations to
be involved in the SCM process need to be
clearly identified. Specific responsibilities for
given SCM activities or tasks also need to be
assigned to organizationa entities, either by title
or organizational element. The overall authority
for SCM should aso be identified, although this
might be accomplished in the project
management or quality assurance planning.

|.C.2 SCM Resources and Schedules

The planning for SCM identifies the staff and
toolsinvolved in carrying out SCM activities and
tasks. It addresses schedule questions by
establishing necessary sequences of SCM tasks
and identifying their relationships to the project
schedules and milestones. Any training
requirements necessary for implementing the
plans are also specified.

I.C.3 Tool Selection and Implementation

Different types of tool capabilities, and
procedures for their use, support the SCM
activities. Depending on the situation, these tool
capabilities can be made available with some
combination of manual tools, automated tools
providing a single SCM capability, automated
tools integrating a range of SCM (and, perhaps
other) capabilities, or integrated tool
environments that serve the needs of multiple

74

90.
91.

92.
93.

94.
95.
96.

97.

98.

99.

participants in the software devel opment process
(eg., SCM, devdopment, V&V). Automated
tool support becomesincreasingly important, and
increasingly difficult to establish, as projects
grow in size ad as project environments get
more complex. These tool capabilities provide
support for:

¢ theSCM Library,

+ the software change request and approva
procedures,

+ code and change management tasks,

+ reporting software configuration status and
collecting SCM metrics,

+ software auditing,
+ performing software builds, and

+ managing and tracking software releases
and their distribution.

The use of tools in these areas increases the
potential for obtaining product and process
measurements to be used for project management
and process improvement purposes. Royce [37]
describes seven core metrics of value in
managing software processes. Information
available from the various SCM tools relates to
Royce's Work and Progress management
indicator and to his quality indicators of Change
Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF(mean time
between failures) and Maturity. Reporting on
these indicators can be organized in various
ways, such as by software configuration item or
by type of change requested. Details on specific
goas and metrics for software processes are
described in [Grady].

Figure 2 shows a representative mapping of tool
capabilities and procedures to the SCM
Activities.

In this example, code management systems
support the operation of software libraries by
controlling access to library elements,
coordinating the activities of multiple users, and
helping to enforce operating procedures. Other
tools support the process of building software
and release documentation from the software
elements contained in the libraries. Tools for
managing software change requests support the
change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for
management, development, and qudlity
assurance activities. As mentioned above, the
capabilities of several tool types might be

© |EEE — Stoneman (Version 0.7) — April 2000

Code Mgmt

Baselines, CCBs DBMS, Code Mgmt Systems

-

Systems Libraries,
SCRs
) N
Planning (Control Status Release Auditing
Accounting| | Processing
Management
Development
SCMP Team
Configuration Identification

/

100.

101.
102.

103.

104.
105.

Change
Implementation

Change
Evaluation
& Approval

Audit
Procedures

Release
Authorization
& Preparation

Figure 2. Characterization of SCM Tools
and Related Procedures
integrated into SCM systems, which, in turn, are
closdly coupled to software development and
maintenance activities.

The planning activity assesses the SCM tool
needs for a given project within the context of
the software engineering environment to be used
and selects the tools to be used for SCM. The
planning considers issues that might arise in the
implementation of these tools, particularly if
some form of culture change is necessary. An
overview of SCM systems and sdection
considerations is given in [Dart, (7)], a recent
case study on selecting an SCM system is given
in [Midha], and [Hoek] provides a current web-
based resource listing web links to various SCM
tools.

I.C.4 Vendor/Subcontractor Control

A software project might acquire or make use of
purchased software products, such as compilers.
The planning for SCM considers if and how
these items will be taken under configuration
control (e.g., integrated into the project libraries)
and how changes or updates will be evaluated
and managed.

Similar considerations apply to subcontracted
software. In this case, the SCM requirements to
be imposed on the subcontractor’s SCM process
as part of the subcontract and the means for
monitoring compliance adso need to be
established. The latter includes consideration of
what SCM information must be available for
effective compliance monitoring.

|.C.5 Interface Control

When a software item will interface with another
software or hardware item, a change to either
item can affect the other. The planning for the
SCM process considershow theinterfacing items
will be identified and how changes to the items
will be managed and communicated. The SCM

role may be part of alarger system-level process

© |EEE— Soneman (Version 0.7) — April 2000

106.
107.

108.

109.

110.

111.

112.

113.

114.
115.

116.

for interface specification and control and may
involveinterface specifications, interface control
plans, and interface control documents. In this
case, SCM planning for interface control takes
place within the context of the system level
process. A discussion of the performance of
interface control activitiesis givenin [Berlack].

|.D Software Configuration Management Plan

The results of SCM planning for a given project
are recorded in a Software Configuration
Management Plan (SCMP). The SCMP is a
‘living document’ that serves as a reference for
the SCM process. It is maintained (i.e., updated
and approved) as necessary during the software
life cycle. Inimplementing the plans containedin
the SCMP, it may be necessary to develop a
number of more detailed, subordinate procedures
that define how specific requirements will be
carried out during day-to-day activities.
Guidance for the creation and maintenance of an
SCMP, based on the information produced by the
planning activity, is available from a number of
sources, such as [IEEE 828]. This reference
provides requirements for the information to be
contained in an SCMP. It aso defines and
describes six categories of SCM information to
beincluded in an SCMP;

1. Introduction (purpose, scope, terms used)

2. SCM Management (organization,
responsibilities, authorities, applicable
policies, directives, and procedures)

3. CM Activities(configuration identification,
configuration control, etc.)

4. CM Schedules (coordination with other
project activities)

5. CM Resources (toals, physical, and human
resources)

6. CMP Maintenance

I.E Surveillance of Software Configuration
Management

After the SCM process has been implemented,
some degree of suneillance may be conducted to
ensure that the provisions of the SCMP are
properly carried out. There are likely to be
specific SQA requirements for ensuring
compliance with specified SCM processes and
procedures. This could involve an SCM authority
ensuring that the defined SCM tasks are
performed correctly by those with the assigned
responsibility. The software quality assurance

117.

118.
119.

120.

121.

122.
123.

124.

125.

authority, as part of a compliance auditing
activity, might also perform this surveillance.

The use of integrated SCM tools that have
capabilities for process control can make the
surveillance task easier. Some tools facilitate
process compliance while providing flexibility
for the developer to adapt procedures. Other
tools enforce process, leaving the developer less
flexibility.

|.E.1 SCM Metrics and Measurement

SCM metrics can be designed to provide specific
information on the evolving product or to
provide insight into the functioning of the SCM
process. A related goal of monitoring the SCM
process is to discover opportunities for process
improvement. Quantitative measurements against
SCM process metrics provide a good means for
monitoring the effectiveness of SCM activities
on an ongoing basis. These measurements are
useful in characterizing the current state of the
process as well as in providing a basis for
making comparisons over time. Anaysis of the
measurements may produce insights leading to
process changes and corresponding updates to
the SCMP.

The software libraries and the various SCM tool
capabilities provide sources for extracting
information about the characteristics of the SCM
process (as well as providing project and
management information). For example,
information about the processing time required
for various types of changes would be useful in
an evauation of the criteriafor determining what
levels of authority are optimal for certain types
of changes.

Care must be taken to keep the focus of the
surveillance on the insights that can be gained
from the measurements, not on the
measurements themselves.

I.E.2 In-process Audits of SCM

Audits can be carried out during the devel opment
process to investigate the current status of
specific elements of the configuration or to
assess the implementation of the SCM process.
Inprocess auditing of SCM provides a more
formal mechanism for monitoring selected
aspects of the process and may be coordinated
with the SQA auditing function.

I1. Software Configuration Identification

The software configuration identification activity
identifies items to be controlled, establishes

7-6

126.
127.

128.
129.

130.
131.

132.

133.
134.

identification schemes for the items and their
versions, and establishesthe tools and techniques
to be used in acquiring and managing controlled
items. These activities provide the basis for the
other SCM activities.

[1.A Identifying Items to be Controlled

A first step in controlling change is to identify
the softwareitemsto be controlled. Thisinvolves
understanding the software configuration within
the context of the system configuration, selecting
software configuration items, developing a
strategy for labeling software items and
describing their relationships, and identifying the
baselinesto be used, along with the procedure for
abasdineg sacquisition of theitems.

I1.A.1 Software Configuration

A software configuration is the set of functional
and physical characteristics of software as set
forth in the technical documentation or achieved
in a product [IEEE 1042]. It can be viewed as a
part of an overall system configuration.

I1.A.2 Software Configuration Item

A software corfiguration item (SCI) is an
aggregation of software that is designated for
configuration management and is treated as a
single entity in the SCM process [|EEE 1042]. A
variety of items, in addition to the code itself, are
typicaly controlled by SCM. Softwere items
with potential to become SCls include plans,
specifications, testing materials, software tools,
source and executable code, code libraries, data
and data dictionaries, and documentation for
installation, maintenance, operations and
software use.

Selecting SClsis an important process that must
achieve a bdance between providing adequate
visibility for project control purposes and
providing a manageable number of controlled
items. A list of criteriafor SCI selectionisgiven
in [Berlack].

I1.A.3 Softwar e Configuration Item Relationships

The structura relationships among the selected
SCls, and their constituent parts, affect other
SCM ectivities or tasks, such as software
building or analyzing the impact of proposed
changes. The design of the identification scheme
for these items should consider the need to map
the identified items to the software structure as
well as the need to support the evolution of the
software items and their relationships.

© |EEE — Stoneman (Version 0.7) — April 2000

135.
136.

137.
138.

139.

140.
141.

I1.A.4 Software Versions

Software items evolve as a software project
proceeds. A version of a software item is a
particular identified and specified item. It can be
thought of as a date of an evolving item
[Conradi]. A revisionisanew version of anitem
that is intended to replace the old version of the
item. A variant isanew version of an item that
will be added to the configuration without
replacing the old version. The management of
software versions in various software
engineering environments is a current research
topic;, see [Conradi], [Esublier], and
[Sommerville, (39)].

I1.A.5 Basdline

A software baseline is a set of software items
formally designated and fixed at a specific time
during the software life cycle. The term is aso
used to refer to a particular version of asoftware
item that has been agreed upon. In either casg,
the basdline can only be changed through formal
change control procedures. A baseline, together
with al approved changes to the baseline,
represents the current approved configuration.

Commonly used baselines are the functional,
allocated, developmental, and product baselines.
The functional baseline corresponds to the
reviewed system requirements. The alocated
baseline corresponds to the reviewed software
requirements specification and softwareinterface
requirements specification. The developmental
baseline represents the evolving software
configuration a selected times during the
software life cycle. The product baseline
corresponds to the completed software product
delivered for systemintegration. The basdlinesto
be used for a given project, along with their
associated levels of authority needed for change
approval, aretypicaly identified in the SCMP.

I1.A.6 Acquiring Software Configuration Items

Software configuration items are placed under
SCM control at different times; i.e. they are
incorporated into a particular basdine a a
particular point in the software life cycle. The
triggering event is the completion of some form
of forma acceptance task, such as a formal
review. Figure 3 characterizes the growth of
baselined items as the life cycle proceeds. This
figureisbased on awaterfall model for purposes
of illustration only; the subscripts used in the
figure indicate versions of the evolving items.
The software change request (SCR) is described
insection 111.A.

© |EEE— Soneman (Version 0.7) — April 2000

142.

143.
144.

145.

146.

Requirements Design

Test Readiness Acceptance

Review Review Review
SRS, » SRS, »| SRS » SRS,
SDD, SDDg SDD,.
SCR control Code, Code
of SRS mods B
Test Test
Plans , Plansg
SCR control
of SRS, SDD User
mods SCR control Manual ,
of SRS, SDD,
Code, Test i
Plans Regression
Test DB,

Figure 3. Acquisition of Items

Following the acquisition of an SCI, changes to
the item must be formaly approved as
appropriate for the SClI and the basdine
involved. Following the approva, the item is
incorporated into the software baseline according
to the appropriate procedure.

I1.B Software Library

A software library is a controlled collection of
software and related documentation designed to
ad in software development, use, and
maintenance [IEEE 610]. It is aso instrumental
in software release and ddivery activities.
Severa types of libraries might be used, each
corresponding to aparticular level of maturity of
the software item. For example aworking library
could support coding, whereas a master library
could be used for finished products An
appropriate level of SCM control (associated
basdline and level of authority for change) is
associated with each library. Security, in terms of
access control and the backup facilities, is akey
aspect of library management. A modd of a
softwarelibrary is described in [Berlack].

Thetool(s) used for each library must support the
SCM control needs for that library, both in terms
of controlling SCls and controlling accessto the
library. At the working library level, this is a

code management capability serving devel opers,

maintainers and SCM. It is focused on managing
the versions of software items while supporting
the activities of multiple developers. At higher
levels of control, access is more restricted and

SCM isthe primary user.

These libraries are also an important source of
information for measurements of work and
progress.

147. 111. Software Configuration Control

148. Software configuration control is concerned with
managing changes during the software life cycle.
It covers the process for determining what
changes to make, the authority for approving
certain changes, support for the implementation
of those changes, and the concept of formal
deviations and wavers from project
requirements. Information derived from these
activities is useful in measuring change traffic,
breakage, and aspects of rework.

149. Il11.A. Reguesting, Evaluating and Approving
Software Changes

150. Thefirst step in managing changes to controlled
items is determining what changes to make. A
software change request (SCR) process (see
Figure 4) provides forma procedures for
submitting and recording change requests,
evaluating the potential cost and impact of a
proposed change, and accepting, modifying or
rejecting the proposed change. Requests for
changes to software configuration items may be
originated by anyone at any point in the software
life cycle. One source of change requests is the
initiation of corrective action in response to
problem reports. Regardless of the source, the
type of change (e.g. defect or enhancement) is
usudly recorded on the SCR. This provides an
opportunity for tracking defects and collecting
change activity measurements by change type.
Once an SCR is received, atechnical evaluation
(also known as an impact analysis) is performed
to determine the extent of modifications that
would be necessary should the change request be
accepted. A good understanding of the

Need for
Change

Change
identified with |e—
controlled item

Preliminary
—* Investigation

Rejected

Inform
Requester

CCB Review

| Approved
SCR generated

Assign to
Software ‘Emergency Path’
Engineer usually also exists.

Changes can be
Schedule implemented with
incomplete N ’ change process

design, test. performed afterward
complete change

complete '

Figure4. Flow of a Change Control Process
relationships among software items is important
for this task. Finaly, an established authority,
commensurate with the affected baseline, the SCI

7-8

151
152.

153.
154.

155.
156.

involved, and the nature of the change, will
evaluate the technical and managerial aspects of
the change request and either accept, modify or
reject the proposed change.

I11.A.1. Software Configuration Control Board

The authority for accepting or rejecting proposed
changes rests with an entity typically known as a
Configuration Control Board (CCB). In smaller
projects, this authority actually may reside with
the responsible leader or an assigned individua
rather than a multi-person board. There can be
multiple levels of change authority depending on
avariety of criteria, such asthe criticality of the
item involved, the nature of the change (eg.,
impact on budget and schedule), or the current
point in the life cycle. The composition of the
CCBs used for a given system varies depending
on these criteria (an SCM representative would
aways be present). All stakeholders, appropriate
to the level of the CCB, are represented. When
the scope of authority of a CCB is strictly
software, it is known as a softwar e configuration
control board (SCCB). The activities of the CCB
aretypically subject to SQA audit or review.

I11.A.2 Software Change Reguest Process

The software change request process requiresthe
use of supporting tools and procedures ranging
from paper forms and adocumented procedureto
an electronictool for originating change requests,
enforcing the flow of the change process,
capturing CCB decisions, and reporting change
process information. A link between this tool
capability and the problem reporting system can
facilitate the tracking of solutions for reported
problems. Change process descriptions and
supporting forms (information) are given in a
variety of references, eg. [Berlack] and [IEEE
1042]. Typically, change management tools are
taillored to local processes and tool suitesand are
often localy developed. The current trend is
towardsintegration of these kinds of toolswithin
a suite referred to as a software engineering
environment.

[11.B. Implementing Software Changes

Approved change requests are implemented
according to the defined software procedures.
Since a number of approved change requests
might be implemented simultaneoudy, it is
necessary to provide a means for tracking which
change requests are incorporated into particular
software versions and baselines. As part of the
closure of the change process, completed

© |EEE — Stoneman (Version 0.7) — April 2000

157.

158.
159.

160.

161.

162.
163.

changes may undergo configuration audits and
SQA verification. This includes ensuring that
only approved changes were made. The change
request process described dove will typicaly
document the SCM and other approva
information for the change.

The actud implementation of a change is
supported by the library tool capabilities that
provide version management and code repository
support. At a minimum, these tools provide
source file check-infout and associated version
control. More powerful tools can support parallel
development and geographicaly distributed
environments. These tools may be manifested as
separate specialized applicationsunder control of
an independent SCM group. They may dso
appear as an integrated part of the software
development environment. Findly, they may be
as elementary as the rudimentary change control
systems provided with many operating systems,
such asUNIX.

I11.C. Deviations and Waivers

The condraints imposed on a software
development effort or the specifications
produced during the development activities
might contain provisions that cannot be satisfied
at the designated point in the life cycle. A
devidtion is an authorization to depart from a
provision prior to the development of theitem. A
walver is an authorization to use an item,
following its development, that departs from the
provision in some way. In these cases, a forma
process is used for gaining approva for
deviaionsto, or waivers of, the provisions.

V. Software Configuration Status
Accounting

Software configuration status accounting (SCSA)
is the recording and reporting of information

needed for effective management of the software
configuration. The design of the SCSA capability
can be viewed from an information systems
perspective, utilizing accepted information
systems design techniques.

IV.A. Software Configuration Status | nfor mation

The SCSA activity designs and operates asystem
for the capture and reporting of necessary
information as the life cycle proceeds. Asin any
information system, the configuration status
information to be managed for the evolving
configurations must beidentified, collected, and
maintained. Various information and

© |EEE— Soneman (Version 0.7) — April 2000

164.

165.
166.

167.

168.

169.

measurements are needed to support the SCM
process and to meet the configuration status
reporting needs of management, software
engineering, and other related activities. The
types of information available include the
approved configuration identification as well as
the identification and current implementation
dstatus of changes, deviations and waivers. A
partia list of important data elementsisgivenin
[Berlack].

Some form of automated tool support is
necessary to accomplish the SCSA data
collection and reporting tasks. This could be a
database capability, such as a relationa or
object-oriented database management system.
This could be a stand-alonetool or acapability of
alarger, integrated tool environment.

IV.B. Software Configuration Status Reporting

Reported information can be used by various
organizational and project elements, including
the development team, the maintenance team,
project management, and quality assurance
activities. Reporting can take the form of ad hoc
gueries to answer specific questions or the
periodic production of pre-designed reports.
Some information produced by the status
accounting activity during the course of the life
cycle might become quality assurance records.

In addition to reporting the current status of the
configuration, the information obtained by SCSA
can serve as a basis for various measurements of
interest to management, development, and SCM.
Examples include the number of change requests
per SCI and the average time needed to
implement a change request.

V. Software Configuration Auditing

A software audit is an activity performed to
independently evaluate the conformance of
software products and processes to applicable
regulations, standards, guidelines, plans, and
procedures [IEEE 1028]. Audits are conducted
according to awell-defined process consisting of
various auditor roles and responsibilities.
Consequently, each audit must be carefully
planned. An audit can require a number of
individuals to perform a variety of tasks over a
fairly short period of time. Tools to support the
planning and conduct of an audit can greetly
facilitate the process. Guidance for conducting
software auditsisavailable in various references,
such as [Berlack], [Buckley], and [EEE 1028].

7-9

170.

171
172.

173.

174.

175.
176.

177.

178.

The software configuration auditing activity
determines the extent to which an item satisfies
the required functiona and physicd
characteristics. Informal audits of this type can
be conducted at key pointsin thelife cycle. Two
types of formal audits might be required by the
governing contract (e.g., in contracts covering
critical software): the Functional Configuration
Audit (FCA) and the Physica Configuration
Audit (PCA). Successful completion of these
audits can be a prerequisite for the establishment
of the product baseline. Buckley [5] contraststhe
purposes of the FCA and PCA in hardware
versus software contexts and recommends
careful evaluation of the need for the software
FCA and PCA before performing them.

V.A. Software Functional Configuration Audit

The purpose of the software FCA is to ensure
that the audited software item is consistent with
its governing specifications. The output of the
software verification and validation activitiesisa
key input to this audit.

V.B. Software Physical Configuration Audit

The purpose of the software PCA is to ensure
that the design and reference documentation is
consistent with the as-built software product.

V.C. In-process Audits of a Software Baseline

As mentioned above, audits can be carried out
during the development processto investigate the
current status of specific elements of the
configuration. In this case, an audit could be
applied to sampled basdline items to ensure that
performance was consistent with specification or
to ensure that evolving documentation was
staying consistent with the developing basdine
item.

V1. Software Release Management and
Ddlivery

Theterm “release” isused in thiscontext to refer
to the distribution of a software configuration
item outside the development activity. This
includesinternal releases as well as distribution
to customers. When different versions of a
software item are available for ddlivery, such as
versionsfor different platforms or versions with
varying capabilities, it is frequently necessary to
recreate specific versionsand packagethe correct
materias for delivery of the version. The
software library is a key eement in
accomplishing release and delivery tasks.

7-10

179.
180.

181.

182.

183.

184.
185.

VI.A. Software Building

Software building is the activity of combining
the correct versions of software items, using the
appropriate configuration data, into an
executable program for delivery to a customer or
other recipient, such as the testing activity. For
systems with hardware or firmware, the
executable is delivered to the system building
activity. Build instructions ensure that the proper
build steps are taken and in the correct sequence.
In addition to building software for new rel eases,
it is usualy also necessary for SCM to have the
capability to reproduce previous releases for
recovery, testing, or additional release purposes.

Software is built using particular versions of
supporting tools, such as compilers. It might be
necessary to rebuild an exact copy of a
previously built software item. In this case, the
supporting tools need to be under SCM control to
ensure availability of the correct versions of the
tools.

A tool capability is useful for selecting the
correct versions of software items for a given
target environment and for automating the
process of building the software from the
selected versions and appropriate configuration
data. For large projects with pardlé
development or distributed development
environments, this tool capability is necessary.
Most software development environments
provide this capability and it is usudly referred
to as the “make” facility (as in UNIX). These
tools vary in complexity from requiring the
engineer to learn a specialized scripting language
to graphics-oriented approaches that hide much
of the complexity of an “intelligent” build
facility.

The build process and products are often subject
to SQA verification.

VI.B Softwar e Rel ease Management

Software release management encompasses the
identification, packaging and delivery of the
elements of a product, for example, the
executable, documentation, release notes, and
configuration data. Given that product changes
can be occurring on a continuing basis, one issue
for release management is determining when to
issue a release. The severity of the problems
addressed by the release and measurements of
the fault densities of prior releases affect this
decison [Sommerville, (38)]. The packaging
task must identify which product items are to be
delivered and select the correct variants of those

© |EEE — Stoneman (Version 0.7) — April 2000

186.

187.

188.

189.

190.

items, given the intended application of the
product. The set of information documenting the
physica contents of a release is known as a
version description document and may exist in
hardcopy or electronic form. The release notes
typically describe new capabilities, known
problems, and platform requirements necessary
for proper product operation. The package to be
released aso contains loading or upgrading
instructions. The latter can be complicated by the
fact that some current users might have versions
that are severa releases old. Finadly, in some
cases, the release management activity might be
required to track thedistribution of the product to
various customers. An example would be a case
where the supplier was required to notify a
customer of newly reported problems.

A tool capability is needed for supporting these
release management functions. It is useful to
have a connection with the tool capability
supporting the change request processin order to
map rel ease contents to the SCRs that have been
received. This tool capability might aso
maintain information on various target platforms
and on various customer environments.

Rationale for the Breakdown

One of the primary goals of the Guide to the
SWEBOK is to arrive & a breskdown that is
‘generdly accepted’. Consequently, the
breakdown of SCM topicswas developed largely
by attempting to synthesize the topics covered in
the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on
Software Release Management and Ddlivery is
an exception since it has not commonly been
broken out separately in the past. The precedent
for this was set by the ISO/IEC 12207 standard
[23], which identifies a ‘Release Management
and Delivery’ activity.

There is widespread agreement in the literature
on the SCM activity areas and their key
concepts. However, there continues to be active
research on implementation aspects of SCM.
Examples are found in ICSE workshops on SCM
such as [Estublier] and [Sommerville, (39)].

The hierarchy of topics chosen for the
breakdown presented in this paper is expected to
evolve as the Guide to the SWEBOK review
processes proceed. A detailed discussion of the
rationale for the proposed breakdown, keyed to
the Guide to the SWEBOK devel opment criteria,
isgivenin Appendix B.

© |EEE— Soneman (Version 0.7) — April 2000

191. RECOMMENDED

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

REFERENCES
FOR SCM

Cross Reference Matrix

Table 1, in Appendix A, provides a cross
reference between the recommended references
and the topics of the breakdown. Note that,
where arecommended referenceisalso shownin
the Further Reading section, the cross reference
reflects the full text rather than just the specific
passage referenced in the Recommended
References.

Recommended References

Specific recommendations are made here to
provide additiona information on the topics of
the SCM breakdown.

W.A. Babich, Software Configuration
Management, Coordination for Team
Productivity [1] Pages 20-43 address the basics
of code management.

HR. Belack, Software Configuration
Management [2] See pages 101-175 on
configuration identification, configuration
control and configuration status accounting, and
pages 202-206 on libraries.

F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and
Firmware [5] See pages 10-19 on organizational
context, pages 21-38 on CM planning, and 228-
250 on CM auditing.

R. Conradi and B. Westfechtel, "Version Models
for Softwar e Configuration Management' [6] An
indepth article on verson models used in
software configuration management. It defines
fundamental concepts and provides a detailed
view of versoning paradigms. The versioning
characteristics of various SCM systems are
discussed.

SA. Dat, Spectrum of Functionality in
Configuration Management Systems [7] This
report covers features of various CM systems
and the scope of issues concerning users of CM
systems. As of this writing, te report can be
found on the Internet at:
http://www.sel .cmu.edu/about/website/search.ht
ml

Hoek, “ Configuration Management Yellow
Pages,” [13] This web page provides a current
compilation of SCM resources.

7-11

202.

203.

204.

205.

206.

207.

208.

209.

210.

211

http://ww.cs.colorado.edu/users/andre/configur
ation_management.html

IEEE/EIA Std 12207.0-1996, Software Life
Cycle Processes, [20] and IEEEEIA Sd
12207.1-1996, Software Life Cycle Processes -
Life Cycle Data, [21] These standards provide
the ISO/IEC view of software processes along
with specificinformation onlifecycledatakeyed
to software engineering standards of other
standards bodies.

|EEE Std.828-1990, | EEE Standard for Software
Configuration Management Plans[17] and IEEE
Std.1042-1987, |IEEE Guide to Software
Configuration Management [19] These standards
focus on SCM activities by specifying
requirements and guidance for preparing the
SCMP. These standards reflect commonly
accepted practice for software configuration
management.

AK. Midha "Software Configuration
Management for the 21st Century' [30] This
article discusses the characteristics of SCM
systems, assessment of SCM needs in a
paticular environment, and the issue of selecting
and implementing an SCM system. It isa current
case study on thisissue.

JW. Moore, Software Engineering Sandards, A
User’'s Road Map [31] Pages 118-119 cover
SCM and pages 194-223 cover the perspective of
the 12207 standards.

M.C. Paulk, et d., Key Practices of the
Capability Maturity Model [32] Pages 180-191
cover the SCM key process area of the SEI
CMM.

R.S. Pressman, Software Engineering: A
Practitioner’s Approach [36] Pages 209-226
address SCM in the context of a textbook on
softwareengineering.

Walker Royce Software Project Management, A
United Framework [37] Pages 188-202 and 283-
298 cover metrics of interest to software project
management that are closdly related to SCM.

I. Sommerville, Software Engineering [38] Pages
675696 cover SCM with an emphasis on
software building and release management.

Further Reading

The following set of references was chosen to
provide coverage of all aspects of SCM, from
various perspectives and to varying levels of
detail. The author and title are cited; the
complete reference is given in the References

712

212,

213.

214.

215.

216.

217.

218.

219.

section. Some items overlap with those in the
Recommended References since they cover the
full textsrather than specific passages.

W.A. Babich, Software Configuration
Management, Coordination for Team
Productivity [1] This text is focused on code
management issues from the perspective of the
devel opment team.

HR. Belack, Software Configuration
Management [2] Thistextbook providesdetailed,
comprehensive coverage of the concepts of
software configuration management. Thisis one
of the more recent texts with this focus.

F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and
Firmware [5] This text presents an integrated
view of configuration management for projects
in which software, hardware and firmware are
involved. It is a recent text that provides a view
of software configuration management from a
systems perspective.

J Edublier, Software Configuration
Management, ICSE SCM-4 and SCM-5
Workshops Selected Papers [10] These
workshop proceedings are representative of
current experience and research on SCM. This
reference is included with the intention of
directing the reader to the whole class of
conference and workshop proceedings.

The suite of IEEE/EIA and ISO/IEC 12207
standards, [20]-[24] These sandards cover
softwarelifecycle processesand address SCM in
that context. These standards reflect commonly
accepted practices for software life cycle
processes. Note - the developing ISO/IEC TR
15504 (SPICE99) expands on SCM within the
context of the | SO/IEC 12207 standard.

|IEEE Std.1042-1987, |EEE Guide to Software
Configuration Management [19] This standard
provides guidance, keyed to IEEE 828, for
preparing the SCMP.

JW. Moore, Software Engineering Sandards, A
User's Road Map [31] This text provides a
comprehensive view of current standards and
standards activities in the area of software
engineering.

M.C. Paulk, et da., Key Practices of the
Capability Maturity Model [32] This report
describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices
provides aview of SCM from a software process
assessment perspective.

© |EEE — Stoneman (Version 0.7) — April 2000

220.

221

222.

223.

224,

225.

226.

227.

228.

229.

230.

231.

232.

R.S. Pressman, Software Engineering: A
Practitioner’s Approach [36] Thisreference and
the Sommerville reference address SCM in the
context of atextbook on software engineering.

I. Sommerville, Software Engineering [38] This
reference and the Pressman reference address
SCM in the context of a textbook on software
engineering.

JP. Vincent, et a., Software Quality Assurance
[41] In this text, SCM is described from the
perspective of a complete set of assurance
processes for a software devel opment project.

D. Whitgift, Methods and Tools for Software
Configuration Management [43] Thistext covers
the concepts and principles of SCM. It provides
detailed information on the practical questions of
implementing and using tools. Thistext is out of
print but still availablein libraries.

REFERENCES

These references were used in preparing this
paper; the recommended referencesfor SCM are
listed in Section 3.1.

[1] W.A. Babich, Software Configuration
Management: Coordination for ~ Team
Productivity, AddisonWedey, Reading,
M assachusetts, 1986.

[2] H.R. Berlack, Software Configuration

Management, John Wiley & Sons, New
York, 1992.

[3] EH. Bersoff, "Elements of Software
Configuration Management”, Software
Engineering, M. Dorfman and RH.
Thayer ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997.

[4] EH. Besoff and A.M. Davis, "Impacts of
Life Cycle Models on Software
Configuration Management",
Communications of the ACM, Val. 34, no
8, August 1991, pp104-118.

[5] F.J Buckley, Implementing Configuration
Management: Hardware, Software, and

Firmware, Second Edtion, |EEE
Computer Society Press, Los Alamitos,
CA, 1996.

[6] R. Conradi and B. Westfechtel, "Version
Models for Software Configuration
Management,” ACM Computing Surveys,
Voal. 30, no 2, June 1998, pp. 232-282.

[71 SA. Dart, Spectrum of Functiondity in
Configuration Management Systems,

© |EEE— Soneman (Version 0.7) — April 2000

233.

234.

235.

236.

237.

238.

239.

240.

241.

242,

243.

244,

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Technical Report CMU/SEI-90-TR-11,
Software Engineering Ingtitute, Carnegie
Mellon University, 1990.

SA. Dat, "Concepts in Configuration
Management Systems," Proceedings of
the Third Internationa Workshop on
Software Configuration Management,
ACM Press, New York, 1991, ppl-18.

Khaed EI Emam, et d. SPICE, The
Theory and Practice of Software Process
Improvement and Capability
Determination, IEEE Computer Society,
Los Alamitos, CA, 1998.

J. Estublier, Software Configuration
Management, ICSE SCM-4 and SCM-5
Workshops Selected Papers, Springer-
Verlag, Berlin, 1995.

P.H. Feller, Configuration Management
Models in Commercia Environments,
Technicd Report CMU/SEI-91-TR-7,
Software Engineering Ingtitute, Carnegie
Mellon University, 1991.

R.B. Grady, Practica Software Metrics
for Project Management and Process
Improvement, Prentice-Hall, Englewook
Cliffs, NJ, 1992.

A. Hoek, “Configuration Management
Ydlow Pages,”
http://www.cs.col orado.edu/users/andre/
configuration_management.html

W.S. Humphrey, Managing the Software
Process, Addison-Wedey, Reading, MA,
19809.

IEEE $td.610.12-1990, |EEE Standard
Glossary of Software Engineering
Terminology, |EEE, Piscatawvay, NJ,
1990.

IEEE $td.730-1998, |IEEE Standard for
Software Quality Assurance Plans, |EEE,
Piscataway, NJ, 1998.

IEEE $td.828-1998, |IEEE Standard for
Software Configuration Management
Plans, |IEEE, Piscataway, NJ, 1998.

IEEE Std.1028-1997, |IEEE Standard for
Software Reviews, |EEE, Piscataway, NJ,
1997.

IEEE $d.1042-1987, |EEE Guide to
Software Configuration Management,
|EEE, Piscataway, NJ, 1987.

7-13

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

7-14

IEEE/EIA Std 12207.0-1996, Software
Life Cycle Processes, |EEE, Piscataway,
NJ, 1996.

IEEE/EIA Std 12207.1-1996, Guide for
Software Life Cycle Processes — Life
Cycle Data, |IEEE, Piscataway, NJ, 1996.

IEEE/EIA Std 12207.2-1996, Guide for
Software Life Cycle Processes —

Implementation Considerations, |EEE,
Piscataway, NJ, 1996.
ISO/IEC 12207:1995(E), Information

Technology - Software Life Cycle
Processes, | SO/IEC, Geneve, Switzerland,
1995.

ISO/IEC TR 15846:1998, Information
Technology - Software Life Cycle
Processes - Configuration Management,
ISO/IEC, Geneve, Switzerland, 1998.

ISO/DIS 9004-7 (now ISO 10007),
Quality Management and Quality System
Elements, Guidelines for Configuration
Management, International Organization
for Standardization, Geneve, Switzerland,
1993.

P. Jalote, An Integrated Approach to
Software Engineering, Springer-Verlag,
New York, 1997

John J. Marciniak and Donald J. Reifer,
Software Acquisition Management,
Managing the Acquisition of Custom
Software Systems, John Wiley & Sons,
1990.

JJ. Marcinigk, "Reviews and Audits"
Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997.

K. Mesar, "Software Configuration
Management Terminology,” Crosstalk,
1995, http://www.stsc.hill.af.mil/crosstalk
/1995/jan/terms.html, February 1999.

A.K. Midha "Software Configuration
Management for the 21st Century," Bell
Labs Technical Journal, Winter 1997.

JW. Moore, Software Engineering
Standards, A User's Roadmap, |EEE
Computer Society, Los Alamitos, CA,
1998.

M.C. Paulk, et al., Key Practices of the
Capability Maturity Moddl, Version 1.1,
Technica Report CMU/SEI-93-TR-025,
Software Engineering Institute, Carnegie
Méellon University, 1993

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

[33]

[34]

[35]

[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

M.C. Pailk, e d. The Capability

Maturity Model, Guidelines for
Improving the Software Process,
Addison-Wedley, Reading,

M assachusetts, 1995.

S.L. Pfleeger, Software Engineering:
Theory and Practice, Prentice Hall, Upper
Saddle River, NJ, 1998

R.K. Port, "Software Configuration
Management ~ Technology Report,
September 1994, http://www.stsc.hill.&f.
mil/cm/REPORT .html, February 1999.

R.S. Pressman, Software Engineering: A
Practitioner's Approach, McGraw-Hill,
New York, 1997.

Waker Royce, Software Project
Management, A United Framework,
Addison-Wedley, Reading,
Massachusetts, 1998.

I. Sommerville, Software Engineering,
Fifth Edition, Addison-Wedey, Reading,
Massachusetts, 1995.

I. Sommerville, Software Configuration
Management, ICSE SCM-6 Workshop,
Selected Papers, Springer-Verlag, Berlin,
1996.

USNRC Regulatory Guide 1.169,
Configuration Management Plans for
Digital Computer Software Used in
Safety Systems of Nuclear Power Plants,
U.S. Nuclear Regulatory Commission,
Washington DC, 1997.

JP. Vincent, et a., Software Quality
Assurance, Prentice-Hdl, Englewood
Cliffs, NJ, 1988.

W.G. Vincenti, What Engineers Know
and How They Know It, The Johns
Hopkins University Press, Baltimore,
MD, 1990.

D. Whitgift, Methods and Tools for
Software Configuration Management,
John Wiley & Sons, Chichester, England,
1991.

© |EEE — Stoneman (Version 0.7) — April 2000

269. APPENDIX A. CROSS REFERENCE TABLE
270. Table 1. Coverage of the Breakdown Topics by the Recommended References

Babich
Berlack
Buckley
IConradi

Dart

Hoek

IEEE 828
IEEE/EIA 12207
Midha
Moore
Paulk
Pressman
Royce
ISommerville

I. Management

I.A. Org. Context

>
x
>
x
x

|.B Constraints

I.C Planning
I.C.1 Org. & Resp.
I.C.2 Resources & Sched.
I.C.3 Tool Selection
I.C.4 Vendor Control
I.C.5 Interface Control

1.D SCM Plan

X XXX XXX X
X X X X X X X X
x
x
x
X X XXX XXX X
x
x
X X X

|.E Surveillance
|.E.1 Metrics/Meas.
I.E.2 In-Process Audit

x

x

X X X X
x

II. SW Config Identification

[I.A Identifying Items
11.LA.1 SW Configuration
II.LA.2 SW Config. Item
11.A.3 SCI Relationships
11.A.4 Software Versions X
II.LA.5 Baselines X
II.A.6 Acquiring SCls X

> X X X X
x X X X
X X X
X X X X X X
X X X X X

I1.B Software Library X X X X X X X
(SCM Library Tool) X X X X X X X

x

© |EEE— Soneman (Version 0.7) — April 2000 7-15

271

Table 1. Coverage of the Breakdown Topics by the Recommended References(cont.)

Babich

Berlack

Buckley

Conradi

Hoek

IEEE 828
IEEE/EIA 12207
Moore

Royce

I1l. SW Configuration Control

III.A Requesting Changes
I1.LA.1 SW CCB
(Change Mgmt Tool)
I1.LA.2 SW Change Process

[11.B Implementing Changes
(Change Cntl Tool)
I1I.C Deviations & Waivers

X X

x X

X [Dart

X X X X
xX X
X X X [Midha
X X X |Paulk
e X X X [Pressman

x
x

x
x
X X X X X X X [Sommerville

x X

IV. SW Config Status Acctg

IV.A. Status Information
(CSA Tool)

IV.B Status Reporting

V. SW Configuration Audit
V.A Functional Config Audit
V.B Physical Config Audit
V.C In-Process Audit

X X X X

X X X X [X

X X X X [X
X X X X

VI. SW Release Mgmt & Del

VI.A SW System Building
(SW Build Tools)

VI.B SW Release Mgmt

(SW Release Tool)

>
X XX X

7-16

© |EEE — Stoneman (Version 0.7) — April 2000

272. APPENDIX B. RATIONALE DETAILS

273.

274.
275.
276.
277.

278.
279.

280.

281.

282.

Criteria are defined in Appendix A of the entire
Guide.

Criterion (a): Number of topic breakdowns
One breakdown is provided.
Criterion (b): Reasonableness

The breakdowns are reasonable in that they cover
the areas typicaly discussed in texts and
standards, athough there is somewhat less
discussion of release management as a separate
topic. In response to comments on version 0.5 of
the paper, thetool discussion under ‘ Planning for
SCM’ has been expanded. The various tool
subheadings used throughout the text have been
removed (so they do not appear as topics),
however, the supporting text has been retained
and incorporated into the next higher level
topics.

Criterion (c): Generally Accepted

The breakdowns are generally accepted in that
they cover the areas typicaly discussed in texts
and standards.

At level 1, the breakdown is identical to that
givenin IEC 12207 (Section 6.2) except that the
teem “Management of the Software
Configuration Management Process’ was used
instead of “Process Implementation” and the
term “Software Configuration Auditing” was
used instead of “Configuration Evauation.” The
typical texts discuss Software Configuration
Management Planning (our topic A.3); We have
expanded this to a “management of the process’
concept in order to capture related ideas
expressed in many of the referencesthat we have
used. These ideas are captured in topics A.1
(organizational context), A.2 (constraints and
guidance), and A.4 (surveillance of the SCM
process). A similar comparison can aso be made
to [Buckley] except for the addition of “ Software
Release Management and Delivery.”

We have chosen to include the word “ Software”
as aprefix to most of the configuration topics to
distinguish the topics from hardware CM or
system level CM activities. We would reserve
“Configuration Management” for system
purposes and then use HCM and SCM for
hardware and software respectively.

The topic A.l, “Software Configuration
Management Organizational Context,” covers

© |EEE— Soneman (Version 0.7) — April 2000

283.

284.
285.

286.

287.
288.

289.

key topics addressed in multiple texts and
articles and it appears within the level 1 headings
consistently with the placement used in the
references. This new term on organizationa
context was included as a placeholder for
capturing three concepts found in the references.
Firg, [Buckley] discusses SCM in the overall

context of a project with hardware, software, and
firmware elements. We believe that thisisalink
to a related discipline of system engineering.

(This is similar to what IEEE 828 discusses
under the heading of “Interface Control”).
Second, SCM is one of the product assurance
processes supporting a project, or in IEC 12207
terminology, one of the supporting lifecycle
processes. The processes are closdly related and,
therefore, interfaces to them should be
considered in planning for SCM. Finaly, some
of the tools for implementing SCM might be the
same tools used by the developers. Therefore, in
planning SCM, there should be awareness that
the implementation of SCM is strongly affected
by the environment chosen for the devel opment
activities.

Theinclusion of the topic “ Release Management
and Délivery” is somewhat controversia since
the mgjority of texts on software configuration
management devote little or no attention to the
topic. We believe that most writers assume the
library function of configuration identification

would support release management and delivery
but, perhaps, assume that these activities are the
responsibility of project or line management. The
IEC 12207 standard, however, has established

this as a required area for SCM. Since this has
occurred and since this topic should be
recognized somewhere in the overall description
of software activities, “ Rel ease Management and
Delivery” has been included.

Criterion (d): No Specific Application Domains

No specific application domains have been
assumed.

Criterion (e): Compatiblewith Various Schools
of Thought

SCM concepts arefairly stable and mature.

Criterion (f): Compatible with
Literature, and Standards

Industry,

The breskdown was derived from the literature
and from key standards reflecting consensus

7-17

290.
291.

292.

293.

294.

295.

296.

297.

298.
299.

300.

opinion. The extent to which industry
implements the SCM concepts in the literature
and in standards varies by company and project.

Criterion (g): AslInclusive as Possible

Theinclusion of theleved 1 topic on management
of SCM expands the planning concept into a
larger areathat can cover al management-related
topics, such as surveillance of the SCM process.
For each level 1 topic, the level 2 topics
categorize the main areas in various references
discussions of the level 1 topic. These are
intended to be general enough to alow an open
ended set of subordinate level 3 topics on
specificissues. Thelevel 3 topicscover specifics
found in the literature but are not intended to
provide an exhaustive breakdown of the level 2
topic.

Criterion (h): Themes of Quality, Tooals,
Measurement, and Standards

The relationship of SCM to product assuranceis
provided for in the breakdowns. The description
will dso convey the role of SCM in achieving a
consistent, verified, and validated product.

A number of level 3 topics were included
throughout the breakdown in order to call
attention to the types of tool capabilitiesthat are
needed for efficient work within the areas
described by particular level 1 and leved 2 topics.
These are intended to address capabilities, not
specific toals; i.e. onetool may perform severa
of the capabilities described. These topics may
not be significant enough to stand aone; if not,
we would combine the discussion and placeit in
the management section or includethediscussion
in the higher level topic. One or more references
on the subject of tool selection will be listed.

A similar approach was taken toward the use of
measures.

Standards are explicitly
breakdowns.

included in the

Criterion (i): 2to 3 levels, 5 to 9 topics at the
first level

The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names Meaningful Outside
the Guide

For the most part, we believe this is the case.
Some terms, such a “Baselines’ or “Physical
Configuration Audit” require some explanation
but they are obviously the terms to use since
appear throughout the literature.

7-18

301.

302.

303.

304.

Criterion (1): Topics only sufficiently described
to allow reader to select appropriate material

We believe this has been accomplished. We have
not attempted to provide atutorial on SCM.

Criterion (m): Text on the Rationale Underlying
the Proposed Breakdowns

This document providesthe rationale.

© |EEE — Stoneman (Version 0.7) — April 2000

CHAPTER 8
SOFTWARE ENGINEERING M ANAGEMENT

Stephen G. MacDondl and Andrew R. Gray
University of Otago, Dunedin, New Zedand
+64 3 479 8135 (phone) +64 3 479 8311 (fax)
stevemac@infoscience.otago.ac.nz

TABLE OF CONTENTS
1. INTRODUCTION
2. DEFINITION OF KNOWLED GE AREA

3. BREAKDOWN OF TOPICS

3.1 Life-cycde breskdown
3.2 Topic-basad bregkdown

4. BREAKDOWN RATIONALE
4.1 Life-cycle breskdown

4.2 Topic-based breskdown
5. MATRIX OF TOPICS VS, REFERENCE
MATERIAL

6. RECOMMENDED REFERENCES
7. List oF FURTHERREADINGS

8. REFERENCES USED TO WRITE AND JUSTIFY
THE DESCRIPTION

9. GLOSSARY
10. REFERENCES

1. INTRODUCTION

This is the current draft (version 0.7) of the
Knowledge Area description for Software
Engineering Management. The primary gods of
this draft areto:
1. define the Software
Management Knowledge Area,

2. present two aternative breakdowns of the
knowledge aea in hierarchica topic
frameworks,

3. providethetopic-reference matrix,

4. list the three classes of references
(recommended, further readings, and those
used in preparing this document).

A draft glossary (without definitions) isincluded.
We have found considerable differences in
definitions amongst the reviewers and fed that
such a glossary, either for this document or al
Knowledge Area documents, is essential.

Engineering

© |EEE— Soneman (Version 0.7) — April 2000

8.

10.

11.

12.

13.

14.

2. DEFINITION OF KNOWLEDGE
AREA

The Software Engineering Management
Knowledge Area addresses the management of
software development projects and the
measurement and modeling of such projects.
While measurement is an important aspect of all
Guide to the SWEBOK Knowledge Aress, it is
here that the topic is most focused, particularly
with regard to issues involved in mode
development and testing.

There is considerable overlap with other
Knowledge Aress, and reading the following
Knowledge Area documents along side this one
may be useful. Material is not duplicated here
that is covered in these separate documents. Of
course all Knowledge Area documents share
some commonalties with this one, these are
simply those with more obvious and extensive
overlap.

Software Quality, asquality isconstantly agoa
of management and involves many activities
that must be managed.

Software Testing, where this is a managed
phase in the development process and with
regard to qudlity.

Software Engineering Process, where these
activitiesmust be managed.

As alluded to above, the Software Engineering
Management knowledge area consists of both the
measurement/metrics and management process
sub-areas. Whilst these two topics are often
regarded (and generdly taught) as being
separate, and indeed they do possess many
mutually unique aspects, their close relationship
has led to their combined treatment here as part
of the Guide to the SWEBOK. In essence,
management without measurement-qualitative
and quantitative-suggests a lack of rigor, and
measurement without management suggests a
lack of purpose or context. In the same way,

8-1

15.

16.

17.

18.

however, management and measurement without
expert knowledge is equally ineffectual so we
must be careful to avoid overemphasizing the
quantitative aspects of Software Engineering
Management. Effective management requires a
combination of both numbers and stories.

The following working definitions are used in
this document.

Measurement/metrics refersto the assignment
of values and labels to aspects of software
development (products, processes, and
resources as defined by [Fenton and Pfleeger,
1997]) and the models that may be derived
therefrom whether these models are devel oped
using statistical, expert knowledge, or other
techniques.

Management process refers to the activities
that are undertaken in order to ensure that the
software development process is performed in
a manner consistent with the organization's
policies, goas, and requirements.

The management process sub-area makes (in
theory a least) extensive use of the
measurement/metrics sub-area-idedly this
exchange between the two sub-areas occurs
continuously throughout the software
development processes.

19. 3. BREAKDOWN OF TOPICS

20.

21.

It isimmediately apparent that there are severd
different ways of looking a the breakdown of
topics in this Knowledge Area, and between
ourselves and reviewer comments we have
selected just two: a life-cycle approach and a
topic-based approach. Each is discussed in this
section in turn and the following section
discusses the justification of each. In both cases
the management and measurement sub-topicsare
separated which will no doubt please many of the
reviewers whilst not troubl ing those happy with
the combination of these in the one Knowledge
Area,

In many ways these two breskdowns
complement each other, providing different
perspectives on the same ideas which may be
beneficial to students and practitionersalike. The
latter top c-based breakdown may be especialy
useful for those who disagree with the topics
included and wish to produce more focused
courses, for example, simply covering software
project management in a minimalist fashion
without dealing with measurement and metric
issues or more genera management topics. It

82

22.

23.
24,

25.

26.

27.

28.
29.

30.
31
32.
33.
34.

35.

36.
37.
38.

39.
40.
41.

42.

43.

44,
45,
46.
47.

48.
49.

may aso prove to be more suitable for smaller
organizations who wish to concentrate on
particular aspects of the breakdown as opposed
to the approach inits entirety.

3.1 Life-cycle breakdown

1. Measurement

1. Determining the goals of a measurement
program
1. Organizational objectives (broad
i ssues)
2. Software process improvement goas
(specific issues)
3. Determining specific measurement
gods
2. Measuring software and its devel opment

1. Size measurement (for example, lines
of code)

2. Complexity measurement
3. Performance measurement
4. Resource measurement

3. Selection of measurements

1. The Goal/Question/Metric approach (as
an example)

2. Other metric frameworks (such as
Practical Software Measurement (PSM))

3. Measurement validity (scales)
4. Collection of data (ongoing)
1. Survey techniques and questionnaire
design
2. Automated and manual data collection
5. Software metric models

1. Mode building, calibration and
evaluation

2. Implementation, interpretation and
refinement of models

3. Existing models (examples as case
studies)

2. Organizational management and coordination
1. Portfolio management
1. Strategy development and coordination

2. Generd investment management
techniques

3. Project selection

4, Portfolio construction (risk

minimization and value maximization)

© |EEE — Stoneman (Version 0.7) — April 2000

50.
51.
52.
53.
54.
55.
56.

57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

2. Acquisition decisions and management
1. Vendor management
2. Subcontract management
3. Policy management
1. Standards
2. Means of policy development

3. Policy dissemination and
enforcement

4, Personngl management (ongoing)
1. Hiring and firing
2. Training and motivation

3. Directing personnel career
devel opment

4. Team structures

5. Communication (ongoing)
1. Meeting procedures
2. Written presentations
3. Ord presentations
4. Negotiation

3. Initiation and scope definition

1. Collection and negotiation of requirements
1. Requirements analysis management
2. Use cases (as an example)
2. Proposal construction
3. Feasihility analysis (ongoing)
1. Technical feasihility
2. Financid feasibility
3. Socia/political feasibility
4. Process for the revision of requirements
5. Iterative development (ongoing)

1. Low fidelity prototyping (as an
example)

2. Prototype evolution

4. Planning

1. Risk management (ongoing)

1. Risk analysis

2. Critical risk assessment

3. Techniques for modeling risk

4. Contingency planning

5. Project abandonment policies
2. Process planning

1. Life-cycleapproach

© |EEE— Soneman (Version 0.7) — April 2000

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.
128.
129.
130.

2. Methodologies
3. Standards
4. Planning techniques
1L GANTT
2. PERT
3. Toolsfor supporting planning
3. Determine deliverables
4, Quality management (ongoing)
1. Defining quality
2. Quality control and assurance
5. Schedule and cost estimation
1. Effort estimation
2. Task dependencies
3. Duration estimation
6. Resource allocation
1. Equipment and facilities
2. People
7. Task and responsibility alocation
8. Implementing a metrics process

5. Enactment

1. Implementation of plan
2. Monitor process
1. Reporting
2. Variance anaysis
3. Control process
1. Change control
2. Configuration management
3. Scenario analysis
4. Feedback
1. Reporting
2. Problem detection
3. Crisisidentification

6. Review and evaluation

1. Determining satisfaction of requirements
1. User review
2. Veification
3. Vdidation
2. Reviewing and evaluating performance
1. Personnel performance
2. Tool and technique evaluation
3. Process assessment

7. Project close out (closure)

83

131.
132.
133.
134.
135.
136.
137.
138.
139.

1. Determining closure

2. Archival activities
1. Measurement database
2. Organizationd learning-lessons|earned
3. Duration of retention

8. Post-closure activities
1. Maintenance
2. System retirement

Thetopicsarenot listed strictly intemporal order
since there are in fact three somewhat distinct

processes being performed here, namdy

measurement/metrics, coordination, and the
management process. Figure 1 shows this more
clearly. Wehavedecided to treat thefirst process
asthe actua activity of developing and releasing
models, and the second and third as the usage of

those pre-existing models in coordination and

management activities. Thisis discussed in more
detail later in the document.

© |EEE — Stoneman (Version 0.7) — April 2000

Initiation and scope definition

Measurement

Software metrics models

1 Collection and negociation of requirements

Proposal construction
Feasibility analysis (ongoing)

| Process for the revision of requirements

| Iterative development (ongoing)

Planning

| Determining the goals of a measurement program

| Measuring software and its development |

Selection of measurements

Building and calibration
Implementation

}' Collection of data from systems and documents (ongoing)

f

Refinement

140. Figure 1. Software engineering management flowchart

Risk management (ongoing)
Process planning
Determining deliverables

| Quality management (ongoing) |

Existing models

© |EEE— Soneman (Version 0.7) — April 2000

P Schedule/cost estimation
Resource allocation

| Task/responsability allocation |

| Implementating a metrics process |

Enactement

Review and evaluation

| Determining satisfaction of requirements

| Reviewing and evaluation performance |

Close out

Determining closure
Archival activities
Post-closure activities

Start of
project

Completion
of project

Organizational management and contribution

Portfolio management

| Acquisition decisions and management

Policy management

| Personnel management (ongoing) |

Communication (ongoing)

85

141. 3.2 Topic-based breakdown

142.

143.

144.
145.

146.
147.
148.
149.
150.

151.

152.
153.
154.

155.
156.
157.

158.

159.

160.
161.
162.
163.
164.
165.
166.

167.

168.

This is a more recently created outline,
containing the same topics as the life-cycle
breakdown, but organized according to what we
see as common themes. This remains quite
similar to the life-cycle breakdown since
obvioudly life-cycle stages have some inherent
cohesion.

1. Mathematical, statistical, and model building
topics
1. Measuring software and its devel opment

1. Size measurement (for example, lines
of code)

2. Complexity measurement
3. Performance measurement
4. Resource measurement

2. Selection of measurements

1. The Goal/Question/Metric approach (as
an example)

2. Other metric frameworks (such as
Practical Software Measurement (PSM))

3. Measurement validity (scales)
3. Collection of data (ongoing)
1. Survey techniques and questionnaire
design
2. Automated and manual data collection
4. Software metric models

1. Mode building, cdlibration and
evauaion

2. Implementation, interpretation and
refinement of models

3. Existing models (examples as case
studies)

5. Schedule and cost estimation
1. Effort estimation
2. Task dependencies
3. Duration estimation

6. Implementing a metrics process

2. Software engineering management topics

1. Determining the goas of a software

measurement program
1. Organizationd objectives (broad
issues)
2. Software process improvement goals
(specific issues)

169.

170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.

181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.

202.
203.

204.
205.
206.
207.

3. Determining specific measurement
gods

2. Collection and negotiation of requirements
1. Requirements analysis management
2. Use cases (as an example)
3. Proposal construction
4. Feasibility analysis (ongoing)
1. Technical feasihility
2. Financial feasihility
3. Socia/political feasibility
5. Process for the revision of requirements
6. Iterative devel opment (ongoing)

1. Low fiddity prototyping (as an
example)

2. Prototype evolution
7. Process planning
1. Life-cycle approach
2. Methodologies
3. Standards
8. Determine deliverables
9. Control process
1. Change control
2. Configuration management
3. Scenario analysis
10. Determining satisfaction of requirements
1. User review
2. Verification
3. Vadidation
11. Post-closure activities
1. Maintenance
2. System retirement

3. Management topics

1. Portfolio management
1. Strategy development and coordination

2. Generd investment management
techniques

3. Project selection

4, Portfolio construction (risk
minimization and value maximization)

2. Acquisition decisions and management
1. Vendor management
2. Subcontract management

3. Policy management

© |EEE — Stoneman (Version 0.7) — April 2000

208.
209.
210.
211.
212.
213.
214.

215.
216.
217.
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241,
242.
243.
244,
245.
246.
247.
248.

1. Standards

2. Means of policy development

3. Palicy dissemination and enforcement
4, Personnel management (ongoing)

1. Hiring and firing

2. Training and motivation

3. Directing personnel
devel opment

4. Team structures
5. Communication (ongoing)

1. Meeting procedures

2. Written presentations

3. Oral presentations

4. Negotiation
6. Risk management (ongoing)

1. Risk analysis

2. Critical risk assessment

3. Techniques for modeling risk

4. Contingency planning

5. Project abandonment policies
7. Planning techniques

1. GANTT

2. PERT

3. Toolsfor supporting planning
8. Quality management (ongoing)

1. Defining quality

2. Quality control and assurance
9. Resource allocation

1. Equipment and fecilities

2. People
10. Task and responsibility alocation
11. Implementation of plan
12. Monitor process

1. Reporting

2. Vaiance anaysis
13. Feedback

1. Reporting

2. Problem detection

3. Crisisidentification
14. Reviewing and evaluating performance

1. Personnel performance

2. Tool and technique evaluation

career

© |EEE— Soneman (Version 0.7) — April 2000

249,
250.
251.
252.
253.
254,

3. Process assessment
15. Determining closure
16. Archival activities
1. Measurement database
2. Organizationd learning-lessonslearned
3. Duration of retention

255. 4. BREAKDOWN RATIONALE

256. 4.1 Life-cycle breakdown

257.

258.

259.

260.

It isimportant to note that we have not based this
breakdown (or the topic-based breakdown) on

existing breakdowns per se. While these have
provided inspiration, we have amed for
consistency and completenessrather then picking
our favorite hierarchy of topics.

This outline is, as we have said, very much a
"life-cycle" based breakdown. Topics tend to
appear in the same order as their associated
activities are enacted in a software development
project-with the obvious exceptions of the
Organizationd management and coordination
topics and the measurement/metrics sub-area
which encompass the entire pocess. Many of
these stagesare alsoiterative, especially planning
and development when prototyping. Any
ongoing activities, such as risk management and
qudity management, are indicated as such
(although this obviously depends on the specific
developmert and management processes used).

In severa places quite specific techniques are
listed, such as Function Point Andysis and the
Goa/Question/Metric approach. This generally
indicates that the technique is suggested as being
agood tutorial/case-study example of the overall
concept, rather than a crucial topic to be
mastered. Other specific techniques could be
used to replace these if desired.

Within the measurement/metrics sub-area five
main subtopics are addressed: measurement
program goas, fundamental measurement,
measurement selection, data collection and
model development and use. The first four
subtopics are primarily concerned with the actual
theory and purpose behind measurement and
address issues such as measurement scales and
measure selection (such as by GOM). The
collection of measuresisincluded as an issue to
be addressed here. This involves both technica
issues (automated extraction) and human issues
(questionnaire design, responses to
measurements being taken). The fifth subtopic

87

261.

(software metric models) is concerned with the
task of building models using both data and
knowledge. Such models need to be evauated
(for example, by testing their performance on
holdout samples) to ensure that their levels of
accuracy are sufficient and that their limitations
are known. The refinement of models, which
could take place during or after projects are
completed is another activity here. The
implementation of metric models is more
management-oriented since the use of such
models has an influential effect on the subject's
(for want of a better word) behavior. (Note: We
have continued to use the common terminology
(in software engineering circles) of software
metrics here, rather than limiting ourselves to
measurement. We recognize that this could lead
to some confusion with engineers familiar with
the empiricad model-building process from
another discipline, necessitating careful wording.
The dternative of usng more sandard
terminology however, whilst well intentioned,
would make less obvious the connection between
this work and many excellent papers and books
(including Fenton and Pfleeger's seminad work
[Fenton and Pfleeger, 1997]). On the other hand
Zuse's excellent book [Zuse, 1997] does include
"measurement” in the title rather than "metrics'.
Hereit seemsthat the best solution isto use both
sets of expressions in a somewhat
interchangeable manner so that practitioners are
familiar with both.)

In the management process sub-area the notion
of management "in thelarge” is considered in the
coordination topic, addressing issues including
portfolio development and management, project
sdection and system acquisition, the
development and implementation of policies,
personnel management, and communication. The
remaining topics then correspond (roughly) to
stagesin the project development lifecycle. First
istheinitiation and scope-definition topic, which
covers the management of the reguirements,
gathering process and the specification of
procedures and methods for their revision.
Feashility andysis is included as part of this
topic even though this is an ongoing activity.
Here the focus is on high-level feasibility, asin
"is it possible". Feasibility may well be
determined by reference to some formal model.
Planning is the next set of activities for a
software-engineering manager. Management of
risk is included here, as is planning for the
process(es) used. Ongoing quality management

262.

263.
264.

265.

266.

267.

is begun at this point. The tasks of schedule and
cost estimation also fall within thistopic. Given
schedule egimates it is possible to perform
resource then task allocation. Responsibilities
need to be alocated and quality control
procedures implemented. The outcome of this
stage would be a series of plans. These plans are
then put into action in the enactment topic. The
project must then be monitored for deviations
and corrective actions may be taken. Change
control and configuration management are
important activities at this stage in the process.
The timeliness and format of reports is aso
important if feedback is to be successful. The
review topic involves determining that the
requirements have indeed been satisfied by the
system. Performance assessment, of individuals,
tools, techniques and processes is necessary for
performance improvement and as part of the
organization's learning process. Findly, the
project needs to be closed and all useful
information securely recorded. These archival
activities are often neglected in both practice and
education so we would like to emphasize their
necessity for supporti ng ameasurement program.

The above breakdown of topics is based on a
divison into measurement/metrics and
management processes. The former refersto the
actua creation of modeds, which can then be
used as part of the latter. These activities may be
performed by the same person, but they could
then be seen to be "wearing different hats."

4.2 Topic-based breakdown

This contains the same topics as the life-cycle
breakdown, but organizes them according to
three broad topic areas. mathematical, statistical,
and model building topics; software engineering
management topics, and management topics.
This breskdown may be more useful for partia
or more specific courses, etc.

Thesamejustificationsfor thetopicsare used for
thelife-cycle approach aso apply here.

5. MATRIX OF
REFERENCE MATERIAL

TOPICS VS

The level of granularity used in Table 1 is a
mixture of second and third level topics,
depending on the specificity of the topic in
question. The topics are in the order given in the
life-cycle breakdown.

© |EEE — Stoneman (Version 0.7) — April 2000

268.

269.
270.

271
272.

273.
274,
275.
276.

277.

278.
279.
280.

281.
282.
283.
284.
285.
286.
287.

288.
289.
290.
291
292.
293.
294.
295,
296.

297.
298.
299.

300.

301.
302.
303.

304.
305.

306.

Topic

Reference (sections and pages)

Determining the goal's of a measurement program

3.2, 83-95; 13.1:136, 464-483; 14.1-14.4, 487-514 [Fenton and
Pfleeger, 1997]

Size measurement

774, 224-767 [Ferton and Priesger, 1997]

Complexity measurement

7.5, 267-275 [Fenton and Pfleeger, 1997] 8.2.2.1- 8.2.2.3, 293-296
[Fenton and Pfleeger, 1997]

Performance measurement 7.5, 267-275 [Fenton and PfTeeger, 1997]

Resource measurement 3.1.3, 82-83 [Fenton and Pfleeger, 1997] 15.3, 529- 531 [Fenton and
Pfleeger, 1997]

God/Question/Mefric 3.2, 83-95 [Fenton and Pfleeger, 1997]

Measurement validity (scaes)

2728, 42-55 [ZUss, 1997

Survey techniques and questionnaire design

T, TI8-I75 [Fenton and Prieeger, 1997]

Data collection

1.33, 16-17 [Fenton and Pfleeger, 1997] 5.3-5.5, 169-180 [Fenton
and Pfleeger, 1997] 30.5.1, 626-627 [Sommerville, 1996]

Modd building and caibraiion

6.26.3, 190-215 [Fenton and Prleeger, 1997]3.3, 98-113 [Pflesger,
1998]

Model evauation

33, 98- T13 [Pieage, 1999

Tmplementation of modds

6, 95-97 [Pressman, 1997]

Tnierpretaiion of models

6.26.3, 190-215 [Ferton and Plleager, 1997]3.3, 98-113 [Pilesger,
1998]

Function Point Andlys's

4.3.2-4.3.3, 85-90; 4.4,90-92; 5.7.1, 120- 121 [Pressman, 1997]

COCOMO

5.7.1-5.7.2, T20- 124 [Pressman, 1997]

Portfolio management

Still seeking an appropriatereference

Vendor management

12, 14-15 [Prlesger, 1998

Subcontract management

14, 14-15 [Pileeger, 1999]

Policy management

2.32.4,58-69 [Pileeger, 1998]

Personndl management

[Wahrich] [Thayer] [Zwacki] 3.2, 59-66 [Pressman, 1997] 3.2, 85
98 [Pfleeger, 1998]

Communicaiion [Weihrich] [Thayer]

Reguitements andys's [Falik] 3.2, 5966 [Pressman, 1997]

Use cases 2041, 59594 [Pressman, 1997]

Proposal construction 3132, 47-51 [Sommerville, 1996]

Feeability andySs 21, 67-68 [Sommenville, 199 10,6, 250-259 [Pressman, 1997]

Portfolio management

Still seeking an appropriatereference

Revison of requirements

4.2-4.4,68-75 [Sommerville, T996]

Profotyping

8.1-8.3, 140- 153 [Sommerville, 1996]

Risk management

6.1-6.8, 133-150 [Pressman, 1997] [Thayer and Fairley] 3.4, 113
117 [Pfleeger, 1998]

Process planning

2.2-2.11, 26-49; 7.3-7.8, 160-175 [Pressman, 1997]

Determining deliverables 3.3, 51-52 [Sommerville, 1996]3.1, 76-88 [Pfleeger, 1998]

Quaity management 8.1-8.10, 180-203 [Pressman, 199/]30.1-30.6, 615634
[Sommerville, 1996] [Dunn)

Schedule and codt esfimation 12.312.4, 435-448 [Fenton and Pfleeger, 1997] [Brooks]

[Heemstra]

Resource alocaiion

54, T08-T11 [Pressman, 1997] 34, 5257 [Sommaville, 1996]

Task and respongibility alocaion

[Wahrich [Thayer]

Tmplementing a mercs program

4.6, 95-97 [Pressman, 1997]14.1-14.4, 487-514 [Fenton and
Pfleeger, 1997]

Revison of requirements

4.2-4.4, 68-75 [Sommerville, 1996]

Tmplementing plans

7.8, 174-175 [Pressman, 1997] 3.5, 118-119 [Pfleeger, 1998] 3.2,
4851 [Sommerville, 1996]

Process monitoring

31.231.3, 641-647 [Sommerville, 1996]

© |EEE— Soneman (Version 0.7) — April 2000

8-9

307.
308.
309.
310.
311.
312.
313.
314.
315.

316.
317.

318.
319.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.
331.

Topic Reference (sections and pages)
Change controfl 95, 220-223 [Pressman, 1997]
Configuration management 9.19.4, 210-220 [Pressman, 1997]
Scenario andys's Stll seeking an appropriatereference
Feedback [Weihrich] [Thayer]

Determining satisfaction of requirements
Reviewing and evauating performance

2.9, T74-T78 [Pileeger, 1999
8.5, 190-194 [Pressman, 1997] [Marciniak]

Delermining closure

29, T74-178 [Prlecger, 1999]

Archival acfivities

Still seeking an appropriatereference

Tmplementing plans 7.8, 174-175 [Pressman, 1997] 3.5, 118-119 [Pfleeger, 1998] 3.2,
4851 [Sommerville, 1996]
Mantenance 32,1-325, 662-672 [Sommenville, 1996] [Bennet]

System relirement

2.3.8, 36 [Sommerville, 1996]

Table 1: Topics and their references

[Thayer and Thayer] is an excellent glossary of
project management terminology and can be
added to thislist asageneral reference.

6. RECOMMENDED REFERENCES

The Topic-Reference matrix as shown in Section
5requiresthefollowing referencest o beincluded
in the Guide to the SWEBOK.
[Fenton and Pfleeger, 1997] 16-17, 82-95, 118-
125, 169-180, 190-215, 244-267, 293-296,
435-448, 464-483, 487-514, 529-531 Total:
155 pages
[Dorfman and Thayer, 1997]13-22, 82-103,
256-265, 289-303, 374-386 Total: 70 pages
[Pfleeger, 1998]14-15, 58-69, 76-119,174-178
Total: 63 pages
[Pressman, 1997] 26-49, 59-66, 85-92, 95-97,
108-111,120-124, 133-150, 160-175,210-223,
250-259, 592-594 Total: 113 pages
[Reifer, 1997] 292-293 Total: 2 pages

[Sommerville, 1996] 36, 47-57, 67-75, 140-
153, 615-634, 641-647, 662-672 Total: 73
pages
[Thayer, 1997] 413, 72-104, 195-202, 433-
440, 506-529 Total: 83 pages
[Zuse, 1997] 42-55 Total: 14 pages
This totals 573 pages (assuming that part pages
count as wholes) with three bpics yet to be
referenced. There does not appear to be any easy

way to reduce this much further without overly
reducing the topics or their coverage.

8-10

332. 7. LIST OF FURTHER READINGS

333. The following texts (which include al of the
required references) are suggested as useful
sources of information about this Knowledge
Area,

[Dorfman and Thayer, 1997] 531 pages
[Fenton and Pfleeger, 1997] 638 pages
[Karolak] 171 pages

[McConell, 1996] 647 pages
[McConell, 1997] 250 pages

[Moaore, 1998] 296 pages

[Pfleeger, 1998] 576 pages
[Pressman, 1997] 852 pages

[Reifer, 1997] 652 pages
[Sommerville, 1996] 742 pages
[Thayer, 1997] 531 pages

[Zuse, 1997] 755 pages

These total 6641 pages (before subtracting the
above-cited pages and without accounting for the
duplicated papers in the three collections). With
these adjustments the total page count should be
around 5000 pages.

334.

336.
337.
338.
339.

341.
342.

346.

347.8. REFERENCES USED TO WRITE

AND JUSTIFY THE DESCRIPTION

[Duncan, 1996]

349. [Vincenti, 1990]

© |EEE — Stoneman (Version 0.7) — April 2000

350. 9. GLOSSARY

351.

352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.

The terms below have not been defined in this

version, they are provided to indicate some terms

that we have found to require entries.

Control:
Coordination:
Life-cycle:

M easur ement:
Metric:

M odel:
Monitoring:

Plan:

Planning:

Policy:

Portfolio:
Portfolio management:
Process:

Quality:

Quality assurance:
Quiality control:
Requirements:
Resour ce:

Risk assessment:
Risk management:
Stakeholder:
Standard:

Users:

375. 10. REFERENCES

376.

377.

378.

379.

380.

381.

382.

[Bennett] Keith H. Bennett. Software
maintenance; a tutorial. Pages 289-303. In
[Dorfman and Thayer, 1997].

[Brooks] Frederick P. Brooks. No silver bullet:
essence and accidents of software engineering.
Pages 13-22. In [Dorfman and Thayer, 1997].
[Dorfman and Thayer, 1997] Merlin Dorfman
and Richard H. Thayer. 1997. Software
engineering. Ed. Merlin Dorfman and Richard H.
Thayer. IEEE Computer Society.

[Duncan, 1996] W.R. Duncan. 1996. A guide to
the project management body of knowledge.
[Dunn] Robert H. Dunn. Software Quality
Assurance: A Management Perspective . Pages
433-440. In [Thayer, 1997].

[Faulk] Stuart R. Faulk. Software
Requirements: A Tutorial. Pages 82-103. In
[[Dorfman and Thayer, 1997].

[Fenton and Pfleeger, 1997] Norman E. Fenton
and Shari Lawrence Pfleeger. 1997. Software
metrics. a rigorous practical approach. PWS
Publishing Company.

© |EEE— Soneman (Version 0.7) — April 2000

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

398.

399.

400.

[Heemstra] F.J. Heemstra. Software cost
estimation. Pages 374-386. In [Dorfman and
Thayer, 1997].

[Karolak] DaleWalter Karolak. 1996. Software
engineering risk management. |EEE Computer
Society.

[Marcinigk] John J. Marciniak. Reviews and
audits. Pages 256-265. In [Dorfman and Thayer,
1997].

[McConell, 1996] Steve C McConell. 1996.
Rapid Development: Taming Wild Software
Schedules. Microsoft Press.

[McConell, 1997] Steve C McConell. 1997.
Software Project Survival Guide. Microsoft
Press.

[Moore, 1998] James W. Moore. 1998.
Software engineering standards: a user's road
map. |EEE Computer Society.

[Pfleeger, 1998] Shari Lawrence Pfleeger.
1998. Software engineering: theory and practice.
Prentice Hall.

[Pressman, 1997] Roger S. Pressman. 1997.
Softwareengineering: apractitioner'sapproach.
McGran-Hill.

[Reifer, 1997] Donald J. Reifer. 1997. Software
management, 5" edition. IEEE Computer
Society.

[Sommerville, 1996] lan Sommerville 1996.
Software engineering. AddisonWesley.
[Thayer] Richard H. Thayer. Software
Engineering Project Management . Pages 72
104. In[Thayer, 1997].

[Thayer and Fairley] Richard H. Thayer and
Richard E. Fairley. Software Risk
Management. Pages 195-202. In [Thayer, 1997].
[Thayer and Thayer] Richard H. Thayer and
Mildred C. Thayer. Software Engineering
Project Management Glossary . Pages 506-529.
In[Thayer, 1997].

[Thayer, 1997] Richard H. Thayer. 1997.
Softwar e engineering project management. Ed.
Richard H. Thayer. IEEE Computer Society.
[Vincenti, 1990] W.G. Vincenti. 1990. What
engineer sknow and how they know it-analytical
studiesfromaeronautical history. John Hopkins.
[Weihrich] Heinz Welhrich. Management:
Science, Theory, and Practice . Pages 413. In
[Thayer, 1997].

[Zuse, 1997] Hor st Zuse. 1997. A framework of
software measurement. Walter de Gruyter.
[Zwacki] Robert A. Zawacki. How to pick
eagles. Pages 292-293. In [Reifer, 1997].

8-11

CHAPTER 9
SOFTWARE ENGINEERING PROCESS

Khaled EIl Emam
NRC, Canada

TABLE OF CONTENTS of Knowledge (SWEBOK) project. Theintention
1. INTRODUCTION is to provide a coherent framework where the
' different types of knowledge can be organized,
1.1 Acronyms and key references identified. A breskdown of
2. DEFINITION topics s presented for the knowledge area along
2.1 Scope with a succinct description of each topic.
2.2 Currency of Materia References are given to materials that provide
2.3 Structure of the KA more in-depth coverage of the important areas of

3. BREAKDOWN OF TOPICS

3.1 Basic Concepts and Definitions

3.2 Process Infrastructure

3.3 Process Measurement

3.4 Process Definition

3.5 Quadlitative Process Analysis

3.6 Process | mplementation and Change

4. KEY REFERENCES
5. KEY REFERENCESVS. TOPICSMAPPING
6. GENERAL REFERENCES

1. INTRODUCTION

The software engineering process area has
witnessed dramatic growth over the last decade.
This was partly fueled by a recognition by major
acquirers of systems where software is a magjor
component that process issues can have an
important impact on the ability of their suppliers
to deliver. Therefore, they encouraged afocuson
the software process as a way to remedy this.

Furthermore, the academic community has
pursued an active research agenda in developing
new tools and techniques to support software
processes, and also empirically studying software
processes and their improvement. It should also
be recognized that other disciplines have been
studying software processes for many years,
namely, the Management Information Systems
community, albeit they used a different
terminology. With the publication of a few
success stories, industrial adoption of software
process technology has aso been growing.
Therefore, there is in fact an extensive body of
knowledge on the software engineering process.

This document presents a description of the
knowledge area of software engineering process
for the Guide to the Software Engineering Body

© |EEE— Soneman (Version 0.7) — April 2000

4.

© o N O

11.
12.
13.
14.
15.
16.
17.

18.

19.

software process. Where available, web
addresses where cited material can be
downloaded have been added.

1.1 Acronyms

CBAIPI CMM Based Appraisa for Interna

Process |mprovement
CMM Capability Maturity Model

EF Experience Factory
G/Q/Q Goal/Question/Metric
HRM Human Resources Management

IDEAL I nitiating-Diagnosing-Establishing-
Acting-Leveraging (model)

MIS Management Information Systems
PDCA Plan-Do-Check-Act (cycle)

QIP Quality Improvement Paradigm
ROI Return on Investment

SCE Software Capability Evaluation

SEPG Software Engineering Process Group

SW-CMM Capability Maturity Mode for
Software

2. DEFINITION

The software engineering process Knowledge
Area (KA) can be examined a two levels. The
first level encompasses the technica and
manageria activities that are performed during
software development, maintenance, acquisition,
and retirement. The second is the metalevd,
which is concerned with the definition,
implementation, measurement, management,
change and improvement of the software

9-1

20.

21.

22.

23.

24,

25.
26.

27.

28.
29.

30.
31.

processes. The latter we will term software
process engineering.

The first level is covered by the other KA’s of
the Guide to the Software Engineering Body of

Knowledge. This knowledge area is concerned
with the second: software process engineering.

It isimportant to orient the readers and reviewers by making the following clarification. This KA description has
been devel oped with the following example usesin mind:

+ If onewereto write a book on the topic of software process engineering, this KA description would identify
the chapters and provide the initia references for writing the chapters. The KA description is not the book.

+ If one were to prepare a certification exam that includes software process engineering, this KA description
would identify the sections of the exam and provide theinitia references for writing the questions. The KA

description by itself will not be the source of questions.

+ If one were to prepare a course on software process engineering, this KA description would identify the
sections of the course and the course material, and identify the initial references to use as the basis for
developing the course material. The KA description is not the course material by itself.

2.1 Scope

The scope of the KA is defined to exclude the
following:

¢ Human resources management (as
embodied in the People CMM 309 for
example)
* Systemsengineering processes
The reason for this exclusion is that, while
important topics in themselves, they are outside
the direct scope of software process engineering.
However, where relevant, interfacesto HRM and
systemsengineering will be addressed.

2.2 Currency of Material

The software process engineering discipline is
rapidly changing, with new paradigms and new
models. The breakdown and references included
here are pertinent at the time of writing. An
attempt has been made to focus on concepts to
shield the knowledge area description from
changesin the field, but of course this cannot be
100% successful, and therefore the material here
must be evolved over time. A good example is
the on-going CMM Integration effort and the
Team Software Process effort 342, both of which
are likely to have a considerable influence on the
software process community once widely
disseminated, and would therefore have to be
accommodated in the knowledge area
description.

32.
33.

34.

35.

36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

2.3 Structure of the KA

To structure this KA in a way that is directly
related to practice, we have defined a generic
process model for software process engineering.
This model identifies the activities that are
performed in a process engineering context. The
topics are mapped to these activities. The
advantage of such a structureis that one can see,
in practice, where each of the topicsis relevant,
and provides an overdl rationale for the topics.
This generic model is based on the PDCA cycle,
which should be familiar to many readers.

3. BREAKDOWN OF TOPICS

Below is the overall breakdown of the topicsin
this knowledge area. Further explanations are
provided in the subsequent sections.

Basic Concepts and Definitions
Themes
Terminology
Process Infrastructure
The Experience Factory
The Software Engineering Process Group
Process Measurement
Methodology in Process M easurement
Process M easurement Paradigms
Analytic Paradigm
Benchmarking Paradigm
Process Definition

© |EEE — Stoneman (Version 0.7) — April 2000

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.
63.

64.

65.

66.

67.

Types of Process Definitions
Life Cycle Models
Software Life Cycle Models
Notations for Process Definitions
Process Definition Methods
Automation

Qualitative Process Andysis
Process Definition Review
Root Cause Anaysis

Process Implementation and Change

Paradigms for Process Implementation and
Change
Guidelines for Process Implementation and
Change

Evaluating the Outcome of
Implementation and Change

Process

3.1 Basic Concepts and Definitions

3.1.1 Themes

Dowson 313 notes that “All process work is
ultimately directed at ‘software process
assessment and improvement’”. This means that
the objective is to implement new or better
processesin actua practices, be they individual,
project or organizational practices.

We describe the main topics in the software
process engineering (i.e., the metarlevel that has
been alluded to earlier) areain terms of a cycle
of process change, based loosely on the
commonly known PDCA (plan-do-check-act)
cycle. This cycle highlights that individua
process engineering topics are part of a larger
process to improve practice, and that process
evaluation and feedback is an important element
of process engineering.

Software process engineering consists of four
activities as illustrated in the mode in Figure 1.
The activities are sequenced in an iterative cycle
dlowing for continuous feedback and
improvement of the software process.

The “Establish Process Infrastructure” activity
consists of establishing commitment to process
implementation and change, and putting in place
an appropriate infrastructure (resources and
responsibilities) to make it happen.

The activities “Analyze Process’ and
“Implement and Change Process’ are the core
ones in process engineering, in that they are

© |EEE— Soneman (Version 0.7) — April 2000

68.

69.

70.

71.

essential for any longlasting benefit from
process engineering to accrue. In “Anayze
Process’ the objective is to understand the
current business objectives and process needs of
the organization’, identify its strengths and
weaknesses, and make a plan for process
implementation and change. In “Implement and
Change Process’, the objective isto execute the
plan, deploy new processes (which may involve,
for example, the deployment of toolsand training
of staff), and/or change existing processes.

The fourth activity, “Evduate Process’ is
concerned with finding out how well the
implementation and change went; whether the
expected benefits materialized. Thisis then used
asinput for subseguent cycles.

At the centre of the cycle is the “Process
Experience Base’. This is intended to capture
lessons from past iterations of the cycle (eg.,
previous evaluations, process definitions, and
plans). Evaluation lessons can be qualitative or
quantitative. No assumptions are made about the
nature or technol ogy of this*“ Process Experience
Base”, only that it be a persistent storage. It is
expected that during subsequent iterations of the
cycle, previous experiences will be adapted and
reused.

With this cycle as a framework, it is possible to
map the topics in this knowledge area to the
specific activities where they would be most
relevant. Thismapping isalso shownin Figure 1.

It should be noted that this cycle is not intended
to imply that software process engineering is
relevant to only large organizations. To the
contrary, process-related activities can, and have
been, performed successfully by smal
organizations, teams, and individuals. The way
the activities defined in the cycle are performed
would be different depending on the context.
Whereit isrelevant, we will present examples of
approaches for small organizations.

! Theterm “organization” is meant in aloose sense here. It

could beaproject, ateam, or even anindividual.

93

72.

H Process
Infrastructure

Establish
Process

Infrastructure

Process Definition

Process
Measurement

ﬂ Qualitative Process
Analysis

Analyze
Process

Process
Experience
Base

Evaluate
Process

H Process
Implementation and
Change

Implement
and Change
Process

Process Measurement
Qualitative Process Analysis

Process Implementation and
Change

Figure 1: A modédl of the software process engineering cycl e, and the relationship of its activities to the KA topics.

© |EEE — Stoneman (Version 0.7) — April 2000

73.
74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Thetopicsin thisKA are asfollows:

Process Infrastructure: This is concerned with
putting in place an infrastructure for software
process engineering.

Process Measurement: This is concerned wth
quantitative techniques to diagnose software
processes; to identify strengths and weaknesses.
This can be performed to initiate process
implementation and change, and afterwards to
evaluate the consequences of process
implementation and change.

Process Definition: This is concerned with
defining processes in the form of models, plus
the automated support that is available for the
modeling task, and for enacting the models
during the software process.

Qualitative Process Analysis: Thisisconcerned
with quditative techniques to analyze software
processes, to identify strengths and weaknesses.
This can be performed to initiate process
implementation and change, and afterwards to
evaluate the consequences of process
implementation and change.

Process Implementation and Change: This is
concerned with deploying processes for the first
time and with changing existing process. This
topic focuses on organizational change. It
describes the paradigms, infrastructure, and
critical success factors necessary for successful
process implementation and change. Within the
scope of this topic, we also present some
conceptual issues about the evaluation of process
change.

The main, generaly accepted, themes in the
software engineering process field have been
described by Dowson in 313. His themes are a
subset of the topics that we cover in this KA.
Below are Dowson’s themes:

* Processdefinition: covered in topicO of this
KA breskdown

* Process assessment: covered in topic O of
this KA breakdown

* Process improvement: covered in topics O
and O of thisKA breskdown

* Process support: covered in topic O of this
KA bregkdown

We also add one theme in this KA description,
namely the qualitative process anaysis (covered
in topic0).

© |EEE— Soneman (Version 0.7) — April 2000

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

3.1.2 Terminology

There is no single universa source of
terminology for the software engineering process
field, but good sources that define important
terms are 326363, and the vocabulary (Part 9) in
the | SO/IEC 15504 documents351.

3.2 Process Infrastructure

At the initiation of process engineering, it is
necessary to have an approgriateinfrastructurein
place. This includes having the resources
(competent staff and funding), as well as the
assignment of responsihilities. This is an
indication of management commitment to the
process engineering effort. Various committees
may have to be established, such as a steering
committee to oversee the process engineering
effort.

It iswidely recognized that ateam separate from
the developerdmaintainers must be set up and
tasked with process andysis, implementation and
change 296. The main reason for thisis that the
priority of the developersmaintainers is to
produce systems or releases, and therefore
process engineering activitieswill not receive as
much attention as they deserve or need. In a
small organization, outsde help (eg.,
consultants) may be required to assist in making
up a process team.

Two types of infrastructure are embodied in the
concepts of the Experience Factory 289290 and
the Software Engineering Process Group 329.
The IDEAL handbook 366 provides a good
description of infrastructure for process
improvement in general.

3.2.1 The Experience Factory

The EF isdifferent from the project organization
which focuses on the deveopment and
maintenance of applications. Their relationshipis
depicted in Figure?2.

The concept of the EF is intended to
institutionalize the collective learning of an
organization by developing, updating, and
ddlivering to the project organizationexperience
packages(e.g., guide books, models, and training
courses). The project organization offers to the
experience factory their products, the plans used
in their development, and the data gathered
during development and operation. Examples of
experience packagesinclude:

+ resource models and baselines (e.g., locd
cost model s, resource allocation models)

9-5

95.

96.

97.

¢ change and defect basdines and models
(e.g., defect prediction models, types of
defects expected for the application)

+ project models and basdlines (e.g., actual
vs. expected product size)

¢ process definitions and models (eg.,
process models for Cleanroom, Ada
waterfall model)

Project
Organization:

Develop \
Applications \

Mission
Analysts

Application
Developers

98.

99.

100.

101.

Experiences

metrics &
lessons
learned

guide books,

models,
training

Application

Application
Testers

+ method and technique evauations (eg.,
best method for finding interface faults)

¢ products and product parts (eg., Ada
genericsfor simulation of satellite orbits)

+ quality models (eg., reliability models,
defect dippage models, ease of change
models), and

+ lessons learned (e.g., risks associated with
an Ada development).

Experience Factory:
Capture, Analyze, and Package

Data Base
Personnel

Researcherg

102. Figure 2: The relationship between the Experience Factory and the project organization as implemented at the
Software Engineering Laboratory at NASA/GSFC. This diagram is reused here from 291 with permission of the

103.

104.

105.

106.

107.

108.

109.

authors.

3.2.2 The Software Engineering Process
Group

The SEPG isintended to be the central focus for
process improvement within an organization.
According to 388, the analysts within the EF are
comparable to the SEPG. Therefore, the SEPG
canin principlefit within the EF.

The SEPG typically has the following ongoing
activities:
¢ Obtains and maintains the support of al
levels of management
+ Facilitates software process assessments
(see below)
+ Works with line managers whose projects
are dfected by changes in software
engineering practice

+ Maintains collaborative working
relationships with software engineers

110.

111.

112.

113.
114.

115.

+ Arranges for any training or continuing
education related to processimplementation
and change

+ Tracks, monitors, and reports on the status
of particular improvement efforts

+ Facilitates the creation and maintenance of
process definitions

+ Maintains a process database

¢ Provides process consultation to
development projects and management

Fowler and Rifkin 329 suggest the establishment
of a steering committee consisting of line and
supervisory management. This would alow
management to guide process implementation
and change, and dso provides them with
visibility. Furthermore, technical working groups
may be established to focus an specific issues,
such as selecting a new design method to setting
up ameasurement program.

© |EEE — Stoneman (Version 0.7) — April 2000

116. 3.3 Process M easur ement

117.

118.

119.

120.

121.

Process measurement, as used here, means that
quantitetive information about the process is
collected, analyzed, and interpreted.
Measurement isused to identify the strengthsand
weaknesses of processes, and to evauate
processes after they have been implemented
and/or changed (e.g., evaluate the ROI from
implementing a new process)

The assumption upon which most process
engineering work is premised can be depicted by
the path diagram in Figure 3. Here, we assume
that the process has an impact on process
outcomes. Process outcomes could be, for
example, product quaity (faults per KLOC),
maintainability (effort to make a certain type of
change), productivity (LOC per person month),
time-to-market, the extent of process variation,
or customer satisfaction (as measured through a
customer survey). This relationship depends on
the particular context (eg., sSize of the
organization, or size of the project).

Process

Process >
3 Outcomes

Context

Figure 3: Path diagram showing the relationship
between process and outcomes (results).

Not every process will have a positive impact on
outcomes. For example, the introduction of
software inspections may reduce testing effort
and cost, but may increase interval time if each
inspection introduces large delays due to the
scheduling of inspection mestings. Therefore, it
is preferred to use multiple process outcome
measures that are important for the
organization’ sbusiness.

In general, we are not really interested in the
process itself, rather we are most concerned
about the process outcomes. However, in order to
achieve the process outcomes that we desire
(e.g., better qudity, better maintainability,

2 Process measurement may serve other purposes as well.

For example, process measurement is useful for
managing a software project. Some of these are covered
in the Project Management and other KA’s. Here we
focus on process measurement for the purpose of process
implementation and change.

© |EEE— Soneman (Version 0.7) — April 2000

122.

123.

124.

125.

126.

127.

greater customer sdatisfaction) we have to
implement the appropriate process.

Of course, it is not only process that has an
impact on outcomes, other factors such as the
capability of the gaff and the tools that are used
play an important role. But here we focus only
on the process as an antecedent.

One can measure the quality of the software
process itself, or the process outcomes. The
methodology in Section 3.3.1 is applicable to
both. We will focus in Section 3.3.2 on process
measurement since the measurement of process
outcomesis more general and applicablein other
knowledge areas.

331 Methodology in
Measurement

Process

A guide for measurement using the G/Q/M
method is provided in 391, and the “Practica
Software Measurement” guidebook provides
another good overview of measurement 374. A
good practical text on establishing and operating
a measurement program has been produced by
the Software Engineering Laboratory 389. This
also discusses the cost of measurement. Texts
that present experiences in implementing
measurement in software organizations include
356371380. An emerging international standard
that defines a generic measurement process is
aso available (ISO/IEC CD 15939: | nformation
Technology — Software Measurement Process)
352,

Two important issues in the measurement of
software engineering processesarereliability and
validity. Reiability becomes important when
there is subjective measurement, for example,
when assessors assign scores to a particular
process. There are different types of validity that
ought to be demonstrated for a software process
measure, but the most critical one is predictive
vdidity. This is concerned with the relationship
between the process measure and the process
outcome. A discussion of both of these and
different methods for achieving them can be
found in 319334. An |IEEE Standard describes a
methodology for validating metrics (IEEE
Sandard for a Software Quality Metrics
Methodol ogy. |IEEE Std 1061-1998) 346.

An overview of existing evidence on réliability
of software process assessments can be found in
324, and for predictive validity in 334357322.

97

128. 3.3.2 Process Measurement Paradigms

129.

130.

131.

132.

133.
134.
135.

136.
137.

Two genera paradigms that are useful for
characterizing the type of process measurement
that can be performed have been described by
Card 301. The digtinction made by Card is a
useful conceptua one. Although, there may be
overlapsin practice.

The first is the anaytic paradigm. This is
characterized as relying on "quantitative
evidence to determine whereimprovementsare
needed and whether an improvement initiative
has been successful"?® The second, the
benchmarking paradigm, " depends on identifying
an 'excellent’ organization in a field and
documenting its practices and tools".
Benchmarking assumes that if a less-proficient
organi zation adopts the practices of the excellent
organization, it will aso become excellent. Of
course, both paradigms can be followed at the
same time, since they are based on different
types of information.

The analytic paradigm is exemplified by the
Quality Improvement Paradigm (QIP) consisting
of a cycle of understanding, assessing, and
packaging 388. The benchmarking paradigm is
exemplified by the software process assessment
work (see below).

We use these paradigms as genera titles to

distinguish between different types of
measurement.
3.3.2.1 Analytic Paradignt

+ Experimenta and Observationa Studies

Experimentation involves setting up
controlled or quasi experiments in the
organization to evaluate processes 367.
Usudly, one would compare a new process
with the current process to determine
whether the former has better process
outcomes. Correlational (nonexperimental)
studies can aso provide useful feedback for
identifying process improvements (e.g.,
283).
* Process Simulation

The process smulation approach can be
used to predict process outcomes if the

3 Although qualitative evidence also can play an important
role. In such a case, see Section 0 on qualitative process
analysis.

These are intended as examples of the analytic paradigm,
and reflect what is currently done in practice. Whether a
specific organization uses al of these techniaues will
depend, at least partialy, on its maturity.

9-8

138.
139.

140.
141.

142.
143.

144,
145.

146.
147.
148.

149.
150.

current process is changed in a certain way
382. Initid data about the performance of
the current process needs to be collected,
however, as abasisfor the smulation.

+ Orthogonal Defect Classification

Orthogonal Defect Classification is a
technique that can be used to link faults
found with potential causes. It relies on a
mapping between fault types and fault
triggers 302303. There exists an |EEE
Standard on the classification of faults (or
anomdies) that may also be useful in this
context (IEEE Sandard for the
Classification of Software Anomalies IEEE
Std 1044-1993) 347.

+ Statistical Process Control

Placing the software process under
statistical process control, through the use
of control chartsand their interpretations, is
an effective way to identify stability, or

otherwise, in the process328.

+ The Personal Software Process

This defines a series of improvementsto an
individual’s development practices in a
specified order 340. It is‘bottom-up’ inthe
sense that it dipulates personal data
collection and improvements based on the
datainterpretations.

3.3.2.2 Benchmarking Paradigm

This paradigm involves measuring the
capability/maturity of an organization's
processes. A genera introductory overview of
the benchmarking paradigm and its application is
providedin 398.

* Process assessment models
Architectures of assessment models

There are two genera architectures for an
assessment model that make different
assumptions about the order in which
processes must be measured: the continuous
and the staged architectures 375. At this
point it is not possible to make a
recommendation as to which approach is
better than another. They have considerable
differences. An organization should
evaluate them to see which are most
pertinent to their needs and objectives when
selecting amodel.

Assessment models

The most commonly used assessment
model in the software community is the

© |EEE — Stoneman (Version 0.7) — April 2000

151.
152.
153.

154.
155.

SW-CMM 387. It is aso important to
recognize that ISO/IEC 15504 is an
emerging international standard on software
process assessments 321351. It defines an
exemplar assessment model and
conformance requirements on other
assessment models. 1SO 9001 is also a
common model that has been applied by
software organizations 396. Other notable
examples of assessment models are
Trillium 300, Bootstrap 394, and the
requirements engineering capability model
393. There are also maturity models for
other software processes available, such as
for testing 298299, ameasurement maturity
model 297, and a maintenance maturity
model 314 (athough, there have been many
more capability/maturity models that have
been defined, for example, for design,
documentation, and forma methods, to
name afew). A maturity model for systems
engineering has also been developed, which
would be useful where a project or
organization isinvolved in the development
and maintenance of systems including
software 317. A voiced concern has been
the applicability of assessment models to
smal organizations. This is addressed in
355385, where assessments model stail ored
to small organizations are presented.

* Process assessment methods
Purpose

In order to perform an assessment, a
specific assessment method needs to be
followed. In addition to producing a
guantitative score that characterizes the
capability of the process (or maturity of the
organization), an important purpose of an
assessment isto create a climate for change
within the organization 316. In fact, it has
been argued that the latter is the most
important purpose of doing an assessment
315.

Assessment methods

The most well known method that has a
reasonable amount of publicly available
documentation is the CBA IPl 316. Many
other methods are refinements of this for
particular contexts. Ancther well known
method for supplier selection is the SCE
287. Requirements on methods that reflect
what are believed to be good assessment
practices are provided in 365351.

© |EEE— Soneman (Version 0.7) — April 2000

156.

157.

158.

159.

160.

161.

162.

163.

164.

3.4 Process Definition

Software engineering processes are defined for a
number of reasons, including: facilitating human
understanding and communication, supporting
process improvement, supporting process
management, providing automated process
guidance, and providing automated execution
support 308339327. The types of process
definitions required will depend, a least
partialy, on the reason.

It should be noted also that the context of the
project and organization will determine the type
of process definition that is most important.
Important variables to consider include the
nature of the work (eg., maintenance or
development), the application domain, the
structure of the delivery process (e.g., waterfall,
incremental, evolutionary), and the maturity of
the organization.

There are different approaches that can be used
to define and document the process. Under this
topic the approaches that have been presented in
the literature are covered, athough at this time
there is no data on the extent to which these are
used in practice.

3.4.1 Types of Process Definitions

Processes can be defined at different levels of
abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs.
proscriptive). The differentiation amongst these
has been described in 364340376.

Orthogona to the levels above, there are also
types of process definitions. For example, a
process definition can be a procedure, a palicy,
or astandard.

3.4.2 Life Cycle Models

These models serve as a high level definition of
the activities that occur during development.
They are not detailed definitions, but only the
high level activities and their irterrelationships.
The common ones are: the waterfall model,
throwaway prototyping model, evolutionary
prototyping modéd, incremental/iterative
development, spiral model, reusable software
model, and automated software synthesis. (see
292307354376378). Comparisons of these
models are provided in 307310, and amethod for
selection amongst many of them in 284.

9-9

165.

166.

167.

168.

169.

170.

171.

34.3 Software Life Cycle Process
Models

Definitions of life cycle process models tend to
be more detailed than life cycle models. Anather
differencebeingthat lifecycleprocessmodelsdo
not attempt to order their processes in time.
Therefore, in principle, the life cycle processes
can be arranged to fit any of the life cycle
models. The two main referencesin this area are
ISO/IEC 12207: Information Technology —
Software Life Cycle Processes 350 and ISO/IEC
TR 15504: Information Technology — Software
Process Assessment 351321. Extensive guidance
materia for the application of the former has
been produced by the IEEE (Guide for
Information Technology - Software Life Cycle
Processes - Life cycle data, IEEE Std 12207.1-
1998, and Guide for Information Technology -
Software Life Cycle Processes— |mplementation.
Considerations. |EEE Std 12207.2-1998)
348349. The latter defines a two dimensiona

mode with one dimension being processes, and
the second a measurement scale to evaluate the
capability of the processes. In principle, ISO/IEC
12207 would serve as the process dimension of
| SO/IEC 15504.

The IEEE standard on developing life cycle
processes aso provides a list of processes and
activities for development and maintenance
(IEEE Sandard for Developing Software Life
Cycle Processes, IEEE Std 1074-1991) 344, and
provides examples of mapping them to life cycle
models. A standard that focuses on maintenance
processes is also available from the IEEE (IEEE
Sandard for Software Maintenance, IEEE Sd
1219-1992) 345.

3.4.4 Notations for Process Definitions

Different elements of a process can be defined,
for example, activities, products (artifacts), and
resources 339. Detailed frameworks that
structure the types of information required to
define processes are described in 369285.

There are a large number of notations that have
been used to define processes. They differ in the
types of information defined in the above
frameworks that they capture. A text that
describes different notations is390.

Because there is no data on which of these was
found to be most useful or easiest to use under
which conditions, we cover what seemingly are
popular approaches in practice: data flow
diagrams 330, in terms of process purpose and

9-10

172.

173.

174.

175.

176.

177.

178.

179.

180.

outcomes 351, asalist of processes decomposed
in constituent activities and tasks defined in
natural language 350, Statecharts 358382 (also
see 336 for a comprehensive description of
Statecharts), ETVX 381, Actor-Dependency
modeling 294397, SADT notation 368, Petri nets
286, IDEFO 390, rule-based 288, and System
Dynamics 282. Other process programming
languages have been devised, and these are
described in 308327339.

3.4.5 Process Definition Methods

These methods specify the activities that must be
performed in order to define a process model.
These may include €liciting information from
developers to build a descriptive process
definition from scratch, and to tailoring an
existing standard or commercia process. In
genera, thereisastrong similarity amongst them
in that they tend to follow atraditional software
development life cycle: 369368293294359.

3.4.6 Automation

Automated tools either support the execution of
the process definitions, or they provide guidance
to humans performing the defined processes. In
caseswhere process analysisis performed, some
tools allow different types of simulations (e.g.,

discrete event simulation).

There exist tools that support each of the above
process definition notations. Furthermore, these
tools can execute the process definitions to
provide automated swpport to the actua
processes, or to fully automate them in some
instances. An overview of process modeling
tools can be found in 327, and of process-
centered environmentsin 332333.

Recent work on the application of the www to
the provision of real -time process guidance is
described in 360.

3.5 Qualitative Process Analysis

The abjective of qualitative process anaysisisto
identify the strengths and weaknesses of the
software process. It can be performed as a
diagnoses before implementing or changing a
process. It could aso be performed after a
processisimplemented or changed to determine
whether the change has had the desired effect.

Below we present two techniques for qualitative
analysis that have been used in practice.
Although it is plausible that new techniques
would emergein the future.

© |EEE — Stoneman (Version 0.7) — April 2000

181.

182.

183.

184.

185.

186.

187.

188.

3.5.1 Process Definition Review

Qualitative evaluation means reviewing a process
definition (either a descriptive or a prescriptive
one, or both), and identifying deficiencies and
potential process improvements. Typical
examples are presented in 286358. An easly
operational way to analyze a process is to
compare it to an existing standard (national,
international, or profesisonal body), such as
I SO/IEC 12207 350.

With this approach, one does not collect
quantitative data on the process. Or if
quantitative data is collected, it plays a
supportive role. The individuals performing the
analysis of the process definition use their
knowledge and capabilities to decide what
process changes would potentialy lead to
desirable process outcomes.

3.5.2 Root Cause Analysis

Another common qualitative technique that is
used in practiceisa“Root Cause Analysis’. This
involves tracing back fom detected problems
(e.g., faults) to identify the process causes, with
the aim of changing the process to avoid the
problems in the future. Examples of this for
different types of processes are described in
293320306373.

With this approach, one starts from the process
outcomes, and traces back along the path in
Figure 3 to identify the process causes of the
undesirable outcomes. The Orthogona Defect
Classification technique described in Section
3.3.2.1 can be considered a more formalized
agpproach to root cause analyss usng
quantitative information.

3.6 Process
Change

Thistopic describesthe situation when processes
are deployed for the first time (e.g., introducing
an inspection process within a project or a
complete methodology, such as Fusion 305 or
the Unified Process 353), and when current
processesare changed (e.g., introducing atool, or
optimizing a procedure)® In both instances,
existing practices have to be modified. If the
modifications are deep, then changes in the
organizational culture may be necessary.

Implementation and

® Thiscan also be termed “ process evolution”.

© |EEE— Soneman (Version 0.7) — April 2000

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

36.1 Paradigms for Process

| mplementation and Change

Two generd paradigms that have emerged for
driving process implementation and change are
the Quality Improvement Paradigm 388 and the
IDEAL modd 366. The two paradigms are
compared in 388. A concrete instantiation of the
QIPisdescribed in 296.

3.6.2 Guidelines for
| mplementation and Change

Process implementation and change is an
instance of organizationa change. Most
successful organizational change effortstreat the
change as a project in its own right, with
gppropriate plans, monitoring, and review.

Guidelines about process implementation and

Process

change within software engineering
organizations, including action planning,
training, management sponsorship and

commitment, and the selection of pilot projects,
and that cover both the transition of processes
andtools, aregivenin 395311361379392385.An
empirical study evaluating success factors for
process change is reported in 323. Grady
describes the process improvement experiences
a HP, with some genera guidance on
implementing organizational change335.

The role of change agentsin this activity should

not be underestimated. Without the enthusiasm,

influence, credibility, and persistence of achange
agent, organizationa change has little chance of
succeeding. Thisisfurther discussed in 343.

Process implementation and change can aso be
seen as an instance of consulting (either interna
or external). A suggested text, and classic, on
consulting isthat of Schein 386.

One can aso view organizational change from
the perspective of technology transfer. The
classic text on the stages of technology transfer is
that by Rogers384. Software engineering articles
that discuss technology transfer, and the
characteristics of recipients of new technology
(which could include process related
technologies) are377383.

3.6.3 Evaluating the Outcome of Process
| mplementation and Change

Evaluation of process implementation and
change outcomes can be quditative or

quantitetive. The topics above on quditative
andysis and measurement are relevant when

9-11

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

eval uating implementation and change since they
describe the techniques. Below we present some
conceptua issues that become important when
evaluating the outcome of implementation and
change.

There are two ways that one can approach
evaluation of process implementation and
change. One can evaluate it in terms of changes
to the processitself, or intermsof changesto the
process outcomes (for example, measuring the
Return on Investment from making the change).
This issue is concerned with the distinction
between cause and effect (as depicted in the path
diagramin Figure 3), and is discussed in 296.

Sometimes people have very high expectations
about what can be achieved in sudies that
evaluate the costs and benefits of process
implementation and change. A pragmatic look at
what can be achieved from such evduation
studiesisgivenin 338.

Overviews of how to evauate process change,
and examples of studies that do so can be found
in 322334357362361367.

4. K EY REFERENCES

The following are the key references that are
recommended for this knowledge area. The
mapping to the topicsisgivenin Section 5.

K. El Emam and N. Madhavji (eds.): Elements of

Softwar e Process Assessment and | mprovement,
IEEE CS Press, 1999.

This |EEE edited book provides detailed chapters
on the software process assessment and
improvement area. It could serve as a genera

reference for this knowledge area, however,
specifically chapters 1, 7, and 11 cover quite abit
of ground in asuccinct manner.

K. El Emam, 3N Drouin, W. Melo: SPICE: The
Theory and Practice of Software Process
Improvement and Capability Determination.
IEEE CS Press, 1998.

This |IEEE edited book describes the emerging
ISO/IEC 15504 international standard and its
rationale. Chapter 3 provides adescription of the
overall architecture of the standard, which has
since then been adopted in other assessment
models.

S-L. Pfleeger: Software Engineering: Theoryand
Practice. Prentice-Hall, 1998.

9-12

209.

210.

211.

212.

213.

214,

215.

216.

217.

218.

219.

220.

221.

222.

This general software engineering reference has
a good chapter, chapter 2, that discusses many
issues related to the process modeling area.

Fuggetta and A. Wolf: Software Process, John
Wiley & Sons, 1996.

This edited book provides a good overview of
the process area, and covers modeling as well as
assessment and improvement. Chapters 1 and 2
are reviews of modeling techniques and tools,
and chepter 4 gives a good overview of the
human and organizational issuesthat arise during
processimplementation and change.

R. Messnarz and C. Tully (eds.): Better Software
Practice for Business Benefit: Principles and
Experiences |EEE CS Press, 1999.

This IEEE edited book provides acomprehensive
perspective on process assessment and
improvement efforts in Europe. Chapter 7 is a
review of the costs and benefits of process
improvement, with many references to prior
work. Chapter 16 describesfactorsthat affect the
success of process improvement.

J. Moore: Software Engineering Standards: A
User’ sRoad Map. IEEE CS Press, 1998.

This IEEE book provides a comprehensive
framework and guidance on software engineering
standards. Chapter 13 is the process standards
chapter.

N. Madhavji: “The Process Cycle’. In Software
Engineering Journal, 6(5):234-242, 1991.

This article provides an overview of different
types of process definitions and relates them
within an organizational context.

M. Dowson: “Software Process Themes and
Issues”. In Proceedings of the 2™ Inter national
Conference on the Software Process, pages 54-
62, 1993.

This article provides an overview of the main
themes in the software process area. Although
not recent, most of theissuesraised aretill valid
today.

P. Feiler and W. Humphrey: “ Software Process
Development and Enactment: Concepts and
Definitions’. In Proceedings of the Second
International Conference on the Software
Process pages 28-40, 1993.

Thisarticlewasone of thefirst attemptsto define
terminology in the software process area. Most
of itsterms are commonly used nowadays.

L. Briand, C. Differding, and H. D. Rombach:

“Practical Guidelines for Measurement-Based

© |EEE — Stoneman (Version 0.7) — April 2000

223.

224,

225,

226.

227.

228.

229

230.

231

232.

233.

234.

Process Improvement”. In Software Process
Improvement and Practice, 2:253-280, 1996.

This article provides a pragmatic look a using
measurement in the context of process
improvement, and discusses most of the issues
related to setting up a measurement program.

Software Engineering Laboratory: Software
Process | mprovement Guidebook. NASA/GSFC,
Technical Report SEL-95-102, April 1996.
(avallable from http://sdl.gsfc.nasa.gov/doc-
st/docs/95-102.pdf)

Thisis a standard reference on the concepts of
the QIP and EF.

P. Fowler and S. Rifkin: Software Engineering
Process Group Guide. Software Engineering
Indtitute, Technical Report CMU/SEI-90-TR-24,
1990. (available from http://www.sei.cmu.edu)

This is the standard reference on setting up and
running an SEPG.

M. Dorfmann and R. Thayer (eds): Software
Engineering, IEEE CS Press, 1997.

Chapter 11 of this IEEE volume gives a good
overview of contemporary life cycle models.

K. El Emam and D. Goldenson: “An Empirica
Review of Software Process Assessments’. In
Advances in Computers, 2000.

This chapter provides the most up-to-date review
of evidence supporting process assessment and
improvement, as well as a historical perspective
on some of the early MISwork.

5. KEY REFERENCES VS. TOPICS
M APPING

Below are the matrices linking the topics to key
references. In an attempt to limit the number of
references and the total number of pages, as
requested, somerelevant articlesare not included
in this matrix. The reference list below provides
amore comprehensive coverage.

In the cells, where there is a tick indicates that
the whole reference (or most of it) is relevant.
Otherwise, specific chapter numbers are
provided in the cell.

© |EEE— Soneman (Version 0.7) — April 2000

9-13

235.
236.
237.
238.
239.
240.
241.
242.

243.
244.
245,
246.
247.
248.
249.
250.

Elements
318

SPICE
321

Pfleeger
376

Fuggetta
331

Messnarz
370

Moore
372

Madhavji
364

Dowson
313

Basic Concepts and Definitions

Themes

Terminology

Process Infrastructure

The Experience Factory

The Software Engineering Process

Process M easurement

Methodology in Process
M easurement

Process M easurement Paradigms

Ch. 1,7

Ch. 3

Process Definition

Types of Process

Life Cycle Models

Ch. 2

Software Life Cycle Process Models

Ch. 13

Notations for Process Definitions

Ch. 1

Process Definition Methods

Ch.7

Automation

Ch. 2

Ch. 2

9-14

© |IEEE - Stoneman (Version 0.7) — April 2000

251.
252.
253.
254.
255,

256.

257.

Elements SPICE Pfleeger Fuggetta Messnarz Moore Madhavji Dowson
318 321 376 331 370 372 364 313

Qualitative Process Analysis
Process Definition Review Ch.7
Root Cause Analysis Ch. 7

Process I mplementation and Change

Paradigms for Process Ch. 1,7
Implementation and Change
Guidelines for Process Ch. 11 Ch. 4 Ch. 16
Implementation and Change
Evaluating the Outcome of Process Ch. 7
Implementation and Change

© |IEEE — Stoneman (Version 0.7) — April 2000 9-15

258.
259.
260.
261.
262.
263.

264.
265.

266.
267.
268.
269.
270.
271.
272.
273.

Feiler & Humphrey
326

Briand et al.
295

SEL
388

329

Dorfmann & Thayer
312

El Emam &
Goldenson
325

Basic Concepts and Definitions

Themes

Terminology

Process Infrastructure

The Experience Factory

The Software Engineering Process
Group

Process M easurement

Methodology in Process
M easurement

Process M easurement Paradigms

Process Definition

Types of Process Definitions

Life Cycle Models

Ch. 11

Software Life Cycle Process Models

Notations for Process Definitions

Process Definition Methods

Automation

9-16

© |IEEE - Stoneman (Version 0.7) — April 2000

274.
275.

276.
277.

278.

279.

280.

Feiler & Briand et al. SEL SEPG Dorfmann & El Emam &
Humphrey 295 388 329 Thayer Goldenson
326 312 325
Qualitative Process Analysis
Process Definition Review 9]
Root Cause Analysis O
Process Implementation and
change
Paradigms for Process O o)
Implementation and Change
Guidelines for Process O o) 0]
Implementation and Change
Evaluating the Outcome of O 0]

Process Implementation and
Change

© |IEEE — Stoneman (Version 0.7) — April 2000

9-17

281. 6. GENERAL REFERENCES

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

[1]T. Abdd-Hamid and S. Madnick: Software
Project Dynamics. An Integrated Approach.
Prentice-Hall, 1991.

[2] W. Agresti: “The Role of Design and
Anaysis in Process Improvement”. In K. El
Emam and N. Madhavji (eds): Elements of
Softwar e Process Assessment and | mprovement,
|EEE CS Press, 1999.

[3] L. Alexander and A. Davis: “Criteria for
Selecting Software Process Models’. In
Proceedings of COMPSAC' 91, pages 521-528,
1991.

[4] J. Armitage and M. Kdlner: “A Conceptual
Schemafor Process Definitionsand Models™. In
Proceedings of the Third International
Conference on the Software Process, pages153-
165, 1994.

[5] S Bandindli, A. Fuggetta, L. Lavazza, M.
Loi, and G. Picco: “Modedling and Improving an
Industrial~ Software Process’. In |IEEE
Transactions on Software Engineering,
21(5):440-454, 1995.

[6] R. Barbour: Softwar e Capability Evaluation—
Version 3.0: Implementation Guide for Supplier
Selection. Software Engineering Indtitute,
Technical Report CMU/SEI-95-TR012, 1996.
(availablefrom http://www.sai.cmu.edu).

[7] N. Barghouti, D. Rosenblum, D. Belanger,
and C. Alliegro: “Two Case Studiesin Modeling
Real, Corporate Processes’. InSoftware Process
— Improvement and Practice, Pilot Issue, 17-32,
1995.

[8] V. Badili, G. Cddiera, and G. Cantone: “A
Reference Architecture for the Component
Factory”. In ACM Transactions on Software
Engineering and Methodol ogy, 1(1):53-80.1992.

[9] V. Badli, G. Cddiera, F. McGarry, R.
Pajerski, G. Page, and S. Waligora “The
Software Engineering Laboratory — An
Operational Software Experience Factory”. In
Proceedings of the I nter national Conference on
Software Engineering, pages 370-381, 1992.

[10] V. Badli, S. Condon, K. El Emam, B.
Hendrick, and W. Melo: “Characterizing and
Modeling the Cost of Rework in a Library of
Reusable Software Components’. In
Proceedings of the 19th International
Conference on Softwar e Engineering, pages282-
291, 1997.

9-18

292.

293.

294.

295,

296.

297.

298.

299,

300.

301.

302.

303.

[11] B. Boehm: “A Spira Modd of Software
Development and Enhancement”. In Computer,
21(5):61-72, 1988.

[12] L. Briand, V. Basili, Y. Kim, and D. Squire:
“A Change Analysis Process to Characterize
Software Maintenance Projects’. InProceedings
of the International Conference on Software
Maintenance, 1994.

[13] L. Briand, W. Méo, C. Seaman, and V.
Basili: “Characterizing and Assessing a Large-
Scadle Software Maintenance Organization”. In
Proceedingsof the 17" International Conference
on Software Engineering, 1995.

[14] L. Briand, C. Differding, and H. D.
Rombach: “Practicd Guiddlines for
Measurement-Based Process Improvement”. In
Software Process Improvement and Practice,
2:253-280, 1996.

[15] L. Briand, K. El Emam, and W. Melo: “An
Inductive Method for Software Process
Improvement: Concrete Steps and Guidelines’.
In K. El Emam and N. Madhavji (eds)): Elements
of Software Process Assessment and
Improvement, | EEE CS Press, 1999.

[16] F. Budiong and J. Peterson: “Software
Metrics Capability Evauation Guide’. The
Software Technology Support Center, Ogden Air
Logistics Center, Hill Air Force Base, 1995.

[17] 1. Burngtein, T. Suwannasat, and C.
Carlson: “Developing a Testing Maturity Modd:
Part I". In Crosstalk, pages 21-24, August 1996.

[18] I. Burngtein, T. Suwannasat, and C.
Carlson: “Developing a Testing Maturity Moddl:
Part [1”. In Crosstalk, pages 1926-24, September
1996.

[19] F. Codlier, J Mayrand, and B. Lague:
“Risk Management in Software Product
Procurement”. In K. El Emam and N. Madhavji
(eds.): Elements of Softwar e Process Assessment
and I mprovement, |EEE CS Press, 1999.

[200 D. Cad: “Understanding Process
Improvement”. In IEEE Software, pages 102-
103, July 1991.

[21] R. Chillarege, |. Bhandhari, J. Chaar, M.
Halliday, D. Moebus, B. Ray, and M. Wong:
“Orthogonal Defect Classification — A Concept
for InProcess Measurement”. In IEEE
Transactions on Software Engineering,
18(11):943-956, 1992.

[22] R. Chillarege: “Orthogona Defect
Classification”. In M. Lyu (ed.): Handbook of

© |EEE — Stoneman (Version 0.7) — April 2000

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

Software Reliability Engineering, IEEE CS
Press, 1996.

[23] A. Chrigtie: Software Process Automation:
The Technology and its Adoption. Springer
Verlag, 1995.

[24] D. Coleman, P. Arnold, S. Godoff, C.
Dadllin, H. Gilchrigt, F. Hayes, and P. Jeremaes:
Object-Oriented Development: The Fusion
Method. Englewood Cliffs, NJ:Prentice Hall,
1994.

[25] J Codllofello and B. Gosdia “An
Application of Causal Andysis to the Software
Production Process’. In Software Practice and
Experience, 23(10):1095-1105, 1993.

[26] E. Comer: “Alternative Software Life Cycle
Models’. In M. Dorfmann and R. Thayer (eds.):
Software Engineering, IEEE CS Press, 1997.

[27] B. Curtis, M. Kéllner, and J. Over: “Process
Modding”. In Communications of the ACM,
35(9):75-90, 1992.

[28] B. Curtis, W. Hefley, S. Miller, and M.
Konrad: “The People Capability Maturity Model
for Improving the Software Workforce’. In K. El
Emam and N. Madhavji (eds): Elements of
Softwar e Process Assessment and | mprovement,
IEEE CS Press, 1999.

[29] A. Davis, E. Bersoff, and E. Comer: “A
Strategy for Comparing Alternative Software
Development Life Cycle Models’. In IEEE
Transactions on Software Engineering,
14(10):1453-1461, 1988.

[30] R. Dion: “Starting the Climb Towards the
CMM Leve 2 Plaeau”. In K. EI Emam and N.
Madhavji (eds.): Elements of Software Process
Assessment and | mprovement, |IEEE CS Press,
1999.

[31] M. Dorfmann and R. Thayer (eds):
Software Engineering, IEEE CS Press, 1997.

[32] M. Dowson: “ Software Process Themesand
Issues’. In Proceedings of the 2" International
Conference on the Software Process pages 54-
62, 1993.

[33] D. Drew: “Tailoring the Software
Engineering Institute' s (SEI) Capability Maturity
Model (CMM) to a Software Sustaining
Engineering Organization”. In Proceedings of
the International Conference on Software
Maintenance, pages 137-144, 1992.

[34] K. Dymond: “Essence and Accidents in
SEl-Style Assessments or ‘Maybe this Time the
Voice of the Engineer Will be Heard'”. In K. El
Emam and N. Madhavji (eds): Elements of

© |EEE— Soneman (Version 0.7) — April 2000

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

Softwar e Process Assessment and | mprovement,
|EEE CS Press, 1999.

[35] D. Dunnaway and S. Masters;: CMM-Based
Appraisal for Internal Process Improvement
(CBA IPI): Method Description. Software
Engineering Inditute, Technica Report
CMU/SEI-96-TR-007, 1996. (available from
http://Aww.sal.cmu.edu)

[36] EIA: EIA/IS 731 Systems Engineering
Capability Model. (available from
http://www.geia.org/eoc/G47/index.html)

[37] K. El Emam and N. Madhavji (eds):
Elements of Software Process Assessment and
I mprovement, |EEE CS Press, 1999.

[39] K. El Emam and D. R. Goldenson: “SPICE:
An Empiricist’s Perspective”. In Proceedings of
the Second IEEE International Software
Engineering Standar ds Symposi um pages84-97,
August 1995.

[39] K. El Emam, D. Holtje, and N. Madhavji:
“Causal Andysis of the Requirements Change
Process for aLarge System”. In Proceedings of
the International Conference on Software
Maintenance, pages 214-221, 1997.

[40] K. El Emam, JN Drouin, W. Melo: SPICE:
The Theory and Practice of Software Process
Improvement and Capability Determination.
|EEE CS Press, 1998.

[41] K. El Emam and L. Briand: “Costs and
Benefits of Software Process Improvement”. In
R. Messnarz and C. Tully (eds.): Better Software
Practice for Business Benefit: Principles and
Experiences |EEE CS Press, 1999.

[42] K. El Emam, B. Smith, P. Fusaro: “ Success
Factors and Barriers for Software Process
Improvement: An Empiricd Study”. In R
Messnarz and C. Tully (eds): Better Software
Practice for Business Benefit: Principles and
Experiences |EEE CS Press, 1999.

[43] K. EI Emam: “Benchmarking Kappa
Interrater Agreement in Software Process
Assessments’. In Empirical Software
Engineering: AnInternational Journal ,4(2):113
133, 1999.

[44] K. El Emam and D. Goldenson: “An
Empiricall Review of Software Process
Assessments’. In Advancesin Computers, 2000.
[45] P. Feler and W. Humphrey: “Software
Process Development and Enactment: Concepts
and Definitions’. In Proceedings of the Second
International Conference on the Software
Process, pages 28-40, 1993.

9-19

327.

328.

329.

330.

331

332.

334.

336.

337.

339.

341.

[46] A. Finkelstein, J. Kramer, and B. Nuseibeh
(eds.): Software Process Modeling and
Technology. Research Studies Press Ltd., 1994.

[47] W. Florac and A. Carleton: Measuring the
Software Process. Satistical ProcessControl for
Software Process Improvement. Addison
Wesley, 1999.

[48] P. Fowler and S. Rifkin: Software
Engineering Process Group Guide Software
Engineering Institute, Technica Report
CMU/SEI-90-TR-24, 1990. (avalable from
http://www.sei.cmu.edu)

[49] D. Fraley: “Defining a Corporate-Wide
Software Process’. In Proceedings of the 1%

International Conference on the Software
Process pages 113-121, 1991.

[50] A. Fuggettaand A. Wolf: Software Process,
John Wiley & Sons, 1996.

[51] P. Garg and M. Jazayeri: Process-Centered
Software Engineering Environments. |IEEE CS
Press, 1995.

[52] P. Garg and M. Jazayeri: “ Process Centered
Software Engineering Environments: A Grand
Tour". In A. Fuggetta and A. Wolf: Software
Process John Wiley & Sons, 1996.

[53] D. Goldenson, K. EI Emam, J. Herbdeb,
and C. Deephouse “Empiricad Studies of
Software Process Assessment Methods’. InK. El
Emam and N. Madhavji (eds): Elements of
Softwar e Process Assessment and | mprovement,
|EEE CS Press, 1999.

[54] R. Grady: Successful Software Process
Improvement. Prentice Hall, 1997.

[55] D. Harel and M. Politi: Modeling Reactive
Systems with Satecharts: The Satemate
Approach. McGraw-Hill, 1998.

[56] J. Henry and B. Blasewitz; “Process
Definition: Theory and Redity”. In IEEE
Software, page 105, November 1992,

[57] J Herbdeb: “Hard Problems and Hard
Science: On the Practicd Limits of
Experimentation”. In IEEE TCSE Software

Process Newsletter, No. 11, pages 18-21, 1998.
(availablefrom http://www.seg.iit.nrc.ca/SPN)

[58] K. Huff: “Software Process Modeling”. In
A. Fuggettaand A. Woalf: Software Process, John
Wiley & Sons, 1996.

[59] W. Humphrey: Managing the Software
Process. Addison Wesley, 1989.

[60] W. Humphrey: A Discipline for Software
Engineering. Addison Wesley, 1995,

342.

346.

347.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

[61] W. Humphrey: An Introduction to the Team
Software Process. Addison-Wesley, 1999.

[62] D. Hutton: The Change Agent’ s Handbook:
A Survival Guide for Quality Improvement
Champions. Irwin, 1994.

[63] IEEE: IEEE Sandard for Developing
Software Life Cycle Processes |EEE Std 1074-
1991.

[64] |EEE. IEEE Sandard for Software
Maintenance, IEEE Std 1219-1992.

[65] IEEE: IEEE Sandard for a Software
Quality Metrics Methodology. IEEE Std 1061-
1998.

[66] IEEE: |EEE Standard for the Classification
of Software Anomalies. |EEE Std 1044-1993.

[67] IEEE: Guide for Information Technology -
Software Life Cycle Processes- Life cycle data.
|EEE Std 12207.1-1998.

[68] IEEE: Guide for Information Technology -
Software Life Cycle Processes— Implementation.
Considerations. |IEEE Std 12207.2-1998.

[69] ISO/IEC 12207: Information Technology—
Software Life Cycle Processes. 1995.

[70] ISO/IEC TR 15504: Information
Technology — Software Process Assessment,
1998. (parts 1-9; part 5 was published in 1999).
Availablefrom http://www.seg.iit.nrc.cal/spice.

[71] ISO/IEC CD 15939: Information
Technology — Software Measurement Process,
2000.

[72] I. Jacobson, G. Booch, and J. Rumbaugh:
The Unified Software Development Process
AddisonWedey, 1998.

[73] P. Jdote: An Integrated Approach to
Software Engineering. Springer, 1997.

[74] D. Johnson and J. Brodman: “Tailoring the
CMM for Smal Businesses, Small
Organizations, and Smdll Projects’. In K. El
Emam and N. Madhavji (eds): Elements of

Software Process Assessment and | mprovement,
IEEE CS Press, 1999.

[75] C. Jones: Applied Software Measurement.
McGrawHill, 1994.

[76] C. Jones: “The Economics of Software
Process Improvements’. In K. EI Emam and N.
Madhavji (eds.): Elements of Software Process
Assessment and | mprovement, |IEEE CS Press,
1999.

[77] M. Kdlner and G. Hansen: “Software
Process Modelingg A Case Study”. In

© |EEE — Stoneman (Version 0.7) — April 2000

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

Proceedings of the 22™ I nternational Conference
on the System Sciences, 1989.

[78] M. Kélner, L. Briand, and J. Over: “A
Method for Designing, Defining, and Evolvin%
Software Processes’. In Proceedings of the 4
International Conference on the Software
Process, pages 37-48, 1996.

[79IM. Kellner, U. Becker-Kornstaedt, W.
Riddle, J. Tomal, and M. Verlage: “Process
Guides: Effective Guidance for Process
Participants’. In Proceedings of the 5"
International Conference on the Software
Process pages 11-25, 1998.

[80] B. Kitchenham: “Selecting Projects for
Technology Evauation”. In IEEE TCSE
Software Process Newsl etter, No. 11, pages 3 -6,
1998. (available from
http://www.seg.iit.nrc.ca/SPN)

[81] H. Krasner: “The Payoff for Software
Process Improvement: What it isand How to Get
it". In K. El Emam and N. Madhavji (eds):
Elements of Software Process Assessment and
Improvement, | EEE CS Press, 1999.

[82] J. Lonchamp: “ A Structured Conceptual and
Terminological Framework for Software Process
Engineering”. In Proceedings of the Second
International Conference on the Software
Process pages 41-53, 1993.

[83] N. Madhavji: “The Process Cycle’. In
Software Engineering Journal, 6(5):234-242,
1991.

[84] S. Madgters and C. Bothwel: CMM
Appraisal Framework — Version 1.0. Software
Engineering Indtitute, Technical Report
CMU/SEI-TR-95-001, 1995. (available from
http://Aww.sal.cmu.edu)

[85] B. McFeeley: IDEAL: A User's Guide for
Software Process Improvement. Software
Engineering Indtitute, Handbook CMU/SEI-96-
HB-001, 1996. (available from
http://Aww.sal.cmu.edu)

[86] F. McGarry, R. Pgerski, G. Page, S
Waligora, V. Badili, and M. Zelkowitz: Software
Process Improvement in the NASA Software
Engineering Laboratory. Software Engineering
Ingtitute, Technical Report CMU/SEI-94-TR-22,
1994.

[87] C. McGowan and S. Bohner: “Model Based
Process Assessments’. In Proceedings of the
International Conference on Software
Engineering, pages 202-211, 1993.

© |EEE— Soneman (Version 0.7) — April 2000

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

[88] N. Madhavji, D. Hodtje, W. Hong, T.
Bruckhaus: “Elicit: A Method for Eliciting
Process Models™. In Proceedings of the Third
International Conference on the Software
Process, pages 111-122, 1994.

[89] R. Messnarz and C. Tully (eds): Better
Software Practice for Business Benefit:
Principles and Experiences |IEEE CS Press,
1999.

[90] K. Maller and D. Paulish: Software Metrics.
Chapman & Hall, 1993.

[91] J. Moore: Software Engineering Sandards:
A User’s Road Map. |[EEE CS Press, 1998.

[92] T. Nakgo and H. Kume: “A Case History
Analysis of Software Error CauseEffect
Relationship”. In|EEE Transactions on Software
Engineering, 17(8), 1991.

[93] Office of the Under Secretary of Defensefor
Acquisitions and Technology: Practical Software
Measurement: A Foundation for Objective
Project Management, 1998 (available from
http://Aww.psmsc.com).

[94] M. Paulk and M. Konrad: “Measuing
Process Capability Versus Organizational
Process Maturity”. In Proceedings of the 4th
International Conference on Software Quality,
1994.

[95] SL. Pfleeger: Software Engineering:
Theory and Practice. Prentice-Hall, 1998.

[96] SL Pfleeger: “Understanding and
Improving Technology Transfer in Software
Engineering”. In The Journal of Systems and
Software, 47:111-124, 1999.

[97] R. Pressman: Software Engineering: A
Practitioner’ s Approach. McGraw-Hill, 1997.
[98] J. Puffer: “Action Planning”. In K. El Emam
and N. Madhavji (eds): Elements of Software
Process Assessment and Improvement, IEEE CS
Press, 1999.

[99] L. Putnam and W. Myers. Measures for
Excellence: Reliable Software on Time, Within
Budget. Y ourdon Press, 1992.

[100] R. Radice, N. Roth, A. O'HaraJr., and W.
Ciafdla “A Programming Process
Architecture”. InIBM Systems Journal, 24(2):79-
90, 1985.

[101] D. Raffo and M. Kelner: “Modeling
Software Processes Quantitatively and

Evaluating the Performance of Process
Alternatives’. In K. El Emam and N Madhavji

9-21

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

(eds.): Elements of Software Process Assessment
and I mprovement, |EEE CS Press, 1999.

[102] S. Raghaven and D. Chand: “Diffusng
Software-Engineering Methods’. In |EEE
Software, pages 81-90, July 1989.

[103] E. Rogers: Diffusion of Innovations Free
Pressm 1983.

[104] M. Sanders (ed.): The SPIRE Handbook:
Better, Faster, Cheaper Software Development
in Small Organisations Published by the
European Comission, 1998.

[105] E. Schein: Process Consultation Revisited:
Building the Helping Relationship. Addison
Wesley, 1999.

[106] Software Engineering Institute: The
Capability Maturity Model: Guidelines for
Improving the Software Process Addison
Wesley, 1995.

[107] Software Engineering Laboratory:
Software Process Improvement Guidebook.
NASA/GSFC, Techical Report SEL-95-102,
April 1996. (avalable from
http://sel.gsfc.nasa.gov/doc-st/docs/95-102.pdf)

[108] Software Engineering Laboratory:
Software Measurement Guidebook.
NASA/GSFC, Technica Report SEL-94-002,
July 1994.

[109] Software Productivity —Consortium:
Process Definition and Modeling Guidebook.
SPC-92041-CMC, 1992.

[110] R. van Solingen and E. Berghout: The
Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software
Development. McGraw Hill, 1999.

[112] 1. Sommerville and T. Rodden: “Human,
Socid and Organisational Influences on the
Software Process’. In A. Fuggetta and A. Wolf:
Softwar e Process, John Wiley & Sons, 1996.

[112] 1. Sommerville and P. Sawyer:
Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, 1997.

[123] H. Steinen: “ Software Process Assessment
and Improvement: 5 Years of Experiences with
Bootstrap®. In K. El Emam and N. Madhavji
(eds.): Elements of Software Process Assessment
and I mprovement, |EEE CS Press, 1999.

[114] K. Wiegers. Creating a Software
Engineering Culture Dorset house, 1996.

[115] S. Weissfelner: “1SO 9001 for Software
Organizations’. In K. El Emam and N. Madhavji

397.

398.

(eds.): Elements of Softwar e Process Assessment
and I mprovement, |EEE CS Press, 1999.

[116] E. Yu and J. Mylopolous: “Understanding
‘Why' in Software Process Modeling, Analysis,
and Design”. In Proceedings of the 16"
International Conference on Software
Engineering, 1994.

[117] S. Zahran: Softwar e Process | mprovement:
Practical Guidelines for Business Success
Addison Wesley, 1998.

© |EEE — Stoneman (Version 0.7) — April 2000

1.

CHAPTER 10
SOFTWARE ENGINEERING TOOLSAND M ETHODS

David Carrington
Department of Computer Science and Electrical Engineering
The University of Queendand
Brisbane, QId 4072

Audtrdia

+61 7 3365 3310
davec@csee.ug.edu.au

TABLE OF CONTENTS
INTRODUCTION

DEFINITION OF KNOWLEDGE AREA
BREAKDOWN OF TOPICS

BREAKDOWN RATIONALE

MATRIX OF TOPICSVSREFERENCE MATERIAL
RECOMMENDED REFERENCES

LIST OF FURTHER READINGS
ACKNOWLEDGMENTS

REFERENCES

APPENDIX: TOPIC-REFERENCE MATRICES

©CoOoNT~WN R

1. INTRODUCTION

This document provides an initia breskdown of
topics within the Software Engineering
Infrastructure Knowledge Area as defined by the
document “Approved Basdine for a List of
Knowledge Areas for the Stone Man Version of
the Guide to the Software Engineering Body of
Knowledge”. Earlier versions of this Knowledge
Areaincluded material on integration and reuse,
but this has been removed. Consequently the
Knowledge Area has been renamed from
“Software Engineering Infrastructure” to
“ Software Engineering Tools and Methods’.

Thefive texts [DT97, M0098, Pfl98, Pre9d7, and
Som96] have been supplemented by Tucker
[Tuc96], who provides nine chapters on software
engineering topics. In particular, Chapter 112,
“Software Tools and Environments’ by Steven
Reiss [Rei96] was particularly helpful for this
Knowledge Area. Specidized references have
been identified for particular topics, e.g., Object-
oriented development.

© |EEE— Stoneman (Version 0.7) — April 2000

4.

2. DEFINITION OF KNOWLEDGE
AREA

The Software Engineering Tools and Methods
Knowledge Area includes both the development
methods and the software development
environments knowledge areas identified in the
Straw Man version of the guide.

Development methods impose structure on the
software development activity with the god of
making the ectivity systematic and ultimately
more likely to be successful. Methods usualy
provide a notation and vocabulary, procedures
for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope,
from asinglelife cycle phaseto the completelife
cycle. The emphasis in this Knowledge Area is
on methods that encompass multiple lifecycle
phases since phase-specific methods arelikely to
be covered in other Knowledge Aress.

Software development environments are the
computer-based tools that are intended to assist
the software development process. Tools allow
repetitive, well-defined actions to be automated,
thus reducing the cognitive load on the software
engineer. Theengineer isthen freeto concentrate
on the creative aspects of the process. Tools are
often designed to support particular methods,
reducing any administrative load associated with
applying the method manualy. Like methods,
they are intended to make development more
systematic, and they vary in scope from
supporting individua tasks to encompassing the
completelife cycle.

101

8.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.
42.

43,
44,

3. BREAKDOWN OF TOPICS

This section contains a top-level breakdown of
topics in the Software Engineering Tools and
Methods Knowledge Area.

|. Software Todls
A. Software Requirements Tools
B. Software Design Tools
C. Software Construction Tools
1. program editors
2. compilers
3. debuggers
D. Software Testing Tools
1. test generators
2. test execution frameworks
3. test evaluation tools
4. test management tools
E. Software Maintenance Tools
1. comprehension tools
2. reverse engineering tools
3. re-engineering tools
4. traceability tools
F. Software Engineering Process Tools
1. integrated CASE environments

2. process-centered software engineering
environments

3. process modeling tools
G. Software Quality Tools
1. inspection tools
2 static analysistools
3. performance analysistools

H. Software Configuration Management
Tools

1. version management tools
2. release and build tools

|. Software Engineering Managemert Tools
1. project planning and tracking tools
2. risk analysis and risk management tools
3. measurement tools

4, defect, enhancement, issue and problem
tracking tools

J. Infrastructure support tools
1. interpersonal communication tools

102

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.

2. information retrieval tools
3. system administration and support tools
K. Miscellaneous
1. tool integration techniques
2. metatools
3. tool evaluation
I1. Software Development Methods
A. Heurigtic methods
1. ad-hoc (unstructured) methods
2. structured methods
3. data-oriented methods
4, object-oriented methods
5. domain-specific methods:
B. Forma methods
1. specification languages & notations
2. refinement
3. verification
C. Prototyping methods
1. styles
2. prototyping target
3. evaluation techniques
D. Miscellaneous
1. method evaluation

Software Tools

The top-level partitioning of the Software Tools
section uses the same structure as the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge. The first five
subsections correspond to the five Knowledge
Areas (Requirements, Design, Construction,
Testing, and Maintenance) that correspond to a
phase of a software lifecycle, so these sections
provide a location for phase-specific tools. The
next four subsections correspond to the
remaining Knowledge Areas (Process, Qudlity,
Configuration Management and Management),
and provide a location for phaseindependent
toolsthat are associated with activities described
in these Knowledge Areas. Two additiond
subsections are provided: one for infrastructure
support tools that do not fit in any of earlier
sections, and a Miscellaneous subsection for
topics, such as tool integration techniques, that
are potentially applicable to all classes of tools.
Because software engineering tools evolve
rapidly and continuoudy, the hierarchy and

© |EEE — Stoneman (Version 0.7) — April 2000

70.

71.

72.

73.

74.

75.

76.
77.

78.
79.

description avoids discussing particular tools as
far aspossible.

Software Requirements Tools

Tools used for eliciting, recording, analysing and
validating software requirements belong in this
section.

Software Design Tools

This section covers tools for creating and
checking software designs. There is a variety of
such tools, with much of this variety being a
consequence of the diversity of design notations
and methods.

Software Construction Tools

Program editors are tools used for creation and
modification of programs (and possibly
associated documents). These tools can be
genera -purposetext or document editors, or they
can be specidized for atarget language. Editing
refers to human-controlled development tools
whereas compilers are generaly not interactive.
Some environments provide both interactive
editing and compilation via one interface. The
compilers topic also covers pre-processors,
linkers/loaders, and code generators. Debugging
tools have been made a separate topic since they
support the construction process but are different
from program editors or compilers.

Software Testing Tools

Testing tools can be categorized according to
where in the testing process they are used. Test
generators assist the development of test cases.
Test execution frameworks enabl e the execution
of test cases in a controlled environment where
the behavior of the object under test is observed.
Test evaluation tools support the assessment of
theresults of test execution, hel ping todetermine
whether the observed behavior conforms to the
expected behavior. Test management tools
provide support for the testing process.

Software Maintenance Tools

The first topic in this section concerns tools to
assist human comprehension of programs.
Exampletoolsinclude visualization tools such as
animators and program dicers. The next topic is
reverse engineering tools that assist the process
of working backwards from an existing product
to create artefacts such as design and
specification descriptions. Re-engineering tools

© |EEE— Stoneman (Version 0.7) — April 2000

80.

81.

82.

83.

85.

86.

87.

88.
89.

extend this approach by applying transformations
to generate a new product from an old one. Such
tools dlow trandation of a program to a new
programming language, or a database to a new

format. Traceability tools have been included in

this section since a major goal of traceability is
to facilitate maintenance.

Software Engineering Process Tools

Computer-aided software engineering tools or
environments that cover multiple phases of the
software development lifecycle have been
incorporated in this section. Such tools perform
multiple functions and hence potentialy interact
with the software process that is being enacted.
The second topic covers those environments that
explicitly incorporate software process
information and that guide and monitor the user
according to a defined process. The third topic
covers tools to model and investigate software
processes.

Software Quality Tools

The first topic in this section covers tools to
support reviews and inspections. The secord
topic deds with tools that andyse software
artefacts, such as syntactic and semantic
analysers, and data, control flow and dependency
analysers. Such tools are intended for checking
software artefacts for conformance or for
verifying desired properties. Thethird topic deals
with analyss of dynamic behaviour or
performance.

Software Configuration Management
Tools

Tools for configuration management have been
categorized as either related to version

management or to software release and build
management.

Software
Tools

Engineering Management

Management tools have been subdivided into
four categories: project planning and tracking,
risk andyss and risk management,
measurement, and tools for tracking defects,
enhancements, issues and problems.

Infrastructure support tools

This section covers tools that provide
interpersona communication, information
retrieval, and system administration and support.

103

90.

91.

92.

93.

94.

95.

96.
97.

These tools, such as e-mail, databases, web
browsers and file backup tools, are generally not
specific to a particular lifecycle stage, nor to a
particular development method.

Miscellaneous

This section covers tool integration techniques,
meta-tools and tool evaluation. Tool integration
is important for making individua tools
cooperate. The kinds of tool integration are
platform, presentation, process, data, and control
[Sommeville, Section 25.2]. Meta-tools generate
other tools, compiler-compilers are the classic
example. Because of the continuous evolution of
software engineering tools, tool evaluaion isan
important topic.

Softwar e Development M ethods

This section is divided into four subsections:
heuristic methods deding with informal
approaches, formal methods deding with
mathematically based approaches, prototyping
methods dedling with software development
approaches based on various forms of
prototyping, and miscellaneous The first three
subsections are not digjoint; rather they represent
distinct concerns. For example, an object-
oriented method may incorporate formal
technigues and rely on prototyping for
verification and vaidation. Like software
engineering tools, methodologies evolve
continuously. Consequently, the Knowledge
Area description avoids naming particular
methodol ogies as far as possible.

Heuristic methods

This subsection contains five categories: ad-hoc,
structured, data-oriented, object-oriented and
domain-specific. The domain-specific category
includes specialized methods such as red-time
devel opment methods.

Formal methods

This subsection deals with mathematically based
development methods and is subdivided by
different aspects of formal methods. Topic 1 is
the specification notation or language used.
Specification languages are commonly classified
asmaodel-oriented, property-oriented or behavior-
oriented. Topic 2 deds with how the method
refines (or transforms) the specification into a
formthat is closer to the desired final form of an
executable program. Topic 3 covers the
verification properties that are specific to the

104

98.
99.

100.

101.

102.
103.

104.

105.

106.

107.

108.

109.

110.

formal approach and covers both theorem
proving and model checking.

Prototyping methods

The third subsection covers methodsinvolving
software prototyping and is subdivided into
prototyping styles, targets and evaluation
techniques. The topic of prototyping styles
identifies the different approaches. throwaway,
evolutionary and the executable specification.
Example targets of a prototyping method may be
requirements, architectural design or the user
interface.

Miscellaneous

The final subsection is intended to cover topics
not covered elsewhere. The only topic identified
so far is method evaluation.

Linksto common themes

Quality

Development methods are intended to provide
guidance to software developers, primarily with
the goal of making it easier to produce a high
qudity product. Different methods emphasize
different software qualities. Software tools also
contribute to quality by automating activities
thus assisting the software devel oper.

Sandards

Software engineering standards represent the
collected wisdom and conventions of the
software engineering community. As methods
mature and gain widespread use, standardization
provides a way to codify the knowledge. No
sandards for software development
methodologies have been identified for this
document adthough individua methods are
standardized. For software tools, the relevant
|EEE standards are:

+ Trid-Use Standard Reference Model for
Computing System Toal Interconnections,
|EEE Std 1175-1992

¢+ |EEE Recommended Practice for the
Evaluation and Selection of CASE Tools,
|EEE Std 1209-1992 (I1SO/IEC 14102)

* |EEE Recommended Practice for the
Adoption of CASE Tools, IEEE Std 1348
1995 (1SO/IEC 14471).

Two relevant ECMA standards are:

© |EEE — Stoneman (Version 0.7) — April 2000

111.

112.

113.
114.

115.

116.

117.

118.

¢+ ECMA TR/S5 Reference Mode for
Frameworks of Software Engineering
Environments, 3" edition, June 1993,

+ ECMA TR/69 Reference Model for Project
Support Environments, December 1994.

Measurement

Specific devel opment methods often incorporate
particular measurements. Tools can assist
software developers perform measurement
activities and this is a specific category of
management tools.

4. BREAKDOWN RATIONALE

The Stone Man Version of the Guide to the
Software Engineering Body of Knowledge
conforms at least partially with the partitioning
of the software life cycle in the ISO/IEC 12207
Standard [ISO95]. Some Knowledge Aresas, such
asthisone, are intended to cover knowledge that
applies to multiple phases of the life cycle. One
approach to partitioning topicsin this Knowledge
Area would be to use the software life cycle
phases. For example, software methods and tools
could be classified according to the phase with
which they are associated. This approach was not
seen as effective. If software engineering
infrastructure could be cleanly partitioned by life
cycle phase, it would suggest that this
Knowledge Area could be diminated by
alocating each part to the corresponding life
cycle Knowledge Area, e.g., infrastructure for
software design to the Software Design
Knowledge Area. Such an approach would fail to
identify the commondity of, and
interrelationships between, both methods and
tools in different life cycle phases. However
since tools are a common theme to most
Knowledge Aress, severa reviewers of Version
0.5 of this Knowledge Area suggested that a
breakdown based on Knowledge Area for tools
would be helpful. This suggestion was endorsed
by the Industry Advisory Board.

There are many links between methods and tools,
and one possible structure would seek to exploit
these links. However because the relationship is
not asimple* one-to-one” mapping, thisstructure
has not been used to organize topics in this
Knowledge Area. This does mean that these links
are not explicitly identified.

Some topicsin this Knowledge Area do not have
corresponding reference materials identified in
the matrices in Appendix 2. There are two

© |EEE— Stoneman (Version 0.7) — April 2000

1109.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.
136.

possible conclusions: either the topic areais not
relevant to this Knowledge Area, or additiona
reference material needs to be identified.
Feedback from reviewers will be hepful to

resolve thisissue.

5. MATRIX OF
REFERENCE MATERIAL

TOPICS VS

The matrices in the Appendix indicate for each
topic sources of information within the selected
references (see Section 2).

6. RECOMMENDED REFERENCES

This section briefly describes each of the
recommended references.

[CW96] Edmund M. Clarke & d. Formd
Methods; State of the Art and Future Directions.

This tutorid on forma methods explains
techniques for forma specification, model
checking and theorem proving, and describes
some successful case studies and tools.

[DT97] Merlin Dorfman and Richard H. Thayer
(eds.). Software Engineering.

This tutorial volume contains a collection of
papers organized into chapters. The following
papers are referenced (section numbers have
been added to reference individual papers more
conveniently in the matrices in the Appendix):

Chapter 4. Software Requirements
Engineering and Software Design
4.1 Software Requirements. A Tutorial,
Stuart Faulk

4.2 Software Design: An Introduction,
David Budgen

Chapter 5:
Methodol ogies

5.1 Object-oriented Development, LindaM.
Northrup
5.2 Object-oriented Systems Development:
Survey of Structured Methods, A.G.
Sutcliffe
5.4 A Review of Forma Methods, Robert
Vienneau
Chapter 7: Software Vdidation, Verification
and Tegting
7.4 Tracesbility, James D. Palmer

Chapter 12 Software Technology

Software Development

10-5

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

12.2 Prototyping: Alternate Systems
Development Methodology, JM. Carey

12.3 A Classification of CASE Technology,
Alfonso Fuggetta

[Pfl198] S.L. Pfleeger. Software Engineering ¥
Theory and Practice.

Thistext isstructured according to the phases
of alife cycle so that discussion of methods
and toolsis distributed throughout the book.

[Pre97] R.S. Pressman. Software Engineering ¥
A Practitioner’s Approach (4™ Ed)

Chapter 29 covers “Computer-Aided
Software Engineering” including a taxonomy
of casetools (29.3). There is not much detail
about any particular class of tool but it does
illustrate the wide range of software
engineering tools. The strength of thisbook is
its description of methods wi th chapters 10-
23 covering heuristic methods, chapters 24
and 25 covering forma methods. Section
11.4 describesprototyping methodsand tool s.

[Rei9%6] Steven P. Reiss. Software Tools and
Environments

This chapter from [Tuc96] provides an
overview of software tools. The emphasisis
on programming tools rather than tools for
analysis and design although CASE tools are
mentioned briefly.

[Som96] lan Sommerville. Software Engineering
(5" Ed)
Chapters 25, 26 and 27 introduce computer-
aided software engineering with the emphasis
being on tool integration and large-scale
environments. Static analysis tools are
covered in Section 24.3. Chapter 9, 10 and 11
introduce formal methods with forma
verification being described in Section 24.2
and the Cleanroom method in Section 24.4.
Prototyping is discussed in Chapter 8.
[Was96] Anthony |. Wasserman. Towards a
Discipline of Software Engineering

Thisgeneral article discussestherole of both
methods and tools in software engineering.
Although brief, the paper integrates the major
themes of the discipline.

7. L 1ST OF FURTHER READINGS

A commentary on the additional reference
material listed inthebibliography isto beadded
in this section.

106

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

8. ACKNOWLEDGMENTS

This document was developed from the jump-
start document written by Tuong Vinh Ho. Phil

Cook, Andrew Coyle, lan MacColl and Jm
Welsh helped identify relevant information
sources and offered helpful advice. Their
contribution is gratefully acknowledged. The two
reviewers for version 0.1, Don Bagert and Jorge
Diaz-Herrera, provided useful advice about
topics and structure (see Appendix 3). Vauable
feedback from numerous reviewers of version

0.5 has been incorporated into the document. A

separate document detailing this feedback and its
disposition is availade on the SWEBOK website
(www.swebok.org).

9. REFERENCES

Edward V. Berard. Essays on Object-oriented
software Engineering. Prentice-Hall, 1993.

Edmund M. Clarke, Jeanette M. Wing et 4.
Forma Methods: State of the Art and Future
Directions. ACM Computer Surveys, 28(4):626-
643, 1996.

Derek Coleman e a. Object-Oriented
Development: The Fusion Method. Prentice Hall,
1994.

Dan Craigen, Susan Gerhart and Ted Ralston.
Forma Methods Redlity Check: Industria
Usage, |IEEE Transactions on Software
Engineering, 21(2):90-98, February 1995.
Merlin Dorfman and Richard H. Thayer, Editors.
Software Engineering. IEEE Computer Society,
1997.

ECMA. TR/55 Reference Modd for Frameworks
of Software Engineering Environments, 3
edition, June 1993.

ECMA TR/69 Reference Model for Project
Support Environments, December 1994.

Pankg K. Garg and Mehdi Jazayeri. Process
Centered Software Engineering Environments,
|EEE Computer Society, 1996.

IEEE. Trid-Use Standard Reference Model for
Computing System Tool Interconnections, IEEE
Std 1175-1992.

| EEE. Recommended Practice for the Evaluation
and Selection of CASE Tools, |IEEE Std 1209
1992 (ISO/IEC 14102, 1995).

|EEE Recommended Practice for the Adoption
of CASE Toals, IEEE Std 1348-1995 (ISO/IEC
14471).

© |EEE — Stoneman (Version 0.7) — April 2000

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

ISO/IEC Standard for Information Technology
¥,Software Life Cycle Processes, ISO/IEC
12207 (IEEE/EIA 12207.0-1996), 1995.

Stan Jarzabek and Riri Huang. The Case for
User-Centered CA SE Tools, Communications of
the ACM, 41(8):93-99, August 1998.

B. Kitchenham, L. Pickard, and S.L. Pfleeger.
Case Studies for Method and Tool Evauation,
|EEE Software, 12(4):52-62, July 1995.

Bertrand Meyer. Object-oriented Software
Construction (2nd Ed.). Prentice Hall, 1997.

James W. Moore. Software Engineering
Standards: A User’s Road Map. |EEE Computer
Society, 1998.

Vicky Modey. How to Assess Tools Efficiently
and Quantitatively, |IEEE Software, 9(3):29-32,
May 1992.

H.A. Muller, R.J. Norman and J. Slonim (eds.).
Computer Aided Software Engineering, Kluwer,
1996. (A specid issue of Automated Software
Engineering, 3(3/4), 1996).

Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.

R.M. Poston. Automating specification-based
Software Testing. | EEE, 1996.

Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. 4" edition, McGraw-
Hill, 1997.

Steven P. Ress. Software Tools and
Environments, Ch. 112, pages 2419-2439. In
Tucker [Tuc96], 1996.

C. Rich and R.C. Waters. Knowledge Intensive
Software Engineering Tools, IEEE Transactions
on Knowledge and Data Engineering, 4(5):424-
430, October 1992.

lan Sommerville. Software Engineering. 5
edition, Addison-Wesley, 1996.

Xiping Song and Leon J Osterweil. Towards
Objective, Systematic Design-Method
Comparisons, |IEEE Software, 9(3):43-53, May
1992.

Allen B. Tucker, Jr., Editor-in-chief. The
Computer Science and Engineering Handbook.
CRC Press, 1996.

Wadter G. Vincenti. What Engineers Know and
How They Know It: Analyticad Studies from
Aeronautica History. John Hopkins University
Press, 1990.

© |EEE— Stoneman (Version 0.7) — April 2000

181. Anthony I. Wasserman. Toward a Discipline of

Software Engineering, | EEE Software, 13(6): 23-
31, November 1996.

107

182. APPENDIX: TOPIC VS REFERENCE M ATERIAL M ATRICES

|. Software Tools CW9%6 DT97 Pflog | Pre97 | Rei9% | Som9 | Was96 Other
A. Software Requirements Tools 41 11.4.2, 26.2
pp.98-100 29.3
123
B. Software Design Tools 12.3 29.3 26.2
C. Software Congruction Tools 12.3 29.3 1122 26.1
1 program editors
2. compilers
3. debuggers
D. Software Testing Tools 12.3 77,87 293 1123 26.3
1 test generators
2. test execution frameworks
3. tes evdudtion tools
4. test management
E. Software Maintenance Tools 12.3 105 293
1. comprehension tools 1125
2. Reverse enginegring todls
3. Re-engineering todls
4. tracedhility tools 7.4
pp.273-4
F. Software Engineering Process 12.3 25, 26,
Tools 27
1. integrated CA SE environments 29 112.3,
1124
2. Process-centered software 29.6 1125
engineering environments
3. Process modding todls 23,24
G. Software Qudity Todls 12.3
1. ingpectiontools
2. ddicandysstods v/ 7.7 29.3 1125 24.3
3. peformance andysistools 1125
H. Software Configuration 12.3 105 1123
Management Tools
1 verson management tools 29
2. rdease and build tools 29.3
. Software Engineering Management 12.3
Tools
1 proect planning and tracking 29.3
tods
2. risk andyss and management
tods
3. measurement tools 29.3
4, defect, enhancement, issue and 29.3
problem tracking tools
J. Infrastructure Support Toals 12.3
1. interpersonad communication 29.3
tods
2. information retrievd tools 29.3
3. sysem adminigtration and 29.3
Support tools
K. Miscdlaneous 12.3
1. todl integration techniques 18 1124 v/
(p-35)
2. metatods
3. todl evduation 810
(p-383)
108 © |EEE — Stoneman (Version 0.7) — April 2000

I1. Development M ethods CWo6 | DT97 | Pfl98 | Pre98 | Som96 | Was96 Other
A. Heuristic Methods 10-23 v/
1. ad-hoc methods
2. structured methods 42,52 | 45 10-18 15
3 dataoriented methods 42,52 128
4 object-oriented methods 51,52[44,75] 1923 | 6.3,14
5 domain-specific methods 15 16
54 24,25 | 9-11,
B. Forma Methods 4.4
1. specification languages v/ 45 244
2. refinement 253
verification/proving v 57,73 24.2
properties
C. Prototyping Methods 25 8 v/
1. styles 122 |46,56| 114
2. prototyping targets 122

3. evauation techniques

D. Miscelaneous

1. Method evauation

© |EEE— Stoneman (Version 0.7) — April 2000

10-9

CHAPTER 11
SOFTWARE QUALITY

DoloresWallace and Larry Reeker
Nationd Ingtitute of Standards and Technology
Gaithersburg, Maryland 20899 USA
{DoloresWallace, Larry.Reeker} @NIST.gov

TABLE OF CONTENTS

1. INTRODUCTION: DEFINING THE
KNOWLEDGE AREA

2. TOPIC BREAKDOWN FOR SOFTWARE
QUALITY

3. SOFTWARE QUALITY CONCEPTS
3.1 Measuring the Value of Qudity
3.21S0 9126 Qudity Description
3.3 Dependability
3.4 Speciad Types of Systems and Quality
Needs
3.5 Quality Attributesfor Engineering Process

4. DEFINING SQA AND V&V

5. PLANNING FOR SQA AND V&V
5.1 The SQA Plan
52TheV&V Fan
6. ACTIVITIESAND TECHNIQUESFOR SQA AND
V&V
6.1 Static Techniques
6.2 Dynamic Techniques
7. MEASUREMENT APPLIED TO SQA AND V&V
7.1 Fundamentals of Measurement
7.2 Metrics
7.3 Measurement Techniques
7.4 Defect Characterization
7.5 Additional usesof SQA and V&V data
8. REFERENCES

8.1 References Keyed to Text Topics
8.2 ReferenceLists

1. INTRODUCTION: DEFINING THE
K NOWLEDGE AREA

Software Quality Assurance (SQA) and
Veification and Vadidation (V&V) ae the
processes of the Knowledge Area on Software
Quality. The scope of this Knowledge Areaisthe
qudity of the product being produced by the
Software Engineer, where the term “product”
means any artifact that is the output of any
process used to build the final software product.

© |EEE— Soneman (Version 0.7) — April 2000

Examples of a product include, but are not
limited to, an entire system specification, a
software requirements specification for a
software component of a system, a design
module, code, test documentation, or reports
from quality anaysis tasks. While most
treatments of quality are described in terms of
the final system’'s performance, sound
engineering practice requires that intermediate
products relevant to quality be checked
throughout the development and maintenance
process.

Because of the pervasiveness of qudity
consideraions in software, there is alarge body
of literature on the subject, and the authors have
had to make difficult choices. It is hecessary to
limit the number of specific references to make
the SWEBOK maximally useful as a digtillation
of the knowledge of the field, so the basic set of
Core References is included for the topics
covered herein. Other authors may have chosen
different or additional references, but these cover
the points that are most essential. A set of
Additional Readings includes some additional
books and articles that the authors wish to cal to
the attention of the reader. In addition, the
remainder of the books and articles from which
the core references have been specified might be
useful to the reader. Even the extended reading
set, though, does not cover everything that might
be found useful to a person interested in
Software Quadlity, and new materid appears
regularly.

The reader will notice many pointers to other
knowledge areas (KAS) in the SWEBOK. Thisis
again an expression of the ubiquity of software
quality concerns within the fiedld of Software
Engineering. There may be some duplication of
material between this knowledge area and the
other KAs, but the pointers are intended to
minimize such duplication.

111

5.

10.
11.

2. TOPIC BREAKDOWN FOR
SOFTWARE QUALITY

The qudlity of a given product is sometimes
defined as "the totality of characteristics [of the
product] that bear on its ability to satisfy stated
or implied needs’ . Qudity is software is
sometimes also defined as “the efficient,
effective, and comfortable use by a given set of
users for a set of purposes under specified
conditions’. These two definitions can be much
the same if the requirements are properly
elicited, but both of them require some way of
communicating to the engineer wha will
congtitute quality for the given system. In this
chapter, therefore, the first topic is the meaning
of quality and some of the product characteristics
that relate to it. The Knowledge Area on
Software Requirements deadls with how these
qualitieswill be elicited and expressed.

Sections on the processes SQA and V&V that
focus on software quality follow the discussion
on software quality concepts. These quality-
focused processes help to ensure better software.
They dso provide informaion needed to
improve the quality of the entire software and
maintenance processes. The knowledge aress
Software Engineering Process and Software
Engineering Management, discuss quality
programs for the organization developing
software systems, which use the results of SQA
and V&V for improving the quality of the
process.

Engineering for quality requiresthe measurement
of quality in a concrete way, so this knowledge
area contains a section on measurement as
aoplied to SQA and V&V. Other processes for
assuring software product quality are discussed
in other parts of the SWEBOK. One of these,
sngled out in SWEBOK as a separate
knowledge area within the software life cycle,
Software Testing, is dso used in both SQA and
V&V. Ancther process fundamenta to the
software development and maintenance and also
important to software quality is Software
Configuration Management.

SOFTWARE QUALITY KNOWLEDGE AREA

1. Introduction: Defining the Knowledge Area

2. Topic Breakdown for Software Quality

3. Software Quality Concepts

* From Quality—Vocabulary, (1SO 8402: 1986, note 1).

112

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.

3.1 Measuring the Vaue of Quality

3.21S0 9126 Qudity Description

3.3 Dependahility

3.4 Specid Types of Systems and Quality Needs

3.5 Quality Attributes for Engineering Process

4. Defining SQA and V&V

5. Planning for SQA and V&V

5.1 The SQA Plan

52TheV&V Fan

6. Activities and Techniques for SQA and V&V

6.1 Static Techniques

6.1.1 Audits, Reviews, and Inspections

6.1.2 Analytic Techniques

6.2 Dynamic Techniques

7. Measurement Applied to SQA and V&V

7.1 Fundamentals of M easurement

7.2 Metrics

7.3 Measurement Techniques

7.4 Defect Characterization

7.5 Additional usesof SQA and V&V data

8. References

8.1 Topics and References

8.2 Reference Lists

35. 3. SOFTWARE QUALITY CONCEPTS

36.

37.

What is software quality, and why is it so
important that it is pervasive in the Software
Engineering Body of Knowledge? Within an
information system, software is atool, and tools
have to be selected for quality and for
appropriateness. That istherole of reguirements.
But software is more than a tool. It dictates the
performance of the system, and it is therefore
important to the system quality. Much thought
must therefore go into the value to place on each
qudity desired and on the overal quality of the
information system. This section discusses the
vaue and the attributes of quality.

The notion of “quality” isnot assimple asit may
seem. For any engineered product, there are
many desired qualities relevant to a particular
project, to be discussed and determined at the
time that the product requirements are
determined. Qualities may be present or absent,
or may be matters of degree, with tradeoffs
among them, with practicality and cost as major
considerations. The software engineer has a
responsibility to elicit the system’s quality
requirements that may not be explicit a the
outset and to discuss their importance and the
difficulty of attaining them. All processes
associated with software qudity (e.g. building,

© |EEE — Stoneman (Version 0.7) — April 2000

38.

39.
40.

41.
42,

checking, improving quality) will be designed
with these in mind and carry costs based on the
design. Thus, it is important to have in mind
some of the possible attributes of quality.

Various researchers have produced models
(usualy texonomic) of software qudity
characteristics or attributes that can be useful for
discussing, planning, and rating the quality of
software products. The models often include
metrics to “measure’ the degree of each quality
atribute the product attains. Uswally these
metrics may be applied a any of the product
levels. They are not always direct measures of
the quality characteristics of thefinished product,
but may be relevant to the achievement of overall
quality. Some of the classical thinking in this
area is found in McCall, Boehm [Boe78], and
others and is discussed in the texts of Pressman
[Pr], Pfleeger [Pf] and Kan [Kan94]. Each model
may have a different set of attributes at the
highest level of the taxonomy, and selection of
and definitions for the attributes at al levels may
differ. The important point is that the system
software requirements define the quality
requirements and the definitions of the attributes
for them.

3.1 Measuring the Value of Quality

A motivation behind a software project is a
determination that it has a value, and this value
may or not be quantified as a cost, but the
customer will have some maximum cost in mind.
Within that cost, the customer expects to attain
the basic purpose of the software and may have
some expectation of the necessary quality, or
may not have thought through the quality issues
or cost. The software engineer, in discussing
software quality attributes and the processes
necessary to assure them, should keep in mind
the value of each one. Isit merely an adornment
or it essential to the system?If itissomewherein
between, as amost everything is, it isamatter of
making the customer fully aware of both costs
and benefits. There is no definite rule for how
this is done, but it is good for the software
engineer to have some notion of how to go about
this process. A discussion of measuring cost and
value of quality requirements can be found in
[Wei93], Chapter 8, ppll8-134] and [Jon9l],
Chapter 5.

3.21S0 9126 Quality Description

Terminology for qual ity attributes differs from
one model to another; each modd may have

© |EEE— Soneman (Version 0.7) — April 2000

43.

45.

46.

47.

48.

49.

different numbers of hierarchical levels and a
different total number of attributes. One attempt
to standardize terminology in an inclusive model
resulted in SO 9126 (Information Technology-
Software Product Quality, Part 1: Quality Modd,
1998), of which asynopsisisincluded inthisKA
asTable 1. 1SO 9126 is concerned primarily with
the definition of quality characteristics in the
final product. 1SO 9126 sets out six quality
characteristics, each very broad in nature. They
are divided into 21 sub-characteristics. In the
1998 revision, “compliance” to application
specific requirements is included as a sub-
characteristic of each characteristic.

Some terms for characteristics and their
atributes are used differently in the other models
mentioned above, but 1SO 9126 has taken the
various sets and arrangements of quality
characteristicsand hasreached consensusfor that
model. Other models may have different
definitions for the same attribute. A software
engineer understands the underlying meanings of
quality characteristics regardless of their names,
as well as their vaue to the system under
devel opment or maintenance.

3.3 Dependability

For systems whose failure may have extremely
severe consequences, dependability of the overall
system (hardware, software, and humans) is the
main god in addition to the redization of basic
functionality. Software dependability is the
subject of IEC 50-191 and the IEC 300 series of
standards. Some types of systems (e.g., radar
control, defense communications, medical
devices) have particular needs for high
dependability, including such attributes as fault
tolerance, safety, security, usability. Reliability is
a criterion under dependability and also isfound
among the ISO/IEC 9126 (Table 1). Reliability is
defined similarly, but not identically, in the two
places. In Moore's treatment [M], Kiang's
factors are used as shown in the following list,
with the exception of the term Trustability from
Laprie.
¢ Availability: The product’s readiness for
use on demand

+ Rdiability: The longevity of product
performance

+ Maintainability: The ease of maintenance
and upgrade

+ Maintenance support: Continuing support to
achieve availability performance objectives

113

50.

51.

52.

53.

54.

55.

56.

S7.

¢ Trudability: System’s ability to provide
users with information about service
correctness.

There is a large body of literature for systems
thaa must be highly dependable (“high
confidence” or “high integrity systems’).
Terminology from systems that not include
software have been imported for discussing
threats or hazards, risks, system integrity, and
related concepts, and may be found in the
references cited for this section.

34 Special Types of Systems and
Quiality Needs

As implied above, there are many particular
qualities of software that may or may not fit
under 1SO 9126. Particular classes of application
systems may have other quality attributes to be
judged. Thisis clearly an open-ended set, but the
following are examples:

+ Intelligent and Knowledge Based Systems—
“Anytime” property (guarantees best
answer that can be obtained within a given
time if caled upon for an answer in that
amount of time), Explanation Capability
(explains reasoning process in getting an
answer).

¢ Human Interface and Interaction Systems—
Adaptivity (to user's traits, interests),
Intelligent Help, Display Sdience.

+ Information Systems — Ease of query, High
recall (obtaining most relevant
information), High Precision (not returning
irrelevant information).

3.5 Quality Attributes for Engineering
Process

57. Other considerations of software systems are

58.
59.

60.

61.

known to affect the software engineering process
while the system is being built and during its
future evolution or modification, and these can
be considered elements of product qudity. These
software qualitiesinclude, but are not limited to:

+ Code and object reusability

* Traceability of requirementsfrom code and
test documentation and to code and test
documentation from requirements

+ Modularity of code and independence of
modules.

These software qudity attributes and their
subjective or objective measurement are

114

important in the development process,
particularly in large software projects. They can
aso be important in maintenance (if code is
traceable to requirements — and vicelversa, then
modification for new requirementsisfacilitated).
They can improve the quality of the process and
of future products (code that is designed to be
reusable, if it functions well, avoids rewriting
which could introduce defects).

© |EEE — Stoneman (Version 0.7) — April 2000

62.
63.

64.

65.
66.
67.
68.
69.
70.

71.
72.
73.

74.
75.

76.
77.
78.
79.
80.
81.

82.
83.

84.
85.

86.

87.
88.
89.

90.
91.

92.
93.
94.
95.
96.

Table 1. Software Quality Characteristics and Attributes — SO 9126-1998 View

Characteristics &
Subcharacteristics

Short Description of the Char acteristicsand Subchar acteristics

Functionality Che_xract(;iistics relating to achievement of the basc purpose for which the software is being

. Suitability %%;?:rsence and appropriateness of a set of functions for specified tasks

. Accuracy The provision of right or agreed results or effects

. Inter oper ability Software’ s ability to interact with specified systems

. Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data.

. Compliance Adherenceto application-related standards, conventions, regulationsinlaws and protocols

Reliability Characterigtics relating to capability of software to maintain its level of performance under stated
conditionsfor a stated period of time

. Maturity Attributes of software that bear on the frequency of failure by faultsin the software

. Fault tolerance

Ability to maintain a specified level of performancein cases of software faults or unexpected inputs

. Recover ability Cgpability and effort needed to reestablish level of performance and recover affected data after possible
. Compliance anclilrJ]:aerence to applicationrelated standards, conventions, regulationsin laws and protocols
Usability Characterigticsrelating to the effort needed for use, and on theindividual assessment of such
use, by astated or implied set of users
. Under standability The effort required for auser to recognize thelogical concept and its applicability
. Learnability The effort required for auser to learn its application, operation, input, and output
. Oper ability The ease of operation and control by users
. Attractiveness The capability of the software to be attractive to the user
. Compliance Adherenceto application-related standards, conventions, regulationsin laws and protocols
Efficiency Characterigtic related to thereationship between theleve of performance of the software

and theamount of resour cesused, under stated conditions

. Time behavior

The speed of response and processing times and throughput rates inperforming its function

. Resour ce utilization

The amount of resources used and the duration of such usein performing its function

. Compliance Adherenceto application-related standards, conventions, regulationsin laws and protocols

M aintainability Characterigtics related effort needed to make modifications, including corrections, improvements
or adaptation of softwareto changesin environment, requirementsand functional specifications

. Analyzability The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be
modified

. Changeability The effort needed for modification fault removal or for environmental change

. Stability Therisk of unexpected effect of modifications

. Testability The effort needed for validating the modified software

. Compliance Adherenceto applicationrelated standards, conventions, regulationsin laws and protocols

Portability Characteristicsrelated to the ability to transfer the softwar e from one organization or hardwareor
softwar e environment to another

. Adaptability The opportunity for its adaptation to different specified environments

. Ingtallability The effort needed to install the software in a specified environment

. Coexistence The capability of a software product to co-exist with other independent software in common environment

. Replaceability The opportunity and effort of using it in the place of other software in a particular environment

. Compliance Adherenceto application-related standards, conventions, regulationsin laws and protocols

© |EEE— Soneman (Version 0.7) — April 2000 11-5

97.

98.

99.

100.

4. DEFINING SQA AND V&V

The KA on Software Requirements describes
how the reguirements and their individud
features are defined, prioritized and documented
and how the quality of that documentation can be
measured. The set of requirements has a direct
effect on the quality of other products, down to
the delivered software. While the software
engineering process builds quality into software
products and prevents defects, the software
engineering process also employs supporting
processes to examine and assure software
products for quality. The software engineering
process and the many standards and models for
Software Engineering Process are discussed in
that KA of the SWEBOK. The supporting
processes conduct activities to ensure that the
software engineering process required by the
project is followed. This section of the Software
Qudity KA addresses two of those supporting
proceses, SQA and V&V, which examine
software through its development and
maintenance. These processes detect defects and
provide vishility to the management in
determining how well the software carries out the
documented requirements.

SQA and V&V provide management with
vishility into the quality of the products at each
stage in their development or maintenance. The
visibility comes from the data and measurements
produced through the performance of tasks to
assess (examine and measure) the quality of the
outputs of the software development and
maintenance processes while they are devel oped.

The SQA process provides assurance that the
software products and processes in the project
lifecycleconformto their specified requirements
and adhere to their established plans. The SQA
processisaplanned systematic set of activitiesto
help build quality into software from the
beginning, that is, by ensuring that the problem is
clearly and adequately stated and that the
solution's requirements are properly defined and
expressed. Then SQA retains the quality
throughout the development and maintenance of
the product by execution of a variety of
activities. The SQA role with respect to process
is to ensure that planned processes are
appropriacte and have been implemented
according to their plans and that relevant
measurements about processes are provided to
the appropriate organi zation. Process and process
improvement are discussed in both the Software

116

101.

102.

103.

104.

105.

Engineering Management and Software

Engineering Process KAs.

The V&V process determines whether products
of a given development or maintenance activity
conform to the requirements of that activity and
those imposed by previous activities, and
whether the final software product (through its
evolution) satisfies its intended use and user
needs. Verification ensures that the product is
built correctly, that is, verification determines
that software products of an activity fulfill
requirements imposed on them in the previous
activities. Vadidation ensures that the right
product is built, that is, the firel product fulfills
its specific intended use. The activities of
validation begin early in the development or
maintenance process, as do those of verification.
V&V provides an examination of every product
relative both to its immediate predecessor and to
the system requirements it must satisfy.

Sometimes the terms SQA and V&V ae
associated with organizations rather than
processes. SQA often isthe name of aunit within
an organization and sometimes an independent
organization is contracted to conduct V&V.
Tegting may occur in BOTH SQA and V&V and
is discussed in this KA in relation to those
processes. Details on testing are found in the KA
on Software Testing. The purpose of this KA is
not to define organizations but rather the
disciplines of SQA and V&V. Some discussion
on organizational issues appearsin [Hum98g], and
the |[EEE Std. 1012.

First, to reemphasze, many SQA and V&V
evauation techniques may be employed by the
software engineers who are building the product.
Second, the techniques may be conducted in
varying degrees of independence from the
development organization. Finaly, the integrity
level of the product may drive the degree of
independence and the selection of techniques.

5. PLANNING FOR SQA AND V&V

Planning for software quality involves planning,
or defining, the required product aong with its
quality attributes and the processesto achieve the
required product. Planning of these processesis
discussed in other KAs: Software Engineering
Management, Software Engineering Design, and
Software Engineering Methods and Tools. These
topics are different from planning the SQA and
V&V processes. The SQA and V&V processes
assess the implementation of those plans, that is,

© |EEE — Stoneman (Version 0.7) — April 2000

106.

107.

108.
109.

110.

111.

112.

113.

114.
115.
116.

117.

118.

how well software products satisfy customer
requirements, provide valueto the customersand
users, and meet the quality requirements
specified in the system requirements.

System requirements vary among systems as do
the activities selected from the disciplines of
SQA and V&V. Vaious factors influence
planning, management and selection of activities
and techniques. Some of these factors include,
but are not limited to:

1. the environment of the system in which the
software will reside;

2. system and software requirements;

3. the commercia or standard components to
be usedin the system;

4. the gpecific software standards used in
developing the software;

5. the software standards used for quality;

6. the methods and software tools to be used
for development and maintenance and for
qudlity evaluation and improvement;

7. the budget, staff, project organization, plans
and schedule (sizeisinherently included) of
all the processes;

8. theintended users and use of the system, and
9. theintegrity level of the system.

Information from these factors influences how
the SQA and V&V processes are planned
organized, and documented, and the selection of
specific SQA and V&V activities and needed
resources as well as resources that impose
bounds on the efforts. One factor, the integrity
level of the system, needs some explanation.
This level is determined from the possible
consequences of failure of the system and the
probability of fallure. For software systems
where safety or security isimportant, techniques
such as hazard andysis for safety or threat
analysis for security may be used in the planning
process to help identify where potential trouble
spots may be. This information would help in
planning the activities. Failure history of similar
systems may help in identifying which activities
will be most useful in detecting faults and
ng quality.

5.1 The SQA Plan

The SQA plan defines the processes and
procedures that will be used to ensure that
software developed for a specific product meets
its requirements and is of the highest quality

© |EEE— Soneman (Version 0.7) — April 2000

119.

120.

121.

122.

possible within project congraints. This plan
may be governed by software quality assurance
sandards, life cycle sandards, quality
management standards and models, company
policies and procedures for quality and quality
improvement, and the management, devel opment
and maintenance plans for the software.
Standards and models such as 1SO9000, CMM,
Bddrige, SPICE, TicklT influence the SQA plan
and are addressed in Software Engineering
Process.

The SQA plan defines the activities and tasks to
be conducted, their management, and ther
schedule in relation to those in the software
management, devel opment or maintenance plans.
The SQA plan may encompass Software
Configuration Management and V&V or may
cal for separate plans for either of those
processes. The SQA plan identifies documents,
standards, practices, and conventions that govern
the project and how they will be checked and
monitored to ensure adequacy or compliance.
The SQA plan identifies metrics, datistical
techniques, proceduresfor problem reporting and
corrective action, resources such as tools,
techniques and methodologies, security for
physcad media, traningg and SQA
documentation to be retained. The SQA plan
addresses assurance of any other type of function
addressed in the software plans, such as supplier
software to the project or commercial off-the-
shelf software (COTYS), ingtdlation, and service
after delivery of the system.

52TheV&V Plan

The V&V plan is the instrument to explain the
requirements and management of V&V and the
role of each techniquein satisfying the objectives
of V&V. An understanding of the different types
of purposes of each verification and vaidation
activity will help in planning carefully the
techniques and resources needed to achieve their
purposes. Verification activities examine a
specific product, that is, output of a process, and
provide objective evidence that specified
requirements have been fulfilled. The “ specified
requirements’ refer to the requirements of the
examined product, relative to the product from
which it is derived. For example, code is
examined relative to requirements of a design
description, or the software requirements are
examined relative to system requirements.

Validation examines a specific product to
provide objective evidence that the particular
requirements for a specific intended use are

117

123.

124.

125.

126.

127.

fulfilled. The validation confirms that the
product traces back to the software system
requirements and satisfies them. This includes
planning for system test more or lessin parallel
with the system and software requirements
process. This aspect of validation often serves as
part of arequirements verification activity. While
some communities separate completely
verification from validation, the activities of each
actually service the other.

V&YV activities are exercised at every step of the
life cycle, often on the same product, possibly
using the same techniquesin some instances. The
differenceisin thetechnique's objectivesfor that
product, and the supporting inputs to that
technique. Sequentially, verification and
validation will provide evidence from
requirementsto thefina system, astep at atime.
This process holds true for any life cycle model,
gradually iterating or incrementing through the
development. The process holds in maintenance
aso.

The plan for V&V addresses the management,
communication, policies and procedures of the
V&V activities and their iteration, evaluation of
methods and tools for the V&V activities, defect
reports, and documentation requirements. The
plan describes V&V activities, techniques and
toolsused to achieve the goals of those activities.

The V&V process may be conducted in various
organizational arrangements. First, to re
emphesize, many V&V techniques may be
employed by the software engineers who are
building the product. Second, the V&V process
may be conducted in varying degrees of
independence from the development
organization. Findly, the integrity level of the
product may drive the degree of independence.

6. ACTIVITIES AND TECHNIQUES
FOR SQA AND V&V

The SQA ad V&V processes consist of
activities to indicate how software plans (e.g.,
management, development, configuration
management) are being implemented and how
well the evolving and fina products are meeting
their specified requirements. When these
resources are formally organized, results from
these activities are collected into reports for
management before corrective actions are taken.
The management of SQA and V&V are tasked
with ensuring the quality of these reports, that is,
that the results are accurate.

118

128.

129.

130.

Specific techniques to support the activities
software engineers perform to assure quality may
depend upon ther personad role (eg.,
programmer, quality assurance staff) and project
organization (eg., test group, independent
V&YV). To build or andyze for qudity, the
software engineer understands development
standards and methods and the genesis of other
resources on the project (e.g., components,
automated tool support) and how they will be
used. The software engineer performing quality
analysis activities is aware of and understands
considerations affecting quality assurance:
standards for software quality assurance, V&V,
testing, the various resources that influence the
product, techniques, and measurement (e.g., what
to measure and how to evauate the product from
the measurements).

The SQA and V&V activities consst of many
techniques, some may directly find defects and
others may indicate where further examination
may be valuable. These may be referred to as
direct-defect finding and supporting techniques.
Some often serve as both, such as people
intensive techniques like reviews, audits, and
inspection and some static techniques like
complexity analysis and control flow analysis.
The SQA and V&V techniques can be
categorized as two types. static and dynamic.
Static techniques do not involve the execution of
code, whereas dynamic techniques do. Static
techniques involve examination of the
documentation (e.g., requirements specification,
design, plans, code, test documentation) by
individuals or groups of individuds and
sometimes with the aid of automated tools.
Often, people tend to think of testing asthe only
dynamic technique, but simulation is an example
of another one. Sometimes static techniques are
used to support dynamic techniques, and vice
versa. An individua, perhaps with the use of a
software tool, may perform some techniques; in
others, several people are required to conduct the
technique. Such techniques are "people
intensive’. Depending on project size, others,
such as testing, may involve many people, but
are not people-intensive in the sense described
here.

Static and dynamic techniques are used in either
SQA or V&V. Ther sdection, gpecific
objectives and organization depend on project
and product requirements. Discussion in the
following sections and the tables in the
appendices provide only highlights about the
various techniques; they are not inclusive. There

© |EEE — Stoneman (Version 0.7) — April 2000

131.

132.

133.

134.

135.

136.

137.

are too many techniques to define in this
document but the lists and references provide a
flavor of SQA and V&V techniques and will
yield to the serious software engineer insightsfor
selecting techniques and for pursuing additional
reading about techniques.

6.1 Static Techniques

Static techniques involve examination of the
project’s documentation, software and other
information about the software products without
executing them. The techniques may include
activities that require two or more people
(“people intensive’) or anaytic activities
conducted by individuds, with or without the
assistance of automated tools. These support
both SQA and V&V processes and their specific
implementation can serve the purpose of SQA,
verification, or validation, at every stage of
devel opment or maintenance.

6.1.1 Audits, Reviews, and Inspections

The setting for audits, reviews, inspections, and
other people-intensive techniques may vary. The
setting may be a forma mesting, an informal
gathering, or a desk-check situation, but always
two or more people are involved. Preparation
ahead of time may be necessary. Resources in
addition to the items under examination may
include checklists and results from analytic
techniques and testing. Another technique that
may be included in this group is the
walkthrough. These are activities are discussed
throughout the IEEE Std. 1028 on reviews and
audits, [Fre82], [Hor96], and [Jon91], [Rak97].

Reviews that specifically fal under the SQA
process are technical reviews, that is, on
technica products. However, the SQA
organization may be asked to conduct
management reviews as well. Persons involved
in the reviews are usudly a leader, a recorder,
technical staff, and in the management review,
management staff.

Management reviews determine adequacy of and
monitor progress or inconsistencies against plans
and schedules and requirements. These reviews
may be exercised on products such as audit
reports, progress reports, V&V reports and plans
of many types including risk management,
project management, software configuration
management, software safety, risk management
plans and risk assessment reports and others.

Technica reviews examine products such as
software requirement specifications, software

© |EEE— Soneman (Version 0.7) — April 2000

138.

139.

140.

design documents, test documentation, user
documentation, installation procedures but the
coverage of the material may vary with purpose
of the review. The subject of the review is not
necessarily the completed product, but may be a
portion at any stage of its development or
maintenance. For example, a subset of the
software requirements may be reviewed for a
particular set of functionality, or several design
modules may be reviewed, or separate reviews
may be conducted for each category of test for
each of its associated documents (plans, designs,
cases and procedures, reports).

An audit is an independent evauation of
conformance of software products and processes
to applicable regulations, standards, plans, and
procedures. Audits may examine plans like
recovery, SQA, and maintenance, design
documentation. The audit isaformally organized
activity, with participants having specific roles,
such as lead auditor, other auditors, a recorder,
an initiator, and a representative of the audited
organization. While for reviews and audits there
may be many formal names such as those
identified in the IEEE Std. 1028, the important
point is that they can occur on amost any
product a any stage of the development or
mai ntenance process.

Software inspections generadly involve the
author of a product, while reviews likely do not.
Other persons include a reader, and the
inspectors. The inspector team may consist of
different expertise, such as domain expertise, or
design method expertise, or language expertise,
etc. Ingpections are usualy conducted on a
relatively small section of the product. Often the
ingpection team may have had a few hours to
prepare, perhaps by applying an andytic
technique to a small section of the product, or to
the entire product with a focus only on one
aspect, e.g., interfaces. A checklist, with
guestions germane to the issues of interest, is a
common tool used in inspections. Inspection
sessionslast acouple hours, whereas reviews and
audits are usually broader in scope and take
longer.

The walkthrough is similar to an inspection, but
is conducted by only members of the
devel opment group, who examine a specific part
of a product. With the exception of the
walkthrough — primarily an assurance technique
used only by the developer, these people
intensive techniques are traditionally considered
to be SQA techniques, but may be performed by
others. Thetechnical objectives may also change,

11-9

141.

142.

143.

144.

145.

146.

depending on who performs them and whether
they are conducted as verification or as
vdidation activities. Often, when V&V is an
organization, it may be asked to support these
techniques, either by previous examination of the
products or by attending the sessions to corduct
the activities.

6.1.2 Analytic Techniques

An individud generdly applies analytic
techniques. Sometimes severa people may be
assigned the technique, but each applies it to
different parts of the product. Some are tool-
driven; others are primarily manual. With the
References (Section 7.1) there are tables of
techniques according to their primary purpose.

However, many techniques listed as support may
find some defects directly but are typicaly used
as support to other techniques. Some however
are listed in both categories because they are
used either way. The support group of techniques
aso includes various assessments as part of
overdl quality analysis.

Each type of andysis has a specific purpose and
not all are going to be applied to every project.
An example of asupport technique is complexity
analysis, useful for determining that the design or
code may betoo complex to devel op correctly, to
test or maintain; the results of a complexity
analysis may be used in developing test cases.
Some listed under direct defect finding, such as
control flow analysis, may adso be used as
support to another activity. For asoftware system
with many algorithms, then agorithm analysisis
important, especialy when an incorrect
algorithm could cause a catastrophic result.

There are too many analytic techniques to define
in this document but the lists and references
provide a flavor of software analysis and will

yield to the serious software engineer insightsfor
selecting techniques and for pursuing additional
reading about techniques.

A class of anaytic techniques that is gaining
greater acceptance is the use of formal methods
to verify software requirements and designs.
Proof of correctness may also be applied to
different parts of programs. Their acceptance to
date has mostly been in verification of crucia
partsof critical systems, such as specific security
and safety requirements [NAS97].

6.2 Dynamic Techniques

Different kinds of dynamic techniques are
performed throughout the development and

1110

147.

148.

149.

150.

151.

152.

maintenance of software systems. Generdly,
these are testing techniques but techniques such
as smulation and symbolic execution may be
considered dynamic. Code reading is considered
a datic technique but experienced software
engineers may execute the code as they read
through it. In this sense, code reading may aso
fit under dynamic. This discrepancy in
categorizing indicates that people with different
rolesin the organization may consider and apply
these techniques differently.

Some testing may fall under the development
process, the SQA process, or V&V, again
depending on project organization. The
discipline of V&V encompasses testing and
requires activities for testing at the very
beginning of the project. Because both the SQA
and V&V plans addres testing, this section
includes some commentary about testing. The
knowledge area on Software Testing provides
discussion and technical references to theory,
techniques for testing, and automation.
Supporting techniques for testing fall under test
management, planning and documentation. V&V
testing generaly includes component or module,
integration, system, and acceptancetesting. V&V
testing may include test of commercial off-the-
shelf software (COTS) and evaluation of toolsto
be used in the project

The assurance processes of SQA and V&V
examine every output relative to the software
requirement specification to ensure the output's
traceability, consistency, completeness,
correctness, and performance. This confirmation
also includes exercising the outputs of the
development and maintenance processes, that is,
the analysis consists of vaidating the code by
testing to many objectives and strategies, and
collecting, analyzing and measuring the results.
SQA ensures that appropriate types of tests are
planned, developed, and implemented, and V&V
develops test plans, strategies, cases and
procedures.
Two types of testing fal under SQA and V&V
because of their responsibility for quality of
materialsused in the project:
+ Evauation and test of tools to be usad on
the project
¢+ Conformance test (or review of
conformance test) of components and
COTS productsto be used in the product.
The SWEBOK knowledge area on Software
Tedting addresses special purpose testing. Many
of these types are also considered and performed

© |EEE — Stoneman (Version 0.7) — April 2000

153.

154.

155.

156.

157.

158.
159.

160.

during planning for SQA or V&V tedting.
Occasiondly the V&V process may be asked to
perform these other testing activitiesaccording to
the project’'s organization. Sometimes an
independent V&V organization may be asked to
monitor the test process and sometimes to
witness the actual execution, to ensure that it is
conducted in accordance with specified
procedures. And, sometimes, V&V may be
caled on to evaluate the testing itself: adequacy
of plans and procedures, and adequacy and
accuracy of results.

Another type of testing that may fal under a
V&V organization is third party testing. The
third party is not the developer or in any way
associated with the development of the product.
Instead, the third party is an independent facility,
usually accredited by some body of authority.
Their purpose is to test a product for
conformance to a specific set of requirements.
Discussion on third party testing appears in the
July/August 19991 EEE Softwarespecial issueon
software certification.

7. MEASUREMENT APPLIED TO
SQA AND V&V

SQA and V&YV discover information about the
quality of the software system at al stages of its
development and maintenance and provide
visibility into the software development and
mai ntenance processes. Someof thisinformation
isabout defects, where “defect” refersto errors,
faults, and failures. Different cultures and
standards may differ somewhat in their meaning
for these same terms. Partial definitions taken
fromthe IEEE Std 610.12-1990 (“|EEE Standard
Glossary of Software Engineering
Terminology”) are these:

* Error: “A difference...between a computed
result and the correct result”

+ Fault: “An incorrect step, process, or data
definition in acomputer program”
¢ Failure “The[incorrect] result of afault”

+ Mistake: “A human action that produces an
incorrect result”.

Mistakes (as defined above) are the subject of the
quality improvement process, which is covered
in the Knowledge Area Software Engineering
Process. Failuresfound in testing asthe result of
software faults are included as defects in the
discussion of this section.. "Failure" is the term
used in reliability models, in which these models

© |EEE— Soneman (Version 0.7) — April 2000

161.

162.

163.

164.

are built from failure data collected during
system testing or from systemsin service. These
models are generally used to predict failure and
to assist decisions on when to stop testing.

Many SQA and V&V techniques find
inadequacies and defects, but information about
these findings may be lost unlessiit is recorded.
For some techniques (e.g., reviews, audits,
inspections), recorders are usually present to
record issues, decisions, and information about
inadequacies and defects. When automated tools
are used, the tool output may provide the defect
information. For others And even for output of
tools, data about defects are collected and
recorded on some “trouble report” form and may
further be entered into some type of database,
either manudly or automaticaly from an
analysis tool. Reports about the defects are
provided to the software management and
devel opment organizations.

One probable action resulting from SQA and
V&V reports is to remove the defects from the
product under examination. Other actions enable
achieving full value from the findings of the
SQA and V&V activities. These actions include
analyzing and summarizirg the findings with use
of measurement techniques to improve the
product and the process ands to track the defects
and their removal. Process improvement is
primarily discussed in Software Engineering
Process, but some supporting information will be
addressed here.

7.1 Fundamentals of M easurement

Theories of measurement establish the
foundation on which meaningful measurements
can be made. Measuring implies classification
and numbers, and various scaes apply to
different types of data. The four scales for
measurement include nomina scde or a
classfication into exhaustive and mutualy
exclusive categories (e.g., boys, girls), ordinal
scale (comparison in order, e.g., smal, medium,
large), interval scale (exact differences between
two measurement points, eg., addition and
subtraction apply), and ratio scale (an absolute
point can be located in the interval scale, and
division, multiplication, addition and subtraction
apply). An example in software is the number of
defects. In module 1, there may be 10 defects per
function point of SLOC, in module 2, 15 and in
module 3, 20. The difference between module 1
and 2 is 5 and module 3 has twice as many
defects as module 1. Theories of measurement
and scdes are discussed in [Kan94], pp. 54-82.

1111

165.

166.

167.
168.
169.
170.
171.

172.

173.

174.

Measurement for measurement's sake does not
help define the qudity. Instead, the software
engineer needsto define specific questions about
the product, and hence the objectivesto be met to
answer those questions. Only then can specific
measures be selected. Basili’ sparadigm on God -
Question-Metric has been used since the early

80's and is used as a basis for some software
measurement programs [Bas]. Another approach
is “Plan-Do-Check-Act” discussed in Rakitin.
Others are discussed in the references on
software measurement. The point is that there
has to be a reason for collecting data, that is,

thereis a question to be answered. M easurement
programs are not arbitrary, but require planning
and setting objectives according to some
formalized procedure, as do other software
engineering processes.

Other important measurement practices deal with
experimentation and data collection.
Experimentation is useful in determining the
vaue of a development, maintenance, or
assurance technique and results may be used to
predict where faults may occur. Data collection
is norttrivia and often too many types of data
are collected. Instead, it is important to decide
what is the purpose, that is, what question is to
be answered from the data, then decide what data
is needed to answer he question and then to
collect only that data. While a measurement
program has costs in time and money, it may
result in savings. Methods exist to help estimate
the costs of a measurement program. Discussion
on the following key topics for measurement
planning are found in ([Bas34], [Kan%4], [P1],

[Pf], [Rak9T7], [2€l98]:

+ Experimentation

+ Sdection of approach for measurement
+ Methods

+ Costing

¢ Data Collection process.

7.2 Metrics

Measurement models and frameworks for
software quality enable the software engineer to
establish specific product measures as part of the
product concept. Models and frameworks for

software quality are discussed in [Kan94], [Pf],

and [Pr].

Data can be collected on various characteristics
of software products. Many of the metrics are
related to the quality characteristics defined in

Section 2 of this Knowledge Area. Much of the

1112

175.
176.
177.
178.
179.

180.

181.

182.

183.

184.

185.

186.
187.
188.

data can be collected as results of the static
techniques previoudy discussed and from
various testing activities (see Software Testing
Knowledge Area). The types of metrics for
which dataare collected fall into these categories
and are discussed in [Jon91], [Lyu96], [Pf], [Pr],
[Lyu96], and [Wei93]:

¢ Quality characteristics measures

+ Rediability models & measures

+ Defect features (e.g., counts, density)

¢ Customer satisfaction

* Product features(e.g., sizeincluding SLOC,
function points, number of requirements)

¢ Structure metrics (e.g., modularity,
complexity, control flow)

+ Object-oriented metrics.

7.3 Measurement Techniques

While the metrics for quality characteristics and
product features may be useful in themselves (for
example, the number of defective reguirements
or the proportion of requirements that are
defective), mathematicd and graphica
techniques can be applied to aid in interpretation
of the metrics. These fit into the following
categories and are discussed in [Fen97], [Jon91],
[Kan94], [Lyu96] and [Mus98g].

+ Sttigticaly based (e.g., Pareto analysis, run
charts, scatter plots, normal distribution)

+ Statistical tests (e.g., binomid test; chi-
sguared test)

¢ Trend anadysis
+ Prediction, e.g., reliability models.

The statistically based techniques and tests often
provide asnapshot of the moretroublesome areas
of the software product under examination. The
resulting charts and graphs are visuaization aids
that the decision makers can use to focus
resources where they appear most needed.
Results from trend analysis may indicate whether
a schedule may be dipped, such asin testing, or
may indicate that certain classes of faults will

gainin intensity unless some corrective actionis
taken in deveopment. And the predictive
techniques assist in planning test time and
predicting falure. However, generadly the
decisions to be made from these techniques are
not part of SQA and V&V. More discussion on
these should appear in “Software Engineering

Process” and “Software Engineering
Management”.

© |EEE — Stoneman (Version 0.7) — April 2000

189. 7.4 Defect Characterization

190.

191.

192.

SQA and V&V processes discover defects.
Characterizing those defects enables
understanding of the product, facilitates
corrections to the process or the product, and
informs the project management or customer of
the status of the process or product. Many defect
(fault) taxonomies exist and while attempts have
been made to get consensus on afault andfailure
taxonomy, theliteratureindicatesthat quite afew
are in use (IEEE Std. 1044, [Bei9Q], [Chi92],
[Gra92)).

As new design methodologies and languages
evolve, dong with advances in oveal

application technologies, new classes of defects
appear, a, the connection to previoudly defined

classes requires much effort to realize. When

tracking defects, the software engineer is
interested not only in the count of defects, but the
types. Without some classification, information
will not redly be useful in identifying the
underlying causes of the defects because no one
will be able to group specific types of problems
and make determinations about them. The point,

again, as in selecting a measurement approach

with qudlity characteristics, metrics and
measurement techniques, is to establish a defect
taxonomy that is meaningful to the organization
and software system.

The dove references as well as [Kan94],
[Fen95] and [Pf], and [Jon89] al provide
discussions on anayzing defects, that is,
measuring their occurrences and then applying
statistical methods to understand the types of
defects that occur most frequently, that is, where
do mistakes occur (their density), to understand
the trends and how well detection techniques are
working, and, how well the development and
maintenance processes are doing.” Measuring
test coverage helps to estimate how much test
effort remains and to predict possible remaining
defects. From these measurement methods, one
can develop defect profiles for a specific
gpplication domain. Then, for the next software
system within that organization, the profiles can
be used to guide the SQA and V&V processes,
that is, to expend the effort where the problems
are likeliest to occur. Similarly, benchmarks, or
defect counts typical of that domain, may serve

Discussion on using data from SQA and V&V to
improve development and maintenance processes
appears in Software Engineering Management and

Software Engineering Process.

© |EEE— Soneman (Version 0.7) — April 2000

193.

194.
195.
196.

197.
198.

199.

200.

201.

202.

as one aid in determining when the product is
ready for delivery.

The following topics are useful for establishing
measurement approaches for the software
products:

+ Defect classification and descriptions

+ Defect analysis

+ Measuring adequacy of the SQA and V&V
activities

+ Tedst coverage

¢ Benchmarks, profiles, baselines, defect
densities.

7.5 Additional uses of SQA and V&V
data

The measurement section of this KA on SQA
and V&V touches only minimaly on
measurement, for measurement is a major topic
itself. The purpose here is only to provide some
ingght on how the SQA and V&V processes use
measurement directly to support achieving their
gods. There are a few more topics which
measurement of results from SQA and V&V
may support. These include some assistance in

deciding when to stop testing. Reliability models
and benchmarks, both using fault and failure
data, are useful for this objective. Again, finding
a defect, or perhaps trends among the defects,

may help to locate the source of the problem.

The cost of SQA and V&V processes is dmost
dways an issue raised in deciding how to
organize aproject. Often generic models of cost,
based on when the defect is found and how much
effort it takesto fix the defect relative to finding
the defect earlier, are used. Data within an
organization from that organization’s projects
may give a better picture of cost for that
organization. Discussion on this topic may be
found in [Rak97], pp. 39-50.

Findly, the SQA and V&YV reports themsaves
provide valuable information not only to these
processes but to all the other software
engineering processes for use in determining
how to improve them. Discussions on these
topicsarefound in [McC93] and | EEE Std. 1012

11-13

203 8. REFERENCES

204. 8.1 References Keyed to Text Topics

db

NNEBBRRE B RBEREBEBRBER

&

NB MR

Softwar e Quality
Concepts

[Boe78]

(D]

[Fen97]

[Kia95]

[Lapo1]

[Lew92]

[Lyuog]

[

M]

[Mus98]

[Pf]
[Pr]
[Wal96]
[Wei%6]

[Rak97]
(S

Vaue of Quality

x

x
x

Functionality

x

Reliability

x
x
x

Efficiency

x

Usability

Maintainability

Portability

Dependability

Other Qualities

x

X | X | X[X[X|X]| X

X | X | X[XX

X | X | X[X[X|X]| X
x

X | X | X[XX

Definition &
Planning for Quality

[Grag2]

[Hor9g]

[Kaz99]

[Lew92]

[Lyude]

[McC93]

[Musog]
[Pf]
[Pr]

[Rak97]

[Schog]
(S

[Walgg]

[Wal96]

Overall

SQA

X

x

x

x
x

‘A%

x

>
x

Independent V&V

Hazard, threat anal.

x| X[X[X| X
X| X[x| X| X
x

Risk assessment

x

x| X| X| X| X] X

Performance andysis

Techniques

Requiring Two or
More People

[Ack97]

[Ebeo4]

[Freg2]

[Grag2]

[Horog]

[Lew92]

[McCo6]
[Pf]
[Pr]

[Rak97]

[Schog]
(S
[Walgg]
[Wal96]

Audit

x

X

Inspection

X

X

Review

x
x

Walkthrough

X | X[X]| X

X | X[XX

x
x
x
x
x
X | X[X | X
x

11-14

© |EEE — Stoneman (Version 0.7) — April 2000

228.

229

230.
231.

232.

233.

234.

235.
236.

237.
238.
239.
240.

241.

242

243.

244,

245.

246.
247.
248.
249.
250.
251.
252.

Support to
Other

Techniques

Change
And.

Impact

[Beio0]

[Conda]

[Friog]

[Het84]

[Levog)

[Lewa2]

X

[Lyuog]

[Mus98

[Pr]

[Rak97]

[Rubo4]

(Sl

[Fri95]
[Wagg]

[Wal96]

Checklists

Complexity
Andyss

Coverage
Andyss

Consstency
Andyss

Criticality
Andyss

Hazard Analyss

Sengtivity
Andyss

Slicing

Test documents

Tool evauation

Tracesbility
Andyss

Threat Analyss

Testing Special to
SQA or V&V

[Frios]

[Levog)

[Lyuog]

[Mus98

[Pf]

[Rak97]

[Rubo4]

[Schog]

(sl

[Voao9

[Wakog]

[Walgg]

Conformance
Test.

x

X

Configuration
Test.

Certification
Tegting

Religbility Testing

Safety Testing

Security Testing

Statistica Testing

Usability Testing

Test Monitoring

Test Witnessing

© |EEE— Soneman (Version 0.7) — April 2000

11-15

253.

254.
255.
256.
257.
258.
259.
260.
261.
262.
263.

264.

265.

266.
267.
268.
269.
270.
271
272.
273.
274,
275.
276.
277.
278.
279.

Defect Finding o T T| g DY g 9w - -5 T T S| T
Technigues % ?i g § % g 3 i % §| 2 -5 i % % 2 g g
Algorithm Andlyss X X X X | X
Boundary Vaue Andl. X X | X X | X | X
Change Impact Anal. X X | X | X X | X
Checkligts X X
Condsgtency Andysis X X X
Control How Andyss X | X X | X X | X X | X
Database Analysis X | X X X X X | X
Data Flow Analyss X | X X X | X | X X X | X
Distrib. Arch. Assess. X
Evaduation of Docts.: X X | X X X | X
Concept, Regmts.
Evauation of Docts.: X X | X X X
Design, Code, Test
Evauation of Doc.: X X | X X X
User, Ingtallation
Event Tree Andysis X X
Fault Tree Andysis X X X | X X
Grgphicd Andysis X | X X X
Hazard Andysis X | X X | X X | X X
Interface Analysis X X X X | X X X
Forma Proofs X X | X X X
Mutation Andysis X X X | X
Perform. Monitoring X X
Prototyping X X | X X X
Reading X X
Regresson Andyss X X X | X X | X
Smulation X X
Szing & Timing And. X X | X | X X | X
Threat Anaysis X | X X
11-16 © |EEE — Stoneman (Version 0.7) — April 2000

280.

281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295,
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.

308.
309.
310.
311.

et 3|7 |%|2/25|2(2|5|22(7|9)7|2 |85 <= (B 5 8|2 |2
Analysis Eﬁ_é__52££§£§d2§£““§E§ 2|2 |N
Benchmarks, profiles, etc. X X X X X
Company Metric Progs. X [X X X| X
Costing X | X X X X X X | X| X[X X
Customer satisfaction X | X X
Data Collection process X X X | X X X
Debugging X | X X X X X
Defect Analysis XXX X|X[X|X X X [XX X|X]|X
Defect Classif. and Descr. X X X| X | X X X X[XX X X
Defect Features X | X X X X X X X
Example of applied GQM X X
Experimentation: X | X|X|X X X
Framework XX
GQM X XX X X X
Methods X X X X X | X X
Metrics X X X X X X X X| X X | X|X
Models XX X | X
Prediction X X X | X X
Prod. features: O/O Metr. X
Prod. Features: Structure X X | X X X X
Product features: Size X X X X X
Quality Attributes X X| X X
Quality Character. Meas. X X X X
Reliab. Models & Mess. X X | X X X | X X | X
Scales X X | X X
SQA & V&V reports* X X X X
Statistical tests X X X X X X
Statistical Analysis & X XX X X X [X[X X
measurement
Test coverage X X
Theory X X [X X
Trend andysis X
When to stop testing* X X X
312.* See also [Musa89]
© |EEE— Soneman (Version 0.7) — April 2000 11-17

313.

314.
315.
316.
317.
318.
319.

320.
321.
322.
323.
324.
325.
326.
327.
328.
329.

330.
331

332.

333.

334.

335.

336.

337.

Quality Reviews | SQA/V&V Safety/ Documentation | Measurement
Standards Reguirements Audits security of qual ity
- & planning andysis, analysis
tests
SO 9000 X X X X
1SO 9126 X
IEC 61508 X X
ISO/IEC 14598 X X X
I SO/IEC 15026 X
ISO FDIS X X
15408
FIPS 140-1 X X
|IEEE 730 X X
|EEE 1008 X
|[EEE 1012 X X X
|EEE 1028 X
|EEE 1228 X
|EEE 829 X
IEEE 982.1,.2 X
|EEE 1044 X
|EEE 1061 X
8.2 Reference Lists 338. 8.2.2 Core References
. 339. (N.B. Some of these will be removed in the next
8.2.1 Basic SWEBOK References version, but we are checking to make sure that
Dorfman, M., and R. H. Thayer, Software every topic is adequately covered before we do
Engineering. |IEEE Computer Society Press, so. Seeasothenote at 8.2.3)
1997. [D] 340. Abran, A.; Robillard, P.N. , Function Points
Moore, J. W., Softwar e Engineering Standards: Analysis: An Empirical Study of its
A User’s Road Map. |IEEE Computer Society Measurement Pr_oca_aes, in IEEE Transactions
Press, 1998. [M] on Software Engineering, vol. 22, 1996, pp. 895
Pfleeger, S. L., Software Engineering — Theory 909, [Abr96]. .)
and Practice. Prentice Hall, 1998. [Pf] 341 Ackerman, Frank A., "Software Inspections and
Pr an, R S, Software Engineering: A the Cost Effective Production of Reliable
Practitioﬁer’sApbroach (4™ edition). McGraw- Soft.\/\./are,) in[D] pp. 235255'.[ACK97])
Hill, 1997. [Pr] 342. Badli, Victor R. and David M. Weiss, A
T o h Methodology for Collecting Valid Software
szHﬁléz. . Vic;fstlwartleginglneerlng 5 Engineering Data, |EEE Transactions on
ition). Addison-Wesley, ISl Software Engineering, pp. 728-738, November
Vincenti, W. G., What Engineers Know and 1984. [BasB4]
How They caIKmW It — A;a!yticd StL(deiesfgrm 343. Beizer, Boris, Software Testing Techniques,
?o?]rr?rlaacljgki s qgg%'v]B timore and London: International Thomson Press, 1990. [Bei90]
’ ' 344. Boehm, B.W. et d., Characteristics of Software

1118

Quality", TRW series on Software Technol ogies,
Voal. 1, North Holland, 1978. [Boe78]

© |EEE — Stoneman (Version 0.7) — April 2000

346.

347.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

Chilllarege, Ram, Chap. 9, pp359-400, in
[Lyu96]. [Chiog]
Conte, SD., et d, Software Engineering Metrics

and Models, The Benjamin / Cummings
Publishing Company, Inc., 1986. [Con86]

Ebenau, Robert G., and Susan Strauss, Software
I nspection Process McGraw-Hill, 1994. [Ebed4]

Fenton, Norman E., Software Metrics,
International Thomson Computer Press, 1995.
[Fen9s5]

Fenton, Norman E., and Shari Lawrence
Pfleeger, Software Metrics, International
Thomson Computer Press, 1997. [Fen97]

Freedman, Daniel P., and Gerald M. Weinberg,
Handbook of Walkthroughs, Inspections, and
Technical Reviews, Little, Brown and Company,
1982. [Fres2]

Friedman, Michael A., and Jeffrey M. Voas,
Software Assessment, John Wiley & Sons, Inc.,
1995. [Fri95]

Grady, Robert B, Practical Software Metrics for
project Management and Process Management,
Prentice Hal, Englewood Cliffs, NJ 07632,
1992. [Gra92]

Hetzel, William, The Complete Guide to
Software Testing, QED Information Sciences,
Inc., 1984, pp177-197. [Het84]

Horch, John W., Practical Guide to Software

Quality Management, Artech-House Publishers,
1996. [Hor96]

Humphrey, Watts S,, Managing the Software
Process, Addison Wedley, 1989 Chapters 8, 10,
16. [Hum89]

Ince, Darrel, 1SO 9001 and Software Quality
Assurance, McGraw-Hill, 1994. [Inc94]

Ippolito, Laura M. and Dolores R. Wallace,
NISTIR 5589, A Study on Hazard Andysis in
High Integrity Software Standards and
Guidelines,@ U.S. Department. of Commerce,
Technology Administration, Nationa Intitute of
Standards and Tech,, Jan 1995.
http://hissa.nist.gov/HAZARD/ [Ipp95]

Jones, Capers, Applied Software Measurement,
McGraw-Hill, Inc., 1991; (Chap. 4: Mechanics
of Measurement; Chapter 5: User Satisfaction).
[Jon91]

Kan, Stephen, H., Metrics and Models in
Software Quality Engineering, AddisonWes ey
Publishing Co., 1994. [Kan94]

Kazman, R., M. Barbacci, M. Klein, S. J.
Cariere, S. G. Woods, Experience with

© |EEE— Soneman (Version 0.7) — April 2000

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

Performing Architecture Tradeoff Anaysis,
Proceedings of ICSE 21, (Los Angeles, CA),
IEEE Computer Society, May 1999, 54-63.
[Kaz99]

Kiang, David, Harmonization of Internationa
Software Standards on Integrity and
Dependability, Proc. IEEE International
Software Engineering Standards Symposium
IEEE Computer Society Press, Los Alamitos,
CA, 1995, pp. 98-104. [Kia95]

Laprie, J.C., Dependability: Basic Conceptsand
Terminology, IFIP WG 10.4, Springer-Verlag,
New York 1991. [Lap9]]

Leveson, Nancy, SAFEWARE: system safety and
requirements, Addison-Wesley, 1995. [Lev95]

Lewis, Rabert O., Independent Verification and
Validation, John Wiley & Sons, Inc., 1992.
[Lew92]

Lyu , Michad R., Handbook of Software
Reliability Engineering, McGraw Hill, 1996.
[Lyu9s]

McConnell, Steven C., Code Complete a
practical handbook of software construction,
Microsoft Press, 1993. [McC93]

Musa, John D., and A. Frank Ackerman,
"Quantifying Software Validation: When to stop
testing?' |EEE Software, May 1989, 31-38.
[MusB9]

Musa, John, Software Reliability Engineering,
McGraw Hill, 1998. [Mus98]

NASA, Formal Methods Specification and
Analysis Guidebook for the Verification of
Software and Computer Systems, Volume 11: A
Practitioner's Companion, [NASA-GB-001-97],
1997,
http://eis.jpl.nasa.gov/quaity/Forma_Methods/.
[NAS97]

Pamer, James D., "Traceability," In: [Dorf], pp.
266-276. [Pal97]

Peng, Wendy W. and Dolores R. Wallace,
"Software Error Anayss," NIST SP 500-209,
National Ingtitute of Standards and Technology,
Gaithersburg, MD 20899, December 1992.]
http://hissa.nist.gov/SWERROR/. [Pen92]

Rakitin, Steven R., Software Verification and
Validation, A Practitioner's Guide Artech
House, Inc., 1997. [Rak97]

Rosenberg, Linda, Applying and Interpreting
Object-Oriented Metrics, Software Tech. Conf.
1998,

11-19

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

385.

386.

387.

388.

http://satc.gsfc.nasa.gov/support/index.html.
[Ros98]

Rubin, Jeffrey, Handbook of Usability Testing,
JohnWiley & Sons, 1994. [Rub94]

Schulmeyer, Gordon C., and James |. McManus,
Handbook of Softwar e Quality Assurance, Third
Edition, Prentice Hall, NJ, 1998. [Sch98]

Voas, Jeffrey, "Certifying Software For High
Assurance Environments, " |EEE Software, July-
August, 1999, pp. 48-54. [V 0a99]

Wekid, Shukri, D. Richard Kuhn, and Dolores R.
Wallace, "Software Measurement: Testing and
Certification," | EEE Software, July-August 1999,
39-47. [Wak99]

Wallace, Dolores R., and Roger U. Fujii,

"Software Verification and Vdidaion: An

Overview," |EEE Software, May 1989, 10-17
.[walg9]

Wallace, Dolores R., Laura lppolito, and Barbara
Cuthill, Reference Information for the Software
Verification and Validation Process,@ NIST SP
500-234, NIST, Gaithersburg, MD 20899, April,
1996. http://hissanist.gov/VV234/. [Wa96]

Weinberg, Gerad M., Qudity Software
Management, Vol 2: First-Order Measurement,
Dorset House, 1993. (Ch. 8, Measuring Cost and
Vaue). [Wei93]

Zelkowitz, Marvin V. and Dolores R. Wallace,
Experimental Models for Validating Computer
Technology, Computer, Vol. 31 No.5, 1998
pp.23-31. [Z€l 98]

8.2.3 Additional Readings

(Note: A portion of the sources now in 8.2.2 will
be included here, but we are till checking
carefully to be sure that we do not remove
anything vital. We will also add other references
that were not included in 8.2.2, and pages not
selected in references of 8.2.2 from the sources
therein.)

8.2.4 Relevant Standards
FIPS 140-1, 1994, Security Requirements for
Cryptographic Modules

IEC 61508 Functional Safety - Safety -related
Systems Parts 1,2

IEEE 610.12-1990, Standard Glossary of
Software Engineering Terminology

IEEE 730-1998 Software Quality Assurance
Plans

1120

389.
390.

391.
392.

393.
394.

395.

396.
397.
398.

399.
400.
401.
402.

403.

404.

|EEE 829 -1998 Software Test Documentation

IEEE Std 982.1 and 982.2 Standard Dictionary
of Measuresto Produce Reliable Software

|EEE 1008-1987 Software Unit Test

IEEE 1012-1998 Software Verification and
Validation

|EEE 1028 -1997 Software Reviews

IEEE 1044 -1993 Standard Classification for
Software Anomalies

IEEE Std 1061-1992 Standard for A Software
Quality Metrics Methodology

|EEE Std 1228-1994 Software Safety Plans
I SO 8402-1986 Quality - Vocabulary

ISO 9000-1994 Quadlity Management and
Qudity Assurance Standards

I SO 9001-1994 Quility Systems
I|SOIEC 9126-1999: Software Product Quality
I SO 12207 Software Life Cycle Processes 1995

ISO/IEC 14598-1998: Software Product
Evaluation

I SO/IEC 15026:1998, Information technology --
System and software integrity levels.

The Common Criteria for Information
Technology Security Evaluation (CC) VERSION
2.0/1SO FDIS 15408

© |EEE — Stoneman (Version 0.7) — April 2000

APPENDIX A

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS
FOR THE STONE MAN VERSION
OF THE GUIDE TO THE SOFTWARE ENGINEERING
BobyY oF KNOWLEDGE

Pierre Bourque, Robert

Dupuisand Alain Abran

Université du Québec a
Montréal

| NTRODUCTION!

This document presents a third interim version
(version 0.7) of the specifications provided by
the Editorial Team to the Knowledge Area
Specidis regarding the Knowledge Area
Descriptions of the Guide to the Software
Engineering Body of Knowledge (Stone Man
Version). The Editoria Team definitely views
the development of these specifications as an
iterative process and strongly encourages
comments, suggested improvements and
feedback on these specifications from all
involved.

This set of specifications may of course be
improved through feedback obtained from the
next review cycle of the Guide scheduled for
this spring.

This document begins by presenting
specifications on the contents of the Knowledge
Area Description. Criteria and requirements are
defined for proposed breakdowns of topics, for
the rationale underlying these breakdowns and
the succinct description of topics, for the rating
of these topics according to Bloom' s taxanomy,
for selecting reference materials, and for
identifying relevant Knowledge Aress of Related
Disciplines. Important input documents are also
identified and their role within the project is

1 Textin bold indicates changes between version 0.25
of this document and verson 0.7.

© |IEEE— Soneman (Version 0.7) — April 2000

JamesW. Moore
The MITRE Corporation

9.

Leonard Tripp
1999 President IEEE
Computer Society

explained. Non-content issues such as
submission format and style guidelines are also
discussed in the document.

CONTENT GUIDELINES

The following guidelines are presented in a
schematic form in the figure found below.
While al components are part of the Knowledge
Area Description, it must be made very clear
that some components are essential, while other
are not. The breakdown(s) of topics, the selected
reference material and the matrix of reference
material versus topics are essential. Without
them there is no Knowledge Area Description.
The other components could be produced by
other means if, for whatever reason, the
Specidlist cannot provide them within the given
timeframe and should not be viewed as major
stumbling blocks.

Criteria and requirements for
proposing the breakdown(s) of topics
within a Knowledge Area

The following requirements and criteria should
be used when proposing a breakdown of topics
within agiven Knowledge Area:

a Knowledge Area Specialists are expected
to propose one or possibly two
complementary breskdowns that are
specific to their Knowledge Area The
topics found in dl breskdowns within a
given Knowledge Areamust beidentical.

10.

11.

12.

13.

14.

15.

16.

b)

©)

f)

9

h)

A2

These breakdowns of topics are expected
to be “reasonable’, not “perfect”. The
Guide to the Software Engineering Body of
Knowledge is definitely viewed as a multi-
phase effort and many iterations within
each phase as well as multiple phases will
be necessary to continuoudy improve
these breakdowns. At least for the Stone
Man version, “soundness and
reasonableness’ are being sought after, not
“perfection”.

The proposed breakdown of topics within a
Knowledge Area must decompose the
subset of the Software Engineering Body
of Knowledge that is“generally accepted”.
See section found below for a more
detailed discussion on this.

The proposed breskdown of topics within a
Knowledge Area must not presume
specific application domains, business
needs, sizes of organizations,
organizational structures, management
philosophies, software life cycle models,
software technologies or software
development methods.

The proposed breakdown of topics must, as
much as possible, be compatible with the
various schools of thought within software
engineering.

The proposed breskdown of topics within
Knowledge Areas must be compatible with
the breakdown of software engineering
generaly found in industry and in the
software engineering literature and
standards.

The proposed breakdown of topics is
expected to be asinclusive as possible. Itis
deemed better to suggest too many topics
and have them be abandoned later than the
reverse.

The Knowledge Area Specidist are
expected to adopt the position that even
though the following “themes’ are
common across al Knowledge Areas, they
are also an integral part of al Knowledge
Areas and therefore must be incorporated
into the proposed breakdown of topics of
each Knowledge Area. These common
themes are qudity (in genera) and
measurement.

17.

18.

20.

21.

22.

Please note that the issue of how to
properly handle these “crossrunning” or
“orthogonal topics’ and whether or not
they should be handled in a different
manner has not been completely resolved
yet.

i) The proposed breakdowns should be at
most two or three levels deep. Even though
no upper or lower limit is imposed on the
number of topics within each Knowledge
Area, Knowledge Area Specidists are
expected to propose a reasonable and
managesble number of topics per
Knowledge Area. Emphasis should aso be
put on the selection of the topics
themselves rather than on ther
organization in an appropriate hierarchy.

j) Proposed topic names must be significant
enough to be meaningful even when cited
outside the Guide to the Software
Engineering Body of Knowledge.

k) Knowledge Area Specidists are dso
expected to propose a breakdown of topics
based on the categories of engineering
design knowledge defined in Chapter 7 of
Vincenti’s book. This exercise should be
regarded by the Knowledge Area
specidlists as a tool for viewing the
proposed topics in an alternate manner and
for linking software engineering itself to
engineering in general. Please note that
effort should not be spent on this
classification at the expense of the three
essential components of the Knowledge
Area Description. (Please note that the
classification of the topics as per the
categories of engineering design
knowledge has been produced but will
be published at a latter date in a
separate working document. Please
contact the editorial team for more
infor mation).

Criteria and requirements for
describing topics and for describing the
rationale underlying the proposed
breakdown(s) within the Knowledge
Area

a) Topics need only to be sufficiently
described so the reader can select the

© |EEE — Stoneman (Version 0.7) — April 2000

23.

b)

appropriate reference material according
to higher needs.

Knowledge Area Specidists are expected
to provide a text describing the rationale
underlying the proposed breakdown(s).

24. Criteria and reguirements for rating
topics accor ding to Bloom’s taxonomy

25.

26.

27.

28.

29.

30.

3

Criteria and

Knowledge Area Specidists are expected
to provide an Appendix that states for each
topic a which level of Bloom's taxonomy
a “graduate plus four years experience”
should “master” this topic. Thisis seen by
the Editoriad Team as a tool for the
Knowledge Area Specidists to ensure that
the proposed material meets the criteria of
being “generaly accepted”’. Additionaly,
the Editorial Team views this as a means of
ensuring that the Guide to the Software
Engineering Body of Knowledge is
properly suited for the educators that will
design curricula and/or teaching materia
based on the Guide and
licensing/certification officials defining
exam contents and criteria

Please note that these appendices will al
be combined together and published as an
Appendix to the Guide to the Software
Engineering Body of Knowledge.

Requirements for

selecting Reference M aterial

3

b)

0)

Specific reference materiadl must be
identified for each topic. Each reference
materiadd can of course cover multiple
topics.

Proposed Reference Material can be book
chapters, refereed journal papers, refereed
conference papers or refereed technical or
industrial reports or any other type of
recognized artifact such as web documents.
They must be generally available and must
not be confidential in nature. Please be as
precise as possible by identifying what
specific chapter or section isrelevant.

Proposed Reference Material nust be in
English.

31. d) A reasonable amount of reference material

must be selected for each Knowledge Area.

© |IEEE— Soneman (Version 0.7) — April 2000

32.

33.

34.

35.

36.

37.

€)

The following guidelines should be used in
determining how much is reasonable;

* |f thereference material were writtenin
a coherent manner that followed the
proposed breskdown of topics and in a
uniform style (for example in a new
book based on the proposed Knowledge
Area description), an average target for
the number of pages would be 500.
However, this target may not be
atainable when selecting existing
reference material dueto differencesin

syle, and overlap and redundancy
between the selected reference
material.

¢ The amount of reference materia
would be reasonable if it consisted of
the study material on this Knowledge
Area of a software engineering
licensng exam that a graduate would
pass after completing four years of
work experience.

+ The Guide to the Software Engineering
Body of Knowledge is intended by
definition to be selective in its choice
of topics and associated reference
material The list of reference materia
for each Knowledge Area should be
viewed and will be presented as an
"informed and reasonable sdlection”
rather than as adefinitive list.

+ The classification of topics according
to Bloom’ s taxonomy should be used to
alat the appropriate amount and level
of depth of the reference material
selected for each topic.

* Additional reference material can be
included in a "Further Readings' list.
These further readings <till must be
related to the topics in the breakdown.
They must aso discuss generaly
accepted knowledge. However, the
further readings material will not be
made available on the web nor should
there be amatrix between the reference
material listed in Further Readings and
theindividud topics.

If deemed feasible and cost-effective by
the IEEE Computer Society, selected
reference material will be published on the
Guide to the Software Engineering Body of

A3

38.

39.

40.

41.

42.

43.
44,

45.
46.
47.
48.

Knowledge web site. To facilitate this task,
preference should be given to reference
materiad for which the copyrights aready
belong to the IEEE Computer Society or
the ACM. This should however not be seen
asacongtraint or an obligation.

f) A matrix of reference materia versus
topics must be provided.

Criteria and Requirements for
identifying Knowledge Areas of the
Related Disciplines

a Knowledge Area Specialists are expected

to identify in a separate section which
Knowledge Aress of the Reaed
Disciplines that are sufficiently relevant to
the Software Engineering Knowledge Area
that has been assigned to them be expected
knowledge by a graduate plus four years of
experience.
This information will be particularly useful
to and will engage much dialogue between
the Guide to the Software Engineering
Body of Knowledge initiative and our
sister initiatives responsible for defining a
common software engineering curricula
and standard performance norms for
software engineers.

The list of Knowledge Areas of Related
Disciplines can be found in the Proposed
Baseline List of Related Disciplines. If
deemed necessary and if accompanied by a
justification, Knowledge Area Specidists
can aso propose additional Related
Disciplines not dready included or
identified in the Proposed Baseline List of
Related Disciplines.

Common Table of Contents
a Knowledge Area descriptions should use
the following table of contents:
+ Tableof contents
¢ Introduction
* Déefinition of the Knowledge Area

* Breakdown of topics of the Knowledge
Area (for clarity purposes, we believe
this section should be placed in front
and not in an appendix at the end of the
document. Also, it should be

49.
50.
51.

52.
53.

55.

56.

57.

accompanied by a figure describing the
breskdown)

¢ Breskdown rationale
+ Matrix of topicsvs. Reference materia

¢+ Recommended references for the
Knowledge Area being described
(please do not mix them with
references used to write the Knowledge
Area description)

+ List of Further Readings

+ References used to write and justify the
Knowledge Area description.

What do we mean by “generaly
accepted knowledge” ?

The software engineering body of knowledge is
an al-inclusive term that describes the sum of
knowledge within the profession of software
engineering. However, the Guide to the Software
Engineering Body of Knowledge seeks to
identify and describe that subset of the body of
knowledge that is generally accepted or, in other
words, the core body of knowledge. To better
illustrate what “generally accepted knowledge’
is relative to other types of knowledge, Figure 1
proposes a draft threecategory schema for
classifying knowledge.

The Project Management Ingtitute in its Guide
to the Project Management Body of Knowledge®
defines “generally accepted” knowledge for
project management in the following manner:

“Generdly accepted” means that the
knowledge and practices described are
applicable to most projects most of the time,
and that there is widespread consensus about
their value and usefulness. “Generdly
accepted” does not mean that the knowledge
and practices described are or should be
applied uniformly on al projects; the project
management team is always responsible for
determining what is appropriate for any given
project.’

? See[1] W. R. Duncan, “A Guide to the Project
Management Body of Knowledge” Project
Management Indtitute, Upper Darby, PA 1996. Can
be downloaded from www.pmi.org

© |EEE — Stoneman (Version 0.7) — April 2000

58.

59.

60.

61.

62.

65.

The Guide to the Project Management Body of
Knowledgeis how an |EEE Standard.

At the Mont-Tremblant kick off meeting, the
Industrial Advisory Board better defined
“generaly accepted” as knowledge to be
included in the study material of a software
engineering licensng exam that a graduate
would pass after completing four years of work
experience. These two definitions should be
seen as complementary.

Knowledge Area Specialists are also expected to
be somewhat forward looking in ther
interpretation by taking into consideration not
only what is “generaly accepted” today and but
what they expect will be “generaly accepted” in
a3to5yearstimeframe.

Generally Accepted

recommended by many
organizations

Established traditional practices

Advanced and Resear ch

Specialized
Practices used only for certain types
of software

Innovative practices tested and used
only by some organizations and
concepts still being developed and
tested in research organizations

Figure 1 Categories of knowledge

Length of Knowledge Area Description

1. 63. Knowledge Area Descriptions are
currently expected to be roughly in the 10
pages range using the format of the
International Conference on Software
Engineering format as defined below. This
includes text, references, appendices and
tables etc. This, of course, does not include
the reference materials themselves. This
limit should, however, not be seen as a
constraint or an obligation.

Role of Editorial Team

Alain Abran and James W. Moore are the
Executive Editors and are responsible for
maintaining good relations with the IEEE CS, the

© |IEEE— Soneman (Version 0.7) — April 2000

66.

ACM, the Industrid Advisory Board and the
Panel of Experts as well as for the overdl
strategy, approach, organization and funding of
the project.

Pierre Bourque and Robert Dupuis are the
Editors and are responsible for the coordination,
operation and logistics of this project. More
specificaly, the Editors are responsible for
devel oping the project plan, the Knowl edge Area
description specification and for coordinating
Knowledge Area Specidists and their
contribution, for recruiting the reviewers and the
review captains as well as coordinating the
variousreview cycles.

67. The Editors are therefore responsible for the

68.

coherence of the entire Guide and for
identifying and establishing links between the
Knowledge Areas. The resolution of gaps and
overlaps between Knowledge Aress will be
negotiated by the Editors and the Knowledge
Area Specialists themselves.

SImmary

The following figure presents in a
schematic form the Knowledge Area
Description Specifications

A-5

A6

Straw Man
Version of Guide
to the SWEBOK

®)

Plan for
Developing the
Stone Man
Version (4)

Standards
Road Map

(6)

|EEE 610.12
Terminology

Standard (7)

12207 Software
Life Cycle
Processes

Standard (8)

Context Documents Standards Documents
Baseline List of Knowledge Area
Knowledge Area Jumpstart Document

2 (9)

¥/_\

Contents of Knowledge

Area Description _ Matrix of
Breakdown of Topics .| Reference
(a) "| Materid Versus
Topics (t)
y
Rational of e . .
Breakdown and Clas_sﬂcatlon of Rating of Topics Relevant Slected
: Topics Based on Based on Knowledge
Succinct . . . Reference
Description of Vmcgnu s Bloom's Ar_eas_ 01_‘ Related Materia (0-S)
Topics (I-m) Categories (k) Taxonomy (n) Disciplines (u)
y y A
Input Documents
Categories of | Baseline List of]
Engineering Design Bloom's Taxonomy Related Disciplines Stone Man Version
Kr_wowlet_jge by (1) 3) D Ddiversble
Vincenti (11 Reference to Criteria

© |IEEE — Soneman (Version 0.7) — April 2000

and Requirements
letter or Document
number

70. IMPORTANT RELATED DOCUMENTS
(IN ALPHABETICAL ORDER OF FIRST
AUTHOR)

71. 1. Bloom et al., Bloom's Taxonomy of the
Cognitive Domain

72. Please refer to
http://www.val dosta. peachnet
.edu/~whuitt/psy702/cogsys/bloom.html
for a description of this hierarchy of
educationa objectives.

68. 2. P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, D. Frailey, A Baseline List
of Knowledge Areas for the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge,
Université du Québec a Montréal, Montréal,
February 1999.

69. Based on the Straw Man version, on the
discussions held and the expectations stated
a the kick off meeting of the Industria
Advisory Board, on other body of
knowledge proposals, and on criteria
defined in this document, this document
proposes a baseline list of ten Knowledge
Areas for the Stone Man Version of the
Guide to the Software Engineering Body of
Knowledge. This baseline may of course
evolve as work progresses and issues are
identified during the course of the project.

70. This document is available at
www.swvebok.org.

71. 3. P. Bourque, R. Dupuis, A. Abran, J W.
Moore, L. Tripp. A Proposed Baseline List
of Related Disciplines for the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge,
Université du Québec a Montréal, Montréal,
February 1999.

72. Based on the Straw Man version, on the
discussions held and the expectations stated
a the kick off meeting of the Industrial
Advisory Board and on subsequent work,
this document proposes a baseline list of
Related Disciplines and Knowledge Areas
within these Related Disciplines. This
document has been submitted to and
discussed with the Industrid Advisory
Board and a recognized list of Knowledge
Aress still has to be identified for certain

© |EEE— Soneman (Version 0.7) — April 2000

73.

74.

75.

76.

77.

78.

79.

80.

81.

4.

Related Disciplines. Knowledge Area
Specidlists will be informed of the
evolution of this document.

The current verson is avalable at
www.swebok.org

P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, D. Fraley, Approved
Plan, Stone Man Version of the Guide to
the Software Engineering Body of
Knowledge, Université du Québec a
Montréal, Montréal, February 1999.

This report describes the project
objectives, deliverables and underlying
principles. The intended audience of the
Guide is identified. The responsibilities
of the various contributors are defined
and an outline of the schedule is traced.
This documents defines notably the
review process that will be used to
develop the Stone Man version. This plan
has been approved by the Indudtria
Advisory Board.

This document is available at
www.swebok.org

P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, K. Shyne, B. Pflug, M.
Maya, and G. Tremblay, Guide to the
Software Engineering Body of Knowledge
- A Straw Man Verson, Université du
Québec a Montréal, Montréal, Technical
Report, September 1998.

This report is the basis for the entire
project. It defines general project
dsrategy, raionde and underlying
principles and proposes an initia list of
Knowledge Aress and Related
Disciplines.

This report is avalable a
www.swebok.org.

J W. Moore, Software Engineering
Standards, A Usar's Road Map. Los
Alamitos: IEEE Computer Society Press,
1998.

This book describes the scope, roles,
uses, and development trends of the most
widely used software engineering
standards. It concentrates on important
software engineering activities — quality
and project ~management, System
engineering, dependability, and safety.
The analyss and regrouping of the

A-7

82.

83.

84.

85.

86.

87.

88.
89.

A8

standard collections exposes you to key
relationships between standards.

Even though the Guide to the Software
Engineering Body of Knowledge is not a
software engineering standards
development project per se, specia care
will be taken throughout the project
regarding the compatibility of the Guide
with the current IEEE and 1SO Software
Engineering Standards Collection.

IEEE Standard Glossary of Software
Engineering Terminology, |EEE,
Piscataway, NJ std 610.12-1990, 1990.

The hierarchy of references for
terminology is Merriam Webster's
Collegiate Dictionary (10th Edition),
|IEEE Standard 610.12 and new proposed
definitionsif required.

Information Technology — Software Life
Cycle Processes, International Standard,
Technical 1SO/IEC 12207:1995(E), 1995.

This standard is considered the key
standard regarding the definition of life
cycle process and has been adopted by the
two man dandardization bodies in
software engineering: 1ISO/IEC JTC1 SC7
and the IEEE Computer Society Software
Engineering Standards Committee. It also
has been designated asthe pivota standard
around which the Software Engineering
Standards Committee (SESC) is currently
harmonizing its entire collection of
standards. This standard was a key input to
the Straw Man version.

Even though we do not intend that the
Guide to the Software Engineering Body
of Knowledge be fully 12207-compliant,
this standard remains a key input to the
Stone Man version and specid care will
be taken throughout the project regarding
the compatibility of the Guide with the
12207 standard.

Knowledge Area Jumpstart Documents

A “jumpstart document” has aready been
provided to dl Knowledge Area
Specidlists. These “jumpstart documerts”
propose a breakdown of topics for each
Knowledge Area based on the analysis of
the four most widely sold generic
software engineering textbooks. As
implied by their title, they have been

90.

91
92.

93.

94.

95.

96.

97.

98.

99.

prepared as an enabler for the Knowledge
Area Specidigt and the Knowledge Area
Specialist are not of course constrained
to the proposed list of topics nor to the
proposed breakdown in these “jumpstart
documents”.

10. Merriam Webster's Collegiate Dictionary
(10th Edition).

See note for |IEEE 610.12 Standard.

11. W. G. Vincenti, What Engineers Know

and How They Know It - Anayticd
Studies from Aeronautical History.
Batimore and London: Johns Hopkins,
1990.
The categories of engineering design
knowledge defined in Chepter 7 (The
Anatomy of Engineering Design
Knowledge) of this book were used as a
framework for organizing topics in the
various Knowledge Area “jumpstart
documents “ and are imposed as
decomposition framework in the
Knowledge Area Descriptions because:

¢ they are based on a detailed historica
analysis of an established branch of
engineering: aeronautical engineering.
A breakdown of software engineering
topics based on these categories is
therefore seen as an important
mechanism for linking software
engineering with engineering at large
and the more established engineering
disciplines;

¢ they are viewed by Vincenti as
applicable to dl branches of
engineering;

¢ gaps in the software engineering body
of knowledge within certain categories
as well as efforts to reduce these gaps
over timewill be made apparent;

¢ due to generic nature of the
categories, knowledge within each
knowledge area could evolve and
progress significantly while the
framework itself would remain stable;

AUTHORSHIP OF K NOWLEDGE AREA
DESCRIPTION

The Editoria Team will submit a proposa to
the project’s Industrial Advisory Board to have

© |EEE— Soneman (Version 0.7) — April 2000

100.

101.

102.

103.

104.
105.

106.

107.

108.

109.

110.

111

112.

Knowledge Area Specialists recognized as
authors of the Knowledge Area description.

STYLE AND TECHNICAL GUIDELINES

Knowledge Area Descriptions should conform
to the International Conference on Software
Engineering Proceedings format (templates are
available at http://sunset.usc.edu/icsed9/cfp
/technical_papers.html).

Knowledge Area Descriptions are expected to
follow the IEEE Computer Society Style
Guide. See http://computer.org/author/style/cs-
stylehtm

Microsoft Word 97 is the preferred
submission format. Please contact the Editorial
Team if thisis not feasible for you.

Other Detailed Guidelines:

When referencing the guide, we recommend
that you use the full title “Guide to the
SWEBOK” ingtead of only “SWEBOK.”

For the purpose of smplicity, we recommend
tha Knowledge Area Specidists avoid
footnotes. Instead, they should try to include
their content in the main text.

We recommend to use in the text explicit
references to standards, as opposed to ssimply
inserting numbers referencing items in the
bibliography. We bdieve it would alow to
better expose the reader to the source and
scope of astandard.

The text accompanying figures and tables
should be sdf-explanatory or have enough
related text. This would ensure that the reader
knows what the figures and tables mean.

Make sure you use current information about
references (versions, titles, etc.)

To make sure that some information contained
in the Guide to the SWEBOK does not become
rapidly obsolete, please avoid directly naming
tools and products. Instead, try to name their
functions. The list of tools and products can
aways be put in an gppendix.

You are expected to spell out al acronyms
used and to use al appropriate copyrights,
service marks, etc.

The Knowledge Area Descriptions should
aways be written in third person.

© |EEE— Soneman (Version 0.7) — April 2000

113.

114.

115.

116.

117.

118.

EDITING (TO BE CONFIRMED)

Knowledge Area Descriptions will be edited
by IEEE Computer Society staff editors.
Editing includes copy editing (grammar,
punctuation, and capitalization), style editing
(conformance to the Computer Society
magazines house style), and content editing
(flow, meaning, clarity, directness, and
organization). The final editing will be a
collaborative process in which |EEE
Computer Society staff editors and the
authors work together to achieve a concise,
wdll-worded, and useful a Knowledge Area
Description.

RELEASE OF COPYRIGHT

All intellectual properties associated with the
Guide to the Software Engineering Body of
Knowledge will remain with the IEEE
Computer Society. Knowledge Area Specialists
will be asked to sign a copyright release form.
It is aso understood that the Guide to the
Software Engineering Body of Knowledge will
be put in the public domain by the IEEE
Computer Society, free of charge through web
technology, or other means.

For more information, See
http://computer.org/ copyright.htm

A-9

1.

APPENDIX B

A LIST OF RELATED DISCIPLINESFOR
THE STONE M AN VERSION OF THE GUIDETO THE SWEBOK

In order to circumscribe software engineering, it is
necessary to identify the other disciplines with
which SE shares a common boundary. These
disciplines are called Related Disciplines. In this
regard, the mandate of the Guide to the SWEBOK
project isto Identify other disciplines that contain
knowledge aress that are important to a software
engineer. The list of such Knowledge areas would
be useful to attain the fifth objective of the project:
Provide a foundation for curriculum development
and individual certification and licensing material.

Therefore, this appendix identifies:

+ alig of Related Disciplines, based on the
Strawman Guide, on the discussions of the
Industrial Advisory Board at the Industrial
Advisory Board kick-off meetingin Mont-
Tremblant (Canada) and on subsequent
work and discussions;

+ alist of knowledge areasfor these Related
Disciplines, based on as authoritative a
source as found.

These lists were to be as large as possible because
we considered it easier to eliminate topics than
adding them further on in the process.

The SWEBOK KA Specidigts were asked to
identify from these lists the Knowledge Areas of
the Related Disciplines that ae sufficiently
relevant to the Software Engineering KA that has
been assigned to them to be expected knowledge
from a graduate with four years of experience. If
deemed necessary and if accompanied by a
justification, Knowledge Area Specidists could
also propose additional Related Disciplines not
aready. These choices are presented in Appendix
D. The level and extent of knowledge that a
software engineer should posses within these
knowledge areas is not specified at this point.
Thiswill be done by other projects according to
their needs.

© |EEE— Soneman (Verson 0.7)— April 2000

ListT OF RELATED DISCIPLINES
AND SOURCES OF KNOWLEDGE
AREAS.

Computer Soence

¢ |t was agreed in Mont-Tremblant that the
reference for this Related Discipline
would be obtained through an initiative
caled the IEEE Computer Society and
ACM Joint Task Force on "Year 2001
Model Curricula for Computing: CC-
2001". Toensure proper coordination with
this initiative, Carl Chang, Joint Task
Force Co-Chair is a member of the
Industrial Advisory Board and was present
in Mont-Tremblant. Appendix B.1 liststhe
preliminary Knowledge Areas of
Computer Science as determined by the
CC-2001 group.

10. Mathematics

11.

¢ |t was agreed in Mont-Tremblant that the
Computing Curricula 2001 initiative
would be the “conduit” to mathematics.
So far, we have not received such alist of
Knowledge Areas (Knowledge Units in
the CC-2001 vocabulary), for
Mathematics but it is expected that CC-
2001 will provideit. In the mean time, the
project refers to the list defined by the
Computing Curriculum 1991' initiative
and found in Appendix B.2.

12, Prgedt Management

13.

+ The reference for this Related Discipline
is “A Guide to the Project Management
Body of Knowledge’? published by the
Project Management Institute. This
document is currently being adopted asan

! See http://computer.org/educate/cc1991/
?See www.pmi.org to download this report.

B-1

14.
15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

|EEE software engineering standard. The
liss of Knowledge Areas for project
management can be found in Appendix
B.3.

Computer Engnesring

A list of Knowledge Areas for Computer
Engineering and found in Appendix B.4 was
compiled from the integrati on of:

¢+ The syllabus for the British licensing
exam for the field of Computer Systems
Engineering’.

¢+ The Principles and Practice of
Engineering Examination - Guide for
Writers and Reviewers in Electrica
Engineering of the National Council of
Examiners for Engineering and Surveying
(USA). An appendix listed Computer
Engineering Knowledge Aress for which
guestions should be put to the candidates.

¢ The Computer Engineering undergraduate
program at the Milwaukee School of
Engineering®. This program is considered
to be a typicad example of an American
accredited program by the director of the
Computer Engineering and Computer
Science Department at M SOE.

SydansEngnexing

Appendix B.5 contains a proposed list of
Knowledge Areas for Systems Engineering. The
list was compiled from:
¢+ The EIA 632 and IEEE 1220 (Trid-Use)
standards;
+ the Andriole and Freeman paper’;
¢ the materid avalable on the INCOSE
(International Council on Systems
Engineering) website’;
¢ a curriculum for a graduate degree in
Sygems Engineering a the University of
Maryland”;
Three experts in the field were aso

consulted, John Harauz, from Ontario Hydro,
John Kellogg from Lockheed Martin, and Claude

3 See http://www.engc.org.uk

* See http://www.msoe.edu/eecs/celindex.htm

® Stephen J. Andriole and Peter A. Freeman, Software systems
engineering: the case for a new discipline, System Engineering
Journal, Val. 8, No. 3, May 1993, pp. 165-179.

® Seewww.incose.org

7 See hitp:/iwww.isr.umd.edu/l SR/educati on/msse/

B2

26.
27.

28.

29.

30.

31

33.

34.

Laporte consultant, previously with the Armed
Forces of Canada and Oerlikon Aerogace.

Management and Management Saence

No definitive source has been identified so far
for a lig of Management and Management
Science Knowledge Areas relevant to software
engineering. A list was therefore compiled from

+ the Technology Management Handbool®
which contains many relevant chapters;

+ the Engineering Handbook® which
contains a section on Engineering
Economics and Management covering
many of the relevant topics;

¢+ an aticle by Henri Barki and Suzanne
“Rivard titled A Keyword Classificati on
Scheme for IS Research Literature: An
Update”*°.

The proposed list of knowledge areas for
Management and Management Science can be
found in Appendix B.6.

Cognitive Sadencesand Human Fadors

Appendix B.7 contains a list of proposed
Knowledge Areas far Cognitive Sciences and
Human Factors. The was compiled from the list
of courses offered a the John Hopkins
University Department of Cognitive Sciences™
and from the ACM SIGCHI Curricula for
Humarn-Computer Interaction*?,

The list was then refined by three expertsin the
field: two from UQAM and W. W. McMillan,
from Eastern Michigan University. They were
asked to indicate which of these topics should be
known by a software engineer. The topics that
were rejected by two of the three respondents
were removedfrom the original list.

8See CRC Press

9 See Crc Press

10See MIS Quaterly, June 1993, pp. 209-226

! See http://www.cogsci.jhu.edu/

2 See TABLE 1. Content of HCl
athttp://www.acm.org/sigchi/cdg/cdg2.html

© |EEE — Stoneman (Version 0.7) — April 2000

36.
37.
38.
39.
40.
41.

42.
43.

44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.

APPENDIX B.1l. KNOWLEDGE AREAS
OF COMPUTER SCIENCE.

0. [MP] Mathematics and Physical Sciences
1. [FO] Foundations

Complexity anaysis

Complexity classes

Computability and undecidability

Discrete mathematics (logic, combinatorics,
probability)

Proof techniques

Automata (regular expressions, context-free
grammars, FSMSPDASTMs)

Formal specifications
Program semantics

2. [AL] Algorithms and Data Structures
Basic data structures
Abstract data types
Sorting and searching
parallel and distributed algorithms

3. [AR] Computer Architecture
Digital logic
Digital systems
Machine level representation of data
Number representations
Assembly level machine organization
Memory system organization and architecture
Interfacing and communication
Alternative architectures
Digital signal processing
Performance

4.119] Intelligence Systems (1S)
Artificial intelligence
Robotics
Agents
Pattern Recognition
Soft computing (neural networks, genetic
algorithms, fuzzy logic)

5. [IM] Information Management
Database models

Search Engines

© |EEE— Soneman (Verson 0.7)— April 2000

71.
72.
73.
74.
75.
76.

77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.

105.

106.

107.
108.

Data mining/warehousing
Digitdl libraries
Transaction processing
Data compression
6. [Cl] Computing at the Interface

Human-computer interaction (usability design,
human factors)

Graphics
Vision
Visuaization
Multimedia
PDAs and other new hardware
User-level application generators
7. [OS] Operating Systems
Tasks, processes and threads
Process coordination and synchronization
Scheduling and dispatching
Physical and virtual memory organizations
File systems

Networking fundamentals (protocols, RPC,
sockets)

Security
Protection
Distributed systems
Redl-time computing
Embedded systems
Moabile computing infrastructure

8. [PF] Programming Fundamentals and Skills
Introduction to programming languages
Recursive algorithms/programming
Programming paradigms
Program-solving strategies
Compilergitrandation
Code Generation

9. [SE] Software Engineering

Software Engineering will not be a related
discipline to Software Engineering

This focus group will be coordinated with the
SWEBOK project in order to avoid double
definitions of thefield.

10. [NC] Net-centric Computing
Computer-supported cooperative work
Collaboration Technology

B3

109.

110.
111.
112.
113.
114.
115.
116.
117.
118.
119.

120.
121.
122.
123.
124.
125.
126.

Distributed objects
(DOC/CORBA/DCOM/IVM)

E-Commerce
Enterprise computing
Network-level security

11. [CN] Computational Science
Numerical anaysis
Scientific computing
Parallel algorithms
Supercomputing
Modeling and smulation

12. [SP] Socid, Ethical, Legal and Professional
I ssues

Historical and socia context of computing
Philosophical ethics

Intellectual property

Copyrights, patents, and trade secrets

Risks and liahilities

Responsibilities of computing professionals
Computer crime

computing

127. APPENDIX B.2. KNOWLEDGE AREAS

128.

129.

130.

131.

132.

OF MATHEMATICS

Discrete Mathematics sets, functions,
elementary propositiona and predicate logic,
Boolean dgebra, dementary graph theory,
matrices, proof techniques (including induction
and contradiction), combinatorics, probability,
and random numbers.

Calculus: differential and integral calculus,
including sequences and series and an
introduction to differential equations.

Probability: discrete and continuous, including
combinatorics and elementary statistics.

Linear Algebra: elementary, including matrices,
vectors, and linear transformations.

Mathematical Logic. propostiona and
functional calculi, completeness, validity, proof,
and decision

133. APPENDIX B.3. KNOWLEDGE AREAS

134.

135.
136.
137.
138.
139.
140.
141.
142.
143.

OF PROJECT MANAGEMENT

The list of Knowledge Areas defined by the
Project Management Institute for project
managementis:

+ Project Integration Management

+ Project Scope Management

+ Project Time Management

¢ Project Cost Management

+ Project Quality Management

¢ Project Human Resource Management
¢ Project Communications Management
¢ Project Risk Management

+ Project Procurement Management

144. APPENDIX B.4. KNOWLEDGE AREAS

145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.

161.

OF COMPUTER ENGINEERING,

Digitd Data Manipulation
Processor Design

Digital Systems Design
Computer Organization

Storage Devices and Systems
Peripherals and Communication
High Performance Systems
System Design

Measurement and Instrumentation
Codes and Standards

Circuit Theory

Electronics

Controls

Combinational and Sequential Logic
Embedded Systems Software

Engineering Systems Analysis with Numerica
Methods

Computer Modeling and Simulation

© |EEE — Stoneman (Version 0.7) — April 2000

162. APPENDIX B.5. KNOWLEDGE AREAS

163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

188.
189.
190.
191
192.
193.
194.
195.
196.
197.
198.
199.

OF SYSTEMSENGINEERING

PROCESS
Need Analysis
Behaviora Analysis
Enterprise Analysis
Prototyping
Project Planning
Acquisition
Requirements Definition
System definition
Specification trees
System breakdown structure
Design
Effectiveness Anaysis
Component specification
Integration
Maintenance & Operations
Configuration Management
Documentation
Systems Quality Andysis and Management
SystemsV & V
System Evaluation
Systems Lifecycle Cost Estimation
Design of Human-Machine Systems
Fractal s and self-similarities

ESSENTIAL FUNCTIONAL
(IEEE 1220)

Development

Manufacturing

Test

Distribution

Operations

Support

Training

Disposd
TECHNIQUES & TOOLS (IEEE 1220)

Metrics

Privacy

Process |mprovement

PROCESSES:

© |EEE— Soneman (Verson 0.7)— April 2000

200.
201.
202.
203.
204.

Reliability

Safety

Security

Vocabulary

Effectiveness Assessment

205. APPENDIX B.6. KNOWLEDGE AREAS

206.
207.
208.
209.
210.
211
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.

OF M ANAGEMENT AND
MANAGEMENT SCIENCE

BUSINESS STRATEGY
FINANCE
EXTERNAL ENVIRONMENT
Economic Environment
Legd Environment
Regulation processes
ORGANIZATIONAL ENVIRONMENT
Organizational Characterigics
Organizationa Functions
Organizationad Dynamics
INFORMATION SYSTEMS MANAGEMENT
Data Resource Management
Information Resource Management
Personnel Resource Management
IS Staffing
INNOVATION AND CHANGE
ACCOUNTING
TRAINING
MANAGEMENT SCIENCE
Models
Financial Models
Planning Models
Optimization
Optimization methods
Heuristics
Linear Programming
Goa Programming
Mathematical Programming
Statistics
Simulation

B-5

236. APPENDIX B.7. KNOWLEDGE AREAS
OF COGNITIVE SCIENCES AND
HUMAN FACTORS

237. Cognition

238. Cognitive Al I: Reasoning

239. Machine Learning and Grammar Induction

240. Formal Methodsin Cognitive Science: Language

241. Forma Methods in Cognitive Science
Reasoning

242. Formal Methodsin Cognitive Science: Cognitive
Architecture

243. Cognitive Al 1I: Learning

244. Foundations of Cognitive Science

245. Information Extraction from Speech and Text
246. Lexica Processing

247. Computational Language Acquisition

248. TheNature of HCI

249. (Meta)Modelsof HCI

250. Useand Context of Computers

251. Human Socia Organization and Work

252. Application Areas

253. Human-Machine Fit and Adaptation

254. Human Characteristics

255. Human Information Processing

256. Language, Communication, Interaction

257. Ergonomics

258. Computer System and Interface Architecture

259. Input and Output Devices

260. Diaogue Techniques

261. Dialogue Genre

262. Computer Graphics

263. Dialogue Architecture

264. Development Process

265. Design Approaches

266. Implementation Techniques

267. Evaluation Techniques

268. Example Systems and Case Studies
B-6

© |EEE — Stoneman (Version 0.7) — April 2000

APPENDIX C

CLASSIFICATION OF TOPICSACCORDING
TO BLOOM’S TAXONOMY

INTRODUCTION

Bloom's taxonomy is the best known and
most widely used classification of cognitive
educational goas. In order to help Al
audiences in that field who wish to use the
Guide asatool in designing course material,
programs or accreditation criteria, the
project was mandated to provide afirst draft
evaluation of the topics included in the
Knowledge Areas breakdowns according
Bloom’'s Taxonomy. This should only be
seen as a jump-start document to be further
developed by other steps in other, related
projects.

Knowledge Area Specidists were asked to
provide an Appendix that states for each
topic a which level of Bloom'staxonomy a
“graduate plus four years experience”
should “master” this topic. The resulting
table could also be used by the specialists
themselves as a guide to choose the amount
and level of reference material appropriate
for each topic.

This appendix contains, for each Knowledge
Ared, atable identifying the topics and the
associated Bloom's taxonomy level of
understanding on each topic for a graduate
with four years experience. The levels of
understanding from lower to higher are:
knowledge, comprehension, application,
andysis, synthesis, and evauation. The
veeson used can be found at
http://iwww.val dosta.peachnet.edu/~whuitt/p
sy702/cogsys/bloom.html

! Please note that the rating for the
Software Construction Knowledge Area
isstill missing.

© |EEE— Soneman (Version 0.7) — April 2000

SOFTWARE REQUIREMENTS

TOPIC Bloom Level

Requirements engineering process

Process models Knowledge

Process actors Knowledge

Process support Knowledge

Process qudity and improvement Knowledge
Requirements €licitation

Requirements sources Comprehenson

Elicitation techniques Applicaion
Requirements analysis

Requirements classfication Comprehenson

Concepiud modding Comprehenson

Architecturd desgn and requirements | Andyss

alocation

Requirements negotiaion Andyss
Requirement specification

The requirements definition document Applicaion

The software requirements Application

specificdion (SRS)

Document Structure Applicaion

Document quaity Andyss
Requirements validation

The conduct of requirementsreviews | AndysSs

Prototyping Applicaion

Modd vdidation Andyss

Acceptance tests Applicaiion
Requirements management

Change management Andyss

Requirement attributes Comprehenson

Requirements tracing Comprehenson

CG1

33. SOFTWARE DESIGN

SHEROOREBBUBRE

FEEESR

52.

Softwar e Design Topic

Know-
ledge

Compre
hension

Appli-
cation

Analy
-Sis

Syn-

thesis

Eva
luation

|. Softwar e Design Basic Concepts

Generd design concepts

The context of software design

The software design process

Basic software design concepts

Key issuesin software design
I1. Software Architecture

Architecturd structures and viewpoints

Architecturd styles and patterns (macro-architecture)

Design patterns (micro-architecture)

Design of families of programs and frameworks

I11. Software Design Quality Analysis and Evaluation

Qudlity atributes

Qudity andys's and evduation tools

x| X

Metrics

1V. Softwar e Design Notations

Structurd descriptions (Static view)

Behaviord descriptions (dynamic view)

V. Softwar e Design Strategies and M ethods

Generd drategies

Function-oriented design

XX | X X

Object-oriented design

Data-structure centered design

X

Other methods

X

X

Note: As mentioned in the URL used as reference for “Bloom’s et d.’s Taxonomy of the Cognitive Domain”,
Eva uation has been considered to be at the same level as Synthesis, but using different cognitive processes.

© |EEE — Stoneman (Version 0.7) — April 2000

99.

60.
61.
62.
63.

64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.

86.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.

103.
104.

SOFTWARE TESTING

Topic Bloom’s level
A. Testing Basic Concepts and definitions
Definitions of testing and related terminology Andyss
Faultsvs. fallures Andyss
Test sdlection criterialTest adequacy criteria Application
(or stopping rules)
Testing effectivenessObjectives for testing Comprehension
Tegting for defect identification Comprehension
The oracle problem Comprehension
Theoreticd and practica limitations of Application
testing
The problem of infeasible paths Comprehension
Tedtability Comprehension
Tedting vs. Static Analyss Techniques Application
Testing vs. Correctness Proofs Knowledge
Tegting vs. Debugging Comprehension
Testing vs. Programming Applicaion
Tedting within SQA Application
Testing within CMM Knowledge
Testing within Clesnroom Knowledge
Testing and Certification Comprehension
B. Test Levels
Unit testing Application
Integration testing Application
Sysem testing Application
Acceptance/qudification testing Application
Ingdlationtesting Application
Alphaand Betatesting Application
Conformance testing/Functiond Application
testing/Correctness testing
Rdiability achievement and evauation by Comprehension
testing
Regression testing Application
Performance testing Comprehenson
Stresstesting Comprehenson
Back-to-back testing Knowledge
Recovery testing Comprehension
Configuration testing Comprehension
Usdhility testing Comprehension
C. Test Techniques
Adhoc Synthesis
Equivdence partitioning Application
Boundary-vdue andys's Application
Decision table Knowledge
Finite-state machine-based Knowledge
Testing from forma specifications Knowledge
Random testing Application
Reference modd's for code-based testing Application
(flow graph, call graph)
Contrd flow -based criteria Application
Data flow-based criteria Comprehension

© |EEE— Soneman (Version 0.7) — April 2000

105.
106.
107.
108.
109.
110.
111
112.
113.
114.
115.
116.
117.
118.
119.
120.

121.
122.
123.
124,
125,
126.
127.

128

129.
130.
131.
132.
133.
134.

135.
136.

137.
138.
139.
140.
141.
142.

Topic

Bloom’s level

Error guessing Application
Mutation testing Knowledge
Operationd profile Comprehension
SRET Knowledge
Object-oriented testing Application
Component-based testing Comprehension
GUI tedting Knowledge
Testing of concurrent programs Knowledge
Protocal conformance testing Knowledge
Testing of distributed systlems Knowledge
Testing of reattime systems Knowledge
Testing of scientific software Knowledge
Functiond and structurd Synthesis
Coverage and operational/Saturation effect Knowledge
D. Test related measures
Program measurementsto aid in planning and Synthesis
designing testing.
Types, classfication and datistics of faults Apdlication
Remaining number of defects/Fault density Application
Lifeted, riability evduation Comprehension
Rdiahility growth modds Knowledge
Coveragelthoroughness measures Application
Fault seeding Knowledge
Mutation score Knowledge
Comparison and relative effectiveness of Comprehension
different techniques
E. Managing the Test Process
Attitudes’Egoless programming Application
Test process Synthesis
Test documentation and workproducts Synthesis
Interna vs. independent test team Comprehension
Cod/effort estimation and other process Application
metrics
Test reuse Application
Hanning Application
Test case generation Application
Test environment development Application
Execution Application
Test reaults evduation Application
Trouble reporting/Test Tog Application
Defect tracking Application
CH4

© |EEE — Stoneman (Version 0.7) — April 2000

143. SOFTWARE M AINTENANCE

144,

145.
146.
147.
148.
149.
150.
151
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.

167.
168.
169.

170.
171
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.

TOPIC BLOOM
LEVEL
Introduction to Software Comprehension
Maintenance
Need for Maintenance Comprehension
Categories of Maintenance Comprehension
M aintenance Activities Comprehension
Unique Activities Comprehension
Supporting Activities Comprehension
Configuraion Management Comprehension
Qudity Comprehension
Maintenance Planning Activity Comprehension
Maintenance Process Synthes's
Maintenance Process Models Synthes's
Organization Aspect of Maintenance Comprehension
The Maintainer Comprehension
Outsourcing Comprehension
Organizational Sructure Comprehension
Problems of Software Maintenance Comprehension
Technical Comprehension
Limited Undersanding Comprehension
Teding Comprehension
Impact Andyss Comprehension
Mantainability Comprehension
Management Comprehension
Alignment with Comprehension
organizational issues
Saffing Comprehension
Process issues Synthesis
M aintenance cost and Maintenance Comprehension
Cost Estimation
Cost Comprehenson
Cost estimation Comprehension
Parametric modds Comprehension
Experience Comprehension
Softwar e M aintenance M easur ements Synthes's
Establishing a Metrics Program Comprehension
Soecific Measures Synthes's
Techniquesfor Maintenance- Synthes's
Program Comprehension Synthes's
Re-engineering Synthes's
Reverse Engineering Synthes's
Impact Analysis Synthes's
Resources Comprehension

© |EEE— Soneman (Version 0.7) — April 2000

184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194,
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
200.
210.
211,
212,
213.
214.
215.
216.
217.
218.
219.
220.
221.

183. SOFTWARE CONFIGURATION MANAGEMENT

SCM TOPIC Bloom L evel
. Management of the SCM Process Knowledge
A. Organizationd Context for SCM Knowledge
B. Congraints and Guidance for Knowledge
C. PHanning for SCM Knowledge
1 SCM Organizaion and Knowledge
2. SCM Resources and Comprehension
3. Tool Sdection and Knowledge
4. Vendor/Subcontractor Knowledge
5. Interface Control Comprehension
D. Software Configuration Knowledge
E. Survellance of SCM Comprehension
1 SCM Meiricsand Comprehension
2. In-Process Audits of Knowledge
IT. Software Configuration Identification Comprehenson
A. Tdentifying ltemsto be Comprehension
1 Software Comprehension
2. Software Comprehension
3. Software configuration Comprehenson
4. Software Versons Comprehension
5. Basdines Comprehension
6. Acquiring Software Knowledge
B. SCM Libray Comprehenson
[T, Software Configuration Control Application
A. Requedting, Evduating, and Application
1 Software Application
2. Software Change Application
B. Implementing Software Changes Application
C. Deviations & Wavers Comprehension
V. Software Configuration Status Accounting Comprehension
A. Software Configuration Status Comprehension
B. Software Configur aion Status Comprehension
V. Software Configuration Auditing Knowledge
A. Software Functiond Knowledge
B. Software Physicd Configuration Knowledge
C. In-process Audits of a Software Knowledge
VI. Software Release Management & Delivery Comprehension
A. Software Building Comprehenson
B. Software Release Management Comprehension

© |EEE — Stoneman (Version 0.7) — April 2000

222.

SOFTWARE ENGINEERING MANAGEMENT

Topic Level

Determining the goal's of a measurement program Synthesis
Size measurement Analysis
Complexity measurement Analysis
Performance measurement Analysis
Resource measurement Analysis
Goal/Question/Metric Application
Measurement validity (scales) Comprehension
Survey techniques and questionnaire design Knowledge
Datacollection Knowledge
Model building and calibration Evauation
Model evaluation Synthesis
Implementation of models Anaysis
Interpretation of models Anaysis
Function Point Analysis Application
COCOMO Application
Portfolio management Comprehension
Vendor management Application
Subcontract management Knowledge
Policy management Comprehension
Personnel management Analysis
Communication Analysis
Requirements analysis Comprehension
Use cases Comprehension
Proposal construction Application
Feasibility analysis Application
Revision of requirements Comprehension
Prototyping Comprehension
Risk management Synthesis
Process planning Analysis
Determining deliverables Comprehension
Quality management Synthesis
Schedule and cost estimation Ardysis
Resource allocation Application
Task and responsibility allocation Application
Implementing ametrics program Anaysis
Implementing plans Application
Process monitoring Application
Change control Comprehension
Configuration management Comprehension
Scenarioandysis Comprehension
Feedback and reporting Application
Determining satisfaction of requirements Comprehension
Reviewing and evaluating performance Application
Determining closure Application
Archivdl activities Comprehension
Mainterence Comprehension
System retirement Comprehension

© |EEE— Soneman (Version 0.7) — April 2000

223.

SOFTWARE ENGINEERING PROCESS

Topic Bloom Level
Basic Concepts and Definitions
Themes Comprehension
Terminology Knowledge
Process Infrastructure
The Experience Factory Comprehension
The Software Engineering Process Group Comprehension
Process M easurement
Methodology in Process M easurement Comprehension
Process M easurement Paradigms Comprehension
Analytic Paradigm Comprehension
Benchmarking Paradigm Comprehension
Process Definition
Types of Process Definitions Application
Life Cycle Models Application
Software Life Cycle Models Application
Notations for Process Definitions Application
Process Definition Methods Application
Automation Knowledge
Qualitative Process Analysis
Process Definition Review Comprehension
Root Cause Analysis Comprehension
Process |mplementation and Change
Paradigms for Process |mplementation and Change Comprehension
Guiddlinesfor Process Implementation and Change Comprehension
Evaluating the Outcome of Process Implementation and Change Comprehension

c-8 © |EEE — Stoneman (Version 0.7) — April 2000

224.

SOFTWARE ENGINEERING TOOLS AND METHODS

Topics Bloom level
|. Software Tools
A. Software Requirements Tools gpplication
B. Software Design Tools application
C. Software Congtruction Tools
1 program editors application
2. compilers gpplication
3. debuggers gpplication
D. Software Testing Tools
1 test generators comprehension
2. test execution frameworks application
3. test evduation todls application
4 test management comprehension
E. Software Maintenance Tools
1 comprehension todls gpplication
2 Reverse engineering tools knowledge
3. Re-engineering todls knowledge
4 traceghility tools knowledge
F. Software Engineering Process
Tools
1 integrated CASE environments gpplication
2. Process-centered software comprehension
engineering environments
3. Process modeling tools knowledge
G. Software Qudity Andysis Tools
1 ingpection todls comprehension
2. stetic andysistools gpplication
3. performance andyss tools comprehension
H. Software Configuration
Management Tools
1 verson management tools gpplication
2. rdease and build tools gpplication
. Software Engineering Management
Tools
1 project planning and tracking application
tods
2. risk andys's and management comprehension
tods
3. measurement todls gpplication
4, defect, enhancement, issue and gpplication
problem tracking tools
4 Infrastructure Support Tools
1 interpersond communicaion gpplication
tods
2. information retrievd tools gpplication
3. system adminigtration and comprehension
support tools
K. Miscdllaneous

© |EEE— Soneman (Version 0.7) — April 2000

1 toal integration techniques knowledge
2. meta toals comprehension
3. todl evduaion application
I1. Development Methods
A. Heurigtic Methods
1 ad-hoc methods application
2. structured methods application
3. data-oriented methods application
4. object-oriented methods application
5. doman-specific methods knowledge
B. Formad Methods
1 specification Tanguages comprehension
2. refinement knowledge
3. verification/proving properties comprehension
C. Prototyping Methods
1 syles comprehension
2. prototyping targets application
3. evduaion techniques comprehension
D. Miscdllaneous
1 Method evduation gpplication

225. SOFTWARE QUALITY

226. All software engineers are responsible for the quality of the products they build. We consider that the knowledge
requirements for topics in Software Quality Analysis vary depending on the role of the software engineer. We use
the roles of programmer, SQA/VV specidist, and project manager. The programmer will design and build the
system, possibly beinvolved in inspections and reviews, andyze hiswork products statically, and possibly perform
unit test. This person may turn over the products to others who will conduct integration and higher levels of testing,
and may be asked to submit data on development tasks, but will not conduct analyses on faults or on measuremernts.
The SQA/VV specidist will plan and implement the processes for software quality analysis, verification, and
validation. The project manager of the development project will use the information from the software quality
analysis processes to make decisi ons. Of course, inasmall project, the software engineer may haveto assumeall of
theseroles, in which case, the highest of the threeis appropriate.

C-10 © |EEE — Stoneman (Version 0.7) — April 2000

227.
228.

229.
230.
231.

232.

233.
234.
235.
236.
237.

238.
239.

240.
241.
242.

243.
244,
245.
246.
247.

248.

Softwar e Quality Topic
(Numbered as to Section in this

Bloom Level*, By Job Responsihility

KA) Programmer SQA/VV Spec. Project Manager
3. Software Quality Concepts

3.1 Measuring the Vaue of Comprehension Comprehension Andyss
Quality

3.21S0 9126 Qudlity Description Comprehension Comprehension Comprehension

3.3 Dependability Comprehension Comprehension Comprehension

3.4 Special Types of Systemsand Comprehension Comprehension Comprehension
Quality Needs

3.5 Quadlity Attributes for Comprehension Comprehension Comprehension
Engineering Process
4. Defining SQA and V&V Comprehension Comprehension Comprehension
5. Planning for SQA and V&V

5.1 The SQA Plan Application Synthesis Evduation

5.2 The V&V Plan Application Synthesis Evaluation
6. Activities and Techniques for
SQA and V&V

6.1 Static Techniques

6.1.1 Audits, Reviews, and Application Evaluation Anayss
I nspections
6.1.2 Analytic Techniques Application Evaluation Anayss

6.2 Dynamic Techniques Application Evaluation Anaysis
7. Measurement Applied to SQA
and V&V

7.1 Fundamentals of Application Evauation Andysis
M easurement

7.2 Metrics Application Evauation Andysis

7.3 Measurement Techniques Application Evauation Andyss

7.4 Defect Characterization Application Evaluation Anayss

7.5 Additional uses of SQA and Application Evaluation Anayss

V&V data

*The levels, in ascending order: Knowledge, Comprehension, Application, Analysis, Synthesis, Evaluation.

© |IEEE — Soneman (Version 0.7) — April 2000

C-11

1.

16.

17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.

APPENDIX D

IDENTIFICATION OF RELEVANT K NOWLEDGE AREAS
OF RELATED DISCIPLINES

INTRODUCTION

Each SWEBOK KA description identified relevant KAs from Related Disciplines. Although these KAs are merely
identified without additional description or references, they should aid curriculum devel opers. This Appendix must
be viewed as a jumpstart document and as aid to curriculum developers rather than as a definitive list of relevant
Knowledge Areas of Related Disciplines.

Reevant Knowledge Areas of Computer Science

SR[SD[SC°|ST|SM[|SCM [SEM | SEP | ETM Q

M athematics and Physical Sciences
Foundations X X X X
Algorithmsand Data Structures X X X X
Computer Architecture X X X
Intelligence Systems (1S X X
Information Management X X X X
Computing at theInterface X X X X
Operating Systems X X X X
Programming Fundamentals and X X X X X X
Skills
Net-centric Computing X X X X X
Computational Science X X
Social, Ethical, L egal and X X X X
Professional | ssues

Reevant Knowledge Areas of Mathematics

SR|SD|[SC|ST SM | SCM |SEM | SEP | SETM Q

Discrete Mathematics X X X X X
Calculus
Probability X X X X X X
Linear Algebra X
Mathematical Logic X X X X

SR: Software Regquirements

SD: Software Design

SC: Software Construction

ST Software Testing

SM Software Maintenance

SCM: Software Configuration Management
SEM: Software Engineering Management

1

) Relevant Knowledge Areas of Related Disciplineswill beidentified in version 0.9 of the Guide.

Relevant Knowledge Areas of Related Disciplineswill beidentified in version 0.9 of the Guide.

© |EEE— Soneman (Version 0.7) — April 2000 D-1

29. SEP. Software Engineering Process
30. SETM: Software Engineering Tools and Methods
31. Q. Software Qudity

32. Reevant Knowledge Areas of Project Management

SR|{SD|[SC|ST SM | SCM | SEM | SEP | SETM Q
33. | Project Integration Management X X X X X X
34. | Project Scope Management X X X X
35. | Project Time Management X X X X X
36. | Project Cost Management X X X X X
37. | Project Quality Management X X X X X X
38. | Project Human Resource Management X X X X
39. | Project Communications Management X X X X
40. | Project Risk Management X X X X X X
41. | Project Procurement Management X X X

42. Reevant Knowledge Areas of Computer Engineering

SR|SD|SC|ST|SM|SM | SEM | SEP | SETM | SQ

43. | Digital DataManipulation

44. | Processor Design

45. | Digital Systems Design

46. | Computer Organization X
47. | Storage Devicesand Systems

48. | Peripherals and Communication X
49. | High Performance Systems

50. | System Design X X
51. | Measurement and Instrumentation X
52. | Codesand Standards X

53. | Circuit Theory

54. | Electronics

55. | Controls
56. | Combinational and Sequential Logic
57. | Embedded Systems Software X

58. | Engineering Systems Anadysiswith
Numerica Methods

59. | Computer Modeling and Simulation X

D-2 © |EEE — Stoneman (Version 0.7) — April 2000

BRIAISHFLEIVREBBIE HRIBRZ

SEB

Relevant Knowledge Areas of Systems Engineering

R

SD

SC

Process

X

x4

Need Andysis

Behaviord Andyss

X

Enterprise Andyss

Prototyping

Project Planning
Acquisition

Requirements Definition

System definition

X[X X X X

Specification trees

System breakdown structure

Desgn

Effectiveness Analysis

Component specification

Integration

Maintenance & Operations

Configuration Management

Documentation

X[X[X

Systems Qudity Andysisand
Management

SysemsV & V

System Evdudtion

XX X X X X X

Sysems Lifecycle Cost Estimation

Design of Human-Machine Systems

XXX X X X)X X[X)X X[X

Fractd's and sdf-amilarities

Essential Functional Processes:
(IEEE 1220)

x

x

Devdopment

x

x

by

Manufacturing

Test

Digribution

Operations

Support

x| X X| X

Traning

Disposa

Techniques & Tools (EEE 1220)

Metrics

x| X

Privacy

Process Improvement

Rdiability

Sefety

Security

Vocabulary

X[X[X)X} X[X)X} X< X[X)X X[X)X X

X[X)X X[X[X)X X)X X)X XX X

X[X)X X[X[X X)X X[X)X XX X x x X[X[X| X ><><><><><><><><><><><><><><><><><><><F§

Effectiveness Assessment

© |EEE— Soneman (Version 0.7) — April 2000

D3

103.
104.

Reevant Knowledge Areas of M anagement and M anagement Science

MANAGEMENT

9

ETM Q

Business Strategy

2
&
<
18
%

Finance

External Environment

Economic Environment

Lega Environment

Regulation processes

Organizational environment

Organizationa Characteristics

Organizationa Functions

x| X[X

Organizational Dynamics

Information Systems M anagement

Data Resource Management

X| X X[X| X[X

>

Information Resource
Management

Personnel Resource Management

IS Staffing

Innovation and change

XIX[X X X[X| X[X[X X[XXX X

Accounting

Training

X X[X XE X XXX X[XX XX X X X

x
x
x

.. MANAGEMENT SCIENCE

M odels

Financial Models

Planning Models

Optimization

Optimization methods

Heuristics

Linear Programming

Goa Programming

Mathematical Programming

Statistics

Simulation

><><><><><><><><><><><F§ﬂ

x| X[X

© |EEE — Soneman (Version 0.7) — April 2000

135.

136.
137.
138.

139.

140.

141.

142.
143.
144,

145.
146.
147.
148.
149.
150.

151
152.

153.
154.
155.

156.
157.

158.
159.
160.
161
162.
163.
164.
165.
166.
167.

Relevant Knowledge Areas of Cognitive Sciences and Human Factors

SR

SD

SC

ST

SM

M

SEM

ETM

Cognition

X

Cognitive Al I: Reasoning

Machine Learning and Grammar
Induction

Formd Methodsin Cognitive Science:
Language

Forma Methodsin Cognitive Science:
Reasoning

Forma Methodsin Cognitive Science:
Cognitive Architecture

Cognitive Al II: Learning

Foundations of Cognitive Science

Information Extraction from Speech
and Text

Lexical Processing

Computational Language Acquisition

TheNatureof HCI

(Meta)Modelsof HCI

Useand Context of Computers

Human Socid Organization and
Work

Application Areas

Human-Machine Fit and
Adaptation

Human Char acteristics

Human Information Processing

Language, Communication,
Interaction

Ergonomics

X XXX X|X[X[X] X[X

Computer System and Interface
Architecture

Input and Output Devices

X XX XXX X[X]| X X[X]| X

Dialogue Techniques

Dialogue Genre

Computer Graphics

x

Dialogue Architecture

Development Process

Design Approaches

X| x| X

Implementation Techniques

Evaluation Techniques

x

Example Systems and Case
Studies

X[X| X| X X

X[X| X| X| X

© |EEE— Soneman (Version 0.7) — April 2000

D5

APPENDIX E

CHANGESBETWEEN
VERSON 0.5 AND VERSION Q.7 OF THE GUIDE

Thisdocument liststhe high-level or major changes that were incorporated in version 0.7 of the Stoneman Guide to
the Software Engineering Body of Knowledge from version 0.5. These changes are based on the detailed analysisby
the editorial team of reviewer feedback gathered on version 0.5 of the Guide. Feedback from the Knowledge Area
Specidist updating the Knowledge Area Descriptions was a so considered when making these changes.

Additionally to what is listed below, a total of about five thousand different comments were recelved, compiled,
disposed of by the Knowledge Area Specidists in the Knowledge Area Descriptions, and included in a database -
which can be accessed at www.swebok.org.

The mgor changes listed below were all approved by the project’ s Industry Advisory Board.

Major Change Reason for Change

Impose a page limit on the cited reference material for| The amount of reference materia currently cited was
each Knowledge Area. too large to be manageable, published on the Web and
(CriteriaR in Appendix A presents the details of how eventually taught in areasonable timeframe. Thisis
this page limit is stated) notably due to the fact that many of these references

are entire books.

Modify the CriteriaR of KA Descriptions Specifications(see| Reviewer feedback indicated that these four common
Appendix A). themes were unevenly discussed in the Knowledge

Thiscriteriawasiinitially stated as: Areadescriptions.

“TheKnowledge AreaSpecialist are expected to adopt the
position that even though the following “themes’ are
common across all Knowledge Areas, they arealso an
integral part of al Knowledge Areasand thereforemust be
incorporated into the proposed breakdown of topics of
each Knowledge Area.

These common themes are:
qudity (in general),
measurement
tools

- dandards”

Sothat:

+ al topicsrelated to tools areincluded in the Software

Engineering Methods and Tools Knowledge Area.

¢ Standards are included in the cited reference material
not in the breakdowns of topics.

+ Software Quality Analysis has appropriate linksto
other Knowledge Areas

Soneman (Version 0,7) —April 2000 E-1

10.

11.

Major Change

Reason for Change

Remove" Component Integration” fromthecurrent verson
of the Guide. It was previoudy included in “ Software
Engineering Infrastructure”

TheKnowledge AreaSpecidist indicatesthat therequest by
the Industrial Advisory Board to include component
integration (standard designs, integration and reuse) in this
Knowledge Areais difficult to achieve. Few linkswere
identified between these topics and the other two major
componentsof thisknowledge Area(Methodsand Tools).
Reviewersgeneraly agreed with thewesk fit of “ component
integration” in this Knowledge Area.

The editorial team concluded that though thereisastrong
industry need for thistype of knowledge, thereis not yet

sufficient consensus on what portion of it isgenerally
accepted.

Rename the Knowledge Area“ Software Engineering
Infrastructure”’ as“ Software Engineering Methods and
Tools.”

The editorial team recommended this change due to the
change proposed above and to the fact that reviewer
feedback indicates varying interpretations of what
“software engineering infrastructure” means.

The taxonomy of tools in Software Engineering Methods
and Tools should be broken down as per the list of
Knowledge Areas o the Stoneman Guide.

Asdtated above, theeditoria team recommended that “tools’
be dropped from the “common themes” discussed in all
Knowledge Areas and that all topics related to tools be
concentrated in this Knowledge Area.

However, the editorial team also recommended that the
distribution of topicsrelated to toolsin the various
Knowledge Area breakdowns bereconsidered for the lron
Man version. Breaking down thetopicsrelated totoolsas
per thelist of Knowledge Areasfacilitatesthisredistribution.
The editorial team also considers that the decision of
whether or not « software engineering methods and

tool s » should remain as a distinct Knowledge Area
should be reevaluated in the Iron Man phase.

Rename the “ Software Evolution and Maintenance’
Knowledge Areato “ Software Maintenance’

Current standards adopt the term “ software
maintenance’: |EEE 1219, ISO/IEC 14764 and | SO/IEC
12207

The Knowledge Area Specidist states himself that itis
“common practice” to refer to this as“ software
maintenance’.

Rename the * Software Requirements Analysis’
Knowledge Areato “ Software Requirements’

This recommendation is based on the statement found
below by the Knowledge Area Specialist and on the fact
that reviewer feedback did not oppose this statement.

The Knowledge Area Specialistswrite that:

“Theknowledgeareawasoriginaly proposed as'Software
RequirementsAnayss. However, asatermto denotethe
whole process of acquiring and handling of software
requirements, 'Requirements Analysis has been largely
superceded by 'Requirements Engineering'. Wetherefore
use 'Requirements

Engineering' to denote the knowledge areaand
'‘Reguirements Analysis as one of the activities that
comprise 'Software Requirements Engineering.”

Rename the “ Software Quality Analysis’ Knowledge
Areato “ Software Qudity”

To remove the duplication of having SQA listed at the
first and second levels of the breakdown.

Soneman (Version 0,7) —April 2000

	PREFACE TO THE SWEBOK GUIDE
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION TO THE GUIDE
	CHAPTER 2 SOFTWARE REQUIREMENTS
	CHAPTER 3 SOFTWARE DESIGN
	CHAPTER 4 SOFTWARE CONSTRUCTION
	CHAPTER 5 SOFTWARE TESTING
	CHAPTER 6 SOFTWARE MAINTENANCE
	CHAPTER 7 SOFTWARE CONFIGURATION MANAGEMENT
	CHAPTER 8 SOFTWARE ENGINEERING MANAGEMENT
	CHAPTER 9 SOFTWARE ENGINEERING PROCESS
	CHAPTER 10 SOFTWARE ENGINEERING TOOLS AND METHODS
	CHAPTER 11 SOFTWARE QUALITY
	APPENDIX A KA Description Specifications for the Stone Man Version
	APPENDIX B A List of Related Disciplines
	APPENDIX C Classification of Topics According to Bloom's Taxonomy
	APPENDIX D Identification of Relevant KA of Related Disciplines
	APPENDIX E Changes Between Version0.5 and Version0.7 of the Guide

