
GGuuiiddee ttoo tthhee SSooffttwwaarree EEnnggiinneeeerriinngg BBooddyy ooff KKnnoowwlleeddggee

AA SSttoonnee MMaann VVeerrssiioonn
((VVeerrssiioonn 00..77))

April 2000

A project of the SSooffttwwaarree EEnnggiinneeeerriinngg CCoooorrddiinnaattiinngg CCoommmmiitttteeee
(Joint IEEE Computer Society - ACM committee)

Corporate support by:

Project managed by:

Copyright © 2000, Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Executive Editors:

Alain Abran, Université du Québec à Montréal
James W. Moore, The MITRE Corp.

Editors:

Pierre Bourque, Université du Québec à Montréal
Robert Dupuis, Université du Québec à Montréal

Chair of the Software Engineering Coordinating Committee

Leonard L. Tripp, IEEE Computer Society

© IEEE – Stoneman (Version 0.7) – April 2000 i

PREFACE TO THE SWEBOK GUIDE

1. Software engineering is an emerging discipline
but there are unmistakable trends indicating an
increasing level of maturity:

2. w McMaster University (Canada), the
Rochester Institute of Technology (US), the
University of Sheffield (UK), the
University of New South Wales (Australia)
and other universities around the world now
offer undergraduate degrees in software
engineering.

3. w The Software Capability Maturity Model
and ISO 9000 are used to certify
organizational capability for software
engineering.

4. w In the US, the Computer Science
Accreditation Board (CSAB) and the
Accreditation Board for Engineering and
Technology (ABET) are cooperating
closely and CSAB is expected to be lead
society for the accreditation of university
software engineering programs.

5. w The Canadian Information Processing
Society has published criteria to accredit
software engineering undergraduate
university programs.

6. w The Texas Board of Professional Engineers
has begun to license professional software
engineers.

7. w The Association of Professional Engineers
and Geoscientists of British Columbia
(APEGBC) has begun registering software
professional engineers and the Professional
Engineers of Ontario (PEO) has also
announced requirements for licensing.

8. w The Association for Computing Machinery
(ACM) and the Computer Society of the
Institute of Electrical and Electronics
Engineers (IEEE) have jointly developed
and adopted a Code of Ethics for software
engineering professionals.

9. All of these efforts are based upon the
presumption that there is a Body of Knowledge
that should be mastered by practicing software
engineers. This Body of Knowledge exists in the
literature that has accumulated over the past
thirty years. This book provides a Guide to that
Body of Knowledge.

10. Purpose

11. The purpose of this Guide is to provide a
consensually-validated characterization of the
bounds of the software engineering discipline
and to provide a topical access to the Body of
Knowledge supporting that discipline. The Body
of Knowledge is subdivided into ten Knowledge
Areas (KA) and the descriptions of the KAs are
designed to discriminate among the various
important concepts, permitting readers to find
their way quickly to subjects of interest. Upon
finding a subject, readers are referred to key
papers or book chapters selected because they
succinctly present the knowledge.

12. In browsing the Guide, readers will note that the
content is markedly different from Computer
Science. Just as electrical engineering is based
upon the science of physics, software
engineering should be based upon computer
science. In both cases, though, the emphasis is
necessarily different. Scientists extend our
knowledge of the laws of nature while engineers
apply those laws of nature to build useful
artifacts. Therefore, the emphasis of the Guide is
placed upon the construction of useful software
artifacts.

13. Readers will also notice that many important
aspects of information technology, such as
specific programming languages, relational
databases and networks, are also not covered in
the Guide. This is a consequence of an
engineering-based approach. In all fields—not
only computing—the designers of engineering
curricula have realized that specific technologies
are replaced much more rapidly than the
engineering work force. An engineer must be
equipped with the essential knowledge that
supports the selection of the appropriate
technology at the appropriate time in the
appropriate circumstance. For example, software
systems might be built in Fortran using
functional decomposition or in C++ using object-
oriented techniques. The techniques for
integrating and configuring instances of those
systems would be quite different. But, the
principles and objectives of configuration
management remain the same. The Guide
therefore does not focus on the rapidly changing
technologies.

ii © IEEE – Stoneman (Version 0.7) – April 2000

14. These exclusions demonstrate that this Guide is
necessarily incomplete. Practicing software
engineers will need to know many things about
computer science, project management and
systems engineering—to name a few—that fall
outside the Body of Knowledge characterized by
this Guide. However, stating that this
information should be known by software
engineers is not the same as stating that this
knowledge falls within the bounds of the
software engineering discipline. Instead, it
should be stated that software engineers need to
know some things taken from other disciplines—
and that is the approach adopted by this Guide.
So, this Guide characterizes the Body of
Knowledge falling within the scope of software
engineering and provides references to relevant
information from other disciplines.

15. The emphasis on engineering practice leads the
Guide toward a strong relationship with the
normative literature. Most of the computer
science, information technology and software
engineering literature provides information
useful to software engineers, but a relatively
small portion is normative. A normative
document prescribes what an engineer should do
in a specified situation rather than providing
information that might be helpful. The normative
literature is validated by consensus formed
among practitioners and is concentrated in
standards and related documents. From the
beginning, the SWEBOK project was conceived
as having a strong relationship to the normative
literature of software engineering. The two major
standards bodies for software engineering (IEEE
Software Engineering Standards Committee and
ISO/IEC JTC1/SC7) are represented in the
project. Ultimately, we hope that software
engineering practice standards will contain
principles traceable to the SWEBOK Guide.

16. Intended Audience

17. The Guide is oriented toward a variety of
audiences. It aims to serve public and private
organizations in need of a consistent view of
software engineering for defining education and
training requirements, classifying jobs, and
developing performance evaluation policies. It
also addresses practicing software engineers and
the officials responsible for making public policy
regarding licensing and professional guidelines.
In addition, professional societies and educators
defining the certification rules, accreditation
policies for university curricula, and guidelines
for professional practice will benefit from

SWEBOK, as well as the students learning the
software engineering profession and educators
and trainers engaged in defining curricula and
course content.

18. Evolution of the Guide

19. At this time, the SWEBOK project
(http://www.swebok.org) is nearing the end of
the second of its three phases—called the
Stoneman. An early prototype, Strawman,
demonstrated how the project might be
organized. Development of the Ironman version
will commence after we gain insight through trial
application of the Stoneman Guide.

20. Since 1993, the IEEE Computer Society and the
ACM have cooperated in promoting the
professionalization of software engineering
through their joint Software Engineering
Coordinating Committee (SWECC). The Code of
Ethics mentioned previously was completed
under stewardship of the SWECC primarily
through volunteer efforts.

21. The SWEBOK project’s scope, the variety of
communities involved, and the need for broad
participation suggested a need for full-time rather
than volunteer management. For this purpose, the
SWECC contracted the Software Engineering
Management Research Laboratory at the
Université du Québec à Montréal to manage the
effort. It operates under SWECC supervision.

22. The project team developed two important
principles for guiding the project: transparency
and consensus. By transparency, we mean that
the development process is itself documented,
published, and publicized so that important
decisions and status are visible to all concerned
parties. By consensus, we mean that the only
practical method for legitimizing a statement of
this kind is through broad participation and
agreement by all significant sectors of the
relevant community. By the time the Stoneman
version of the Guide is completed, literally
hundreds of contributors and reviewers will have
touched the product in some manner. By the time
the third phase—the Ironman—is completed, the
number of participants will number in the
thousands and additional efforts will have been
made to reach communities less likely to have
participated in the current review process.

23. Like any software project, the SWEBOK project
has many stakeholders—some of which are
formally represented. An Industrial Advisory
Board, composed of representatives from
industry (Boeing, National Institute of Standards

© IEEE – Stoneman (Version 0.7) – April 2000 iii

and Technology, National Research Council of
Canada, Rational Software, Raytheon Systems,
and SAP Labs-Canada) and professional
societies (IEEE Computer Society and ACM),
provides financial support for the project. The
IAB’s generous support permits us to make the
products of the SWEBOK project publicly
available without any charge (visit
http://www.swebok.org). IAB membership is
supplemented with related standards bodies
(IEEE Software Engineering Standards
Committee and ISO/IEC JTC1/SC7) and related
projects (the Computing Curricula 2001
initiative). The IAB reviews and approves the
project plans, oversees consensus building and
review processes, promotes the project, and lends
credibility to the effort. In general, it ensures the
relevance of the effort to real-world needs.

24. We realize, however, that an implicit body of
knowledge already exists in textbooks on
software engineering. Thus, to ensure we fully
take advantage of the current literature, Steve
McConnell, Roger Pressman, and Ian
Sommerville—the authors of the three best-
selling textbooks on software engineering—have
agreed to serve on a Panel of Experts, acting as a
voice of experience. In addition, the extensive
review process involves feedback from relevant
communities. In all cases, we seek international
participation to maintain a broad scope of
relevance.

25. We organized the development of the Stoneman
version into three public review cycles. The first
review cycle focused on the soundness of the
proposed breakdown of topics within each KA.
Thirty-four domain experts completed this
review cycle in April 1999. The reviewer
comments, as well as the identities of the
reviewers, are available on the project’s Web
site.

26. In the second review cycle completed in October
1999, a considerably larger group of
professionals, organized into review viewpoints,
answered a detailed questionnaire for each KA
description. The viewpoints (for example,
individual practitioners, educators, and makers of
public policy) were formulated to ensure
relevance to the Guide’s various intended
audiences. A discussion of the major changes
that were applied after this review cycle can be
found in Appendix E. Additionally, five
thousand comments and their individual
disposition supplied by roughly 200 reviewers
and the identities of the reviewers are all publicly

available and can be searched on the project’s
Web site.

27. The focus of the third review cycle will be on the
correctness and utility of the Guide and will be
conducted on the entire Guide as an integrated
document rather than on each KA separately.
This review cycle will be completed in the
Spring of 2000 by individuals and organizations
representing a cross-section of potential interest
groups.

28. Limitations and Next Steps

29. Even though the current version 0.7 of the Guide
has gone through an elaborate development and
review process, the following limitations of this
process must be recognized and stated:

30. w So far, roughly two hundred and fifty
software engineering professionals from 25
countries and representing various
viewpoints have participated in the project.
Even though this is a significant number of
competent software engineering
professionals, we cannot and do not claim
that this sample is representative of the
entire software engineering community
from around the world and across all
industry sectors

31. w Even though complementary definitions of
what constitutes "generally accepted
knowledge" have been developed, the
identification of which topics meet this
definition within each Knowledge Area
remains a matter for continued consensus
formation

32. w The amount of literature that has been
published on software engineering is
considerable and any selection of reference
material remains a matter of judgment. In
the case of the SWEBOK, references were
selected because they are written in
English, readily available, easily readable,
and—, taken as a group—, provide
coverage of the topics within the KA

33. w important and highly relevant reference
material written in other languages than
English have been omitted from the
selected reference material

34. w Only two out of three review cycles for the
Stoneman version have been completed.
Please note that this is the first review cycle
of the entire Guide as an integrated
document

iv © IEEE – Stoneman (Version 0.7) – April 2000

35. w The Guide has not yet been "field-tested"
by its intended audience. For example, no
one yet to our knowledge has attempted to
define a software engineering
undergraduate curricula based on this Guide
nor has any industry group or organization
yet written job descriptions from the Guide.

36. Additionally, one must consider that

37. w Software engineering is an emerging
discipline. This is especially true if you
compare it to certain more established
engineering disciplines. This means notably
that the boundaries between the Knowledge
Areas of software engineering and between
software engineering and its Related
Disciplines remain a matter for continued
consensus formation;

38. The contents of this Guide must therefore be
viewed as an "informed and reasonable"

characterization of the software engineering
Body of Knowledge and as baseline document
for the Ironman phase. Additionally, please note
that the Guide is not attempting nor does it claim
to replace or amend in any way laws, rules and
procedures that have been defined by official
public policy makers around the world regarding
the practice and definition of engineering and
software engineering in particular.

39. To address these limitations, the next (Ironman)
phase will begin by monitoring and gathering
feedback on actual usage of the Stoneman Guide
by the various intended audiences for a period of
roughly two years. Based on the gathered
feedback, development of the Ironman version
would be initiated in the third year and would
follow a still to be determined development and
review process. Those interested in performing
experimental applications of the Guide are
invited to contact the project team.

Alain Abran
Université du Québec à Montréal

Executive Editors of
the Guide to the

Software Engineering
Body of Knowledge

James W. Moore
The MITRE Corporation

Pierre Bourque
Université du Québec à Montréal

Editors of the Guide
to the Software

Engineering Body of
Knowledge

Robert Dupuis
Université du Québec à Montréal

Leonard Tripp
1999 President
IEEE Computer Society

Chair of the Joint
IEEE Computer
Society – ACM

Software Engineering
Coordinating

Committee

April 2000

The SWEBOK project web site is http://www.swebok.org/

40. Acknowledgments

41. The SWEBOK editorial team gratefully
acknowledges the support provided by the
members of the Industrial Advisory Board.
Funding for this project is provided by the
Association for Computing Machinery, Boeing,
the IEEE Computer Society, the National
Institute of Standards and Technology, the
National Research Council of Canada, Rational
Software, Raytheon, and SAP Labs (Canada).
The team also appreciates the important work
performed by the Knowledge Area specialists.
We also wish to thank the followi ng members of

the project team at the Université du Québec à
Montréal: Simon Bouchard, François Cossette,
Michèle Hébert, Vinh T. Ho, Julie Hudon, Louis
Martin, Luis Molinié, Évariste Valery Bevo
Wandji and Sybille Wolff. Finally, the team
acknowledges the indispensable contribution of
the hundreds of reviewers who have participated
so far. (Please note that the complete list of
reviewers is available on www.swebok.org and
will be included here in the final version)

© IEEE – Stoneman (Version 0.7) – April 2000

TABLE OF CONTENTS

PREFACE TO THE SWEBOK GUIDE

CHAPTER 1: INTRODUCTION TO THE GUIDE

CHAPTER 2: SOFTWARE REQUIREMENTS
 Pete Sawyer, Gerald Kotonya, Lancaster University

CHAPTER 3: SOFTWARE DESIGN
 Guy Tremblay, Université du Québec à Montréal

CHAPTER 4: SOFTWARE CONSTRUCTION
 Terry Bollinger, The MITRE Corporation
 Philippe Gabrini, Louis Martin, Université du Québec à Montréal

CHAPTER 5: SOFTWARE TESTING
 Antonia Bertolino, Istituto di Elaborazione della Informazione

CHAPTER 6: SOFTWARE MAINTENANCE
 Thomas M. Pigoski, Technical Software Services (TECHSOFT), Inc.

CHAPTER 7: SOFTWARE CONFIGURATION MANAGEMENT
 John A. Scott, David Nisse, Lawrence Livermore National Laboratory

CHAPTER 8: SOFTWARE ENGINEERING MANAGEMENT
 Stephen G. MacDonell, Andrew R. Gray, University of Otago

CHAPTER 9: SOFTWARE ENGINEERING PROCESS
 Khaled El Emam, National Research Council

CHAPTER 10: SOFTWARE ENGINEERING TOOLS AND METHODS
 David Carrington, The University of Queensland

CHAPTER 11: SOFTWARE QUALITY
 Dolores Wallace, Larry Reeker, National Institute of Standards and Technology

APPENDIX A: KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS FOR THE STONE MAN VERSION

OF THE GUIDE TO THE SOFTWARE ENGINEERING BODY OF KNOWLEDGE

APPENDIX B: A LIST OF RELATED DISCIPLINES FOR THE STONE MAN VERSION OF THE GUIDE TO

THE SWEBOK

APPENDIX C: CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY

APPENDIX D: IDENTIFICATION OF RELEVANT KNOWLEDGE AREAS OF RELATED DISCIPLINES

APPENDIX E: CHANGES BETWEEN VERSION 0.5 AND VERSION 0.7 OF THE GUIDE

© IEEE – Stoneman (Version 0.7) – April 2000

Important Notice

In this version of the Stoneman Guide, all paragraphs and entries in tables
are numbered so that reviewers can identify precisely where in the Guide a

recommended change is applicable. This numbering schema will be
removed in the final version of the Stoneman Guide.

© IEEE – Stoneman (Version 0.7) – April 2000 1–1

CHAPTER 1
INTRODUCTION TO THE GUIDE

1. In spite of the millions of software professionals
worldwide and the ubiquitous presence of
software in our society, software engineering has
not yet reached the status of a legitimate
engineering discipline and a recognized
profession.

2. Since 1993, the IEEE Computer Society and the
ACM have been actively promoting software
engineering as a profession and a legitimate
engineering discipline, notably through their
Software Engineering Coordinating Committee
(SWECC).

3. Achieving consensus by the profession on a core
body of knowledge is a key milestone in all
disciplines and has been identified by the
Committee as crucial for the evolution of
software engineering toward a professional
status. This Guide, wr itten under the auspices of
this committee, is the part of a multi-year project
designed to reach this consensus.

4. What is software engineering?
5. The IEEE Computer Society defines software

engineering as1:

6. “(1) The application of a systematic,
disciplined, quantifiable approach to the
development, operation, and maintenance of
software; that is, the application of
engineering to software.

7. (2) The study of approaches as in (1).”2

8. What is a recognized profession?
9. For software engineering to be known as a

legitimate engineering discipline and a
recognized profession, consensus on a core body
of knowledge is imperative. This fact is well
illustrated by Starr when he defines what can be
considered a legitimate discipline and a

1 Of course, there are many other definitions of software

engineering. Since this effort is being conducted under a
joint committee of the ACM and the IEEE Computer
Society and since this definition was agreed upon by a
wide consensus within the Computer Society, it was
adopted at the outset of the Stoneman phase.

2 “IEEE Standard Glossary of Software Engineering
Terminology,” IEEE, Piscataway, NJ std 610.12-1990,
1990.

recognized profession. In his Pulitzer-prize-
winning book on the history of the medical
profession in the USA, he states that:

10. “the legitimation of professional authority
involves three distinctive claims: first, that
the knowledge and competence of the
professional have been validated by a
community of his or her peers; second, that
this consensually validated knowledge rests
on rational, scientific grounds; and third, that
the professional’s judgment and advice are
oriented toward a set of substantive values,
such as health. These aspects of legitimacy
correspond to the kinds of attributes —
collegial, cognitive and moral — usually
cited in the term “profession.”3

11. The software engineering profession is
still immature

12. But what are the characteristics of a profession?
Gary Ford and Norman Gibbs studied several
recognized professions including medicine, law,
engineering and accounting5. They concluded
that an engineering profession is characterized by
several components:

13. w An initial professional education in a
curriculum validated by society through
accreditation;

14. w Registration of fitness to practice via
voluntary certification or mandatory
licensing;

15. w Specialized skill development and
continuing professional education;

16. w Communal support via a professional
society;

17. w A commitment to norms of conduct often
prescribed in a code of ethics.

3 P. Starr, The Social Transformation of American

Medicine: Basic Books, 1982. p. 15.
4 P. Naur and B. Randell, “Software Engineering,”

presented at Report on a Conference sponsored by the
NATO Science Committee, Garmisch, Germany, 1968.

5 G. Ford and N. E. Gibbs, “A Mature Profession of
Software Engineering,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
Technical CMU/SEI -96-TR-004, January 1996.

1–2 © IEEE – Stoneman (Version 0.7) – April 2000

18. This Guide directly supports the first three of
these components. Articulating a Body of
Knowledge is an essential step toward
developing a profession because it represents a
broad consensus regarding what a software
engineering professional should know. Without
such a consensus, no licensing examination can
be validated, no curriculum can prepare an
individual for an examination, and no criteria can
be formulated for accrediting a curriculum. The
development of the consensus is the vital
prerequisite for all of these.6

19. What are the objectives of the
project?

20. Of course, the Guide should not be confused
with the Body of Knowledge itself. The Body of
Knowledge already exists in the published
literature. The purpose of the Guide is to describe
what portion of the Body of Knowledge is
generally accepted, to organize that portion, and
to provide a topical access to it.

21. The Guide to the Software Engineering Body of
Knowledge (SWEBOK) was established with
the following five objectives:

22. 1. Promote a consistent view of software
engineering worldwide.

23. 2. Clarify the place—and set the boundary—
of software engineering with respect to
other disciplines such as computer science,
project management, computer engineering,
and mathematics.

24. 3. Characterize the contents of the software
engineering discipline.

25. 4. Provide a topical access to the Software
Engineering Body of Knowledge.

26. 5. Provide a foundation for curriculum
development and individual certification
and licensing material.

27. The first of these objectives, the consistent
worldwide view of software engineering was
supported by a development process that has
engaged approximately 200 reviewers so far
from 25 countries. (More information regarding
the development process can be found in the
Preface. Professional and learned societies and

6 Regarding the final two components, it should be

recognized that the SWEBOK guide is a joint project of
the Software Engineering Coordinating Committee
(SWECC) jointly sponsored by the ACM and the IEEE
Computer Society. The SWECC has already developed
and published a code of ethics.

public agencies involved in software engineering
were officially contacted, made aware of this
project and invited to participate in the review
process. Knowledge Area Specialists or chapter
authors were recruted from North America, the
Pacific Rim and Europe. Presentations on the
project were made to various international
venues and more are scheduled for the upcoming
year.

28. The second of the objectives, the desire to set a
boundary, motivates the fundamental
organization of the Guide. The material that is
recognized as being within software engineering
is organized into the ten Knowledge Areas listed
in Table 1. Each of the ten KAs is treated as a
chapter in this Guide. In establishing a boundary,
it is also important to identify what disciplines
share a boundary and often a common
intersection with software engineering. To this
end, the guide also recognizes seven related
disciplines, listed in Table 2. Software engineers
should of course know material from these fields
(and the KA descriptions may make references to
the fields). It is not however an objective of the
SWEBOK Guide to characterize the knowledge
of the related disciplines but rather what is
viewed as specific to software engineering.

29. Table 1. The SWEBOK knowledge areas (ka).

30. Software requirements

31. Software design

32. Software construction

33. Software testing

34. Software maintenance

35. Software configuration management

36. Software engineering management

37. Software engineering tools and methods

38. Software engineering process

39. Software quality

40. Table 2. Related disciplines.

41. Cognitive sciences and human factors

42. Computer engineering

43. Computer science

44. Management and management science

45. Mathematics

46. Project management

47. Systems engineering

© IEEE – Stoneman (Version 0.7) – April 2000 1–3

48. Hierarchical organization

49. The organization of the Knowledge Area
Descriptions or chapters, shown in Figure 1,
supports the third of the project's objectives—a
characterization of the contents of software

engineering. The detailed specifications provided
by the project’s editorial team to the Knowledge
Area Specialists regarding the contents of the
Knowledge Area Descriptions can be found in
Appendix A.

50. Figure 1. The organization of a KA description.

51. The Guide uses a hierarchical organization to
decompose each KA into a set of topics with
recognizable labels. A two- or three-level
breakdown provides a reasonable way to find
topics of interest. The Guide treats the selected
topics in a manner compatible with major
schools of thought and with breakdowns
generally found in industry and in software
engineering literature and standards. The
breakdowns of topics does not presume
particular application domains, business uses,
management philosophies, development
methods, and so forth. The extent of each topic’s
description is only that needed for the reader to
successfully find reference material. After all, the
Body of Knowledge is found in the reference
materials, not in the Guide itself.

52. Reference materials and a matrix

53. To provide a topical access to the Knowledge—
the fourth of the project's objectives—the Guide
identifies reference materials for each KA
including book chapters, refereed papers, or

other well-recognized sources of authoritative
information. Each KA description also includes a
matrix that relates the reference materials to the
listed topics. The total volume of cited literature
is intended to be suitable for mastery through the
completion of an undergraduate education plus
four years of experience.

54. It should be noted that the Guide does not
attempt to be comprehensive in its citations.
Much material that is both suitable and excellent
is not referenced. Materials were selected, in
part, because— taken as a collection—they
provide coverage of the described topics.

55. Depth of Treatment

56. From the outset, the question arose as to the
depth of treatment the Guide should provide. We
adopted an approach that supports the fifth of the
project's objectives—providing a foundation for
curriculum development, certification and
licensing. We applied a criterion of generally
accepted knowledge, which we had to
distinguish from advanced and research

Breakdown
of Topics

Matrix of Topics
and Reference

Materials

Reference
Materials

Topic
Descriptions

Classification
by Bloom’s
Taxonomy

References to
Related

Disciplines

1–4 © IEEE – Stoneman (Version 0.7) – April 2000

knowledge (on the grounds of maturity) and
from specialized knowledge (on the grounds of
generality of application). The generally
accepted knowledge applies to most projects
most of the time, and widespread consensus
validates its value and effectiveness.7

57. However, generally accepted knowledge does
not imply that one should apply the designated
knowledge uniformly to all software engineering
endeavors—each project’s needs determine
that—but it does imply that competent, capable
software engineers should be equipped with this
knowledge for potential application. More
precisely, generally accepted knowledge should
be included in the study material for a software
engineering licensing examination that graduates
would take after gaining four years of work
experience. Although this criterion is specific to
the American style of education and does not
necessarily apply to other countries, we deem it
useful. However, both definitions of generally
accepted knowledge should be seen as
complementary.

58. Additionally, the descriptions are somewhat
forward-looking—we’re considering not only
what is generally accepted today but also what
could be generally accepted in three to five years.

59. Ratings

60. As an aid notably to curriculum developers and
in support of the project’s fifth objective, the
Guide rates each topic with one of a set of
pedagogical categories commonly attributed to
Benjamin Bloom8. The concept is that
educational objectives can be classified into six
categories representing increasing depth:
knowledge, comprehension, application,
analysis, synthesis, and evaluation Results of this
exercise for all KAs can be found in Appendix C.
This Appendix must however not be viewed as a
definitive classification but much more as a
jumpstart document for curriculum developers.

61. KAs from related disciplines

62. A list of disciplines (Related Disciplines) that
share a common boundary with software
engineering can be found in Appendix B.
Appendix B also identifies from as authoritative

7 Project Management Institute, A Guide to the Project

Management Body of Knowledge, Upper Darby, PA,
1996, http://www.pmi.org/publictn/pmboktoc.htm/

8 See
http://www.valdosta.peachnet.edu/~whuitt/psy702/cogsy
s/bloom.html for Bloom's taxonomy .

a source as possible a list of KAs of these
Related Disciplines.

63. In support of the project’s fifth objective, KAs of
Related Disciplines that were deemed relevant to
SWEBOK KAs are identified in Appendix D.
Although these KAs of Related Disciplines are
merely identified without additional description
or references, they should aid curriculum
developers.

64. Appendix D must however be viewed as a
jumpstart document and as aid to curriculum
developers rather than as a definitive list of
relevant Knowledge Areas of Related
Disciplines.

65. THE KNOWLEDGE AREAS

66. Figure 2 maps out the 10 KAs and the important
topics incorporated within them. The first five
KAs are presented in traditional lifecycle
sequence. The subsequent are presented in
alphabetical order. This is identical to the
sequence in which they are presented in the
Guide. Brief summaries of the KA descriptions
appear next.

67. Software requirements

68. The software requirements (see Figure 2a) KA is
concerned with the acquisition, analysis
specification and management of software
requirements. It is broken down into six subareas
that correspond approximately to process tasks
that are enacted iteratively rather than
sequentially.

69. The requirements engineering process subarea
introduces the requirements engineering process,
orients the remaining five subareas, and shows
how requirements engineering dovetails with the
overall software engineering process. This
section also deals with contractual and project
organization issues.

70. The requirements elicitation subarea covers what
is sometimes termed requirements capture,
discovery, or acquisition. It is concerned with
where requirements come from and how they can
be collected by the requirements engineer.
Requirements elicitation is the first stage in
building an understanding of the problem the
software must solve. It is fundamentally a human
activity, and it identifies the stakeholders and
establishes relationships between the
development team and customer.

© IEEE – Stoneman (Version 0.7) – April 2000 1–5

71. The requirements analysis subarea is concerned
with the process of analyzing requirements to
detect and resolve conflicts between them, to
discover the boundaries of the system and how it
must interact with its environment; the
requirements analysis subarea also discusses the
elaboration from system requirements to
software requirements. The software
requirements specification subarea is concerned
with the structure, quality and verification of the
requirements document.

72. The requirements validation subarea is concerned
with checking for omissions, conflicts, and
ambiguities and with ensuring that the
requirements follow prescribed quality standards.
The requirements should be necessary, sufficient,
and described in a way that leaves as little room
as possible for misinterpretation.

73. The requirements management subarea spans the
whole software life cycle. It is fundamentally
about change management and maintaining the
requirements in a state that accurately mirrors the
software to be—or that has been—built.

74. Software design

75. Design (see Figure 2b) transforms (software)
requirements—typically stated in terms relevant
to the problem domain—into a description
explaining how to solve the software-related
aspects of the problem. It describes how the
system is decomposed and organized into
components, and it describes the interfaces
between these components. Design also refines
the description of these components into a level
of detail suitable for allowing their construction.

76. Basic concepts of software design constitute the
first subarea of this KA. Software architecture is
the next subarea and includes topics on structures
and viewpoints, architectural styles and patterns,
design patterns and families of programs and
frameworks. Design quality analysis and
evaluation constitute the next subarea and is
divided into quality attributes, quality analysis
and evaluation tools, and metrics.

77. The design notations subarea discusses notations
for structural and behavioral descriptions. Design
strategies and methods constitute the last
subarea, and it contains four main topics: general
strategies, function-oriented design, object-
oriented design, data-structure-centered design
and other methods.

78. Software construction

79. Software construction (see Figure 2c) is a
fundamental act of software engineering;
programmers must construct working,
meaningful software through coding, self-
validation, and self-testing (unit testing). Far
from being a simple mechanistic translation of
good design in working software, software
construction burrows deeply into difficult issues
of software engineering.

80. The breakdown of topics for this KA adopts two
complementary views of software construction.
The first view comprises three major styles of
software construction interfaces: linguistic,
formal, and visual. For each style, topics are
listed according to four basic principles of
organization that strongly affect the way
software construction is performed: reducing
complexity, anticipating diversity, structuring for
validation, and using external standards.

81. For example, the topics listed under anticipation
of diversity for linguistic software construction
interfaces are information hiding, embedded
documentation, complete and sufficient method
sets, object-oriented class inheritance, creation of
“glue” languages for linking legacy components,
table-driven software, configuration files, and
self-describing software and hardware.

Software testing

82. Software testing (see Figure 2d) consists of
dynamically verifying a program’s behavior on a
finite set of test cases—suitably selected from the
usually infinite domain of executions—against
the specified expected behavior. These and other
basic concepts and definitions constitute the first
subarea of this KA.

83. This KA divides the test levels subarea into two
orthogonal breakdowns; the first of which is
organized according to the traditional phases for
testing large software systems. The second
breakdown concerns testing for specific
conditions or properties.

84. The next subarea describes the knowledge
relevant to several generally accepted test
techniques. It classifies these techniques as being
intuition-based, specification-based, code-based,
fault-based, usage-based, or based on the nature
of the application. An alternative breakdown of
test techniques as being white-box or black-box
is also presented. Test-related measures are dealt
with in their own subarea.

1–6 © IEEE – Stoneman (Version 0.7) – April 2000

85. The next subarea expands on issues relative to
the management of the test process, including
management concerns and test activities

86. Software maintenance

87. Software maintenance (see Figure 2e) is defined
as the totality of activities required to provide
cost-effective support to a software system.
Activities are performed during the predelivery
stage as well as the postdelivery stage.
Predelivery activities include planning for
postdelivery operations, supportability, and
logistics determination. Postdelivery activities
include software modification, training, and
operating a help desk.

88. The introduction to software maintenance
subarea discusses the need for software
maintenance and the categories of maintenance.
The maintenance activities subarea addresses the
unique and supporting activities of maintenance
as well as maintenance planning. As with
software development, process is critical to the
success and understanding of software
maintenance. The next subarea discusses
standard maintenance process models.
Organizing the maintenance area might differ
from development; the subarea on organizational
aspects discusses the differences.

89. Software maintenance present unique and
different technical and managerial problems for
software engineering, as addressed in the
problems of software maintenance subarea. Cost
is always a critical topic when discussing
software maintenance. The subarea on
maintenance cost and maintenance cost
estimation concerns life-cycle costs as well as
costs for individual evolution and maintenance
tasks. The maintenance measurements subarea
addresses the topics of quality and metrics. The
final subarea, techniques for maintenance,
aggregates many subtopics that the KA
description otherwise fails to address.

90. Software configuration management

91. We can define a system as a collection of
components organized to accomplish a specific
function and/or set of functions. A system’s
configuration is the function or physical
characteristics of hardware, firmware, software,
or a combination thereof as set forth in technical
documentation and achieved in a product.
Configuration management, then, is the
discipline of identifying the configuration at
distinct points in time to systematically control

its changes and to maintain its integrity and
traceability throughout the system life cycle.

92. The concepts of configuration management apply
to all items requiring control, though there are
differences in implementation between hardware
configuration management and software
configuration management. The primary
activities of software configuration management
are used as the framework for organizing and
describing the topics of this KA (see Figure 2f).
These primary activities are the management of
the software configuration management process;
software configuration identification, control,
status accounting, and auditing; and software
release management and delivery.

93. Software engineering management

94. The software engineering management (see
Figure 2g) KA addresses the management of
software development projects and the
measurement and modeling of such projects. It
consists of eight subareas, from measurement, to
organizational management and coordination and
then to six additional subareas organized by
lifecycle phases. The measurement subarea
addresses five main topics: measurement
program goals, measuring software and its
development, measurement selection, data
collection, and metric models.

95. The organizational management and
coordination subarea considers the notion of
portfolio management, acquisition decisions and
management, policy management, personnel
management and communications. The
remaining subareas are organized according to
stages in the project development life cycle:
initiation and scope definition, planning,
enactment, review and evaluation, project close
out and post-closure activities.

96. An alternative classification of these topics is
also proposed in the KA description based on
common themes.

97. Software engineering process
98. The software engineering process (see Figure 2h)

covers the definition, implementation,
measurement, management, change, and
improvement of software processes. The first
subarea—basic concepts and definitions—
establishes the KA concepts and terminology.

99. The process infrastructure subarea is concerned
with putting in place an infrastructure for
software process engineering. Topics are the
experience factory and software engineering

© IEEE – Stoneman (Version 0.7) – April 2000 1–7

process groups. The process measurement
subarea discusses quantitative techniques to
diagnose software processes; to identify
strengths and weaknesses. This can be performed
to initiate process implementation and change,
and afterwards to evaluate the consequences of
process implementation and change.

100. The process definition subarea is concerned with
defining processes in the form of models, plus
the automated support that is available for the
modeling task, and for enacting the models
during the software process. The next subarea,
qualitative process analysis regards qualitative
techniques to analyze software processes, to
identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and afterwards to evaluate the
consequences of process implementation and
change.

101. The process implementation and change subarea
contains topics that regard the deployment of
processes for the first time and with the change
of existing processes. It focuses on
organizational change. It describes the
paradigms, infrastructure, and critical success
factors necessary for successful process
implementation and change. Within the scope of
this subarea, it also presents some conceptual
issues about the evaluation of process change.

102. Software engineering tools and
methods

103. The Software Engineering Tools and Methods
(see Figure 2i) Knowledge Area covers two
topics that cut across the other KAs: software
tools and development methods . Software tools
are the computer-based tools intended to assist
the software engineering process. Tools are often
designed to support particular methods, reducing
the administrative load associated with applying
the method manually. Like methods, they are
intended to make development more systematic,
and they vary in scope from supporting
individual tasks to encompassing the complete
life cycle. The top-level partitioning of the
software tools subarea uses the list of KAs of this
Guide as its structure. The remaining categories
cover infrastructure support and other
miscellaneous topics.

104. Development methods impose structure on the
software development and maintenance activity
with the goal of making the activity systematic
and ultimately more successful. Methods usually
provide a notation and vocabulary, procedures
for performing identifiable tasks, and guidelines

for checking both the process and product.
Development methods vary widely in scope,
from a single life-cycle phase to the complete life
cycle. The Guide divides this subarea into three
nondisjointed main topics: heuristic methods
dealing with informal approaches, formal
methods dealing with mathematically based
approaches, and prototyping methods dealing
with approaches based on various forms of
prototyping. The fourth main topic,
miscellaneous, covers issues not previously
covered

105. Software quality
106. Production of quality products is key to customer

satisfaction. Software without the requisite
features and degree of quality is an indicator of
failed (or at least flawed) software engineering.
However, even with the best of software
engineering processes, requirement
specifications can miss customer needs, code can
fail to fulfill requirements, and subtle errors can
lie undetected until they cause minor or major
problems—even catastrophic failures. This KA
(see Figure 2j) therefore discusses the knowledge
related to software quality assurance and
software verification and validation activities.

107. The goal of software engineering is a quality
product, but quality itself can mean different
things. The first subarea, software quality
concepts, discusses measuring the value of
quality, quality attributes as defined in ISO 9126,
dependability, special types of systems and
quality needs, and the quality attributes for the
engineering process.

108. The software quality assurance process provides
assurance that the software products and
processes in the project life cycle conform to
their specified requirements and adhere to their
established plans. The software verification and
validation process determines whether products
of a given development or maintenance activity
conform to the requirements of that activity and
those imposed by previous activities, and
whether the final software product (through its
evolution) satisfies its intended use and user
needs. These form three additional subareas.

109. The last subarea discusses measurement as
applied to software quality assurance and
verification and validation.

1–8 © IEEE – Stoneman (Version 0.7) – April 2000

Guide to the Software Engineering Body of Knowledge
(version 0.7*)

* This refers to the interim draft version number of
the Stoneman Guide.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2. A mapping of the Guide to the Software Engineering Body of Knowledge

Software
Configuration
Management

 Management of the
SCM Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration Status

Accounting

Software
Configuration

Auditing

Software Release
Management and

Delivery

Software
Construction

Linguistic
Construction

Methods

Formal Construction
Methods

Visual Construction
Methods

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Software Design

Software Design
Basic Concepts

Software
Architecture

Software Design
Quality Analysis and

Evaluation

Software Design
Notations

Software Design
Strategies and

Methods

Software Design Tools

Software
Engineering Tools

and Methods

Software
Development

Methods

Software Tools

Heuristic Methods

Formal Methods

Prototyping Methods

Software Requirements
Tools

Software Testing Tools

Software Maintenance
Tools

Software Engineering
Process Tools

Software Construction
Tools

Software Quality Tools

Software Configuration
Management Tools

Software Engineering
Management Tools

Infrastructure Support
Tools

Miscellaneous

Miscellaneous

Software
Engineering
Management

Measurement

Organizational
Management and

Coordination

Initiation and Scope
Definition

Planning

Enactment

Review and
Evaluation

Project Close Out

Post-Closure
Activities

Process
Measurement

Software
Engineering

Process

Basic Concepts and
Definitions

Process Definition

Process
Implementation and

Change

Process
infrastructure

Qualitative Process
Analysis

Software Quality

Software Quality
Concepts

Defining SQA and
V&V

Planning for SQA
and V&V

Activities and
Techniques for
SQA and V&V

Measurement
Applied to SQA and

V&V

Software
Requirements

Requirements
Engineering

Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Management

Software
Requirements
specifications

Software Testing

Basic Concepts and
Definitions

Test Levels

Test Techniques

Test Related
Measures

Management of the
Test Process

Software
Maintenance

Introduction to
Software

Maintenance

Maintenance
Activities

Maintenance
Process

Organizational
Aspects of

Maintenance

Problems of
Software

Maintenance

Maintenance Cost
and Maintenance
Cost Estimation

Maintenance
Measurements

Techniques for
Maintenance

© IEEE – Stoneman (Version 0.7) – April 2000 2–1

CHAPTER 2
SOFTWARE REQUIREMENTS

Pete Sawyer and Gerald Kotonya
Computing Department,

Lancaster University
United Kingdom

{sawyer} {gerald}@comp.lancs.ac.uk

TABLE OF CONTENTS

1. INTRODUCTION
2. DEFINITION OF THE KNOWLEDGE AREA

2.1 What is a requirement?
2.2 System requirements and process drivers
2.3 Requirements analysis in outline
2.4 Requirements engineering in practice
2.5 Products and deliverables

3. SOFTWARE REQUIREMENTS KNOWLEDGE
AREA BREAKDOWN

3.1 The requirements engineering process
3.2 Requirements elicitation
3.3 Requi rements analysis
3.4 Software requirements specification
3.5 Requirements validation
3.6 Requirements management

APPENDIX A – BREAKDOWN RATIONALE
APPENDIX B – RECOMMENDED REFERENCES

FOR SOFTWARE REQUIREMENTS
APPENDIX C1 – RECOMMENDED READING
APPENDIX D – RECOMMENDED FURTHER

READING
APPENDIX E – REFERENCES USED TO WRITE

AND JUSTIFY THE DESCRIPTION

1. 1. INTRODUCTION

2. This document proposes a breakdown of the
SWEBOK Software Requirements Knowledge
Area. The knowledge area is concerned with the
acquisition, analysis specification and
management of software requirements. It is
widely acknowledged within the software
industry that software projects are critically
vulnerable when these activities are performed
poorly. This has led to the widespread use of the
term 'requirements engineering' to denote the
systematic handling of requirements. This is the
term we use in the rest of this document.
Software requirements are one of the products of
the requirements engineering process.

3. Software requirements express the requirements
and constraints on a software product that
contributes to the satisfaction of some 'need' in
the real world. This need may, for example, be to
solve some business problem or exploit a
business opportunity offered by a new market. It
is important to understand that, except where the
problem is motivated by technology (such as the
identification of a new market created by a new
technology), the problem is an artifact of the
problem domain and is generally technology-
neutral. The software product alone may satisfy
this need (for example, if it is a desktop
application), or it may be a component (for
example, a speech compression module in a
mobile phone) of a software-intensive system for
which satisfaction of the need is an emergent
property. In fundamental terms, the way in which
the requirements are handled for stand-alone
products and components of software-intensive
systems is the same. It is just that in systems like
the mobile phone, only a subset of the
requirements are allocated to software.

4. One of the main objectives of requirements
engineering is to discover how to partition the
system; to identify which requirements should be
allocated to which components. In some systems,
all the components will be implemented in
software. Others will comprise a mixture of
technologies. Almost all will have human users
and sometimes it makes sense to consider these
'components' of the system to which
requirements should be allocated (for example, to
save costs or to exploit human adaptability and
resourcefulness). Because of this requirements
engineering is fundamentally an activity of
systems engineering rather than one that is
specific to software engineering. In this respect,
the term 'software requirements engineering' is
misleading because it implies a narrow scope
concerned only with the handling of
requirements that have already been acquired and
allocated to software components. Since it is
increasingly common for practicing software

2–2 © IEEE – Stoneman (Version 0.7) – April 2000

engineers to participate in the elicitation and
allocation of requirements, it is essential that the
scope of the knowledge area extends to the
whole of the requirements engineering process.
To underscore this the prefix 'software' is omitted
from requirements engineering in the remainder
of this document.

5. One of the fundamental tenets of good software
engineering is that there is good communication
between system users and system developers. It
is the requirements engineer who is the conduit
for this communication. They must mediate
between the domain of the system user (and
other stakeholders) and the technical world of the
software engineer. This requires that they possess
technical skills, an ability to quickly acquire an
understanding of the application domain, and the
inter-personal skills to help build consensus
between heterogeneous groups of stakeholders.

6. We have tried to avoid domain dependency in
the document. The knowledge area document is
really about identifying requirements engineering
practice and identifying when the practice is and
isn’t appropriate. We recognise that desktop
software products are different from reactor
control systems and the document should be read
in this light. Where we refer to particular tools,
methods, notations, SPI models, etc. it does not
imply our endorsement of them. They are merely
used as examples.

7. 2. DEFINITION OF THE

KNOWLEDGE AREA

8. This section provides an overview of
requirements engineering in which:

9. w the notion of a ‘requirement’ is defined;

10. w motivations for systems are identified and
their relationship to requirements is
discussed;

11. w a generic process for analysis of
requirements is described, followed by a
discussion of why, in practice,
organisations often deviate from this
process; and

12. w the deliverables of the requirements
engineering process and the need to manage
requirements are described.

13. This overview is intended to provide a
perspective or ‘viewpoint’ on the knowledge area
that complements the one in section 4 - the
knowledge area breakdown.

14. Readers who are familiar with requirements
engineering concepts and terms are invited to
skip to section 3.

15. 2.1 What is a requirement?

16. At its most basic, a requirement is a property that
a system must exhibit in order for it to meet the
system's motivating need. This may be to
automate some part of a task of the people who
will use the system, to support the business
processes of the organisation that has
commissioned the system, to control a device in
which the software is to be embedded, and many
more. The functioning of the users, or the
business processes or the device will typically be
complex. By extension, therefore, the
requirements on the system will be a complex
combination of requirements from different
people at different levels of an organisation and
from the environment in which the system must
execute.

17. Requirements vary in intent and in the kinds of
properties they represent. A distinction can be
drawn between product parameters and process
parameters. Product parameters are requirements
on the system to be developed and can be further
classified as:

18. w Functional requirements on the system such
as formatting some text or modulating a
signal. Functional requirements are
sometimes known as capabilities.

19. w Non-functional requirements that act to
constrain the solution. Non-functional
requirements are sometimes known as
constraints or quality requirements. They
can be further classified according to
whether they are (for example) performance
requirements, maintainability requirements,
safety requirements, reliability
requirements, electro-magnetic
compatibility requirements and many other
types of requirements.

20. A process parameter is essentially a constraint on
the development of the system (e.g. 'the software
shall be written in Ada'). These are sometimes
known as process requirements.

21. Non-functional requirements are particularly
hard to handle and tend to vary from vaguely
expressed goals to specific bounds on how the
software must behave. Two examples of these
might be: that the system must increase the call-
center's throughput by 20%; and a reliability
requirement that the system shall have a
probability of generating a fatal error during any

© IEEE – Stoneman (Version 0.7) – April 2000 2–3

hour of operation of less than 1 * 10-8. The
throughput requirement is at a very high level
and will need to be elaborated into a number of
specific functional requirements. The reliability
requirement will tightly constrain the system
architecture.

22. Many non-functional requirements are emergent
properties. That is, requirements that can't be
addressed by a single component, but which
depend for their satisfaction on how all the
system components inter-operate. The
throughput requirement for a call-centre given
above would, for example, depend upon how the
telephone system, information system and the
operators all interacted under actual operating
conditions. Emergent properties are crucially
dependent upon the system architecture.

23. An essential property of all requirements is that
they should be verifiable. Unfortunately, non-
functional requirements may be difficult to
verify. For example, it is impossible to design a
test that will demonstrate that the above
reliability requirement has been satisfied.
Instead, it will be necessary to construct
simulations and perform statistical tests from
which the system’s probable reliability can be
inferred. This will be very costly and illustrates
the need to define non-functional requirements
that are appropriate to the application domain yet
not so stringent as to be beyond the bounds of the
project budget.

24. Non-functional requirements should be
quantified. If a non-functional requirement is
only expressed qualitatively, it should be further
analysed until it is possible to express it
quantitatively. Non-functional requirements
should never be expressed so vaguely as to be
unverifiable (‘the system shall be reliable’, ‘the
user interface shall be user-friendly’).

25. Stringent non-functional requirements often
generate implicit process requirements. The
choice of verification method is one example.
Another might be the use of particularly rigorous
analysis techniques (such as formal specification
methods) to reduce systemic errors that can lead
to inadequate reliability.

26. In a typical project there will be a large number
of requirements derived from different sources
and expressed at different levels of detail. In
order to permit these to be referenced and
managed, it is essential that each be assigned a
unique identifier.

27. 2.2 System requirements and process
drivers

28. The literature on requirements engineering
sometimes calls system requirements user
requirements. We prefer a restricted definition of
the term user requirements in which they denote
the requirements of the people who will be the
system customers or end-users. System
requirements, by contrast, are inclusive of user
requirements, requirements of other stakeholders
(such as regulatory authorities) and requirements
that do not have an identifiable human source.
Typical examples of system stakeholders include
(but are not restricted to):

29. w Users – the people who will operate the
system. Users are often a heterogeneous
group comprising people with different
roles and requirements.

30. w Customers – the people who have
commissioned the system or who represent
the system’s target market.

31. w Market analysts – a mass-market product
will not have a commissioning customer so
marketing people are often needed to
establish what the market needs and to act
as proxy customers.

32. w Regulators – many application domains
such as banking and public transport are
regulated. Systems in these domains must
comply with the requirements of the
regulatory authorities.

33. w System developers – these have a legitimate
interest in profiting from developing the
system. A common requirement is that
costs be shared across product lines so one
customer’s requirements may be in conflict
with the developer’s wish to sell the
product to other customers. For a mass
market product, the developer will be the
primary stakeholder since they wish to
maintain the product in as large a market as
possible for as long as possible.

34. In addition to these human sources of
requirements, important system requirements
often derive from other devices or systems in the
environment which require some services of the
system or act to constrain the system, or even
from fundamental characteristics of the
application domain. For example, a business
system may be required to inter-operate with a
legacy database and many military systems have
to be tolerant of high levels of electro-magnetic
radiation. We talk of 'eliciting' requirements but

2–4 © IEEE – Stoneman (Version 0.7) – April 2000

in practice the requirements engineer discovers
the requirements from a combination of human
stakeholders, the system's environment,
feasibility studies, market analyses, business
plans, analyses of competing products and
domain knowledge.

35. The elicitation and analysis of system
requirements needs to be driven by the need to
achieve of the overall project aims. To provide
this focus, a business case should be made which
clearly defines the benefits that the investment
must deliver. These should act as a 'reality check'
that can be applied to the system requirements to
ensure that project focus does not drift. Where
there is any doubt about the technical or financial
viability of the project, a feasibility analysis
should be conducted. This is designed to identify
project risks and assess the extent to which they
threaten the system's viability. Typical risks
include the ability to satisfy non-functional
requirements such as performance, or the
availability of off-the-shelf components. In some
specialised domains, it may be necessary to
design simulations to generate data to enable an
assessment of the project risks to be made. In
domains such as public transport where safety is
an issue, a hazard analysis should be conducted
from which safety requirements can be
identified.

36. 2.3 Requirements analysis in outline

37. Once the goals of the project have been
established, the work of eliciting, analysing and
validating the system requirements can
commence. This is crucial to gaining a clear
understanding of the problem for which the
system is to provide a solution and its likely cost.

38. The requirements engineer must strive for
completeness by ensuring that all the relevant
sources of requirements are identified and
consulted. It will be infeasible to consult
everyone. There may be many of users of a large
system, for example. However, representative
examples of each class of system stakeholder
should be identified and consulted. Although
individual stakeholders will be authoritative
about aspects of the system that represent their
interests or expertise, the requirements engineer
will be the only one with the ‘big picture’ and so
the assurance of completeness rests entirely with
them.

39. Elicitation of the stakeholders' requirements is
rarely easy and the requirements engineer has to
learn a range of techniques for helping people

articulate how they do their jobs and what would
help them do their jobs better. There are many
social and political issues that can affect
stakeholders' requirements and their ability or
willingness to articulate them and it is necessary
to be sensitive to them. In many cases, it is
necessary to provide a contextual framework that
serves to focus the consultation; to help the
stakeholder identify what is possible and help the
requirements engineer verify their understanding.
Exposing the stakeholders to prototypes may
help, and these don't necessarily have to be high
fidelity. A series of rough sketches on a flip chart
can sometimes serve the same purpose as a
software prototype, whilst avoiding the pitfalls of
distraction caused by cosmetic features of the
software. Walking the stakeholder through a
small number of scenarios representing
sequences of events in the application domain
can also help the stakeholder and requirements
engineer to explore the key factors affecting the
requirements.

40. Once identified, the system requirements have to
be validated by the stakeholders and trade-offs
negotiated before further resources are
committed to the project. To enable validation,
the system requirements are normally kept at a
high level and expressed in terms of the
application domain rather than in technical terms.
Hence the system requirements for an Internet
book store will be expressed in terms of books,
authors, warehousing and credit card
transactions, not in terms of the communication
protocols, or key distribution algorithms that may
form part of the solution. Too much technical
detail at this stage obscures the essential
characteristics of the system viewed from the
perspective of its customer and users.

41. Not all of the system requirements will be
satisfiable. Some may be technically infeasible,
others may be too costly to implement and some
will be mutually incompatible. The requirements
engineer must analyse the requirements to
understand their implications and how they
interact. They must be prioritised and their costs
estimated. The goal is to identify the scope of the
system and a ‘baseline’ set of system
requirements that is feasible and acceptable. This
may necessitate helping stakeholders whose
requirements conflict (with each other or with
cost or other constraints) to negotiate acceptable
trade-offs.

42. To help the analysis of the system requirements,
conceptual models of the system are constructed.
These aid understanding of the logical

© IEEE – Stoneman (Version 0.7) – April 2000 2–5

partitioning of the system, its context in the
operational environment and the data and control
communications between the logical entities.

43. The system requirements must be analysed in the
context of all the applicable constraints.
Constraints come from many sources, such as the
business environment, the customer’s
organisational structure and the system’s
operational environment. They include cost,
technical (non-functional requirements),
regulatory and other constraints. Hence, the
requirements engineer’s job is not restricted to
eliciting stakeholders’ requirements, but includes
identifying the reasons why their requirements
may be unrealisable.

44. Unnecessary requirements should be excluded.
The requirements engineer must avoid the
common temptation of both users and developers
to ‘gold plate’ systems. The essential principle is
that the requirements should be necessary and
sufficient – there should be nothing left out or
anything that doesn’t need to be included. The
requirements engineer must also establish how
implementation of the system requirements will
be verified. Acceptance tests must be derived
that will assure compliance with the
requirements before delivery or release of the
product.

45. Eventually, a complete and coherent set of
system requirements will emerge as the result of
the analysis process. At this point, the principal
areas of functionality should be clear and the
system can be partitioned into a set of
subsystems or components to which
responsibility for the satisfaction of subsets of
the requirements are allocated. Where
requirements are allocated to a software
component, the requirements comprise the
software requirements for that component.

46. This activity of partitioning and allocation is
architectural design. Architectural design is a
skill that is driven by many factors such as the

recognition of reusable architectural 'patterns' or
the existence of off-the shelf components.
Derivation of the system architecture represents a
major milestone in the project and it is crucial to
get the architecture right because once defined,
and resources are committed, the architecture is
hard to change. In particular, the interaction of
the system components crucially affects the
extent to which the system will exhibit the
desired emergent properties. At this point, the
system requirements and system architecture are
documented, reviewed and 'signed off' as the
baseline for subsequent development, project
planning and cost estimation.

47. Except in small-scale systems, it is generally
infeasible for software developers to begin
detailed design of system components from the
system requirements document. The
requirements allocated to components that are
complex systems in themselves will need to
undergo further cycles of analysis in order to add
more detail, and to interpret the domain-oriented
system requirements for developers who may
lack sufficient knowledge of the application
domain to interpret them correctly. Hence, a
number of detailed technical requirements are
typically derived from each high-level system
requirement. It is crucial to record and maintain
this derivation to enable the impact of any
subsequent changes to the requirements to be
assessed. This is called requirements tracing.

48. Refinement of the requirements and system
architecture is where requirements engineering
merges with software design. There is no clear-
cut boundary but it is rare for requirements
analysis to continue beyond 2 or 3 levels of
architectural decomposition before responsibility
is handed over to the design teams for the
individual components. Figure 1 shows how
software requirements engineering fits into the
systems engineering process.

2–6 © IEEE – Stoneman (Version 0.7) – April 2000

49. Figure 1 The systems engineering process
Activity Description

50. System requirements
engineering

The requirements for the system as a whole are established. These will usually be
expressed in a high-level fashion and written in natural language. Some detailed
constraints may be included if these are critical for the success of the system.

51. Architectural design The system is decomposed into a set of independent sub-systems.

52. Requirements allocation The requirements are analysed and allocated to these sub-systems. At this stage,
decisions may be made about whether requirements should be hardware or software
requirements.

53. Software requirements
engineering

The high-level software requirements are decomposed into a more detailed set of
requirements for the software components of the system

54. Sub-system development The hardware and the software subsystems are designed and implemented in parallel.

55. System integration The hardware and software subsystems are put together to complete the system

56. System validation The System is validated against its requirements.

57. 2.4 Requirements engineering in
practice

58. While the general aims of the analysis process
described above is fairly generic, it will not be
appropriate in every case. There is often
insufficient time, effort or freedom from
implementation constraints to permit an orderly
process such as that described in section 2.3.
There is a general pressure in the software
industry for ever shorter development cycles,
and this is particularly pronounced in highly
competitive market-driven sectors. Moreover,
relatively few projects are 'green field'. Most are
constrained in some way by their environment
and many are upgrades to or revisions of existing
systems where the system architecture is a given.
In practice, therefore, it is almost always

impractical to implement requirements
engineering as a linear, deterministic process
where system requirements are elicited from the
stakeholders, baselined, allocated and handed
over to the software development team. It is
certainly a myth that the requirements are ever
perfectly understood or perfectly specified.

59. Instead, requirements typically iterate toward a
level of quality and detail that is sufficient to
permit design and procurement decisions to me
made. In some projects, this may result in the
requirements being baselined before all their
properties are fully understood. This is not
desirable, but it is often a fact of life in the face
of tight time pressure.

60. Even where more resources are allocated to
requirements engineering, the level of analysis
will seldom be uniformly applied. For example,

© IEEE – Stoneman (Version 0.7) – April 2000 2–7

early on in the process experienced engineers are
often able to identify where existing or off-the-
shelf solutions can be adapted to the
implementation of system components. The
requirements allocated to these need not be
elaborated further, while others, for which a
solution is less obvious, may need to be
subjected to further analysis. Critical
requirements, such as those concerned with
safety, must be analysed especially rigorously.

61. In almost all cases requirements understanding
evolves in parallel with design and development,
often leading to the revision of requirements late
in the life-cycle. This is perhaps the most crucial
point of understanding about requirements
engineering - a significant proportion of the
requirements will change. This is sometimes due
to errors in the analysis, but it is frequently an
inevitable consequence of change to the
customer's business environment. It is important
to recognise the inevitability of change and
adopt measures to mitigate the effects of change.
Change has to be managed by applying careful
requirements tracing, impact analysis and
version management. Hence, the requirements
engineering process is not merely a front-end
task to software development, but spans the
whole development life-cycle. In a typical
project the activities of the requirements
engineer evolve over time from elicitation to
change management.

62. 2.5 Products and deliverables

63. Good requirements engineering requires that the
products of the process - the deliverables - are
defined. The most fundamental of these in
requirements engineering is the requirements
document. This often comprises two separate
documents:

64. w A document that specifies the system
requirements. This is sometimes known as
the requirements definition document, user
requirements document or, as defined by
IEEE std 1362-1998, the concept of
operations (ConOps) document. This
document serves to define the high-level
system requirements from the stakeholders'
perspective(s). It also serves as a vehicle
for validating the system requirements and,
in certain types of project, may form the
basis of an invitation to tender. Its typical
readership includes representatives of the
system stakeholders. It must be couched in
terms of the customer's domain. In addition
to a list of the system requirements, the

requirements definition needs to include
background information such as statements
of the overall objectives for the system, a
description of its target environment and a
statement of the constraints and non-
functional requirements on the system. It
may include conceptual models designed to
illustrate the system context, usage
scenarios, the principal domain entities, and
data, information and work flows.

65. w A document that specifies the software
requirements. This is sometimes known as
the software requirements specification
(SRS). The purpose and readership of the
SRS is somewhat different than the
requirements definition document. In crude
terms, the SRS documents the detailed
requirements derived from elaboration of
the system requirements, and which have
been allocated to software. The non-
functional requirements in the requirements
definition should have been elaborated and
quantified. The principal readership of the
SRS is technical and this can be reflected in
the language and notations used to describe
the requirements, and in the detail of
models used to illustrate the system. For
custom software, the SRS may form the
basis of a contract between the developer
and customer.

66. This is only a broad characterisation of the
requirements document(s) that may be mandated
by a particular requirements e ngineering process.
The essential point is that some medium is
needed for communicating the requirements
engineer’s assessment of the system
requirements to the stakeholders, and the
software requirements to developers. The
requirements document must be structured to
make information easy to find and standards
such as IEEE std 1362-1998 and IEEE std 830-
1998 provide guidance on this. Such standards
are intended to be generic and need to be tailored
to the context in which they are used.

67. A requirements document should be easy to read
because this affects the likelihood that the
system will conform to the requirements. It
should also be reasonably modular so that it is
easy to maintain. The structure of the
requirements document contributes to these
properties but care must also be taken to describe
the requirements as precisely as possible.

68. Requirements are usually written in natural
language but in the SRS this may be

2–8 © IEEE – Stoneman (Version 0.7) – April 2000

supplemented by formal or semi-formal
descriptions. Selection of appropriate notations
permits particular requirements and aspects of
the system architecture to be described more
precisely and concisely than natural language.
The general rule is that notations should be used
that allow the requirements to be described as
precisely as possible. This is particularly crucial
for safety-critical and certain other types of
dependable systems. However, the choice of
notation is often constrained by the training,
skills and preferences of the document’s authors
and readers.

69. Even where formal notations are used, they need
to be paraphrased by natural language
descriptions. However, natural language has
many serious shortcomings as a medium for
description. Among the most serious are that it is
ambiguous and hard to describe complex
concepts precisely. Formal notations such as Z
or CSP avoid the ambiguity problem because
their syntax and semantics are formally defined.
However, such notations are not expressive
enough to adequately describe every system
aspect. Natural language, by contrast, is
extraordinarily rich and able to describe,
however imperfectly, almost any concept or
system property. A natural language is also
likely to be the document author and
readerships’ only lingua franca. Because natural
language is unavoidable, requirements engineers
must be trained to use language simply,
concisely and to avoid common causes of
mistaken interpretation. These include:

70. w long sentences with complex sub-clauses;

71. w the use of terms with more than one
plausible interpretation (ambiguity);

72. w presenting several requirements as a single
requirement;

73. w inconsistency in the use of terms.

74. To counteract these problems, requirements
descriptions often adopt a stylised form and use
a restricted subset of a natural language. It is
good practice, for example, to keep requirement
descriptions short and to standardise on a small
set of modal verbs to indicate relative priorities.
Hence, for example, the use of ‘shall’ in the
requirement ‘The emergency breaks shall be
applied to bring the train to a stop if the nose of
the train passes a signal at DANGER’ indicates a
requirement that is mandatory.

75. Verification of the quality of the requirements
documents(s) is an essential part of requirements

validation. Hence, requirements validation is not
merely about checking that the requirements
engineer has understood the requirements. It is
also about checking that the way the
requirements have been documented conforms to
company standards, and is understandable,
consistent and complete. Formal notations offer
the important advantage that they permit the last
two properties to be proven. The document(s)
should be subjected to review by different
stakeholders including representatives of the
customer and developer. Crucially, requirements
documents must be placed under the same
configuration management regime as the other
deliverables of the development process.

76. The requirements document(s) are only the most
visible manifestation of the requirements. They
exclude information that is not required by the
document readership. However this other
information is needed in order to manage them.
In particular, it is essential that requirements are
traced. Tracing refers to the construction of a
directed asynchronous graph (DAG) that records
the derivation of requirements and provides audit
trails of requirements. As a minimum,
requirements need to be tracable backwards to
their source (e.g. from a software requirement
back to the system requirements from which it
was elaborated), and forwards to the design or
implementation artifacts that implement them
(e.g. from a software requirement to the design
document for a component that implements it).
Tracing allows the requirements to be managed.
In particular, it allows an impact analysis to be
performed for a proposed change to one of the
requirements.

77. Requirements tracing and the maintenance of
requirements attributes has historically been
grossly under-valued. Part of the reason for this
is that it is an overhead. However, modern
requirements management tools make this much
less so. They typically comprise a database of
requirements and a graphical user interface:

78. w to store the requirement descriptions and
attributes;

79. w to allow the trace DAGs to be generated
automatically;

80. w to allow the propagation of requirements
changes to be depicted graphically;

81. w to generate reports on the status of
requirements (such as whether they have
been analysed, approved, implemented,
etc.);

© IEEE – Stoneman (Version 0.7) – April 2000 2–9

82. w to generate requirements documents that
conform to selected standards;

83. w and to apply version management to the
requirements.

84. It should be noted that not every organisation has
a culture of documenting and managing
requirements. It is common for dynamic start-up
companies which are driven by a strong ‘product
vision’ and limited resources to view
requirements documentation as an unnecessary
overhead. Inevitably, however, as these
companies expand, as their customer base grows
and as their product starts to evolve, they
discover that they need to recover the
requirements that motivated product features in
order to assess the impact of proposed changes.
It is true that requirements documentation and
management is an overhead, but it is one that
pays dividends in the longer term.

85. 3. SOFTWARE REQUIREMENTS

KNOWLEDGE AREA BREAKDOWN

85. The knowledge area breakdown we have chosen
is broadly compatible with the sections of
ISO/IEC 12207-1995 that refer to requirements
engineering activities. This standard views the
software process at 3 different levels as primary,
supporting and organisational life-cycle
processes. In order to keep the breakdown
simple, we conflate this structure into a single
life-cycle process for requirements engineering.
The separate topics that we identify include
primary life-cycle process activities such as

requirements elicitation and requirements
analysis, along with requirements engineering-
specific descriptions of management and, to a
lesser degree, organisational processes. Hence,
we identify requirements validation and
requirements management as separate topics.

86. We are aware that a risk of this breakdown is
that a waterfall-like process may be inferred. To
guard against this, the first topic, the
requirements engineering process, is designed to
provide a high-level overview of requirements
engineering by setting out the resources and
constraints that requirements engineering
operates under and which act to configure the
requirements engineering process.

87. There are, of course, many other ways to
structure the breakdown. For example, instead of
a process-based structure, we could have used a
product-based structure (system requirements,
software requirements, prototypes, use-cases,
etc.). We have chosen the process-based
breakdown to reflect the fact that requirements
engineering, if it is to be successful, must be
considered as a process with complex, tightly
coupled activities (both sequential and
concurrent) rather than as a discrete, one-off
activity at the outset of a software development
project. The breakdown is compatible with that
used by many of the works in the recommended
reading list (Appendices B and C). See appendix
A for an itemised rationale for the breakdown.

88. The breakdown comprises 6 topics as shown in
table 1:

Requirements engineering topics Subtopics

89. 1. The requirement engineering process Process models
Process actors
Process support and management
Process quality and improvement

90. 2. Requirements elicitation Requirements sources
Elicitation techniques

91. 3. Requirement analysis Requirements classification
Conceptual modeling
Architectural design and requirements allocation
Requirements negotiation

92. 4. Requirements specification The requirements definition document
The software requirements specification (SRS)
Document structure and standards
Document quality

93. 5. Requirements validation The conduct of requirements reviews
Prototyping
Model validation
Acceptance tests

2–10 © IEEE – Stoneman (Version 0.7) – April 2000

Requirements engineering topics Subtopics

94. 6. Requirements management Change management
Requirements attributes
Requirements tracing

95. Table 1 Knowledge are breakdown

96. Figure 2 shows conceptually, how these activities
comprise an iterative requirements engineering
process. The different activities in requirements
engineering are repeated until an acceptable
requirements specification document is produced
or until external factors such as schedule pressure

or lack of resources cause the requirements
engineering process to terminate. After a final
requirements document has been produced, any
further changes become part of the requirements
management process.

97. Figure 2 A spiral model of the requirements engineering process

98. 3.1 The requirements engineering
process

99. This section is concerned with introducing the
requirements engineering process, orienting the
remaining 5 topics and showing how
requirements engineering dovetails with the
overall software engineering process. This
section also deals with contractual and project
organisation issues. The project organisation
issues in this section are described with reference
to the early phase in the project concerned with
bounding system requirements to ensure that an
achievable project is defined. The topic is broken
down into 5 subtopics.

100. 3.1.1 Process models

101. This subtopic is concerned with introducing a
small number of generic process models. The
purpose is to lead to an understanding that the
requirements process:

102. w is not a discrete front-end activity of the
software life-cycle but rather a process that
is initiated at the beginning of a project but
continues to operate throughout the life-
cycle;

103. w the need to manage requirements under the
same configuration management regime as
other products of the development process;

Requirements analysis
and negotiation

Requirements specification

Requirements elicitation

Requirements validation

Start

Informal statement of
requirements

Draft requirements
document

Agreed

requirements

Requirements document
and validation report

Decision point: Accept
document or reenter spiral

User needs

Domain information

Standards

© IEEE – Stoneman (Version 0.7) – April 2000 2–11

104. w will need to be tailored to the organisation
and project context.

105. In particular, the subtopic shows how the
activities of elicitation, analysis, specification,
validation and management are configured for
different types of project and constraints. It
includes an overview of activities provide input
to the process such as marketing and feasibility
studies.

106. 3.1.2 Process actors
107. This subtopic introduces the roles of the people

who participate in the requirements engineering
process. Requirements engineering is
fundamentally interdisciplinary and the
requirements engineer needs to mediate between
the domains of the user and software
engineering. There are often many people
involved besides the requirements engineer, each
of whom have a stake in the system. The
stakeholders will vary across different projects
but always includes users/operators and customer
(who need not be the same). These need not be
homogeneous groups because there may be many
users and many customers, each with different
concerns. There may also be other stakeholders
who are external to the user’s/customer’s
organisation, such as regulatory authorities,
who’s requirements need to be carefully
analysed. The system/software developers are
also stakeholders because the have a legitimate
interest in profiting from the system. Again,
these may be a heterogeneous group in which
(for example) the system architect has different
concerns from the system tester.

108. It will not be possible to perfectly satisfy the
requirements of every stakeholder and the

requirements engineer’s job is to negotiate a
compromise that is both acceptable to the
principal stakeholders and within budgetary,
technical, regulatory and other constraints. A
prerequisite for this is that all the stakeholders
are indentified, the nature of their ‘stake’ is
analysed and their requirements are elicited.

109. 3.1.3 Process support and management
110. This subtopic introduces the project management

resources required and consumed by the
requirements engineering process. This topic
merely sets the context for topic 4 (Initiation and
scope definition) of the software management
KA. It’s principal purpose is to make the link
from process activities identified in 3.1.1 to
issues of cost, human resources, training and
tools.

111. 3.1.4 Process quality and improvement
112. This subtopic is concerned with requirements

engineering process quality assessment. Its
purpose is to emphasize the key role
requirements engineering plays in terms of the
cost, timeliness and customer satisfaction of
software products. It will help orient the
requirements engineering process with quality
standards and process improvement models for
software and systems. This subtopic covers:

113. w requirements engineering coverage by
process improvement standards and models;

114. w requirements engineering metrics and
benchmarking;

115. w improvement planning and implementation;

Links to common themes

116. Quality The process quality and improvement subtopic is concerned with quality. It
contains links to SPI standards such as the software and systems engineering
CMMs, the forthcoming ISO/IEC 15504 (SPICE) and ISO 9001-3.
Requirements engineering is at best peripheral to these and only work to
address requirements engineering processes specifically, is the requirements
engineering good practice guide (REGPG).

117. Standards SPI models/standards as above. In addition, the life-cycle software
engineering standard ISO/IEC 12207-1995 describes software requirements
engineering activities in the context of the primary, supporting and
organisational life-cycle processes for software.

118. Measurement At the process level, requirements metrics tend to be relatively coarse-grained
and concerned with (e.g.) counting numbers of requirements and numbers and
effects of requirements changes. If these indicate room for improvement (as
they inevitably will) it is possible to measure the extent and rigour with which
requirements 'good practice' is used in a process. These measures can serve to
highlight process weaknesses that should be the target improvement efforts.

119. Tools General project management tools. Refer to the software management KA.

2–12 © IEEE – Stoneman (Version 0.7) – April 2000

120. 3.2 Requirements elicitation

121. This topic covers what is sometimes termed
'requirements capture', 'requirements discovery'
or 'requirements acquisition'. It is concerned with
where requirements come from and how they can
be collected by the requirements engineer.
Requirements elicitation is the first stage in
building an understanding of the problem the
software is required to solve. It is fundamentally
a human activity and is where the stakeholders
are identified and relationships established
between the development team (usually in the
form of the requirements engineer) and the
customer. There are 2 main subtopics.

122. 3.2.1 Requirements sources

123. In a typical system, there will be many sources of
requirements and it is essential that all potential
sources are identified and evaluated for their
impact on the system. This subtopic is designed
to promote awareness of different requirements
sources and frameworks for managing them. The
main points covered are:

124. w Goals. The term 'Goal' (sometimes called
'business concern' or 'critical success
factor') refers to the overall, high-level
objectives of the system. Goals provide the
motivation for a system but are often
vaguely formulated. Requirements
engineers need to pay particular attention to
assessing the impact and feasibility of the
goals. A feasibility study is a relatively low-
cost way of doing this.

125. w Domain knowledge. The requirements
engineer needs to acquire or to have
available knowledge about the application
domain. This enables them to infer tacit
knowledge that the stakeholders don't
articulate, inform the trade-offs that will be
necessary between conflicting requirements
and sometimes to act as a 'user' champion.

126. w System stakeholders (see 3.1.2). Many
systems have proven unsatisfactory because
they have stressed the requirements for one
group of stakeholders at the expense of
others. Hence, systems are delivered that
are hard to use or which subvert the cultural
or political structures of the customer
organisation. The requirements engineer to
the need to identify, represent and manage
the 'viewpoints' of many different types of
stakeholder.

127. w The operational environment. Requirements
will be derived from the environment in
which the software will execute. These may
be, for example, timing constraints in a
real-time system or interoperability
constraints in an office environment. These
must be actively sought because they can
greatly affect system feasibility and cost.

128. w The organizational environment. Many
systems are required to support a business
process and this may be conditioned by the
structure, culture and internal politics of the
organisation. The requirements engineer
needs to be sensitive to these since, in
general, new software systems should not
force unplanned change to the business
process.

129. 3.2.2 Elicitation techniques

130. When the requirements sources have been
identified the requirements engineer can start
eliciting requirements from them. This subtopic
concentrates on techniques for getting human
stakeholders to articulate their requirements. This
is a very difficult area and the requirements
engineer needs to be sensitized to the fact that
(for example) users may have difficulty
describing their tasks, may leave important
information unstated, or may be unwilling or
unable to cooperate. It is particularly important
to understand that elicitation is not a passive
activity and that even if cooperative and
articulate stakeholders are available, the
requirements engineer has to work hard to elicit
the right information. A number of techniques
will be covered but the principal ones are:

131. w Interviews. Interviews are a 'traditional'
means of eliciting requirements. It is
important to understand the advantages and
limitations of interviews and how they
should be conducted.

132. w Scenarios. Scenarios are valuable for
providing context to the elicitation of users'
requirements. They allow the requirements
engineer to provide a framework for
questions about users' tasks by permitting
'what if?' and 'how is this done?' questions
to be asked. There is a link to 3.3.2.
(conceptual modeling) because recent
modeling notations have attempted to
integrate scenario notations with object-
oriented analysis techniques.

133. w Prototypes. Prototypes are a valuable tool
for clarifying unclear requirements. They

© IEEE – Stoneman (Version 0.7) – April 2000 2–13

can act in a similar way to scenarios by
providing a context within which users
better understand what information they
need to provide. There is a wide range of
prototyping techniques, which range from
paper mock-ups of screen designs to beta-
test versions of software products. There is
a strong overlap with the use of prototypes
for requirements validation (3.5.2).

134. w Facilitated meetings. The purpose of these
is to try to achieve a summative effect
whereby a group of people can bring more
insight to their requirements than by
working individually. They can brainstorm
and refine ideas that may be difficult to
surface using (e.g.) interviews. Another
advantage is that conflicting requirements
are surfaced early on in a way that lets the
stakeholders recognise where there is
conflict. At its best, this technique may
result in a richer and more consistent set of
requirements than might otherwise be

achievable. However, meetings need to be
handled carefully (hence the need for a
facilitator) to prevent phenomena such as
‘groupthink’ or the requirements reflecting
the concerns of a few vociferous (and
perhaps senior) people to the detriment of
others.

135. w Observation. The importance of systems'
context within the organizational
environment has led to the adaptation of
observational techniques for requirements
elicitation whereby the requirements
engineer learns about users' tasks by
immersing themselves in the environment
and observing how users interact with their
systems and each other. These techniques
are relatively new and expensive but are
instructive because they illustrate that many
user tasks and business processes are too
subtle and complex for their actors to
describe easily.

Links to common themes
136. Quality The quality of requirements elicitation has a direct effect on product quality.

The critical issues are to recognise the relevant sources, to strive to avoid
missing important requirements and to accurately report the requirements.

137. Standards Only very general guidance is available for elicitation from current
standards. These typically set out the goals of elicitation but have little to say
on techniques.

138. Measurement Very little work on metricating requirements elicitation has been carried out.

139. Tools Elicitation is relatively poorly supported by tools.
Some modern modeling tools support notations for scenarios.

Several programming environments support prototyping but the applicability
of these will depend on the application domain.

A number of tools are becoming available that support the use of viewpoint
analysis to manage requirements elicitation. These have had little impact to
date.

140. 3.3 Requirements analysis

141. This subtopic is concerned with the process of
analysing requirements to:

142. w detect and resolve conflicts between
requirements;

143. w discover the bounds of the system and how
it must interact with its environment;

144. w elaborate system requirements to software
requirements.

145. The traditional view of requirements analysis
was to reduce it to conceptual modeling using
one of a number of analysis methods such as
SADT or OOA. While conceptual modeling is
important, we include the classification of
requirements to help inform trade-offs between

requirements (requirements classification), and
the process of establishing these trade-offs
(requirements negotiation).

146. 3.3.1 Requirements classification

147. There is a strong overlap between requirements
classification and requirements attributes (3.6.2).
Requirements can be classified on a number of
dimensions. Examples include:

148. w Whether the requirement is functional or
non-functional (see 2.1).

149. w Whether the requirement is derived from
one or more high-level requirements, an
emergent property (see 2.4), or at a high
level and imposed directly on the system by
a stakeholder or some other source.

2–14 © IEEE – Stoneman (Version 0.7) – April 2000

150. w Whether the requirement is on the product
(functional or non-functional) or the
process. Requirements on the process
constrain, for example, the choice of
contractor, the development practices to be
adopted, and the standards to be adhered to.

151. w The requirement priority. In general, the
higher the priority, the more essential the
requirement is for meeting the overall goals
of the system. Often classified on a fixed
point scale such as mandatory, highly
desirable, desirable, optional. In practice,
priority often has to be balanced against
cost of implementation.

152. w The scope of the requirement. Scope refers
to the extent to which a requirement affects
the system and system components. Some
requirements, particularly certain non-
functional ones, have a global scope in that
their satisfaction cannot be allocated to a
discrete component. Hence a requirement
with global scope may strongly affect the
system architecture and the design of many
components, one with a narrow scope may
offer a number of design choices with little
impact on the satisfaction of other
requirements.

153. w Volatility/stability. Some requirements will
change during the life-cycle of the software
and even during the development process
itself. It is sometimes useful if some
estimate of the likelihood of a requirement
changing can be made. For example, in a
banking application, requirements for
functions to calculate and credit interest to
customers' accounts are likely to be more
stable than a requirement to support a
particular kind of tax-free account. The
former reflect a fundamental feature of the
banking domain (that accounts can earn
interest), while the latter may be rendered
obsolete by a change to government
legislation. Flagging requirements that may
be volatile can help the software engineer
establish a design that is more tolerant of
change.

154. Other classifications may be appropriate,
depending upon the development organization's
normal practice and the application itself. Note
that in all cases requirements must be
unambiguously identified.

155. 3.3.2 Conceptual modeling

156. The development of models of the problem is
fundamental to requirements analysis (see 2.4).
The purpose is to aid understanding of the
problem rather than to initiate design of the
solution. Hence, conceptual models comprise
models of entities from the problem domain
configured to reflect their real-world
relationships and dependencies.

157. There are several kinds of models that can be
developed. These include data and control flows,
state models, event traces, user interactions,
object models and many others. The factors that
influence the choice of model include:

158. w The nature of the problem. Some types of
application demand that certain aspects be
analysed particularly rigorously. For
example, control flow and state models are
likely to be more important for real-time
systems than for an information system.

159. w The expertise of the requirements engineer.
It is often more productive to adopt a
modeling notation or method that the
requirements engineer has experience with.
However, it may be appropriate or
necessary to adopt a notation that is better
supported by tools, imposed as a process
requirement (see 3.3.1), or simply ‘better’.

160. w The process requirements of the customer.
Customers may impose a particular notation
or method on the requirements engineer.
This can conflict with the last factor.

161. w The availability of methods and tools.
Notations or methods that are poorly
supported by training and tools may not
reach widespread acceptance even if they
are suited to particular types of problem.

162. Note that in almost all cases, it is useful to start
by building a model of the 'system boundary'.
This is crucial to understanding the system's
context in its operational environment and
identify its interfaces to the environment.

163. The issue of modeling is tightly coupled with
that of methods. For practical purposes, a method
is a notation (or set of notations) supported by a
process that guides the application of the
notations. Methods and notations come and go in
fashion. Object-oriented notations are currently
in vogue (especially UML) but the issue of what
is the 'best' notation is seldom clear. There is
little empirical evidence to support claims for the
superiority of one notation over another.

© IEEE – Stoneman (Version 0.7) – April 2000 2–15

164. Formal modeling using notations based upon
discrete mathematics and which are tractable to
logical reasoning have made an impact in some
specialized domains. These may be imposed by
customers or standards or may offer compelling
advantages to the analysis of certain critical
functions or components.

165. This topic does not seek to 'teach' a particular
modeling style or notation but rather to provide
guidance on the purpose and intent of modeling.

166. 3.3.3 Architectural design and
requirements allocation

167. At some point the architecture of the solution
must be derived. Architectural design is the point
at which requirements engineering overlaps with
software or systems design and illustrates how
impossible it is to cleanly decouple both tasks. In
many cases, the requirements engineer acts as
system architect because the process of analysing
and elaborating the requirements demands that
the subsystems and components that will be
responsible for satisfying the requirements be
identified. This is requirements allocation – the
assignment of responsibility for satisfying
requirements to subsystems and components.

168. Allocation is important to permit detailed
analysis of requirements. Hence, for example,
once a set of requirements have been allocated to
a component, they can be further analysed to
discover requirements on how the component
needs to interact with other components in order
to satisfy the allocated requirements. In large
projects, allocation stimulates a new round of
analysis for each subsystem. As an example,
requirements for a particular breaking
performance for a car (breaking distance, safety
in poor driving conditions, smoothness of
application, pedal pressure required, etc.) may be
allocated to the breaking hardware (meachanical

and hydraulic assemblies) and an anti-lock
breaking system (ABS). Only when a
requirement for an anti-lock system has been
identified, and the requirements are allocated to
it can the capabilities of the ABS, the breaking
hardware and emergent properties (such as the
car weight) be used to identify the detailed ABS
software requirements.

169. Architectural design is closely identified with
conceptual modeling and in many cases it is a
natural progression to derive the solution
architecture from the domain architecture. There
is not always a simple one-to-one mapping from
real-world domain entities to computational
components, however, so architectural design is
identified as a separate sub-topic. The
requirements of notations and methods are
broadly the same for conceptual modeling and
architectural design.

170. 3.3.4 Requirements negotiation
171. Another name commonly used for this subtopic

is 'conflict resolution'. It is concerned with
resolving problems with requirements where
conflicts occur; between two stakeholders'
requiring mutually incompatible features, or
between requirements and resources or between
capabilities and constraints, for example. In most
cases, it is unwi se for the requirements to make a
unilateral decision so it is necessary to consult
with the stakeholder(s) to reach a consensus on
an appropriate trade-off. It is often important for
contractual reasons that such decisions are
traceable back to the customer. We have
classified this as a requirements analysis topic
because problems emerge as the result of
analysis. However, a strong case can also be
made for counting it as part of requirements
validation.

Links to common themes

172. Quality The quality of the analysis directly affects product quality. In principle, the
more rigorous the analysis, the more confidence can be attached to the
software quality.

173. Standards Software engineering standards stress the need for analysis. Detailed
guidance is provided only by de -facto modeling 'standards' (e.g. SADT or
UML) which may not be completely domain independent.

174. Measurement Part of the purpose of analysis is to quantify required properties. This is
particularly important for constraints such as reliability or safety
requirements where suitable metrics need to be identified to allow the
requirements to be quantified and verified.

175. Tools There are many tools that support conceptual modeling and a number of
tools that support formal specification.

There are a small number of tools that support conflict identification and
requirements negotiation through the use of methods such as quality function
deployment.

2–16 © IEEE – Stoneman (Version 0.7) – April 2000

176. 3.4 Software requirements
specification

177. This topic is concerned with the structure, quality
and verification of the requirements document.
This may take the form of two documents, or two
parts of the same document with different
readership and purposes (see 2.6): the
requirements definition document and the
software requirements specification. The topic
stresses that documenting the requirements is the
most fundamental precondition for successful
requirements handling.

178. 3.4.1 The requirements definition
document

179. This document (sometimes known as the user
requirements document or concept of operations)
records the system requirements. It defines the
high-level system requirements from the domain
perspective. Its readership includes
representatives of the system users/customers
(marketing may play these roles for market-
driven software) so it must be couched in terms
of the domain. It must list the system
requirements along with background information
about the overall objectives for the system, its
target environment and a statement of the
constraints and non-functional requirements. It
may include conceptual models designed to
illustrate the system context, usage scenarios, the
principal domain entities, and data, information
and work flows.

180. 3.4.2 The software requirements
specification (SRS)

181. The SRS serves an important role in software
systems development. Its benefits include:

182. w It establishes the basis for agreement
between the customers and contractors or
suppliers (in market-driven projects, these
roles may be played by marketing and
development divisions) on what the
software product is to do and as well as
what it should not do.

183. w It forces a rigorous assessment of
requirements before design can begin and
reduces later redesign.

184. w It provides a realistic basis for estimating
product costs and schedules.

185. w Organisations can use a SRS to develop
their own validation and verification plans
more productively.

186. w Provides an informed a basis for
transferring a software product to new users
or new machines.

187. w Focuses on product rather than project and
therefore provides a basis for product
enhancement

188. 3.4.3 Document structure and standards

189. This section describes the structure and content
of a requirements document. It is also concerned
with factors that influence how organisations
interpret document standards to local
circumstances. Several recommended guides and
standards for SRS document exist. These include
IEEE p123/D3 guide, IEEE Std. 1233 guide,
IEEE std. 830-1998, ISO/IEC 12119-1994. IEEE
std 1362-1998 concept of operations (ConOps) is
a recent standard for a requirements definition
document. Other guides and document template
are also available.

190. 3.4.4 Document quality

191. This section is concerned with assessing the
quality of an SRS. This is one area where metrics
can be usefully employed in requirements
engineering. There are tangible attributes that can
be measured. Moreover, the quality of the
requirements document can dramatically affect
the quality of the product.

192. A number of quality indicators have been
developed that can be used to relate the quality of
an SRS to other project variables such as cost,
acceptance, performance, schedule,
reproducibility etc. Quality indicators for
individual SRS statements include imperatives,
directives, weak phrases, options and
continuances. Indicators for the entire SRS
document include size, readability, specification
depth and text structure.

193. There is a strong overlap with 4.5.1 (the conduct
of requirements reviews).

© IEEE – Stoneman (Version 0.7) – April 2000 2–17

Links to common themes

194. Quality The quality of the requirements documents dramatically affects the
quality of the product.

195. Standards There are many of these. See 3.4.3.

196. Measurement Quality attributes of requirements documents can be identified and
measured. See 3.4.4.

197. Tools Tool support for documentation exists in many forms from standard
word processors to requirements management tools that may generate
an SRS from their requirements database according to a standard
template.

Rudimentary quality checking tools are beginning to become
commercially available, whilst more sophisticated ones are being
piloted in some organisations.

198. 3.5 Requirements validation

199. It is normal for there to be one or more formally
scheduled points in the requirements engineering
process where the requirements are validated.
The aim is to pick up any problems before
resources are committed to addressing the
requirements.

200. One of the key functions of requirements
documents is the validation of their contents.
Validation is concerned with checking the
documents for omissions, conflicts and
ambiguities and for ensuring that the
requirements follow prescribed quality standards.
The requirements should be necessary and
sufficient and should be described in a way that
leaves as little room as possible for
misinterpretation. There are four important
subtopics.

201. 3.5.1 The conduct of requirements
reviews

202. Perhaps the most common means of validation is
by the use of formal reviews of the requirements
document(s). A group of reviewers is constituted
with a brief to look for errors, mistaken
assumptions, lack of clarity and deviation from
standard practice. The composition of the group
that conducts the review is important (at least
one representative of the customer should be
included for a customer-driven project, for
example) and it may help to provide guidance on
what to look for in the form of checklists.

203. Reviews may be constituted on completion of the
system requirements definition document, the
software requirements specification document,
the baseline specification for a new release, etc.

204. 3.5.2 Prototyping

205. Prototyping is commonly employed for
validating the requirements engineer's
interpretation of the system requirements, as well
as for eliciting new requirements. As with
elicitation, there is a range of prototyping
techniques and a number of points in the process
when prototype validation may be appropriate.
The advantage of prototypes is that they can
make it easier to interpret the requirements
engineer's assumptions and give useful feedback
on why they are wrong. For example, the
dynamic behaviour of a user interface can be
better understood through an animated prototype
than through textual description or graphical
models. There are also disadvantages, however.
These include the danger of users attention being
distracted from the core underlying functionality
by cosmetic issues or quality problems with the
prototype. For this reason, several people
recommend prototypes that avoid software –
such as flip-chart-based mockups. Prototypes
may be costly to develop although if they avoid
the wastage of resources caused by trying to
satisfy erroneous requirements, their cost can be
more easily justified.

206. 3.5.3 Model validation

207. The quality of the models developed during
analysis should be validated. For example, in
object models, it is useful to perform a static
analysis to verify that communication paths exist
between objects that, in the stakeholders domain,
exchange data. If formal specification notations
are used, it is possible to use formal reasoning to
prove properties of the specification (e.g.
completeness).

2–18 © IEEE – Stoneman (Version 0.7) – April 2000

208. 3.5.4 Acceptance tests

209. An essential property of a system requirement is
that it should be possible to verify that the
finished product satisfies the requirement.
Requirements that can't be verified are really just
'wishes'. An important task is therefore planning
how to verify each requirement. In most cases,
this is done by designing acceptance tests. One of

the most important requirements quality
attributes to be checked by requirements
validation is the existence of adequate
acceptance tests.

210. Identifying and designing acceptance test may be
difficult for non-functional requirements (see
3.1). To be verifiable, they must first be analysed
to the point where they can be expressed
quantitatively.

Links to common themes
211. Quality Validation is all about quality - both the quality of the requirements

and of the documentation.
212. Standards Software engineering life-cycle and documentation standards (e.g.

IEEE std 830-1998) exist and are widely used in some domains to
inform validation exercises.

213. Measurement Measurement is important for acceptance tests and definitions of
how requirements are to be verified.

214. Tools Some limited tool support is available for model validation and
theorem provers can assist developing proofs for formal models.

215. 3.6 Requirements management
216. Requirements management is an activity that

should span the whole software life-cycle. It is
fundamentally about change management and the
maintenance of the requirements in a state that
accurately mirrors the software to be, or that has
been, built.

217. There are 3 subtopics concerned with
requirements management.

218. 3.6.1 Change management

219. Change management is central to the
management of requirements. This subtopic is
intended to describe the role of change
management, the procedures that need to be in
place and the analysis that should be applied to
proposed changes. It will have strong links to the
configuration management knowledge area.

220. 3.6.2 Requirements attributes

221. Requirements should consist not only of a
specification of what is required, but also of
ancillary information that helps manage and
interpret the requirements. This should include
the various classification dimensions of the
requirement (see 3.3.1) and the verification
method or acceptance test plan. It may also
include additional information such as a
summary rationale for each requirement, the
source of each requirement and a change history.
The most fundamental requirements attribute,
however, is an identifier that allows the
requirements to be uniquely and unambiguously

identified. A naming scheme for generating these
IDs is an essential feature of a quality system for
a requirements engineering process.

222. 3.6.3 Requirements tracing

223. Requirements tracing is concerned with
recovering the source of requirements and
predicting the effects of requirements. Tracing is
fundamental to performing impact analysis when
requirements change. A requirement should be
traceable backwards to the requirements and
stakeholders that motivated it (from a software
requirement back to the system requirement(s)
that it helps satisfy, for example). Conversely, a
requirement should be traceable forwards into
requirements and design entities that satisfy it
(for example, from a system requirement into the
software requirements that have been elaborated
from it and on into the code modules that
implement it).

224. The requirements trace for a typical project will
form a complex directed acyclic graph (DAG) of
requirements. In the past, development
organizations either had to write bespoke tools or
manage it manually. This made tracing a short-
term overhead on a project and vulnerable to
expediency when resources were short. In most
cases, this resulted in it either not being done at
all or being performed poorly. The availability of
modern requirements management tools has
improved this situation and the importance of
tracing (and requirements management in
general) is starting to make an impact in software
quality.

© IEEE – Stoneman (Version 0.7) – April 2000 2–19

Links to common themes

225. Quality Requirements management is a level 2 key practice area in the software
CMM and this has boosted recognition of its importance for quality.

226. Standards Software engineering life-cycle standards such as of ISO/IEC 12207-1995
exist and are widely used in some domains.

227. Measurement Mature organizations may measure the number of requirements changes and
use quantitative measures of impact assessment.

228. Tools There are a number of requirements management tools on the market such as
DOORS and RTM.

229. APPENDIX A – BREAKDOWN

RATIONALE

230. Criteria are defined in Appendix A of the entire
Guide.

231. Criterion (a): Number of topic breakdowns

232. One breakdown provided

233. Criterion (b): Reasonableness

234. The breakdown is reasonable in that it covers the
areas discussed in most requirements engineering
texts and standards. However requirements
validation is normally combined with
requirements verification.

235. Criterion (c): Generally accepted

236. The breakdowns are generally accepted in that
they cover areas typically in texts and standards.

237. At level A.1 the breakdown is identical to that
given in most requirements engineering texts,
apart from process improvement. Requirements
engineering process improvement is an important
emerging area in requirements engineering. We
believe this topic adds great value to any the
discussion of the requirements engineering as its
directly concerned with process quality
assessment.

238. At level A.2 the breakdown is identical to that
given in most requirements engineering texts. At
level A.3 the breakdown is similar to that
discussed in most texts. We have incorporated a
reasonably detailed section on requirement
characterization to take into account the most
commonly discussed ways of characterizing
requirements. A.4 the breakdown is similar to
that discussed in most texts, apart from document
quality assessment. We believe this an important
aspect of the requirements specification
document and deserves to be treated as a separate
sub-section. In A.5 and A.6 the breakdown is
similar to that discussed in most texts.

239. Criterion (d): No specific domains have been
assumed

240. No specific domains have been assumed

Criterion (e): Compatible with various
schools of though

241. Requirements engineering concept at the process
level are general mature and stable.

242. Criterion (f): Compatible with industry,
literature and standards

243. The breakdown used here has been derived from
literature and relevant standards to reflect a
consensus of opinion.

244. Criterion (g): As inclusive as possible

245. The inclusion of the requirements engineering
process A.1 sets the context for all requirements
engineering topics. This level is intended to
capture the mature and stable concepts in
requirements engineering. The subsequent levels
all relate to level 1 but are general enough to
allow more specific discussion or further
breakdown.

246. Criterion (h): Themes of quality, tools,
measurement and standards

247. The relationship of software requirements
engineering product quality assurance, tools and
standards is provided in the breakdown.

248. Criterion (i): 2 to 3 levels, 5 to 9 topics at the
first level

249. The proposed breakdown satisfies this criterion.

250. Criterion (j): Topic names meaningful outside
the guide

251. The topic names satisfy this criterion

252. Criterion (l): Version 0.1 of the description

253. Criterion (m): Text on the rationale underlying
the proposed breakdowns

254. This document provides the rationale

2–20 © IEEE – Stoneman (Version 0.7) – April 2000

255. APPENDIX B – RECOMMENDED

REFERENCES FOR SOFTWARE

REQUIREMENTS

255. In Table B.1 shows the topic/reference matrix.
The table is organized according to requirements
engineering topics in section 3. A ‘X’ indicates
that the topic is covered to a reasonable degree in

the reference. A ‘X’ in appearing in main topic
but not the sub-topic indicates that the main topic
is reasonably covered (in general) but the sub-
topic is not covered to any appreciable depth.
This situation is quite common in most software
engineering texts, where the subject of
requirements engineering is viewed in the large
context of software engineering.

TOPIC
R

E
F

E
R

E
N

C
E

[B
ry

94
]

[D
av

93
]

[G
og

93
]

[K
ot

98
]

[L
ou

95
]

[P
fl

98
]

[R
os

98
]

[S
om

96
]

[S
om

97
]

[T
ha

97
]

256. Requirements engineering process X X X X

Process models X X X

Process actors X X X

Process support X

Process improvement X X

257. Requirements elicitation X X X X X

Requirements sources X X X X X

Elicitation techniques X X X X X

258. Requirements analysis X X X

Requirements classification X X X

Conceptual modeling X X X

Architectural design and requirements
allocation

X X

Requirements negotiation X

259. Requirement specification X X X X X X X

The requirements definition document X X X X X X

The software requirements specification
(SRS)

X X X X X X

Document structure X X X X X

Document quality X X X X

260. Requirements validation X X X

The conduct of requirements reviews X X

Prototyping X X X

Model validation X X X

Acceptance tests X

261. Requirements management X X X

Change management X

Requirement attributes X

Requirements tracing X

262. Table B.1 Topics and their references

Key Reference
263. [Bry94] [Bryne 1994]
264. [Dav93] [Davis 1993]
265. [Gog93] [Goguen and Linde 1993]
266. [Kot98] [Kotonya and Sommerville 1998]
267. [Lou95] [Loucopulos and Karakostas 1995]

268. [Pfl98] [Pfleeger 1998]
269. [Ros98] [Rosenberg 1998]
270. [Som96] [Sommerville 1996]
271. [Som97] [Sommervelle and Sawyer 1997]
272. [Tha97] [Thayer and Dorfman 1997]

© IEEE – Stoneman (Version 0.7) – April 2000 2–21

273. APPENDIX C1 – RECOMMENDED

READING

274. [Bryne 1994]. Bryne, E., "IEEE Standard 830:
Recommended Practice for Software
Requirements Specification," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 58.

275. [Davis 1993]. Davis, A.M., Software
Requirements: Objects, Functions and States.
Prentice-Hall, 1993.

276. [Goguen and Linde 1993]. Goguen, J., and C.
Linde, "Techniques for Requirements
Elicitation," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 152-164.

277. [Kotonya and Sommerville 1998]. Kotonya, G.,
and I. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley and Sons,
1998.

278. [Loucopulos and Karakostas 1995]. Loucopulos,
P., and V. Karakostas, Systems Requirements
Engineering. McGraw-Hill, pp. 1995.

279. [Pfleeger 1998]. Pfleeger, S.L., Software
Engineering-Theory and Practice. Prentice-Hall,
Chap. 4, 1998.

280. [Rosenberg 1998]. Rosenberg, L., T.F. Hammer
and L.L. Huffman, "Requirements, testing and
metrics, " 15th Annual Pacific Northwest
Software Quality Conference, Utah, October
1998.

281. [Sommerville 1996]. Sommerville, I. Software
Engineering (5th edition), Addison-Wesley, pp.
63-97,

282. 117-136, 1996.

283. [Sommerville 1997]. Sommerville, I., and P.
Sawyer, Requirements engineering: A Good
Practice Guide. John Wiley and Sons, Chap. 1-2,
1997

284. [Thayer and Dorfman 1997]. Thayer, R.H., and
M. Dorfman, Software Requirements
Engineering (2nd Ed). IEEE Computer Society
Press, pp. 176-205, 389-404, 1997.

2–22 © IEEE – Stoneman (Version 0.7) – April 2000

285. APPENDIX D – RECOMMENDED

FURTHER READING

286. [Agarwal and Jones 1994]. Agarwal, N., and J.
Jones, "Advancing System Engineering with a
Requirements Problem. Reporting Process,"
Fourth International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 959-964.

287. [Agusa 1984]. Agusa, K., et al., "A Verification
Method for Formal Requirements Descriptions,"
Journal of Information Processing, 7, 4 (1984),
pp. 223-229.

288. [Al-Saadoon 1995]. Al-Saadoon, O., et al.,
"AURA-CFG/E: An Object-Oriented Approach
for Acquisition and Decomposition of DFDs
from End Users," Seventh International
Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1995, pp. 1-
7.

289. [Amber 1994]. Ambler, C., "Technology
Transfer From the University Laboratory Point
of View," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, p. 146.

290. [Andews and Goeddel 1994]. Andrews, B., and
W. Goeddel, "Using Rapid Prototypes for Early
Requirements Validation," Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems
Engineering, August 1994, pp. 105-112.

291. [Andrews 1991]. Andrews, D., "JAD: A Crucial
Dimension for Rapid Application Development,"
Journal of Systems Management, (March 1991),
pp. 23-31.

292. [Andriole 1992]. Andriole, S., Rapid Application
Prototyping, Wellesley, Massachusetts: QED,
1992.

293. [Andriole 1994]. Andriole, S., "Fast, Cheap
Requirements: Prototype, or Else!" Manager
Column, IEEE Software, 11, 2 (March 1994), pp.
85-87.

294. [Ardis 1997]. Ardis, M., "Formal Methods for
Telecommunication System Requirements: A
survey of Standardized Languages," Annals of
Software Engineering, 3, N. Mead, ed., 1997.

295. [Ashworth 1988]. Ashworth, C. "Structured
Systems Analysis and Design Method

(SSADM)," Information and Software
Technology, 30, 3 (April 1988), pp. 153-163.

296. [Astesiano and Reggio 1993]. Astesiano, and
Reggio, "Specifying Reactive Systems By
Abstract Events," IEEE International Workshop
on Software Specification and Design, Los
Alamitos, California: IEEE Computer Society
Press, December 1993.

297. [Atkinson and Griswold 1996]. Atkinson, D., and
W. Griswold, "The Design of Whole Program
Analysis Tools," Eighteenth IEEE International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1996.

298. [Aue and Breu 1994]. Aue, A., and M. Breu,
"Distributed Information Systems: An Advanced
Methodology," IEEE Transactions on Software
Engineering, 20, 8 (August 1994), pp. 594-605.

299. [Bally, et al. 1977]. Bally, L. et al., "A Prototype
Approach to Information Systems Design and
Development," Information and Management, 1,
1 (January 1977), pp. 21-26.

300. [Barroca and McDermid 1993]. Barroca, L., and
J. McDermid, "Specification of Real-Time
Systems -- A View-Oriented Approach,"
unknown, 1993.

301. [Barros 1993]. Barros, "Requirements Elicitation
and Formalism Through External Design and
Object-Oriented Specification," IEEE
International Workshop on Software
Specification and Design, Los Alamitos,
California: IEEE Computer Society Press,
December 1993.

302. [Belkhouche and Geraci 1994]. Belkhouche, B.,
and B. Geraci, "Ripple: A Formally Specified
Prototyping System," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 150-153.

303. [Belscher 1995]. Belscher, R., "Evaluation of
Real-Time Requirements by Simulation-Based
Analysis," First IEEE International Conference
on Engineering of Complex Computer Systems,
Los Alamitos, California: IEEE Computer
Society Press, November 1995.

304. [Ben-Abdallah, et al. 1997]. Ben-Abdallah, H., et
al., "The Integrated Specification and Analysis of
Functional, Temporal, and Resource
Requirements," IEEE International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1997.

© IEEE – Stoneman (Version 0.7) – April 2000 2–23

305. [Bentley 1992]. Bentley, R., T. Rodden, et. al.,
"Ethnographically informed Systems Design for
Air Traffic Control," CSCW'92, Toronto,
Canada, 1992.

306. [Bento 1994]. Bento, A., "Systems Analysis: A
Decision Approach," Information and
Management, 27, 3 (September 1994), pp. 185-
193.

307. [Berdon and Davis 1995]. Berdon, J. D., and A.
Davis, "Multiple-Viewpoint Based Method for
Requirements Engineering," submitted to IEE
Software Engineering Journal, December 1994.

308. [Berdon, et al. 1994]. Berdon, J. D., et al.,
"Inheritance and Adoption in Object-Oriented
Systems," in preparation.

309. [Bernard and Price 1994]. Barnard, J. and A.
Price, "Managing Code Inspection," IEEE
Software 11, 2, 1994, pp. 59-69.

310. [Berzins and Luqi 1988]. Berzins, V., and Luqi,
"Rapid Prototyping Real-Time Systems," IEEE
Software, 5, 5 (September 1988), pp. 25-36.

311. [Berzins, et al. 1993]. Berzins, V., et al., "Using
Transformations in Specification-Based
Prototyping," IEEE Transactions on Software
Engineering, 19, 5 (May 1993), pp. 436-452.

312. [Berzins, et al. 1997]. Berzins, V., et al., "A
Requirements Evolution Model for Computer
Aided Prototyping," Ninth IEEE International
Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1997, pp. 38-
47.

313. [Bestavros 1991]. Bestavros, A., "Specification
and Verification of Real-Time Embedded
Systems Using Time-Constrained Reactive
Automata," 1991 Real-Time Systems
Symposium, Los Alamitos, California: IEEE
Computer Society Press, 1991.

314. [Beyer and Holtzblatt 1995]. Beyer, H., and
Holtzblatt, K., "Apprenticing with the
Customer," Communications of the ACM, 38, 5
(May 1995), pp.45-52.

315. [Bischofberger and Pomberger 1992].
Bischofberger, W., and G. Pomberger, eds.,
Prototype-Oriented Software Development,
Berlin, Germany: Springer Verlag, 1992.

316. [Blandford, et al. 1993]. Blandford, A., et al.,
"Integrating User Requirements and System
Specification," in Computers, Communication
and Usability: Design Issues, Research and
Methods for Integrated Services, P. Byerly, et al.,

eds., New York, New York: Elsevier Science
Publishers, 1993.

317. [Blyth, et al. 1993]. Blyth, A., et al., "ORDIT: A
New Methodology to Assist in the Process of
Eliciting and Modelling Organisational
Requirements," Conference on Organisational
Computing Systems, San Jose, California,
November 1993. Also available as University of
Newcastle Technical Report #coocs-93.ps,
Newcastle, UK.

318. [Boehm 1976]. Boehm, B., "Software
engineering," IEEE Transactions on Computers,
25, 12, 1976, pp. 1226-1241.

319. [Bolton, et al. 1986]. Bolton, D., et al.,
"Knowledge-Based Support for Requirements
Engineering," Journal of Software Engineering
and Knowledge Engineering, 2, 2 (1992), pp.
293-319.

320. [Booch 1994]. Booch, G., Object-Oriented
Analysis and Design, Redwood City, California:
Benjamin/Cummings, 1994.

321. [Borster and Janning 1992]. Borster, J., and T.
Janning, "Traceability Between Requirements
and Design: A Transformational Approach,"
IEEE International Conference on Computer
Software and Applications, Los Alamitos,
California: IEEE Computer Society Press, 1992.

322. [Bowen 1985]. Bowen, T., Specification of
Software Quality Attributes, RADC Report
#RADC-TR-85-37, Griffis Air Force Base, New
York: Rome Air Development Center, February
1985.

323. [Brown, et al. 1994]. Brown, P., et al.,
"Improving the System Software Requirements
Development Process," Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems
Engineering, August 1994, pp. 691-698.

324. [Brunet, et al. 1994]. Brunet, J., et al., "Applying
Object Oriented Analysis on a Case Study,"
Information Systems, 19, 3 (1994), pp. 199-209.

325. [Bruno and Agarwal 1995]. Bruno, G., and R.
Agarwal, "Validating Software Requirements
Using Operational Models," Second Sympoium
on Software Quality Techniques and Acquisition
Criteria, Florence, Italy, May 1995.

326. [Bucci, et al. 1994]. Bucci, G., et al., "An Object-
Oriented Dual Language for Specifying Reactive
Systems," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 6-15.

2–24 © IEEE – Stoneman (Version 0.7) – April 2000

327. [Burgess, et al. 1990]. Burgess, G., et al., "The
Use of Causal Maps as a Requirements Analysis
Tool: A Case Assessment of Research
Propositions," in Human Factors in Information
Systems Analysis and Design, A. Finkelstein,
ed., Amsterdam: North-Holland-Elsevier Publ.,
1990.

328. [Burns 1991]. Burns, C., "Parallel Proto: A
Prototyping Tool for Analyzing & Validating
Sequential and Parallel Processing Software
Requirements," IEEE Second International
Workshop on Rapid System Prototyping, Los
Alamitos, California: IEEE Computer Society
Press, June 1991, pp. 151-160.

329. [Bustard and Lundy 1995]. Bustard, D., and P.
Lundy, "Enhancing Soft Systems Analysis with
Formal Modeling," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

330. [Bustard and Winstanley 1994].Bustard, D., and
A. Winstanley, "Making Changes to Formal
Specifications: Requirements and an Example,"
IEEE Transactions on Software Engineering, 20,
8 (August 1994), pp. 562-568.

331. [Caspi and Halbwachs 1986]. Caspi, P., and N.
Halbwachs, "A Functional Model for Describing
and Reasoning About Time Behavior of
Computing Systems," Acta Informatica, 22, 6
(March 1986), pp. 596-627.

332. [Castano and De Antonellis 1993]. Castano, S.,
and V. De Antonellis, "Reuse of Conceptual
Requirements Specification," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 121-124.

333. [Castano and De Antonellis 1994]. Castano, S.,
and V. De Antonellis, "The F 3 Reuse
Environment for Requirements Engineering,"
ACM Software Engineering Notes, 19, 3 (July
1994), pp. 62-65.

334. [Castano et al. 1994]. Castano, S., et al.,
"Reusability Based Comparison of Requirements
Specification Methodologies," IFIP Conference
on Methods and Associated Tools for the
Information Systems Life Cycle, Amsterdam,
The Netherlands: North-Holland, September
1994.

335. [Cerveny, et al. 1986]. Cerveny, R., et al., "The
Application of Prototyping to Systems
Development: A Rationale and Model," Journal
of Management of Information Systems, 3, 2
(1986).

336. [Chambers and Manos 1992]. Chambers, G., and
K. Manos, "Requirements: Their Origin, Format
and Control," Second Annual International
Symposium on Requirements Engineering,
Seattle, Washington: National Council on
Systems Engineering, July 1992.

337. [Chechik and Gannon 1994]. Chechik, M., and J.
Gannon, "Automated Verification of
Requirements Implementation," ACM Software
Engineering Notes, Proceedings of the
International Symposium on Software Testing
and Analysis, Special Issue (October 1994), pp.
1-15.

338. [Checkland and Scholes 1990]. Checkland, P.
and J. Scholes, Soft Systems Methodology in
Action, Chichester: John Wiley and Sons, 1990.

339. [Cherry 1993]. Cherry, G., "Class/Object
Stimulus-Response Machines," ACM Software
Engineering Notes, 18 , 2 (April 1993), pp. 86-
95.

340. [Chou and Chung 1994]. Chou, S., and S. Chung,
"An OOA Model With System Function
Specifications," IEEE International Conference
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 16-23.

341. [Chudge and Fulton 1994]. Chudge, J., and D.
Fulton, "Trust and Cooperation in System
Development: Applying Responsibility
Modeling to the Problem of Changing
Requirements," Conference on Requirements
Elicitation for Software-Based Systems, July
1994.

342. [Chung 1992]. Chung, L., J. Mylopoulos and B.
Nixon, "Representing and using nonfunctional
requirements -A process-oriented approach,"
IEEE Transactions on software engineering, 8, 6,
(1992), pp. 483-497.

343. [Chung 1993]. Chung, L., "Dealing with Security
Requirements During the Development of
Information Systems" Fifth Conference on
Advanced Information Systems Engineering,
Paris, France, June 1993.

344. [Chung and Nixon 1995]. Chung, L., and B.
Nixon, "Dealing with Non-Functional
Requirements: Three Experimental Studies of a
Process-Oriented Approach," Seventeenth IEEE
International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

345. [Chung, et al. 1991]. Chung, L., et al., "From
Information Systems Requirements to Design: A

© IEEE – Stoneman (Version 0.7) – April 2000 2–25

Mapping Framework," Information Systems, 16,
4 (April 1991), pp. 429-461.

346. [Ciaccia, et al., 1995a]. Ciaccia, P., et al., "From
Formal Requirements to Formal Design,"
Seventh International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 23-30.

347. [Ciancarini, et al. 1997]. Ciancarini, P., et al.,
"Engineering Formal Requirements: An Analysis
and Testing Method for Z Documents," Annals
of Software Engineering, 3, N. Mead, ed., 1997.

348. [Coleman and Baker 1997]. Coleman, D., and A.
Baker, "Synthesizing Structured Analysis and
Object-Based Formal Specifications," Annals of
Software Engineering, 3, N. Mead, ed., 1997.

349. [Cooper and Swanson 1979]. Cooper, R., and E.
Swanson, "Management Information
Requirements Assessment: The State of the Art,"
Database, 11, 2 (February 1979), pp. 5-16.

350. [Crespo 1994]. Crespo, R., "We Need to Identify
the Requirements of the Statements of Non-
Functional Requirements," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

351. [Cucchiarelli, et al. 1994]. Cucchiarelli, A., et al.,
"Supporting User-Analyst Interaction in
Functional Requirements Elicitation," First Asia-
Pacific Software Engineering Conference, Los
Alamitos, California: IEEE Computer Society,
December 1994, pp. 114-123.

352. [Curran, et al. 1994]. Curran, P., et al., "BORIS-
R Specification of the Requirements of a Large-
Scale SoftwareIntensive System," Conference on
Requirements Elicitation for Software-Based
Systems, July 1994.

353. [Dankel, et al. 1992]. Dankel, D., et al., "A
Model for Capturing Requirements," Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

354. [Dano et al. 1997]. Dano, B., et al., "Producing
Object-Oriented Dynamic Specifications: An
Approach Based on the Concept of 'Use Case',"
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1997.

355. [Dardenne et al. 1993]. Dardenne, A., et al.,
"Goal-Directed Requirements Acquisition,"
Science of Computer Programming, 20 (1993),
pp. 3-50.

356. [Darimont and Souquieres 1997]. Darimont, R.,
and J. Souquieres, "Reusing Operational
Requirements: A Process-Oriented Approach,"
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1997.

357. [Dauphin, et al. 1993]. Dauphin, M., et al.,
"SPECS: An FDT Based Methodology for
Development of Telecommunications Software,"
submitted to IEEE Software, May 1993.

358. [Davis 1995]. Davis, A., "Object Oriented
Analysis to Object Oriented Design: An Easy
Transformation?" Journal of Systems and
Software, 30, 1 & 2, July-August 1995, pp. 151-
159.

359. [Davis and Hsia 1994]. Davis, A., and P. Hsia,
"Giving Voice to Requirements Engineering:
Guest Editors' Introduction," IEEE Software, 11,
2 (March 1994), pp. 12-16.

360. [Davis and Sitaram 1993]. Davis, A., and P.
Sitaram, "A Concurrent Model for Software
Development," ACM Software Engineering
Notes, (March 1994).

361. [Davis, et al. 1993]. Davis, A., et al., "Identifying
and Measuring Quality in Software
Requirements Specifications," IEEE-CS
International Software Metrics Symposium, Los
Alamitos, California: IEEE Computer Society
Press, May 1993, pp. 141-152.

362. [De Antonellis and Vandoni 1993]. De
Antonellis, V., and L. Vandoni, "Temporal
Aspects in Reuse of Requirements
Specifications," Fifth Conference on Advanced
Information Systems Engineering, Paris, France,
June 1993.

363. [De Lemos, et al. 1992a]. De Lemos, R., et al.,
"A Train Set as a Case Study for the
Requirements Analysis of Safety-Critical
Systems," The Computer Journal, 35, 1
(February 1992), pp. 30-40.

364. [DeFoe 1994]. DeFoe, J., "Requirements
Engineering Technology in Industrial
Education," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, p. 145.

365. [DeFoe and McAuley 1994]. DeFoe, J., and J.
McAuley, "Generating Operations Based
Requirements," Fourth International Symposium
on Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering,
August 1994, pp. 113-119.

2–26 © IEEE – Stoneman (Version 0.7) – April 2000

366. [Delislie and Garlan 1990]. Delislie, N., and
Garlan, D., "A Formal Specification of an
Oscilloscope," IEEE Software, 7, 5 (1990) pp.
29-36.

367. [DeMarco 1997]. DeMarco, T., The Deadline,
New York, New York: Dorset House, 1997.

368. [Demirors 1997]. Demirors, E., "A Blackboard
Framework for Supporting Teams in Software
Development," Ninth IEEE International
Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1997, pp.
232-239.

369. [Diepstraten 1995]. Diepstraten, M., "Command
and Control System Requirements Analysis and
System Requirements Specification for a Tactical
System," First IEEE International Conference on
Engineering of Complex Computer Systems, Los
Alamitos, California: IEEE Computer Society
Press, November 1995.

370. [Ding and Katayama 1993]. Ding, and
Katayama, "Specifying Reactive Systems With
Attributed Finite State Machines," IEEE
International Workshop on Software
Specification and Design, Los Alamitos,
California: IEEE Computer Society Press,
December 1993.

371. [Dobson and Strens 1993]. Dobson, J., and M.
Strens, "How Responsibility Modelling Leads to
Security Requirements," New Security
Paradigms Workshop, Little Compton, Rhode
Island, August 1993. Also available as
University of Newcastle Technical Report
#nspw.93.ps, Newcastle, UK.

372. [Dobson and Strens 1994] Dobson, J., and R.
Strens, "Organizational Requirements Definition
for Information Technology," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 158-165.

373. [Doke 1990]. Doke, E., "An Industry Survey of
Emerging Prototyping Methodologies,"
Information and Management, 18, 4 (April
1990), pp. 169-176.

374. [Dowlatshashi 1994]. Dowlatshashi, J., "Rapid
Prototyping Technique in Requirements
Specification Phase of Software Development
Life Cycle," Fourth International Symposium on
Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering,
August 1994.

375. [Drake and Tsai 1994]. Drake, J., and W. Tsai,
"System Bounding Issues for Analysis," IEEE

International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 24-31.

376. [Dubois 1990]. Dubois, E., "Logical Support for
Reasoning About the Specification and the
Elaboration of Requirements," in Artificial
Intelligence in Databases and Information
Systems, R. Meersman, et al., eds., Oxford,
U.K.: Elsevier Science Publishers, pp. 79-98.

377. [Dubois, et al. 1986]. Dubois, E., et al., "A
Knowledge-Representation Language for
Requirements Engineering," Proceedings of the
IEEE, 74, 10 (October 1986), pp. 1431-1444.

378. [Duffy, et al. 1995]. Duffy, D., et al., "A
Framework for Requirements Analysis Using
Automated Reasoning," Seventh International
Conference on Advanced Information Systems
Engineering (CAiSE '95), Springer-Verlag, 1995.

379. [Easterbrook 1993]. Easterbrook, S., "Domain
Modeling with Hierarchies of Alternative
Viewpoints," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 65-72.

380. [Easterbrook and Nuseibeh 1995]. Easterbrook,
S., and B. Nuseibeh, "Managing Inconsistencies
in an Evolving Specification," Second
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1995.

381. [Eckert 1994]. Eckert, G., "Types, Classes, and
Collections in Object-Oriented Analysis," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 32-39.

382. [Edelweiss, et al. 1993]. Edelweiss, N., et al.,
"An Object-Oriented Temporal Model," Fifth
Conference on Advanced Information Systems
Engineering, Paris, France, June 1993.

383. [Edwards and White 1994]. Edwards, M., and S.
White, "Requirements Capture Views," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 73-78.

384. [Edwards, et al 1995]. Edwards, M., et al.,
"RECAP: A Requirements Elicitation, Capture,
and Analysis Process Prototype Tool for Large
Complex Systems," First IEEE International
Conference on Engineering of Complex
Computer Systems, Los Alamitos, California:
IEEE Computer Society Press, November 1995.

© IEEE – Stoneman (Version 0.7) – April 2000 2–27

385. [Ege and Villalpando 1992]. Ege, A., and V.
Villalpando, "SILK, An Advanced User Interface
Builder and Prototyper," 2nd IEEE International
Conference on Systems Integration, Los
Alamitos, California: IEEE Computer Society
Press, June 1992.

386. [El Emam and Madhavji 1995a]. El Emam, K.,
and N. Madhavji, "Requirements Engineering
Practices in Information Systems Development:
A Multiple Case Study," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

387. [Fairley and Thayer 1997]. Fairley, R., and R.
Thayer, "The Concept of Operations: The Bridge
From Operational Requirements to Technical
Specifications," Annals of Software Engineering,
3, N. Mead, ed., 1997.

388. [Fairley, et al. 1994].Technical Specifications,"
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 40-47.

389. [Farbey 1990]. Farbey, B., "Software Quality
Metrics: Considerations About Requirements and
Requirements Specifications" Information and
Software Technology, 32, 1 (January-February
1990), pp. 60-64; also in Software Engineering:
A European Perspective, R. Thayer and A.
McGettrick, eds., Los Alamitos, California:
IEEE Computer Society Press, 1993, pp. 138-
142.

390. [Faulk, et al. 1992]. Faulk, S., et al., "The Core
Method for Real-Time Requirements," IEEE
Software, 9, 5 (September 1992), pp. 22-33.

391. [Fayad, et al. 1993]. Fayad, M., et al., "Using the
Shlaer-Mellor Object-Oriented Analysis
Method.," IEEE Software, 10, 2 (March 1993),
pp. 43-52.

392. [Feather and Fickas 1991]. Feather, M., and S.
Fickas, "Coping with Requirements Freedom,"
International Workshop on Development of
Intelligent Information Systems, Niagara-on-the-
Lake, Canada, 1991, pp. 42-46.

393. [Fickas and Feather 1995]. Fickas, S., and M.
Feather, "Requirements Monitoring in Dynamic
Environments," Second International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, 1995.

394. [Fields, et al. 1995]. Fields, R., et al., "A Task-
Centered Approach to Analyzing Human Error
Tolerance Requirements," Second International
Symposium on Requirements Engineering, Los

Alamitos, California: IEEE Computer Society
Press, 1995.

395. [Fiksel and Dunkle 1991]. Fiksel, J., "Principles
of Requirements Management Automation,"
IEEE Reliability Society Leesburg Workshop on
R&M CAE in Concurrent Engineering, Los
Alamitos, California: IEEE Computer Society
Press, October 1991.

396. [Finkelstein 1990]. Finkelstein, A., "Viewpoint
Oriented Software Development," Third
International Workshop on Software Engineering
and Its Applications, Toulouse, France: EC2,
1990.

397. [Finkelstein 1991]. Finkelstein, A., "Tracing
Back From Requirements," Colloquium on Tools
and Techniques for Maintaining Traceability
During Design, McGraw Hill, 1992.

398. [Finkelstein 1991b]. Finkelstein, A., "Tracing
Back From Requirements," Tools and
Techniques for Maintaining Traceability During
Design, London, IEE Digest 1991/180, U.K.:
IEE, 1991, pp. 7/1-7/2.

399. [Finkelstein and Goldsack 1991]. Finkelstein, A.,
and S. Goldsack, "Requirements Engineering for
Real-Time Systems," IEE Software Engineering
Journal, 6, 3 (March 1991), pp. 101-115.

400. [Finkelstein, et al. 1994]. Finkelstein, A., et al.,
"Inconsistency Handling in Multiperspective
Specifications," IEEE Transactions on Software
Engineering, 20, 8 (August 1994), pp. 569-578.

401. [Firesmith 1993]. Firesmith, D., Object-Oriented
Requirement Analysis and Logical Design, New
York, New York: Wiley, 1993.

402. [Flynn 1992]. Flynn, D., Information Systems
Requirements: Determining and Analysis,
London: IEE Press Digest 1991-190, December
1991.

403. [Forsgen and Rahkonen 1995]. Forsgen, P., and
T. Rahkonen, "Specification of Customer and
User Requirements in Industrial Control System
Procurement Projects," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

404. [Fowler and Scott 1997]. Fowler, M. and Scott,
K., UML Distilled: Applying the Standard
Object Modelling Language. Reading,
Masschusetts: Addison-Wesley, 1997.

405. [Fox and Smith 1994]. Fox, A., and H. Smith,
"An Indirect Approach to Information
Requirements Determination in the Development
of Executive Information Systems," Conference

2–28 © IEEE – Stoneman (Version 0.7) – April 2000

on Requirements Elicitation for Software-Based
Systems, July 1994.

406. [Fraser, et al. 1991]. Fraser, M., et al., "Formal
and Informal Requirements Specification
Languages: Bridging the Gap," IEEE
Transactions on Software Engineering, 17, 5
(May 1991), pp. 454-466.

407. [Freeman 1981]. Freeman, P., "Why Johnny
Can't Analyze?," Systems Analysis and Design:
A Foundation for the 1980's, W. Cotterman, et
al., eds., Amsterdam, The Netherlands: North-
Holland, 1981.

408. [Furbach 1993]. Furbach, U., "Formal
Specification Methods for Reactive Systems,"
The Journal of Systems and Software, 21, 2
(May 1993), pp. 129-139.

409. [Gabrielian and Franklin 1988]. Gabrielian, A.,
and M. Franklin, "State-Based Specification of
Real-Time Systems," 1988 Real-Time Systems
Symposium, Los Alamitos, California: IEEE
Computer Society Press, 1988.

410. [Galley and Smith 1993]. Galley, D., and J.
Smith, "Overview of CORE Techniques" in
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds., Los
Alamitos, California: IEEE Computer Society
Press, 1993, pp. 97-104.

411. [Gamma 1995]. Gamma, E., Helm, R. et. al.,
Design Patterns: Elements of Reusable Object-
oriented software. Reading, Massachusetts:
Addison-Wesley, 1995.

412. [Garcia 1994]. Garcia, S., "ICRE Standard Panel:
The SECMM Project," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 59.

413. [Ghajar-Dowlatshahi and Varnekar 1994].
Ghajar-Dowlatshahi, J., and A. Varnekar, "Rapid
Prototyping in Requirements Specification Phase
of Software Systems," Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems
Engineering, August 1994, pp. 135-140.

414. [Gibson 1995]. Gibson, M., "Domain Knowledge
Reuse During Requirements Engineering,"
Seventh International Conference on Advanced
Information Systems Engineering (CAiSE '95),
Springer-Verlag, 1995.

415. [Goguen 1993]. Goguen, J., "Social Issues in
Requirements Engineering," IEEE International
Symposium on Requirements Engineering, Los

Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 194-195.

416. [Goguen and Jirotka 1994]. Goguen, J., and M.
Jirotka, eds., Requirements Engineering: Social
and Technical Issues, Boston, Massachusetts:
Academic Press, 1994.

417. [Goldin and Berry 1994]. Goldin, L., and D.
Berry, "AbstFinder: A Prototype Abstraction
Finder for Natural Language Text for Use in
Requirements Elicitation: Design, Methodology
and Evaluation," IEEE International Conference
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 84-93.

418. [Goldman and Narayanaswamy 1992]. Goldman,
N., and K. Narayanaswamy, "Software Evolution
Through Iterative Prototyping," 14th IEEE
International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1992.

419. [Gotel and Finkelstein 1995]. Gotel, O., and A.
Finkelstein, "Contribution Structures," Second
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, March 1995.

420. [Gotel and Finkelstein 1997]. Gotel, O., and A.
Finkelstein, "Extending Requirements
Traceability: Lessons Learned from an Industrial
Case Study," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1997.

421. [Grady 1993]. Grady, J., "In Defense of
Traditional System Requirements Analysis,"
Third Annual National Council on Systems
Engineering International Symposium,
Sunnyvale, California: NCOSE.

422. [Gray and Rao 1993]. Gray, E., and G. Rao,
"Software Requirements Analysis and
Specification in Europe: An Overview" in
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds., Los
Alamitos, California: IEEE Computer Society
Press, 1993, pp. 78-96.

423. [Gray and Thayer 1991]. Gray, E., and R.
Thayer, "Requirements," in Aerospace Software
Engineering: A Collection of Concepts, C.
Anderson and M. Dorfman, eds., Washington,
D.C.: AIAA, 1991, pp. 89-121.

424. [Gray, et al. 1988]. Gray, P., et al., "Dynamic
Reconfigurability for Fast Prototyping of User
Interfaces," Software Engineering Journal, 3, 6
(November 1988).

© IEEE – Stoneman (Version 0.7) – April 2000 2–29

425. [Greenspan 1993]. Greenspan, S., "Panel on
Recording Requirements Assumptions and
Rationale," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 282.

426. [Greenspan and Feblowitz 1993]. Greenspan, S.,
and M. Feblowitz, "Requirements Engineering
Using the SOS Paradigm," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 260-263.

427. [Greenspan, et al. 1994]. Greenspan, S., et al., "
On Formal Requirements Modeling Languages:
RML Revisited," Sixteenth International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society
Press, May 1994, pp. 135-147.

428. [Grosz 1992]. Grosz, G., "Building Information
System Requirements Using Generic Structures,"
IEEE International Conference on Computer
Software and Applications, Los Alamitos,
California: IEEE Computer Society Press, 1992.

429. [Hadel and Lakey 1994]. Hadel, J., and P. Lakey,
"A Customer-Oriented Approach to Optimizing
Suballocations of System Requirements," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 29-37.

430. [Hagelstein 1988]. Hagelstein, J., "Declarative
Approach to Information Systems
Requirements," Knowledge Based Systems, 1, 4
(1988), pp. 211-220; ACM Software Engineering
Notes, 16, 5 (December 1991), pp. 44-54.

431. [Hall 1990]. Hall, J. A., Using Z as a
specification calculus for object-oriented
systems. In: VDM and Z - Formal methods in
Softwrae Development. Eds. D. Bjorner, C.A.R.
Hoare and H. Langmaack. Heidelberg, Springer-
Verlag, 1990, pp.290-318.

432. [Halligan 1993]. Halligan, R., "Requirements
Metrics: The Basis of Informed Requirements
Engineering Management," 1993 Complex
Systems Engineering and Assessment
Technology Workshop, Naval Surface Warfare
Center, Dahlgren, Virginia, July 1993.

433. [Harel, et al. 1987]. Harel, D., et al., "On the
Formal Semantics of Statecharts," Second IEEE
Symposium on Logic in Computer Science, Los
Alamitos, California: IEEE Computer Society
Press, 1987.

434. [Harker 1991]. Harker, S., "Requirements
Specification and the Role of Prototyping in
Current Practice," in Taking Software Design
Seriously, J. Karat, ed., Boston, Massachusetts:
Academic Press, 1991.

435. [Harker, et al. 1993]. Harker, S., et al., "The
Change and Evolution of Requirements as a
Challenge to the Practice of Software
Engineering," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 266-272.

436. [Harris 1988]. Harris, D., "The Knowledge-
Based Requirements Assistant," IEEE Expert,
(1988).

437. [Harrison and Barnard 1993]. Harrison, M., and
P. Barnard, "On Defining Requirements for
Interaction," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 50-54.

438. [He and Yang 1992]. He, X., and C. Yang,
"Structured Analysis Using Hierarchical
Predicate Transition Nets," IEEE International
Conference on Computer Software and
Applications, Los Alamitos, California: IEEE
Computer Society Press, 1992.

439. [Heerjee, et al. 1989]. Heerjee, K., et al.,
"Retrospective Software Specification"
Information and Software Technology, 31, 6
(July/August 1989), pp. 324-332.

440. [Heimdahl 1996]. Heimdahl, M., "Errors
Introduced during the TACS II Requirements
Specification Effort: A Retrospective Case
Study," Eighteenth IEEE International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1996.

441. [Heitmeyer and Labaw 1991]. Heitmeyer, C.,
and B. Labaw., "Requirements Specification of
Hard Real-Time Systems: Experience with a
Language and a Verifier," in Foundations of
Real-Time Computing: Formal Specifications
and Methods, van Tilborg, A, and G. Koob, eds.,
Norwell, Massachusetts: Kluwer Academic
Publishers, 1991.

442. [Heitmeyer, et al. 1996]. Heitmeyer, C., et al.,
"Automated Consistency Checking
Requirements Specifications," ACM
Transactions on Software Engineering and
Methodology, 5, 3 (July 1996), pp. 231-261.

443. [Heitz 1992]. Heitz, M., "Towards More Formal
Developments Through the Integration of

2–30 © IEEE – Stoneman (Version 0.7) – April 2000

BehaviorExpression Notations and Methods
Within HOOD Developments," Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

444. [Henzinger, et al. 1991]. Henzinger, T., et al.,
"Timed Transition Systems," REX Workshop --
Real-Time Theory and Practice, 1991.

445. [Herbst 1995]. Herbst, H., "A Meta-Model for
Business Rules in Systems Analysis," Seventh
International Conference on Advanced
Information Systems Engineering (CAiSE '95),
Springer-Verlag, 1995.

446. [Hill 1991]. Hill, R., "Enabling Concurrent
Engineering by Improving the Requirements
Process" CALS and CE '91, Washington, D.C.,
June 1991.

447. [Hofmann and Holbein 1994]. Hofmann, H., and
R. Holbein, "Reaching Out for Quality:
Considering Security Requirements in the
Design of Information Systems," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

448. [Holbrook 1990]. Holbrook, H., "A Scenario-
Based Methodology for Conducting
Requirements Elicitation," ACM Software
Engineering Notes, 15, 1 (January 1990), pp. 95-
104.

449. [Holtzblatt and Beyer 1995]. Holtzblatt, K., and
H. Beyer, "Requirements Gathering: The Human
Factor," Communications of the ACM, 38, 5
(May 1995), pp. 31-32.

450. [Houghton and Thompson 1994]. Houghton, P.,
and J. Thompson, "Using Enterprise Modeling to
Elicit Requirements for Large Complex
Systems," Conference on Requirements
Elicitation for Software-Based Systems, July
1994.

451. [Hsia and Yaung 1988]. Hsia, P., and A. Yaung,
"Screen-Based Scenario Generator: A Tool for
Scenario-Based Prototyping," Hawaii
International Conference on Systems Sciences,
Los Alamitos, California: IEEE Computer
Society Press, 1988, pp. 455-461.

452. [Hsia, et al. 1993]. Hsia, P., et al., "Status
Report: Requirements Engineering," IEEE
Software, 10, 6 (November. 1993), pp. 75-79.

453. [Hsia, et al. 1994]. Hsia, P., et al., "A Formal
Approach to Scenario Analysis," IEEE Software,
11, 2 (March 1994).

454. [Hudak 1993]. Hudak, G., "Getting the
Requirements for a Requirements Tool," Third

Annual National Council on Systems
Engineering International Symposium,
Sunnyvale, California: NCOSE.

455. [Hudlicka 1996]. Hudlicka, E., "Requirements
Elicitation with Indirect Knowledge El icitation
Techniques: Comparison of Three Methods,"
Second IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1996.

456. [Hughes, et al. 1994]. Hughes, K., et al., "A
Taxonomy for Requirements Analysis
Techniques," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 176-179.

457. [Hughes, et al. 1995]. Hughes, J., et al.,
"Presenting Ethnography in the Requirements
Process," Second IEEE International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1995.

458. [Hunter and Nuseibeh 1997]. Hunter, A., and B.
Nuseibeh, "Analyzing Inconsistent
Specifications," IEEE International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1997.

459. [Hutt 1994]. Hutt, A., Object-Oriented Analysis
and Design, New York, New York: Wiley, 1994.

460. [Ingram 1987]. Ingram, D., "Requirements
Management is Key to Software Quality," CASE
Outlook, 1, 5 (November 1987).

461. [Iris, et al. 1992]. Iris, J., et al., "Formalizing
Requirements: The ARC2 Method," Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

462. [Ishihara, et al. 1993]. Ishihara, Y., et al., "A
Translation Method From Natural Language
Specifications into Formal Specifications Using
Contextual Dependencies," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 232-239.

463. [Jackson 1995]. Jackson, M., Software
Requirements and Specifications, Reading,
Massachusetts: Addison Wesley, 1995.

464. [Jackson 1997]. Jackson, M., "The Meaning of
Requirements," Annals of Software Engineering,
3, N. Mead, ed., 1997.

© IEEE – Stoneman (Version 0.7) – April 2000 2–31

465. [Jackson and Zave 1993]. Jackson, M., and P.
Zave, "Domain Descriptions," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 56-64.

466. [Jacobson, et al. 1993]. Jacobson, I., et al.,
Object-Oriented Software Engineering: A Use-
Case Driven Approach, Reading, Massachusetts:
Addison-Wesley, 1992.

467. [Jahanian and Mok 1986]. Jahanian, F., and A.
Mok, "A Graph-Theoretic Approach for Timing
Analysis in Real Time Logic," 1986 Real-Time
Systems Symposium, Los Alamitos, California:
IEEE Computer Society Press, 1986.

468. [Jahanian and Stuart 1988]. Jahanian, F., and D.
Stuart, "A Method for Verifying Properties of
Modechart Specifications," Ninth Real-Time
Systems Symposium, Los Alamitos, California:
IEEE Computer Society Press, 1988.

469. [Jahanian, et al. 1988]. Jahanian, F., et al.,
"Semantics of Modechart in Real Time Logic,"
21st Hawaii International Conference on System
Science, Los Alamitos, California: IEEE
Computer Society Press, 1987.

470. [Jarke, et al. 1993a]. Jarke, M., et al.,
"Requirements Engineering: An Integrated View
of Representation, Process, and Domain," 4th
European Conference on Software Engineering,
September 1993.

471. [Jeremaes, et al. 1986]. Jeremaes, P., et al., "A
Modal (Action) Logic for Requirements
Specification," in Software Engineering '86, P.
Brown and D. Barnes, eds., Peter Peregrinus,
1986.

472. [Jirotka and Goguen 1994]. Jirotka, M., and J.
Goguen, eds., Requirements Engineering: Social
and Technical Issues, London, U.K.: Academic
Press, 1994.

473. [Jirotka and Heath 1995] Jirotka, M., and C.
Heath, "Ethnography by Video for Requirements
Capture," Second International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, 1995.

474. [Johnson, et al. 1991]. Johnson, W., et al., "The
KBSA Requirements/Specification Facet:
ARIES," Sixth Annual Knowledge-Based
Software Engineering Conference, Los Alamitos,
California: IEEE Computer Society Press,
September 1991.

475. [Johnson, et al. 1992]. Johnson, W., et al.,
"Representation and Presentation of
Requirements Knowledge," IEEE Transactions

on Software Engineering, 18, 10 (October 1992),
pp. 853-69.

476. [Jones 1994]. Jones, L., "Practical Experiences in
Automating Requirements in Elicitation: The
Real Issues," Conference on Requirements
Elicitation for Software-Based Systems, July
1994.

477. [Jones and Britton 1996]. Jones, S., and C.
Britton, "Early Elicitation and Definition of
Requirements for an Interactive Multimedia
Information System," Second IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1996.

478. [Jones and Brooks 1994]. Jones, M., and L.
Brooks, "Addressing Organizational Context in
Requirements Analysis Using Cognitive
Mapping," Conference on Requirements
Elicitation for Software-Based Systems, July
1994.

479. [Kaindl 1993]. Kaindl, H., "Missing Link in
Requirements Engineering," ACM Software
Engineering Notes, 18 , 2 (April 1993), pp. 30-
39.

480. [Kang and Ko 1995]. Kang, K., and G. Ko,
"PARTS: A Temporal Logic-based Real-Time
Software Specification and Verification Method
Supporting Multiple Viewpoints," Seventeenth
IEEE International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

481. [Kefer 1994]. Kefer, M., "Improving
Requirements Processing, A Case Study," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 987-990.

482. [Kent, et al. 1993]. Kent, S., et al., "Formally
Specifying Temporal Constraints and Error
Recovery," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 208-215.

483. [Kesten and Pnueli 1991]. Kesten, Y., and A.
Pnueli, "Timed and Hybrid Statecharts and Their
Textual Representation," Formal Techniques in
Real-Time and Fault Tolerant Systems, Berlin:
Springer-Verlag, 1991, pp. 591-620.

484. [Kim and Chong 1996]. Kim, D.-H., and K.
Chong, "A Method of Checking Errors and
Consistency in the Process of Object-Oriented
Analysis," 1996 Asia-Pacific Conference on
Software Engineering, December 1996.

2–32 © IEEE – Stoneman (Version 0.7) – April 2000

485. [Kirner 1993]. Kirner, T., "Analysis of Real-
Time System Specification Methods," ACM
Software Engineering Notes, 18 , 3 (July 1993),
pp. A-50 -- A-53.

486. [Kirner and Davis 1995]. Kirner, T., and A.
Davis, "Nonfunctional Requirements for Real-
Time Systems," Advances in Computers, 1996.

487. [Kiskis and Shin 1994]. Kiskis, D., and K. Shin,
"SWSL: A Synthetic Workload Specification
Language for Real-Time Systems," IEEE
Transactions on Software Engineering, 20, 10
(October 1994), pp. 798-811.

488. [Klein 1997]. Klein, M., "Handling Exceptions in
Collaborative Requirements Acquisition," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1997.

489. [Koch 1993]. Koch, G., "Process assessment: the
'BOOTSTRAP' approach," Information and
Software Technology 35, 6/7 (1993), pp.387-
403.

490. [Kosman 1997]. Kosman, R., "A Two-Step
Methodology to Reduce Requirements Defects,"
Annals of Software Engineering, 3, N. Mead,
ed., 1997.

491. [Kotonya and Sommerville 1992]. Kotonya, G.,
and I. Sommerville, "Viewpoints for
Requirements Definition," Software Engineering
Journal, 7, 6 (November 1992), pp. 375-387.

492. [Kovarik 1993]. Kovarik, V., "Automated
Support for Managing System Requirements,"
Third Annual National Council on Systems
Engineering International Symposium,
Sunnyvale, California: NCOSE.

493. [Kramer, et al. 1988]. Kramer, J., et al., "Tool
Support for Requirements Analysis," IEE
Software Engineering Journal, 3 (May 1988), pp.
86-96.

494. [Kramer, et al. 1993]. Kramer, B., et al.,
"Computational Semantics of a Real-Time
Prototyping Language," IEEE Transactions on
Software Engineering, 19, 5 (May 1993), pp.
453-477.

495. [Krogstie, et al. 1995]. Krogs tie, J., et al.,
"Towards a Deeper Understanding of Quality in
Requirements Engineering," Seventh
International Conference on Advanced
Information Systems Engineering (CAiSE '95),
Springer-Verlag, 1995.

496. [Kuwana and Herbsleb 1993]. Kuwana, E., and J.
Herbsleb, "Representing Knowledge in
Requirements Engineering: An Empirical Study

of What Software Engineers Need to Know,"
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 273-
276.

497. [Lalioti and Theodoulidis 1995]. Lalioti, V., and
B. Theodoulidis, "Visual Scenarios for
Validation of Requirements Specification,"
Seventh International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 114-116.

498. [Lam 1997]. Lam, W., "Achieving Requirements
Reuse: A Domain-Specific Approach from
Avionics," Journal of Systems and Software,
submitted for review May 1996.

499. [Lamsweerde, et al. 1995]. Lamsweerde, A., et
al., "Goal-Directed Elaboration of Requirements
for a Meeting Scheduler," Second IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, March 1995.

500. [Landes 1994]. Landes, D., "Addressing Non-
Functional Requirements in the Development of
Knowledge-Based Systems," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

501. [Lano and Haughton 1994]. Lano, K., and H.
Haughton, Object-Oriented Specification Case
Studies, Englewood Cliffs, New Jersey: Prentice
Hall, 1994.

502. [LaSala 1994]. LaSala, K., "Identifying Profiling
System Requirements with Quality Function
Deployment," Fourth International Symposium
on Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering,
August 1994, pp. 249-253.

503. [Lea and Chung 1990]. Lea, R., and C. Chung,
"Rapid Prototyping From Structured Analysis:
Executable Specification Approach," Information
and Software Technology, 32, 9 (September
1990), pp. 589-597.

504. [Lee 1993]. Lee, J., "Incrementality in Rationale
Management," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, p. 283.

505. [Leffingwell 1994]. Leffingwell, D., "Object-
Oriented Software Development and Medical
Devices," Medical Device and Diagnostic
Industry Magazine, 14, 11 (November 1994), pp.
80-88.

© IEEE – Stoneman (Version 0.7) – April 2000 2–33

506. [Leffingwell 1997]. Leffingwell, D., "Calculating
the Return on Investment from More Effective
Requirements Management," American
Programmer, 10, 4 (April 1997), pp. 13-16.

507. [Leite 1991]. Leite, J. C. P., and P. A. Freeman,
"Requirements validation through viewpoint
resolution," Transactions of Software
Engineering, 12, 12, 1991, pp.1253-1269.

508. [Leite, et al. 1997]. Leite, J., et al., "Enhancing a
Requirements Baseline with Scenarios," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1997.

509. [Lerch, et al. 1997]. Lerch, F., et al., "Using
Simulation-Based Experiments for Software
Requirements Engineering," Annals of Software
Engineering, 3, N. Mead, ed., 1997.

510. [Leveson and Harvey 1983]. Leveson, N. G. and
Harvey, P. R., "Analyzing software safety,"
IEEE Transactions on Software Engineering, 9,
5, (1983), pp. 569- 579.

511. [Leveson, et al. 1994]. Leveson, N., et al.,
"Requirements Specification for Process-Control
Systems," IEEE Transactions on Software
Engineering, 20, 9 (September 1994), pp. 684-
707.

512. [Li 1993]. Li, W., "Theory Revision for
Requirements Capture," 4th International Joint
Conference on the Theory and Practice of
Software Development, Paris, France: AFCET,
April 1993.

513. [Liang and Palmer 1994]. Liang, J., and J.
Palmer, "A Pattern Matching and Clustering
Based Approach for Supporting Requirements
Transformation," IEEE International Conference
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 180-183.

514. [Linton, et al. 1989]. Linton, M., et al.,
"Composing User Interfaces With Interviews,"
IEEE Computer, 22, 2 (February 1989).

515. [Liu 1993]. Liu, S., "A Formal Requirements
Specification Method Based on Data Flow
Analysis," The Journal of Systems and Software,
21, 2 (May 1993), pp. 141-149.

516. [Liu and Yen 1996]. Liu, F., and J. Yen, "An
Analytic Framework for Specifying and
Analyzing Imprecise Requirements," Eighteenth
IEEE International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1996.

517. [Loucopoulos and Champion 1990].
Loucopoulos, P., and R. Champion, "Concept
Definition and Analysis for Requirements
Specificat ion," IEE Software Engineering
Journal, 2 (March 1990).

518. [Lubars, et al. 1992]. Lubars, M., et al, "Object
Oriented Analysis for Evolving Systems," IEEE
14th International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, May 1992, pp. 173-185.

519. [Lubars, et al. 1993]. Lubars, M., et al, "A
Review of the State of the Practice in
Requirements Modeling," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 2-14.

520. [Lubars, et al. 1993a]. Lubars, M., et al,
"Developing Initial OOA Models," 15th IEEE
International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1993.

521. [Luff, et al. 1993]. Luff, P., et al, "Task and
Social Interaction: The Relevance of Naturalist
Analyses of Conduct for Requirements
Engineering," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 187-190.

522. [Lukaszews ki 1994]. Lukaszewski, M.,
"Applying Object-Oriented Methodology to
Commercial Systems Engineering," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 867-872.

523. [Luqi 1993]. Luqi, "How to Use Prototyping for
Requirements Engineering," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, p. 229.

524. [Lustman 1997]. Lustman, F., "A Formal
Approach to Scenario Integration," Annals of
Software Engineering, 3, N. Mead, ed., 1997.

525. [Lutz and Woodhouse 1996]. Lutz, R., and R.
Woodhouse, "Contributions of SFMEA to
Requirements Analysis," Second IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1996.

526. [Lutz and Woodhouse 1997]. Lutz,R., and R.
Woodhouse, "Requirements Analysis Using
Forward and Backward Search," Annals of
Software Engineering, 3, N. Mead, ed., 1997.

2–34 © IEEE – Stoneman (Version 0.7) – April 2000

527. [Macaulay 1993]. Macaulay, L., "Requirements
Capture as a Cooperative Activity," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 174-181.

528. [Macaulay 1996]. Macaulay, L., Requirements
Engineering, London, UK: Springer, 1996.

529. [Macfarlane and Reilly 1995]. Macfarlane, I.,
and I. Reilly, "Requirements Traceability in an
Integrated Development Environment," Second
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, March 1995.

530. [Maiden and Rugg 1994]. Maiden, N., and G.
Rugg, "Knowledge Acquisition Techniques in
Requirements Engineering," Software
Engineering Journal, 1995.

531. [Maiden and Rugg 1995]. Maiden, N., et al.,
"Computational Mechanisms for Distributed
Requirements Engineering," Seventh
International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 8-15.

532. [Maiden and Sutcliffe 1994]. Maiden, N., and A.
Sutcliffe, "Requirements Critiquing Using
Domain Abstractions," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 184-193.

533. [Manos 1993]. Manos, K., "Strategies for
Preventing Future 'Requirements Creep,'" Third
Annual National Council on Systems
Engineering International Symposium,
Sunnyvale, California: NCOSE, pp. 375-380.

534. [Mar 1994]. Mar, B., "Requirements for
Development of Software Requirements," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 39-44.

535. [Marca and McGowan 1993]. Marca, D., and C.
McGowan, "Specification Approaches Express
Different World Hypotheses," IEEE International
Workshop on Software Specification and Design,
Los Alamitos, California: IEEE Computer
Society Press, December 1993.

536. [Martin 1993]. Martin, J., "Managing Integrated
Product Teams During the Requirements
Definition Phase," Third International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems
Engineering, July 1993.

537. [Martinka 1995]. Martinka, J., "Functional
Requirements for Client/Server Performance
Modeling: An Implementation Using Discrete
Event Simulation," First IEEE International
Conference on Engineering of Complex
Computer Systems, Los Alamitos, California:
IEEE Computer Society Press, November 1995.

538. [Martin-Rubio and Martinez-Bejar 1997].
Martin-Rubio, F., and R. Martinez-Bejar, "A
Mathematical Functions-Based for Analyzing
Elicited Knowledge," Ninth IEEE International
Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1997, pp. 62-
69.

539. [Massonet and van Lamsweerde 1997].
Massonet, P., and A. van Lamsweerde,
"Analogical Reuse of Requirements
Frameworks," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1997.

540. [Matthews and Ryan 1989]. Matthews, B., and
K. Ryan, "Requirements Specification Using
Conceptual Graphs," 2nd International CASE
Conference, London, UK, 1989.

541. [Mays, et al. 1985]. Mays, R., et al., "PDM: A
Requirements Methodology for Software System
Enhancements," IBM Systems Journal, 24, 2
(February 1985), pp. 134-149.

542. [McFarland and Reilly 1995]. McFarland, I., and
I. Reilly, "Requirements Traceability in an
Integrated Development Environment," Second
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

543. [McGowan 1994]. McGowan, C., "Requirements
Engineering: A Different Analogy," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, p. 147.

544. [Mead 1993]. Mead, N., "Mostly Theory at First
Requirements Symposium," IEEE Software, 10,
2 (March 1993), p. 107.

545. [Mead 1994]. Mead, N., "The Role of Software
Architecture in Requirements Engineering,"
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, p. 242.

546. [Methlie 1980]. Methlie, L., "Systems
Requirements Analysis -- Methods and Models,"
The Information Systems Environment, H.

© IEEE – Stoneman (Version 0.7) – April 2000 2–35

Lucas, et al., eds., Amsterdam, The Netherlands:
North-Holland, 1981.

547. [Meyer 1985]. Meyer, B., "On Formalism in
Specification," IEEE Software, 2, 1 (January
1985), pp. 6-26.

548. [Meyers and White 1983]. Meyers, S., and S.
White, Software Requirements Methodology and
Tool Study: A-6E Technology Transfer,
Grumman Aerospace Corporation Technical
Report, prepared for Naval Weapons Center,
Bethpage, New York, July 1983.

549. [Meziane and Vadera 1997]. Meziane, F., and S.
Vadera, "Tools for Producing Formal
Specifications: A View of Current Architectures
and Future Directions," Annals of Software
Engineering, 3, N. Mead, ed., 1997.

550. [Might 1993]. Might, R., "Requirements
Analysis: Going From User Needs to Specific
Performance Parameters," Third Annual National
Council on Systems Engineering International
Symposium, Sunnyvale, California: NCOSE.

551. [Miller and Sabor 1994]. Miller, L., and B.
Sabor, "IEEE Draft Standard P1233: Guide for
Developing System Requirements Specification,"
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, p. 61.

552. [Milovanovic, et al. 1995]. Milovanovic, R., et
al., "Organic Growth via Development: The
Early Life Cycle," in Automated Systems Based
on Human Skill, D. Brandt and T. Martin, eds.,
Berlin, Germany: Pergamon Press, 1995.

553. [Moreno 1997]. Moreno, A., "Object-Oriented
Analysis From Textual Specifications ," Ninth
IEEE International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1997, pp. 48-55.

554. [Morgan and Schahczenski 1994]. Morgan, N.,
and C. Schahczenski, "Transitioning to Rigorous
Software Specification," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 110-117.

555. [Mostert and von Solms 1995]. Mostert, D., and
S. von Solms, "A Technique to Include
Computer Security, Safety, and Resilience
Requirements as Part of the Requirements
Specification," Journal of Systems and Software,
31, 1 (October 1995), pp. 45-53.

556. [Mullery 1979]. Mullery, G., "A method for
controlled requirements specifications", 4th

international Conference on Software
Engineering, Munich, Germany, IEEE Computer
Society Press, (1979), pp.126-135.

557. [Mumford 1985]. Mumford, E., "Defining
System Requirements to Meet Business Needs:
A Case Study Example," Computer Journal, 28,
2 (1985), pp. 97-104.

558. [Muntz and Lichota 1991]. Muntz, A., and R.
Lichota, "A Requirements Specification Method
for Real Time Systems," 1991 IEEE Real Time
Systems Symposium, Los Alamitos, California:
IEEE Computer Society Press, 1991, pp. 264-
273.

559. [Mylopoulos, et al. 1992]. Mylopoulos, J., et al.,
"Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach,"
IEEE Transactions on Software Engineering, 18,
6 (June 1992), pp. 483-497.

560. [Mylopoulos, et al. 1995]. Mylopoulos, J., et al.,
"Multiple Viewpoints Analysis of Software
Specificat ion Process," submitted to IEEE
Transactions on Software Engineering.

561. [Nakajima and Davis 1994]. Nakajima, T., and
A. Davis, "Classifying Requirements for
Improved SRS Reviews," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

562. [Nan and Buede 1994]. Nan, J., and D. Buede,
"Incorporating Structured Modeling in Object-
Oriented Analysis" Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems
Engineering, August 1994.

563. [Naumann, et al. 1980]. Naumann, J., et al.,
"Determining Information Requirements: A
Contingency Method for Selection of
Requirements Assurance Strategy," Journal of
Systems and Software, 1, 4 (June 1980), pp. 273-
281.

564. [Nellborn and Holm 1994]. Nellborn, C., and P.
Holm, "Capturing Information Systems
Requirements Through Enterprise and Speech
Modeling," Sixth Conference on Advanced
Information Systems Engineering, Utrecht,
Netherlands, June 1994.

565. [Nishimura and Honiden 1992]. Nishimura, K.,
and S. Honiden, "Representing and Using Non-
Functional Requirements: A Process-Oriented
Approach," submitted to IEEE Transactions on
Software Engineering, December 1992.

566. [Nissen, et al. 1997]. Nissen, H., et al., "View-
Directed Requirements Engineering: A

2–36 © IEEE – Stoneman (Version 0.7) – April 2000

Framework and Metamodel," Ninth IEEE
International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1997, pp. 366-373.

567. [Nixon 1993]. Nixon, B., "Dealing with
Performance Requirements During the
Development of Information Systems," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 42-
49.

568. [Nuseibeh, et al. 1994]. Nuseibeh, B., et al., "A
Framework for Expressing the Relationships
Between Multiple Views in Requirements
Specification," IEEE Transactions on Software
Engineering, 20, 10 (October 1994), pp. 760-
773.

569. [O'Brien 1996]. O'Brien, L., "From Use Case to
Database: Implementing a Requirements
Tracking System," Software Development, 4, 2
(February 1996), pp. 43-47.

570. [Ohnishi 1994]. Ohnishi, A., "A Visual Software
Requirements Definition Method," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 194-
201.

571. [Ohnishi 1994a]. Ohnishi, A., "Customizable
Software Requirements Languages," Eighteenth
International IEEE Conference on Computer
Software and Applications, Los Alamitos,
California: IEEE Computer Society, November
1994, pp. 5-10.

572. [Opdahl 1994]. Opdahl, A., "Requirements
Engineering for Software Performance,"
International Workshop on Requirements
Engineering: Foundations of Software Quality,
June 1994.

573. [Ostroff and Wonham 1987]. Ostroff, J., and W.
Wonham, "Modeling, Specifying, and Verifying
Real-Time Embedded Computer Systems," 1987
Real-Time Systems Symposium, Los Alamitos,
California: IEEE Computer Society Press, 1987.

574. [Ozcan and Siddiqi 1993]. Ozcan, M., and J.
Siddiqi, "A Rapid Prototyping Environment for
the Validation of Software Systems," 6th
International Conference on Software
Engineering and Its Applications, Los Alamitos,
California: IEEE Computer Society Press, Paris,
France: EC2, 1993.

575. [Ozcan and Siddiqi 1994]. Ozcan, M., and J.
Siddiqi, "Validating and Evolving Software

Requirements in a Systematic Framework," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 202-
205.

576. [Palmer and Liang 1992]. Palmer, J., and J.
Liang, "Indexing and Clustering of Software
Requirements Specifications," Information and
Decision Technologies, 18 (1992), pp. 283-299.

577. [Park, et al., 1995a]. Park, S., et al., "Text-Based
Requirements Modeling Support System,"
Seventh International Conference on Software
Engineering and Knowledge Engineering,
Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 16-22.

578. [Paulk 1993]. Paulk, M.C., et. al., "Capability
Maturity Model, Version 1.1," IEEE Software
10, 4, (1993), pp. 18-27.

579. [Paulk 1995]. Paulk, M. C., et. al., The
Capability Maturity Model: Guidelines for
Improving the Software Process. Reading,
Massachusetts: Addison-Wesley, 1995.

580. [Pinheiro and Goguen]. Pinheiro,F., and J.
Goguen, "An Object-Oriented Tool for Tracing
Requirements," IEEE Software, 13, 2 (March
1996), pp. 52-64.

581. [Pinkerton and Fogle 1992]. Pinkerton, M., and
F. Fogle, "Requirements
Management/Traceability: A Case Study --
NASA's National Launch System," Second
Annual International Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

582. [Piprani and Morris 1993]. Piprani, C., and
Morris, "A Multi-Model Approach for Deriving
Requirements Specifications for a Mega-
Project," Fifth Conference on Advanced
Information Systems Engineering, Paris, France,
June 1993.

583. [Playle and Schroeder 1996]. Playle, G., and C.
Schroeder, "Software Requirements Elicitation:
Problems, Tools, and Techniques," Crosstalk:
The Journal of Defense Software Engineering, 9,
12 (December 1996), pp. 19-24.

584. [Pliskin and Shoval 1987]. Pliskin, N., and P.
Shoval, "End-User Prototyping: Sophisticated
Users Supporting Systems Development,"
Database, 18, 4 (April 1987), pp. 7-17.

585. [Pohl, et al. 1994]. Pohl, K., et al., "Applying AI
Techniques to Requirements Engineering: The
NATURE Prototype," IEEE Workshop on

© IEEE – Stoneman (Version 0.7) – April 2000 2–37

Research Issues in the Intersection Between
Software Engineering and Artificial Intelligence,
Los Alamitos, California: IEEE Computer
Society Press, May 1994.

586. [Pohl, et al. 1995]. Pohl, K., et al., "Workshop
Summary: First International Workshop on
Requirements Engineering: Foundation of
Software Quality," ACM Software Engineering
Notes, 20, 1 (January 1995), pp. 39-46.

587. [Porter and Votta 1994]. Porter, A., and L. Votta,
"An Experiment to Assess Different Defect
Detection Methods for Software Requirements
Inspections," Sixteenth International Conference
on Software Engineering, Los Alamitos,
California: IEEE Computer Society Press, May
1994, pp. 103-112.

588. [Porter, et al. 1995]. Porter, A., et al.,
"Comparing Detection Methods for Software
Requirements Inspections: A Replicated
Experiment," IEEE Transactions on Software
Engineering, 21, 6 (June 1995), pp. 563-575.

589. [Poston 1996]. Poston, R., Automating
Specification-Based Software Testing , Los
Alamitos, California: IEEE Computer Society
Press, 1996.

590. [Potts 1993]. Potts, C., "Panel: I Never Knew my
Requirements were Object-Oriented Until I
Talked to My Analyst," International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, p. 226.

591. [Potts 1993a]. Potts, C., "Software Engineering
Research Revisited," IEEE Software, 10, 5
(September 1993).

592. [Potts 1994]. Potts, C., "Three Architectures in
Search of Requirements," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 243.

593. [Potts and Hsi 1997]. Potts, C., and I. Hsi,
"Abstraction and Context in Requirements
Engineering: Toward a Synthesis," Annals of
Software Engineering, 3, N. Mead, ed., 1997.

594. [Potts and Newstetter 1997]. Potts, C., and W.
Newstetter., "Naturalistic Inquiry and
Requirements Engineering: Reconciling Their
Theoretical Foundations," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1997.

595. [Potts and Takahashi 1993]. Potts, C., and K.
Takahashi, "An Active Hypertext Model for

System Requirements," 7th International
Workshop on Software Specification and Design,
Los Alamitos, California: IEEE Computer
Society Press, December 1993.

596. [Potts, et al. 1995] Potts, C., et al., "An
Evaluation of Inquiry-Based Requirements
Analysis for an Internet Server," Second
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

597. [Quer and Olive 1993]. Quer, C. and A. Olive,
"Object Interaction in Object-Oriented Deductive
Conceptual Models," Fifth Conference on
Advanced Information Systems Engineering,
Paris, France, June 1993.

598. [Ramesh and Edwards 1993]. Ramesh, B., and
M. Edwards, "Issues in the Development of a
Requirements Traceability Model," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 256-259.

599. [Ramesh and Luqi 1993]. Ramesh, B., and Luqi,
"Process Knowledge Based Rapid Prototyping
for Requirements Engineering," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 248-255.

600. [Ramesh, et al. 1995]. Ramesh, B., et al.,
"Implementing Requirements Traceability: A
Case Study," Second International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, 1995.

601. [Rauterberg and Strom 1994]. Rauterberg, M.,
and O. Strom, "About the Benefits of User-
Oriented Requirements Engineering,"
International Workshop on Requirements
Engineering: Foundations of Software Quality,
June 1994.

602. [Ravn, et al. 1993]. Ravn, A., et al., "Specifying
and Verifying Requirements of Real-Time
Systems," IEEE Transactions on Software
Engineering, 19, 1 (January 1993), pp. 41-55.

603. [Reed, et al. 1993]. Reed, M., et al.,
"Requirements Traceability," Third Annual
National Council on Systems Engineering
International Symposium, Sunnyvale, California:
NCOSE.

604. [Regnell, et al. 1995]. Regnell, B., et al.,
"Improving the Use Case Driven Approach to
Requirements Engineering," Second IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1995.

2–38 © IEEE – Stoneman (Version 0.7) – April 2000

605. [Reizer, et al. 1994]. Reizer, N., et al., "Using
Formal Methods for Requirements Specification
of a Proposed POSIX Standard," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 118-
125.

606. [Reubenstein 1994]. Reubenstein, H., "The Role
of Software Architecture in Software
Requirements Engineering," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 244.

607. [Robertson and Robertson 1994]. Robertson, J.,
and S. Robertson, Complete Systems Analysis,
Vols. 1 and 2, Englewood Cliffs, New Jersey:
Prentice Hall, 1994.

608. [Robinson 1988]. Robinson, W., "Integrating
Multiple Specifications Using Domain Goals,"
Fifth International Workshop on Software
Specification and Design, Los Alamitos,
California: IEEE Computer Society Press, 1988,
pp. 216-226.

609. [Robinson 1990]. Robinson, W., "A Multi-Agent
View of Requirements," 12th International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1990.

610. [Robinson and Fickas 1994]. Robinson, W., and
S. Fickas, "Supporting Multi-Perspective
Requirements Engineering," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 206-215.

611. [Rolland 1994]. Rolland, C., "Modeling and
Evolution of Artifacts," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 216-219.

612. [Rolland 1994a]. Rolland, C., "A Contextual
Approach for the Requirements Engineering
Process," 6th International Conference on
Software Engineering and Knowledge
Engineering, June 1994.

613. [Rolland and Prakash 1994]. Rolland, C., and N.
Prakash, "Guiding the Requirements Engineering
Process," First Asia-Pacific Conference on
Software Engineering, December 1994.

614. [Rolland and Proix 1992]. Rolland, C., and C.
Proix, "A Natural Language Approach to
Requirements Engineering," 4th International
CAiSE Conference, Manchester, UK, 1992.

615. [Ross 1985]. Ross, D., "Applications and
extensions of SADT," IEEE Computer, 18, 4,
(1985) pp.25-34.

616. [Rundlet and Miller 1994]. Rundlet, N., and W.
Miller, "Requirements Management: DOORS to
the Battlefield of the Future," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 65-72.

617. [Ryan 1993]. Ryan, K., "The Role of Natural
Language in Requirements Engineering,"
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 240-
242.

618. [Ryan and Matthews 1993]. Ryan, M., and B.
Matthews, "Matching Conceptual Graphs to
Requirements Re-use," International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 112-120.

619. [Ryan and O'Beirne 1994]. Ryan, K., and A.
O'Beirne, "An Experiment in Requirements
Engineering Using Conceptual Graphs,"
Conference on Requirements Elicitation for
Software-Based Systems, July 1994.

620. [Rzepka 1994]. Rzepka, W., "Technology
Transfer at Rome Laboratory," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, p. 148.

621. [Rzepka and Daley 1986]. Rzepka, W., and P.
Daley, "A Prototyping Tool to Assist in
Requirements Engineering," 19th Hawaii
International Conference on Systems Science,
Los Alamitos, California: IEEE Computer
Society Press, January 1986.

622. [Rzepka, et al. 1993]. Rzepka, W., et al.,
"Requirements Engineering Technologies at
Rome Laboratory," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 15-18.

623. [Saeed, et al. 1991]. Saeed, A., et al., "The Role
of Formal Methods in the Requirements Analysis
for Safety-Critical Systems: a Train Set
Example," 21st Symposium on Fault-Tolerant
Computing, June 1991, pp. 478-485.

624. [Saeed, et al. 1992]. Saeed, A., et al., An
Approach to the Assessment of Requirements
Specifications for Safety-Critical Systems,

© IEEE – Stoneman (Version 0.7) – April 2000 2–39

Technical Report 381, Computing Laboratory,
University of Newcastle on Tyne, 1992.

625. [Saeki, et al. 1996]. Saeki, M., et al., "Structuring
Utterance Records of Requirements Elicitation
Meetings Based on Speech Act Theory," Second
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1996.

626. [Sailor 1992]. Sailor, J., "Building and Managing
the Requirements/Verification Database,"
Second Annual International Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

627. [Samson 1993]. Samson, D., "Knowledge-Based
Test Planning: Framework for a Knowledge-
Based System to Prepare a System Test Plan
From System Requirements," The Journal of
Systems and Software, 20, 2 (February 1993),
pp. 115-124.

628. [Sateesh 1995]. Sateesh, T., "Making the
Requirements of Process Controlled Systems,"
28th Annual IEEE International Conference on
System Sciences, Redondo Beach, CA: IEEE
Computer Society Press, 1995.

629. [Scheurer and Volz 1994]. Scheurer, R., and M.
Volz, "Capturing and Taming Derived
Requirements," Fourth International Symposium
on Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering,
August 1994, pp. 83-89.

630. [Schmitt 1993]. Schmitt, J., "Product Modeling
for Requirements Engineering Process
Modeling," in Information System Development
Process, N. Prakash, et al., eds., New York, New
York: Elsevier Science Publishers, 1993, pp.
231-245.

631. [Schneider, et al. 1992]. Schneider, G., et al.,
"An Experimental Study of Fault Detection in
User Requirements Documents," ACM
Transactions on Software Engineering and
Methodology, 1, 2 (April 1992), pp. 188-204.

632. [Schoening 1994]. Schoening, W., "The Next
Big Step in Systems Engineering Tools:
Integrating Automated Requirements Tools with
Computer Simulated Synthesis and Test," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 409-415.

633. [Selic et al. 1994]. Selic, B., et al., Real-Time
Object-Oriented Modeling, New York, New
York: Wiley, 1994.

634. [Sfigakis, et al. 1992]. Sfigakis, M., et al.,
"Mapping Structured Analysis Semantics to
Hierarchical Object-Oriented Design," Fifth
International Conference on Software
Engineering and Its Applications, Nanterre,
France: EC2, 1992.

635. [Shekaran 1994]. Shekaran, M., "The Role of
Software Architecture in Requirements
Engineering," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, p. 245.

636. [Shim and Kim 1997]. Shim, Y., and H. Shim, et
al., "Specification and Analysis of Security
Requirements for Distributed Applications,"
Ninth IEEE International Conference on
Software Engineering and Knowledge
Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 374-381.

637. [Sibley, et al. 1993]. Sibley, E., et al., "The Role
of Policy in Requirements Definition," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 277-
280.

638. [Siddiqi, et al. 1994]. Siddiqi, J., et al., "Towards
a System for the Construction, Clarification,
Discovery, and Formalization of Requirements,"
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 230-
238.

639. [Siddiqi, et al. 1997]. Siddiqi, J., et al., "Towards
Quality Requirements Via Animated Formal
Specifications," Annals of Software Engineering,
3, N. Mead, ed., 1997.

640. [Simon 1994]. Simon, B., "Requirements
Management Implementation Roadblocks,"
Fourth International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 79-82.

641. [Sindre and Opdahl 1993]. Sindre, G., and A.
Opdahl, "Concepts for Real-World Modelling,"
Fifth Conference on Advanced Information
Systems Engineering, Paris, France, June 1993.

642. [Si-Said, et al. 199]. Si-Said, S., et al., "Mentor:
A Computer Aided Requirements Engineering
Environment," Eighth Conference on Advanced
Information Systems Engineering (CAiSE '96),
Heraklion, Crete, Greece, May 1996,.

643. [Smith 1991]. Smith, M., Software Prototyping,
New York, New York: McGraw Hill, 1991.

2–40 © IEEE – Stoneman (Version 0.7) – April 2000

644. [Smith 1993]. Smith, T., "READS: A
Requirements Engineering Tool," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 94-97.

645. [Smith, et al. 1992]. Smith, J., "Systems
Engineering with the Right Requirements: An
Approach for Assessing User Needs," Second
Annual International Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

646. [Soares 1994]. Soares, J., "Underlying Concepts
in Process Specification," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, pp. 48-52.

647. [Souquieres and Levy 1993]. Souquieres, J., and
N. Levy, "Description of Specification
Developments," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 216-223.

648. [Spanoudakis and Finkelstein 1997].
Spanoudakis, G., and A. Finkelstein,
"Reconciling Requirements: A Method for
Managing Interference, Inconsistency, and
Conflict," Annals of Software Engineering, 3, N.
Mead, ed., 1997.

649. [Stamper and Blackhouse 1988]. Stamper, R.,
and J Blackhouse, "MEASUR: Method for
Eliciting Analyzing Specifying User
Requirements," in Computerized Assistance
During the Information Systems Life Cycle, T.
Olle, et al., eds., North-Holland, 1988.

650. [Stephens and Bates 1990]. Stephens, M., and P.
Bates, "Requirements Engineering by
Prototyping: Experiences in Development of
Estimating System," Information and Software
Technology, 32, 4 (May 1990), pp. 253-7; also in
Software Engineering: A European Perspective,
R. Thayer and A. McGettrick, eds., Los
Alamitos, California: IEEE Computer Society
Press, 1993, pp. 105-111.

651. [Stevens 1994]. Stevens, R., "Structured
Requirements," Fourth International Symposium
on Systems Engineering, Sunnyvale, California:
National Council on Systems Engineering,
August 1994, pp. 99-104.

652. [Stevens and Putlock 1997]. Stevens, R., and G.
Putlock, "Improving the Industrial Application of
Requirements Management," American
Programmer, 10, 4 (April 1997), pp. 17-22.

653. [Stokes 1991]. Stokes, D., "Requirements
Analysis," in Software Engineer's Reference
Book, J. McDermid, ed., Boca Raton, Florida:
CRC Press, 1991.

654. [Stuart and Clements 1991]. Stuart, D., and P.
Clements, "Clairvoyance, Capricious Timing
Faults, Causality, and Real-Time Specifications,"
1991 Real-Time Systems Symposium, Los
Alamitos, California: IEEE Computer Society
Press, 1991.

655. [Suh, et al. 1992]. Suh, S., et al., "Requirements
Specification for a Real-Time Embedded Expert
System for Rapid Prototyping," Third
International Workshop on Rapid System
Prototyping, Los Alamitos, California: IEEE
Computer Society Press, June 1992, pp. 172-180.

656. [Sutcliffe 1997]. Sutcliffe, A, "A Technique
Combination Approach to Requirements
Engineering," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, March
1997.

657. [Sutcliffe and Maiden 1990]. Sutcliffe, A., and
N. Maiden, "How Specification Reuse can
Support Requirements Analysis," Software
Engineering '90, P. Hall, ed., Brighton, UK:
Cambridge University Press, July 1990.

658. [Sutcliffe and Maiden 1993]. Sutcliffe, A., and
N. Maiden, "Bridging the Requirements Gap:
Policies, Goals, and Domains," IEEE
International Workshop on Software
Specification and Design, Los Alamitos,
California: IEEE Computer Society Press,
December 1993.

659. [Sutton, et al. 1991]. Sutton, S., et al.,
"Programming a Software Requirements-
Specification Process," First International
Conference on the Software Process, Los
Alamitos, California: IEEE Computer Society
Press, October 1991, pp. 68-89.

660. [Sweeney 1994]. Sweeney, T., "MIL-STD-499B:
Systems Engineering," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 62.

661. [Takahashi, et al. 1996]. Takahashi, K., et al.,
"Hypermedia Support for Collaboration in
Requirements Analysis," Second IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1996.

662. [Takeda, et al. 1993]. Takeda, N., et al.,
"Requirements Analysis by the KJ Editor,"

© IEEE – Stoneman (Version 0.7) – April 2000 2–41

International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 98-
101.

663. [Tamai and Irou 1993]. Tamai, T., and A. Irou,
"Requirements and Design Change in Large-
Scale Software Development: Analysis from the
Viewpoint of Process Backtrack," 15th IEEE
International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, May 1993, pp. 167-176.

664. [Tanik and Yeh 1989]. Tanik, M., and R. Yeh,
"The Role of Rapid Prototyping in Software
Development," IEEE Computer, 22, 5 (May
1989), pp. 9-10.

665. [Teng and Sethi 1990]. Teng, J., and V. Sethi, "A
Comparison of Information Requirements
Analysis Methods: An Experimental Study,"
Database, 20, 3(March 1990), pp. 27-39.

666. [Trienekens 1994]. Trienekens, J., "Quality
Requirements Engineering: First Specification
Then Realisation," International Workshop on
Requirements Engineering: Foundations of
Software Quality, June 1994.

667. [Tsai and Weigert 1993]. Tsai, J., and T.
Weigert, Knowledge-Based Software
Development for Real-Time Distributed
Systems, World Scientific, 1993 .

668. [Tsai, et al. 1992]. Tsai, J., et al., "A Hybrid
Knowledge Representation as a Basis of
Requirements Specification and Specification
Analysis" IEEE Transactions on Software
Engineering, 18, 12 (December 1992), pp. 1076-
1100.

669. [Tse and Ping 1991]. Tse, T., and L. Ping, "An
Examination of Requirements Specification
Languages," Computer Journal, 34 (April 1991),
pp. 143-152.

670. [Valusek and Fryback 1992]. Valusek, J., and D.
Fryback, "Information Requirements
Determination: Obstacles Within, Among, and
Between Participants," ACM End-User
Computing Conference, 1985.

671. [van Lamsweerde, et al. 1995] van Lamsweerde,
A., et al., "Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems
and Lessons Learnt," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

672. [van Schouwen 1992]. van Schouwen, A., The
A-7 Requirements Model: R-Examination for

Real-Time Systems and an Application to
Monitoring Systems, McMaster University
Telecommunications Research Institute of
Ontario CRL Report #242, Hamilton, Ontario,
Canada, February 1992.

673. [van Schouwen, et al. 1993]. van Schouwen, A.,
et al., "Documentation of Requirements for
Computer Systems," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 198-207.

674. [Vassilou, et al. 1990]. Vassilou, Y., et al., "IRIS
-- A Mapping Assistant for Generating Designs
from Requirements," 2nd Nordic Conference on
Advanced Information Systems Engineering
(CAiSE '90), Stockholm, Sweden, pp. 307-338,
1990.

675. [Vessey and Conger 1994]. Vessey, I., and S.
Conger, "Requirements Specification: Learning
Object, Process, and Data Methodologies,"
Communications of the ACM, 37, 5 (May 1994),
pp. 102-113.

676. [von der Beeck 1993]. Von der Beeck, M.,
"Integration of Structured Analysis and Times
Statecharts for Real-Time and Currency
Specification," Software Engineering - ESEC '93
Conference, Lecture Notes in Computer Science,
DCCXVII, Berlin: Springer Verlag, pp. 313-328,
1993.

677. [von der Beeck 1994]. Von der Beeck, M.,
"Method Integration and Abstraction From
Detailed Semantics to Improve Software
Quality," International Workshop on
Requirements Engineering: Foundations of
Software Quality, June 1994.

678. [Wang and Chen 1993]. Wang, J., and H. Chen.,
"A Formal Technique to Analyze Real-Time
Systems," IEEE International Conference on
Computer Software and Applications, Los
Alamitos, California: IEEE Computer Society
Press, 1993.

679. [Wang, et al. 1992]. Wang, W., et al., "Scenario-
Driven Requirements Analysis Method," 2nd
IEEE International Conference on Systems
Integration, Los Alamitos, California: IEEE
Computer Society Press, June 1992, pp. 127-136.

680. [Weinberg 1995]. Weinberg, G., "Just Say No!
Improving the Requirements Process, "
American Programmer, October 1995.

681. [Welke 1977]. Welke, R., "Current Information
Systems Analysis and Design Approaches:
Framework, Overview, Comments, and
Conclusions," Education and Large Information

2–42 © IEEE – Stoneman (Version 0.7) – April 2000

Systems, R. Buckingham, ed., Amsterdam, The
Netherlands: North-Holland, 1977.

682. [Weller 1993]. Weller, E.F., "Lessons from
Three Years of Inspection Data," IEEE Software
10,5, (1993), pp. 38-45.

683. [White 1994]. White, S., "Traceability for
Complex Systems Engineering," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 49-55.

684. [White 1994a]. White, S., "ECBS Task Force
Standardization Efforts," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 63.

685. [White and Edwards 1995]. White, S., and M.
Edwards, "A Requirements Taxonomy for
Specifying Complex Systems," First IEEE
International Conference on Engineering of
Complex Computer Systems, Los Alamitos,
California: IEEE Computer Society Press,
November 1995.

686. [Whitten, et al. 1994]. Whitten, J., et al., Systems
Analysis and Design Methods, Burr Ridge,
Illinois: Irwin, 1994.

687. [Wieringa 1996]. Wieringa, R., Requirements
Engineering: Frameworks for Understanding,
New York: John Wiley & Sons, 1996.

688. [Wiley 1999]. Wiley, B., Essential System
Requirements: A Practical Guide to Event-
Driven Methods, Addison-Wesley, 1999.

689. [Wilson 1996]. Wilson, W., "Automated
Analysis of Requirement Specifications,"
Fourteenth Annual Pacific Northwest Software
Quality Conference, Los Alamitos, California:
IEEE Computer Society Press, October 1996.

690. [Wood, et al. 1989]. Wood, W., et al., "Avionics
Systems/Software Requirements Specification,"
Tenth Annual IEEE/AIAA Dayton Chapter
Symposium, 1989, pp. 61-70.

691. [Wood, et al. 1994]. Wood, D., et al., "A
Multimedia Approach to Requirements Capture
and Modeling," IEEE International Conference
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 53-56.

692. [Wood-Harper, et al. 1985]. Wood-Harper, T, et
al., Information Systems Definition: The Multi-
View Approach, London: Blackwell, 1985.

693. [Woods and Yang 1996]. Woods, S., and Q.
Yang, "The Problem Understanding Problem:

Analysis and a Heuristic Approach," Eighteenth
IEEE International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1996.

694. [Wright, et al. 1994]. Wright, P., et al., "Deriving
Human-Error Tolerance Requirements From
Task Analysis," IEEE International Conference
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 135-142.

695. [Wyder 1996]. Wyder, T., "Capturing
Requirements With Use Cases," Software
Development, 4, 2 (February 1996), pp. 36-40.

696. [Yamamoto, et al. 1994]. Yamamoto, J., et al.,
"Object-Oriented Analysis and Design Support
System Using Algebraic Specification
Techniques," First Asia-Pacific Conference on
Software Engineering, December 1994.

697. [Yen and Tiao 1997]. Yen, J., and W. Tiao, "A
Systematic Tradeoff Analysis for Conflicting
Imprecise Requirements," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, March 1997.

698. [Yourdon 1994]. Yourdon, E., Object-Oriented
Systems Design, Englewood Cliffs, New Jersey:
Prentice-Hall, 1994.

699. [Yu 1993]. Yu, E., "Modeling Organizations for
Information Systems Requirements
Engineering," IEEE International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 34-41.

700. [Yu 1997]. Yu, E., " Towards Modeling and
Reasoning Support for Early-Phase
Requirements Engineering," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, March 1997.

701. [Zave and Jackson 1996]. Zave, P., and M.
Jackson, "Where Do Operations Come From? A
Multiparadigm Specification Technique," IEEE
Transactions on Software Engineering, 22,, 7
(July 1996), pp. 508-528.

702. [Zave and Jackson 1997]. Zave, P., and M.
Jackson, "Requirements for Telecommunications
Services: An Attack on Complexity," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, March 1997.

703. [Zowghi and Offen 1997]. Zowghi, D., and R.
Offen, "A Logical Framework for Modeling and

© IEEE – Stoneman (Version 0.7) – April 2000 2–43

Reasoning About the Evolution of
Requirements," IEEE International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, March
1997.

704. [Zucconi 1993]. Zucconi, L., "I Never Knew my
Requirements were Object-Oriented Until I
Talked to My Analyst," International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, p. 230.

2–44 © IEEE – Stoneman (Version 0.7) – April 2000

705. APPENDIX E – REFERENCES USED

TO WRITE AND JUSTIFY THE

DESCRIPTION

706. [Acosta 1994]. Acosta, R., et al., "A Case Study
of Applying Rapid Prototyping Techniques in the
Requirements Engineering Environment," IEEE
International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, pp. 66-73.

707. [Alford 1994]. Alford, M., "Attacking
Requirements Complexity Using a Separation of
Concerns," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 2-5.

708. [Alford 1994]. Alford, M., "Panel Session Issues
in Requirements Engineering Technology
Transfer: From Researcher to Entrepreneur,"
IEEE International Conference on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, April 1994, p. 144.

709. [Anderson 1985]. Anderson, T., Software
Requirements: Specification and Testing,
Oxford, UK: Blackwell Publishing, 1985.

710. [Anderson and Durney 1993]. Anderson, J., and
B. Durney, "Using Scenarios in Deficiency-
Driven Requirements Engineering," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 134-141.

711. [Andriole 1992]. Andriole, S., "Storyboard
Prototyping For Requirements Verification,"
Large Scale Systems, 12 (1987), pp. 231-247.
14.[Andriole 1992]

712. [Andriole 1995]. Andriole, S., "Interactive
Collaborative Requirements Management,"
Software Development, (September 1995).

713. [Andriole 1996]. Andriole, S. J., Managing
Systems Requirements: Methods, Tools and
Cases. McGraw-Hill, 1996.

714. [Anton and Potts 1998]. Anton, A., and C. Potts,
"The Use of Goals to Surface Requirements for
Evolving Systems," Twentieth International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society,
1998.

715. [Ardis, et al. 1995]. Ardis, M., et al., "A
Framework for Evaluating Specification
Methods for Reactive Systems," Seventeenth
IEEE International Conference on Software

Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

716. [Bickerton and Siddiqi 1993]. Bickerton, M., and
J. Siddiqi, "The Classification of Requirements
Engineering Methods," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 182-186.

717. [Blanchard and Fabrycky 1998]. Blanchard, B.
and Fabrycky, W. J., Systems Engineering
Analysis, Prentice Hall, 1998.

718. [Blum 1983]. Blum, B., "Still More About
Prototyping," ACM Software Engineering Notes,
8, 3 (May 1983), pp. 9-11.

719. [Blum 1993]. Blum, B., "Representing Open
Requirements with a Fragment-Based
Specification," IEEE Transaction on Systems,
Man and Cybernetics, 23, 3 (May-June 1993),
pp. 724-736.

720. [Blyth, et al. 1993a]. Blyth, A., et al., "A
Framework for Modelling Evolving
Requirements," IEEE International Conference
on Computer Software and Applications, Los
Alamitos, California: IEEE Computer Society
Press, 1993.

721. [Boehm 1994]. Boehm, B., P. Bose, et al.,
"Software Requirements as Negotiated Win
Conditions," Proc. 1st International Conference
on Requirements Engineering (ICRE), Colorado
Springs, Co, USA, (1994), pp.74-83.

722. [Boehm, et al. 1995]. Boehm, B., et al.,
"Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral
Approach," Seventeenth IEEE International
Conference on Software Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

723. [Brown and Cady 1993]. Brown, P., and K.
Cady, "Functional Analysis vs. Object-Oriented
Analysis: A View From the Trenches," Third
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, July 1993.

724. [Bryne 1994]. Bryne, E., "IEEE Standard 830:
Recommended Practice for Software
Requirements Specification," IEEE International
Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, April 1994, p. 58.

725. [Burns and McDermid 1994]. Burns, A., and J.
McDermid, "Real-Time Safety-Critical Systems:
Analysis and Synthesis," IEE Software

© IEEE – Stoneman (Version 0.7) – April 2000 2–45

Engineering Journal, 9, 6 (November 1994), pp.
267-281.

726. [Checkland and Scholes 1990]. Checkland, P.,
and J. Scholes, Soft Sysems Methodology in
Action. John Wiley and Sons, 1990.

727. [Chung 1991a]. Chung, L., "Representation and
Utilization of Nonfunctional Requirements for
Information System Design," Third International
Conference on Advanced Information Systems
Engineering (CAiSE '90), Springer-Verlag, 1991,
pp. 5-30.

728. [Chung 1999]. Chung, L., Nixon, B.A., Yu. E.,
Mylopoulos, J., Non-functional Requirements in
Software Engineering, Kluwer Academic
Publishers, 1999.

729. [Chung, et al. 1995]. Chung, L., et al., "Using
Non-Functional Requirements to Systematically
Support Change," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

730. [Connell and Shafer 1989]. Connell, J., and L.
Shafer, Structured Rapid Prototyping,
Englewood Cliffs, New Jersey, 1989.

731. [Coombes and McDermid 1994]. Coombes, A.,
and J. McDermid, "Using Quantitative Physics in
Requirements Specification of Safety Critical
Systems" Workshop on Research Issues in the
Intersection Between Software Engineering and
Artificial Intelligence, Sorrento, Italy, May 1994.

732. [Costello and Liu 1995]. Costello, R., and D.
Liu, "Metrics for Requirements Engineering,"
Journal of Systems and Software, 29, 1 (April
1995), pp. 39-63.

733. [Curtis 1994]. Curtis, A., "How to Do and Use
Requirements Traceability Effectively," Fourth
International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 57-64.

734. [Davis 1993]. Davis, A.M., Software
Requirements: Objects, Functions and States.
Prentice-Hall, 1993.

735. [Davis 1995a]. Davis, A., 201 Principles of
Software Development, New York, New York:
McGraw Hill, 1995.

736. [Davis 1995b]. Davis, A., "Software
Prototyping," in Advances in Computing, 40, M.
Zelkowitz, ed., New York, New York: Academic
Press, 1995.

737. [Davis, et al. 1997]. Davis, A., et al., "Elements
Underlying Requirements Specification," Annals
of Software Engineering, 3, N. Mead, ed., 1997.

738. [De Lemos, et al. 1992]. De Lemos, R., et al.,
"Analysis of Timeliness Requirements in Safety-
Critical Systems," Symposium on Formal
Techniques in Real-Time and Fault Tolerant
Systems, Nijmegen, The Netherlands: Springer
Verlag, January 1992, pp. 171-192.

739. [Dobson 1991]. Dobson, J., "A methodology for
analysing human computer-related issues in
secure systems," International Conference on
Computer Security and Integrity in our Changing
World, Espoo, Finland, (1991), pp. 151-170.

740. [Dobson, et al. 1992]. Dobson, J., et al., "The
ORDIT Approach to Requirements
Identification," IEEE International Conference
on Computer Software and Applications, Los
Alamitos, California: IEEE Computer Society
Press, 1992, pp. 356-361.

741. [Dorfman and Thayer 1997]. Dorfman, M., and
R. H. Thayer, Software Engineering. IEEE
Computer Society Press, 1997.

742. [Easterbrook and Nuseibeh 1996]. Easterbrook,
S., and B. Nuseibeh, "Using viewpoints for
inconsistency management," Software
Engineering Journal, 11, 1, 1996, pp.31-43.

743. [Ebert 1997]. Ebert, C., "Dealing with Non-
Functional Requirements in Large Software
Systems," Annals of Software Engineering, 3, N.
Mead, ed., 1997.

744. [El Emam 1997]. EL Amam K., J. Drouin, et al.,
SPICE: The theory and Practice of Software
Process Improvement and Capability
Determination. IEEE Computer Society Press,
1997.

745. [El Emam and Madhavji 1995]. El Emam, K.,
and N. Madhavji, "Measuring the Success of
Requirements Engineering," Second
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

746. [Fagan 1986]. Fagan, M.E., "Advances in
Software Inspection," IEEE Transactions on
Software Engineering 12, 7, 1986, pp. 744-51.

747. [Feather 1991]. Feather, M., "Requirements
Engineering: Getting Right from Wrong," Third
European Software Engineering Conference,
Springer Verlag, 1991.

748. [Fenton 1991]. Fenton, N. E., Software metrics:
A rigorous approach. Chapman and Hall, 1991.

2–46 © IEEE – Stoneman (Version 0.7) – April 2000

749. [Fiksel 1991]. Fiksel, J., "The Requirements
Manager: A Tool for Coordination of Multiple
Engineering Disciplines," CALS and CE '91,
Washington, D.C., June 1991.

750. [Finkelstein 1992]. Finkelstein, A., Kramer, J.,
B. Nuseibeh and M. Goedicke, "Viewpoints: A
framework for integrating multiple perspectives
in systems development," International Journal
of Software Engineering and Knowledge
Engineering, 2, 10, (1992), pp.31-58.

751. [Garlan 1994]. Garlan, D., "The Role of
Software Architecture in Requirements
Engineering," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, p. 240.

752. [Gause and Weinberg 1989]. Gause, D.C., and
G. M. Weinberg, Exploring Requirements :
Quality Before Design, Dorset House, 1989.

753. [Gilb and Graham 1993]. Gilb, T., and D.
Graham, Software Inspection. Wokingham:
Addison-Wesley, 1993.

754. [Goguen and Linde 1993]. Goguen, J., and C.
Linde, "Techniques for Requirements
Elicitation," International Symposium on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1993, pp. 152-164.

755. [Gomaa 1995]. Gomaa, H., "Reusable Software
Requirements and Architectures for Families of
Systems," Journal of Systems and Software, 28,
3 (March 1995), pp. 189-202.

756. [Grady 1993a]. Grady, J., Systems Requirements
Analysis, New York, New York: McGraw Hill,
1993.

757. [Graham 1998]. Graham, I., Requirements
Engineering and Rapid Development : An
Object-Oriented Approach, Addison Wesley,
1998.

758. [Hadden 1997]. Hadden, R., "Does Managing
Requirements Pay Off?," American Programmer,
10, 4 (April 1997), pp. 10-12.

759. [Hall 1996]. Hall, A., "Using Formal Methods to
Develop an ATC Information System," IEEE
Software 13, 2, 1996, pp.66-76.

760. [Hansen, et al. 1991]. Hansen, K., et al.,
"Specifying and Verifying Requirements of
Real-Time Systems," ACM SIGSOFT
Conference on Software for Critical Systems,
December 1991, pp. 44-54.

761. [Harel 1988]. Harel, D., "On Visual
Formalisms," Communications of the ACM, 31,
5 (May 1988), pp. 8-20.

762. [Harel 1992]. Harel, D., "Biting the Silver Bullet:
Towards a Brighter Future for System
Development," IEEE Computer, 25, 1 (January
1992), pp. 8-20.

763. [Harel and Kahana 1992]. Harel, D., and C.
Kahana, "On Statecharts with Overlapping,"
ACM Transactions on Software Engineering and
Methodology, 1, 4 (October 1992), pp. 399-421.

764. [Harwell 1993]. Harwell, R., et al, "What is a
Requirement," Proc 3rd Ann. Int'l Symp. Nat'l
Council Systems Eng., (1993), pp.17-24.

765. [Heimdahl and Leveson 1995]. Heimdahl, M.,
and N. Leveson, "Completeness and Consistency
Analysis of State-Based Requirements,"
Seventeenth IEEE International Conference on
Software Engineering, Los Alamitos, California:
IEEE Computer Society Press, 1995.

766. [Hofmann 1993]. Hofmann, H., Requirements
Engineering: A Survey of Methods and Tools,
Technical Report #TR-93.05, Institute for
Informatics, Zurich, Switzerland: University of
Zurich, 1993.

767. [Honour 1994]. Honour, E., "Requirements
Management Cost/Benefit Selection Criteria,"
Fourth International Symposium on Systems
Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994,
pp. 149-156.

768. [Hooks and Stone 1992] Hooks, I., and D. Stone,
"Requirements Management: A Case Study --
NASA's Assured Crew Return Vehicle," Second
Annual International Symposium on
Requirements Engineering, Seattle, Washington:
National Council on Systems Engineering, July
1992.

769. [Hsia, et al. 1997]. Hsia, P. et al., "Software
Requirements and Acceptance Testing," Annals
of Software Engineering, 3, N. Mead, ed., 1997.

770. [Humphery 1988]. Humphery, W.S.,
"Characterizing the Software Process," IEEE
Software 5, 2 (1988), pp. 73-79.

771. [Humphery 1989]. Humphery, W., Managing the
Software Process, Reading, Massachusetts:
Addison Wesley, 1989.

772. [Hutchings 1995]. Hutchings, A., and S. Knox,
"Creating products customers demand,"
Communications of the ACM, 38, 5, (May
1995), pp. 72-80.

© IEEE – Stoneman (Version 0.7) – April 2000 2–47

773. [IEEE Standards 1999]. IEEE Software
Engineering Standards, Vol 1-4, IEEE, 1999.

774. [Ince 1994]. Ince, D., ISO 9001 and Software
Quality Assurance. London: McGraw-Hill, 1994.

775. [Jackson and Zave 1995]. Jackson, M., and P.
Zave, "Deriving Specifications from
Requirements: An Example," Seventeenth IEEE
International Conference on Software
Engineering, Los Alamitos, California: IEEE
Computer Society Press, 1995.

776. [Jarke and Pohl 1994]. Jarke, M., and K. Pohl,
"Requirements Engineering in 2001: Virtually
Managing a Changing Reality," IEE Software
Engineering Journal, 9, 6 (November 1994), pp.
257-266.

777. [Jarke, et al. 1993]. Jarke, M., et al., "Theories
Underlying Requirements Engineering: An
Overview of NATURE at Genesis," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 19-
31.

778. [Jenkins 1994]. Jenkins, M., "Requirements
Capture," Conference on Requirements
Elicitation for Software-Based Systems, July
1994.

779. [Jirotka 1991]. Jirotka, M., Ethnomethodology
and Requirements Engineering, Centre for
Requirements and Foundations Technical
Report, Oxford, UK: Oxford University
Computing Laboratory, 1991.

780. [Kotonya 1999]. Kotonya, G., "Practical
Experience with Viewpoint-oriented
Requirements Specification," Requirements
Engineering, 4, 3, 1999, pp.115-133.

781. [Kotonya and Sommerville 1996]. Kotonya, G.,
and I. Sommerville, "Requirements Engineering
with viewpoints," Software Engineering, 1, 11,
1996, pp.5-18.

782. [Kotonya and Sommerville 1998]. Kotonya, G.,
and I. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley and Sons,
1998.

783. [Lam, et al. 1997a]. Lam, W., et al., "Ten Steps
Towards Systematic Requirements Reuse," IEEE
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1997.

784. [Leveson 1986]. Leveson, N. G., "Software
safety - why, what, and how," Computing
surveys, 18, 2, (1986), pp. 125-163.

785. [Leveson 1995]. Leveson, N. G., Safeware:
System Safety and Computers. Reading,
Massachusetts: Addison-Wesley, 1995.

786. [Loucopulos and Karakostas 1995]. Loucopulos,
P., and V. Karakostas, Systems Requirements
Engineering. McGraw-Hill, 1995.

787. [Lutz 1993]. Lutz, R., "Analyzing Software
Requirements Errors in Safety-Critical,
Embedded Systems," IEEE International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 126-133.

788. [Lutz 1996]. Lutz, R., "Targeting Safety-Related
Errors During Software Requirements Analysis,"
The Journal of Systems and Software, 34, 3
(September 1996), pp. 223-230.

789. [Maiden and Sutcliffe 1993]. Maiden, N., and A.
Sutcliffe, "Requirements Engineering By
Example: An Empirical Study," International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, January 1993, pp. 104-111.

790. [Maiden, et al., 1995] Maiden, N., et al., "How
People Categorise Requirements for Reuse: A
Natural Approach," Second International
Symposium on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society
Press, 1995.

791. [Mazza 1996]. Mazza, C., J. Fairclough, B.
Melton, D. DePablo, A. Scheffer, and R.
Stevens, Software Engineering Standards,
Prentice-Hall, 1996.

792. [Mazza 1996]. Mazza, C., J. Fairclough, B.
Melton, D. DePablo, A. Scheffer, R. Stevens, M.
Jones, G. Alvisi, Software Engineering Guides,
Prentice-Hall, 1996.

793. [Modugno, et al. 1997]. Modugno, F., et al.,
"Integrating Safety Analysis of Requirements
Specification," IEEE International Symposium
on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press,
January 1997.

794. [Morris, et al. 1994]. Morris, P., et al.,
"Requirements and Traceability," International
Workshop on Requirements Engineering:
Foundations of Software Quality, June 1994.

795. [Paulk 1996]. Paulk, M. C., C. V. Weber, et al.,
Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-
Wesley, 1995.

2–48 © IEEE – Stoneman (Version 0.7) – April 2000

796. [Pfleeger 1998]. Pfleeger, S.L., Software
Engineering-Theory and Practice. Prentice-Hall,
1998.

797. [Pohl 1994]. Pohl, K., "The Three Dimensions of
Requirements Engineering: A Framework and Its
Applications," Information Systems 19, 3 (1994),
pp. 243-258.

798. [Pohl 1999]. Pohl, K., Process-centered
Requirements Engineering, Research Studies
Press, 1999.

799. [Potts 1993]. Potts, C., "Choices and
Assumptions in Requirements Definition,"
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, p. 285.

800. [Potts 1994]. Potts, C., K. Takahashi, et. al.,
"Inquiry-based Requirements Analysis," IEEE
Software, 11, 2, 1994, pp. 21-32.

801. [Pressman 1997].Pressman, R.S. Software
Engineering: A Practitioner’s Approach (4
edition). McGraw-Hill, 1997.

802. [Ramesh et al. 1997]. Ramesh, B., et al.,
"Requirements Traceability: Theory and
Practice," Annals of Software Engineering, 3, N.
Mead, ed., 1997.

803. [Roberston and Robertson 1999]. Robertson, S.,
and J. Robertson, Mastering the Requirements
Process, Addison Wesley, 1999.

804. [Rosenberg 1998]. Rosenberg, L., T.F. Hammer
and L.L. Huffman, "Requirements, testing and
metrics, " 15th Annual Pacific Northwest
Software Quality Conference, Utah, October
1998.

805. [Rudd and Isense 1994]. Rudd, J., and S.
Isense, "Twenty-two Tips for a Happier,
Healthier Prototype," ACM Interactions, 1, 1,
1994.

806. [Rzepka 1992]. Rzepka, W., "A Requirements
Engineering Testbed: Concept and Status," 2nd
IEEE International Conference on Systems
Integration, Los Alamitos, California: IEEE
Computer Society Press, June 1992, pp. 118-126.

807. [SEI 1995]. A Systems Engineering Capability
Model, Version 1.1, CMU/SEI95-MM-003,
Software Engineering Institute, 1995.

808. [Siddiqi and Shekaran 1996]. Siddiqi, J., and
M.C. Shekaran, "Requirements Engineering: The
Emerging Wisdom," IEEE Software, pp.15-19,
1996.

809. [Sommerville 1996]. Sommerville, I.
Software Engineering (5th edition), Addison-
Wesley, pp. 63-97, 117-136, 1996.

810. [Sommerville and Sawyer 1997]. Sommerville,
I., and P. Sawyer, "Viewpoints: Principles,
Problems, and a Practical Approach to
Requirements Engineering," Annals of Software
Engineering, 3, N. Mead, ed., 1997.

811. [Sommerville, et al. 1993]. Sommerville, I., et
al., "Integrating Ethnography into the
Requirements Engineering Process,"
International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 165-
173.

812. [Sommerville 1997]. Sommerville, I., and
P. Sawyer, Requirements engineering: A Good
Practice Guide. John Wiley and Sons, 1997

813. [Stevens 1998]. Stevens, R., P. Brook, K.
Jackson and S. Arnold, Systems Engineering,
Prentice Hall, 1998.

814. [Thayer and Dorfman 1990]. Thayer, R., and M.
Dorfman, Standards, Guidelines and Examples
on System and Software Requirements
Engineering. IEEE Computer Society, 1990.

815. [Thayer and Dorfman 1997]. Thayer, R.H., and
M. Dorfman, Software Requirements
Engineering (2nd Ed). IEEE Computer Society
Press, 1997.

816. [White 1993]. White, S., "Requirements
Engineering in Systems Engineering Practice,"
IEEE International Symposium on Requirements
Engineering, Los Alamitos, California: IEEE
Computer Society Press, January 1993, pp. 192-
193.

817. [White 1994]. White, S., "Comparative Analysis
of Embedded Computer System Requirements
Methods," IEEE International Conference on
Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, April
1994, pp. 126-134.

© IEEE – Stoneman (Version 0.7) – April 2000 3–1

CHAPTER 3
SOFTWARE DESIGN

Guy Tremblay
Département d’informatique

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville

Montréal, Québec, Canada, H3C 3P8
tremblay.guy@uqam.ca

TABLE OF CONTENTS

1. INTRODUCTION
2. DEFINITION OF THE SOFTWARE DESIGN

KNOWLEDGE AREA
3. BREAKDOWN AND DESCRIPTION OF TOPICS
FOR THE SOFTWARE DESIGN KA

3.1 Breakdown outline
3.2 Description of the Software Design
breakdown topics

4. RATIONALE FOR THE BREAKDOWN OF

TOPICS
5. MATRIX OF SOFTWARE DESIGN TOPICS VS.
RECOMMENDED REFERENCE MATERIAL
6. RECOMMENDED REFERENCE MATERIAL FOR

THE SOFTWARE DESIGN KA
6.1 Brief description of the recommended
references
6.2 Recommended references for each of the
KA topic

7. LIST OF FURTHER READINGS
8. REFERENCES

1. 1. INTRODUCTION

2. This document presents a description of the
Software Design Knowledge Area for the Guide
to the SWEBOK (Stone Man version). It has been
developed in accordance with the “Knowledge
Area Description Specifications for the Stone Man
Version of the Guide to the Software Engineering
Body of Knowledge” (version 0.25, March 1999)
and with the “Proposed changes to the KA
description specifications for version 0.7”
(December 1999 and January 2000). Various
constraints had to be satisfied by the resulting
Knowledge Area (KA) description to respect the
above requirements. Among the major constraints
were the followings: the KA description had to
describe “generally accepted” knowledge not

specific to any application domains or
development methods; it had to suggest a list of
“Proposed reference material” with a reasonably
limited number of entries. As it will be seen, the
first constraint led to the exclusion of certain
topics which, at first, might seem to have been
part of Software Design. As for the latter
constraint, it led to some difficult choices
regarding the selection of reference material,
especially since the numerous reviewers of a
previous version of this KA description, from
which the precious feedback is acknowledged,
suggested their own additions to this list of
reference material.

3. 2. DEFINITION OF THE SOFTWARE

DESIGN KNOWLEDGE AREA

4. Software design, from (software) requirements
typically stated in terms relevant to the problem
domain, produces a description of a solution that
will solve the software-related aspects of the
problem. Software design describes how the
system is decomposed and organized into
components and describes the interfaces between
these components (architectural design). Software
design also refines the description of these
components into a level of detail suitable for
allowing their construction (detailed design).

5. In a classical software development life cycle,
e.g., ISO/IEC 12207 [ISO95b], software design
fits between software requirements analysis and
software coding and testing (software
construction). Software design encompasses both
software architectural design (sometime called
top-level design) and software detailed design.
Software design plays an important role in the
development of a software system in that it allows
the developer to produce a model, a blueprint of
the solution to be implemented. Such a model can
be analyzed and evaluated to determine if it will
allow the various requirements to be fulfilled.

3–2 © IEEE – Stoneman (Version 0.7) – April 2000

This model can also be used to plan the
subsequent development activities, in addition to
being used as input and starting point of the
coding and testing activities.

6. It is important to note that certain areas – for
example, User Interface Design or Real-time
Design – were specifically excluded from the
Software Design KA (Guide to the SWEBOK –
Straw Man Version), thus are not explicitly
discussed in the proposed KA breakdown.
However, it is clear that some of the topics
included in the present Software Design KA
description may also apply to these specialized
areas. Finally, some additional “Design” topics
were also excluded from the present description,
as they were considered to be outside of
“Software Design” in the sense mentioned above.
Those various issues are discussed in more detail
in the Breakdown Rationale section.

7. 3. BREAKDOWN AND DESCRIPTION

OF TOPICS FOR THE SOFTWARE

DESIGN KA

8. This section presents brief descriptions of each of
the major topics of the Software Design
Knowledge Area. These brief descriptions
(section 3.2) should be sufficient to guide the
reader, in section 6, to the appropriate reference
material. But first (section 3.1), to give an overall
picture of the Software Design KA, an outline of
the KA breakdown together with an
accompanying figure are presented.

9. 3.1 Breakdown outline

10. Figure 1 gives a graphical presentation of the top-
level decomposition of the breakdown for the
Software Design Knowledge Area. The detailed
breakdown is presented in the following pages.

© IEEE – Stoneman (Version 0.7) – April 2000 3–3

Software Design

I. Software
Design Basic

Concepts

II. Software
Architecture

III. Software
Design Quality
Analysis and

Evaluation

IV. Software
Design Notations

V. Software
Design

Strategies and
Methods

General design
concepts

The context of
software design

Basic software
design concepts

Key issues in
software design

Concurrency

Architectural
styles and

patterns (macro-
architecture)

Architectural
structures and

viewpoints

Control and
handling of events

Distribution

Exception handling

Interactive systems

Modularity and
practitioning

Persistence

Platform
independence

Design patterns
(micro-

architecture)

Design of families
of programs and

frameworks

Quality attributes

Quality analysis
and evaluation

tools

Metrics

Structural
descriptions
(static view)

Behavioral
descriptions

(dynamic view)

General strategies

Funtion-oriented
design

Object-oriented
design

Data-structure
centered design

Other methods

Software design
review

Static analysis

Simulation and
prototyping

Functional
(structured) design

metrics

Object-oriented
design metrics

The software
design process

3–4 © IEEE – Stoneman (Version 0.7) – April 2000

11. 3.2 Description of the Software Design
breakdown topics

12. I. Software Design Basic Concepts

13. w General design concepts = Notions and
concepts relevant to design in general: goals,
constraints, alternatives, representations, and
solutions. Design as wicked problem solving
– no definitive solution, only good vs. bad
solutions.

14. w The context of software design = The
context (software development life cycle) in
which software design fits: software
requirements analysis vs. software design;
software design vs. software construction;
software design and testing. Traceability
between the work products of the various
phases.

15. w The software design process = The general
process by which software is designed:
Architectural and detailed design as the two
classical phases of software design: whereas
architectural design describes how the
system is decomposed and organized into
components, detailed design describes the
specific behavior of these components.
Another distinction is the one between
software architecture and architectural
design: whereas the goal of architectural
design is to define the software architecture
of a specific system, the process of defining a
software architecture is considered more
generic.

16. w Basic software design concepts = Key
notions generally considered fundamental to
software design, as they form kind of a
foundation for understanding many of the
proposed approaches to software design:
abstraction, modularity (including notions
like cohesion and coupling), encapsulation
and information hiding, hierarchy, interface
vs. implementation, separation of concerns,
locality, etc.

17. w Key Issues in Software Design = The key
issues which must be dealt with when
designing a software system:

18. - Concurrency considerations: how to
decompose the systems into processes,
tasks and threads and deal with -related
atomicity, synchronization and
scheduling issues.

19. - Control issues and handling events: how
to organize the flow of control, how to
handle reactive and temporal events
through various mechanisms, e.g.,
implicit invocation and call-backs, etc.

20. - Distribution: how the software is
distributed on the hardware, the role of
middleware when dealing with
heterogeneous systems, etc.

21. - Handling of faults and exceptions: how to
prevent and tolerate faults and deal with
exceptional conditions.

22. - Interactive systems and dialogue
independence: how to separate the details
of the user-interface from the business
logic. (Note: the details of User Interface
design per se are not discussed in the
current KA.)

23. - Modularity and partitioning: how to
ensure the software is constructed in a
modular way, in order to make it
understandable and modifiable.

24. - Persistence: how long-lived data is to be
handled, e.g., interface with the
appropriate databases.

25. - Platform independence: how to ensure
the software is relatively independent of
the platform (hardware, OS,
programming language) on which it will
run.

26. II. Software Architecture

27. This section on software architecture includes
topics dealing both with “generic” software
architecture issues and the architectural design of
a “specific” software system, as the frontier
between the two is not always clear-cut and many
of the topics mentioned below apply to both.

28. w Architectural structures and viewpoints: The
different high-level facets of a software
design that should be described and
documented. For some authors, these views
pertain to different issues associated with the
design of software, for example, the logical
view (satisfying the functional requirements)
vs. the process view (concurrency issues) vs.
the physical view (distribution issues) vs. the
development view (how the design is
implemented). Other authors use different
terminologies, e.g., behavioral vs. functional
vs. structural vs. data modeling views. The
key idea is that a software design document

© IEEE – Stoneman (Version 0.7) – April 2000 3–5

is multi-faceted, being made of relatively
independent and orthogonal views.

29. w Architectural styles and patterns (macro-
architecture): The notion of architectural
style – an architectural style is a
paradigmatic architectural pattern that can be
used to develop the high-level organization
of a software system – is becoming an
important notion of the field of software
architecture. This section presents some of
the major styles that have been identified by
various authors. These styles are (tentatively)
organized as follows:

30. - General structure (e.g., layers, pipes and
filters, blackboards);

31. - Distributed systems (e.g., client -server,
three-tiers, broker);

32. - Interactive systems (e.g., Model-View-
Controller, Presentation-Abstraction-
Control)

33. - Adaptable systems (e.g., micro-kernel,
reflection);

34. - Other styles (e.g., batch, interpreters,
process control, rule-based).

35. w Design patterns (micro-architecture): In the
last few years, the field of software design
patterns has emerged as an important
approach to describing, and thus reusing,
design knowledge. Whereas architectural
styles can be seen as patterns describing the
high-level organization of software systems,
its macro-architecture, other design patterns
can be used to describe details at a lower-
level, at a micro-architecture level. Such
design patterns can (tentatively) be
categorized as follows:

36. - Creational patterns: builder, factory,
prototype, singleton, etc.

37. - Structural patterns: adapter, bridge,
composite, decorator, facade, flyweight,
proxy, etc.

38. - Behavioral patterns: command,
interpreter, iterator, mediator, memento,
observer, state, strategy, template, visitor,
etc.

39. w Design of families of programs and
frameworks: One approach to allow the
reuse of software design is to design families
of systems; this can be done by identifying
exploitable commonalities among members
of such families. Particularly in the field of
OO programming, this has been made

possible by the notion of framework: a
framework is a partially complete software
subsystem which can be extended by
appropriately instantiating some specific
plug-ins (also known as hot points).

40. III. Software Design Quality Analysis and
Evaluation

41. w Quality attributes: Various attributes are
generally considered important for obtaining
a design of good quality, e.g., various
“ilities” (e.g., maintainability, testability,
traceability, plus many others), various
“nesses” (e.g., correctness, robustness),
including “fitness of purpose”. Because there
are so many of them, no specific list is given
here.

42. w Quality analysis and evaluation tools:
Conceptual or technical tools and techniques
that can help ensure the quality of a design:

43. - Software design reviews: informal or
semi-formal, often group-based,
techniques to verify and ensure the
quality of design documents, e.g., critical
design reviews, active design reviews,
inspections, scenario-based techniques.

44. - Static analysis: formal or semi-formal
static (non-executable) analysis that can
be used to evaluate a design, e.g., fault-
tree analysis, dataflow anomaly analysis.

45. - Simulation and prototyping: dynamic
techniques to evaluate a design, e.g.,
performance simulation, feasibility
prototype.

46. w Metrics: Formal metrics that can be used to
estimate various aspects of the size, structure
or quality of a design. Most such metrics
generally depend on the approach used for
producing the design:

47. - Functional (structured) design metrics:
e.g., structural complexity, morphology
metrics, etc.

48. - Object-oriented design metrics:
weighted methods per class, depth of
inheritance tree, etc.

49. IV. Software Design Notations

50. A large number of notations and languages exist
to represent software design artifacts. Some are
used mainly to describe the structural organization
of a design, whereas others are used to represent
the behavior of such software systems.

3–6 © IEEE – Stoneman (Version 0.7) – April 2000

51. w Structural descriptions (static view):
Notations, mostly graphical, that can be used
to describe and represent the structural
aspects (static view) of a software design,
that is, to describe what the major
components are and how they are
interconnected. Such notations can be used
to describe various views of a software
design: the logical view (e.g., Architecture
Description Languages (ADL), class and
object diagrams, Entity-Relationship
Diagrams (ERD), subsystems and packages),
the process view (active objects and classes)
or the physical view (e.g., deployment
diagrams).

52. w Behavioral descriptions (dynamic view):
Notations and languages used to describe the
dynamic behavior of systems and
components. These include various graphical
notations (e.g., activity diagrams, Data Flow
Diagrams (DFD), sequence diagrams, state
transition diagrams) and various textual
notations (e.g., formal specification
languages, pseudo-code and Program Design
Languages (PDL)).

53. V. Software Design Strategies and Methods

54. w General strategies: General strategies that
can be used to design a system, e.g., divide-
and-conquer, information hiding, use of
heuristics, use of patterns and pattern
languages, iterative and incremental
approach to design, etc. Methods, in contrast
with general strategies, are more specific in
that they generally provide i) a set of
notations to be used with the method; ii) a
description of the process to be used when
following the method; iii) a set of heuristics
that provide guidance in using the method. A
number of methods are described in the
following paragraphs.

55. w Function-oriented (structured) design: One
of the classical approach to software design,
where the decomposition is centered around
the identification of the major systems
functions and their elaboration and
refinement in a top-down manner. Structured
design is generally used after structured
analysis (viz., using DFDs and Entity-
Relationship Diagrams (ERDs)) has been
performed. Various strategies (e.g.,
transformation analysis, transaction analysis)
and heuristics (fan-in/fan-out, scope of effect
vs. scope of control, etc.) have been
proposed to transform a DFD into a software

architecture generally represented by a
structure chart (identifying which modules
uses/calls which other).

56. w Object-oriented design: This is probably the
most (still?!) flourishing field of software
design in the last 10-15 years, as numerous
software design methods based on objects
have been proposed. The field evolved from
the early object-based design of the mid-
1980’s (noun = object; verb = method;
adjective = attribute) through object-oriented
design, where inheritance and polymorphism
play a key role, and to the now emerging
field of component-based design, where
various meta-information can be defined and
accessed (e.g., through reflection). Although
object-oriented design’s deep roots stem
from the concept data abstraction, the notion
of responsibility-driven design has also
become an important approach to object-
oriented design.

57. w Data-structure centered design: Although
less popular in North America than in
Europe, there has been some interesting
work (e.g., M. Jackson, Warnier-Orr) on
designing a program starting from the data
structures it manipulates rather than from the
function it performs. The structures of the
input and output data are first described (e.g.,
using Jackson structure diagrams) and then
the program is developed based on these data
structure diagrams. Various heuristics have
been proposed to deal with special cases, for
example, when there is mismatch between
the input and output structures.

58. w Other methods: Although software design
based on functional decomposition or on
object-oriented design are probably the most
well-known approaches to software design,
other interesting approaches, although
probably less “mainstream”, do exist, e.g.,
formal and rigorous methods (e.g., VDM and
Cleanroom), knowledge-based approaches,
transformational methods, etc.

59. 4. RATIONALE FOR THE
BREAKDOWN OF TOPICS

60. The following section briefly goes through the
various requirements described in the “Knowledge
Area Description Specifications for the Stone Man
Version of the Guide to the SWEBOK” (version
0.25) and describe how most of these

© IEEE – Stoneman (Version 0.7) – April 2000 3–7

requirements are satisfied by the present KA
description.

61. First and foremost, the breakdown of topics must
describe “generally accepted” knowledge, that is,
knowledge for which there is a “widespread
consensus”. Furthermore, and this is clearly where
this becomes difficult, such knowledge must be
“generally accepted” today and expected to be so
in a 3 to 5 years timeframe. This explains why
elements related with software architecture (e.g.,
“Software Architecture in Practice”, Bass,
Clements and Kazman, 1998; “Pattern-oriented
software architecture”, Buschmann et al., 1996),
including notions related with architectural styles
have been included, even though these are
relatively recent topics that might not yet be
generally accepted. Note that although “UML”
(Unified Modeling Language) is not explicitly
mentioned in the Design Notations section, many
of its elements are indeed present, for example:
class and object diagrams, collaboration diagrams,
deployment diagrams, sequence diagrams,
statecharts.

62. The need for the breakdown to be independent of
specific application domains, life cycle models,
technologies, development methods, etc., and to
be compatible with the various schools
(churches?) within software engineering, is
particularly apparent within the “Software Design
Strategies and Methods” section. In that section,
numerous approaches and methods have been
included and references given. This is also the
case in the “Software Design Notations”, which
incorporates pointers to many of the existing
notations and description techniques for software
design artifacts. Although many of the design
methods use specific design notations and
description techniques, most of these notations are
generally useful independently of the particular
method that uses them. Note that this is also the
approach used in many software engineering
books, including the recent UML series of books
by the three amigos, which describe “The Unified
Modeling Language” apart from “The Unified
Software Development Process”.

63. The specifications document also specifically
asked that the breakdown be as inclusive as
possible and that it includes topics related with
quality and measurements. Thus, a certain number
of topics have been included in the list of topics
even though they may not yet be fully considered
as generally accepted. For example, although
there are a number of books on metrics, design
metrics per se is rarely discussed in detail and few
“mainstream” software engineering books

formally discuss this topic. But it is indeed
discussed in some books and may become more
mainstream in the coming years. Note that
although those metrics can sometimes be
categorized into high-level (architectural) design
vs. component-level (detailed) design, the use of
such metrics generally depend on the approach
used for producing the design, for example,
structured vs. object-oriented design. Thus, the
metrics sub-topics have been divided into
function- (structured-) vs. object-oriented design.

64. As required by the KA Description Specifications,
the breakdown is at most three levels deep and use
topic names which, after surveying the existing
literature and having made a number of
modifications suggested by the various reviewers,
should be meaningful when cited outside Guide to
the SWEBOK.

65. By contrast with the previous version (0.50) of the
Software Design KA Description, and following
suggestions made by a number of reviewers, the
“Software Design Basic Concepts” section has
been expanded to include topics related with
design in general and topics introducing the
context and process of software design. A totally
new subsection has also been recently added:
“Key Issues in Software Design”. The reason for
this new subsection is that a number of reviewers
suggested that certain topics, not explicitly
mentioned in the previous version, be added, e.g.,
concurrency and multi-threading, exception
handling. Although some of these aspects are
addressed by some of the existing design methods,
it seemed appropriate that these key issues be
explicitly identified and that more specific
references be given for them, thus the addition of
this new subsection. (Important note: this is a first
attempt at such a description of this topic and the
author of the Software Design KA Description
would gladly welcome any suggestions that could
improve and/or refine the content of this
subsection.)

66. In the KA breakdown, as mentioned earlier, an
explicit “Software Architecture” section has been
included. Here, the notion of “architecture” is to
be understood in the large sense of defining the
structure, organization and interfaces of the
components of a software system, by opposition
to producing the “detailed design” of the specific
components. This is what really is at the heart of
Software Design. Thus, the “Software
Architecture” section includes topics which
pertain to the macro-architecture of a system –
what is now becoming known as “Architecture”
per se, including notions such as “architectural

3–8 © IEEE – Stoneman (Version 0.7) – April 2000

styles” and “family of programs” – as well as
topics related with the micro-architecture of the
smaller subsystems – for example, lower-level
design patterns. Although some of these topics are
relatively new, they should become much more
generally accepted within the 3-5 years timeframe
expected from the Guide to the SWEBOK
specifications. By contrast, note that no explicit
“Detailed Design” section has been included:
topics relevant to detailed design can implicitly be
found in the “Software Design Notations” and
“Software Design Strategies and Methods”
sections, as well as in “The software design
process” subsection.

67. The “Software Design Strategies and Methods”
section has been divided, as is done in many
books discussing software design, in a first section
that presents general strategies, followed by
subsequent sections that present the various
classes of approaches (data-, function-, object-
oriented or other approaches). For each of these
approaches, numerous methods have been
proposed and can be found in the software
engineering literature. Because of the limit on the
number of references, mostly general references
have been given, which can then be used as
starting point for more specific references. In the
particular case of Object-Oriented Design (OOD),
the Unified Software Development Process
recently proposed by the UML group, which can
be considered a kind of synthesis of many earlier
well-known approaches (Booch, OMT, OOSE),
was a must, even though it is quite recent (1999).
For similar reasons, the “Software Design
Notations” section mentions most of the elements
that can be found in UML.

68. Another issue, alluded to in the introduction but
worth explaining in more detail, is the exclusion
of a number of topics which contain “Design” in
their name and which, indeed, pertain to the
development of software systems. Among these
are the followings: User Interface Design, Real-
time Design, Database Design, Participatory
Design, Collaborative Design. The first two topics
were specifically excluded, in the Straw Man
document, from the Software Design KA. User
Interface Design was considered to be a related
discipline (see section 9: Relevant knowledge
areas of related disciplines, both Computer
Science and Cognitive Sciences) whereas Real-
time Design was considered a specialized sub-
field of software design, thus did not have to be
addressed in this KA description. The third one,
Database Design, can also be considered a
relevant (specialized) knowledge area of a related

discipline (Computer Science). Note that issues
related with user-interfaces and databases still
have to be dealt with during the software design
process, which is why they are mentioned in the
“Key Issues in Software Design” section.
However, the specific tasks of designing the
details of the user interface or database structure
are not considered part of Software Design per se.
As for the last two topics – Participatory and
Collaborative Design –, they are more
appropriately related with the Software
Requirements KA, rather than Software Design.
In the terminology of DeMarco (DeM99), these
latter two topics belong more appropriately to I-
Design (invention design, done by system
analysts) rather than D-design (decomposition
design, done by designers and coders) or FP-
design (family pattern design, done by
architecture groups). It is mainly D-design and
FP-design, with a major emphasis on D-design,
which can be considered as generally accepted
knowledge related with Software Design.

69. Concerning the topic of standards, there seems to
be few standards that directly pertain to the design
task or work product per se. However, standards
having some indirect relationships with various
issues of Software Design do exist, e.g., OMG
standards for UML or CORBA. Since the need for
the explicit inclusion of standards in the KA
breakdown has been put aside (“Proposed changes
to the […] specifications […]”, Dec. 1999), a few
standards having a direct connection with the
Software Design KA were included in the
recommended reference material section. A
number of standards related with design in a
slightly more indirect fashion were also added to
the list of further readings. Finally, additional
standards having only an indirect yet not empty
connection with Design were simply mentioned in
the general References section. As for topics
related with tools, they were excluded from the
Software Design breakdown based also on the
Dec. 1999 changes to the KA Description
Specifications.

70. 5. MATRIX OF SOFTWARE DESIGN

TOPICS VS. RECOMMENDED

REFERENCE MATERIAL

72. The figure below presents a matrix showing the
coverage of the topics of the Software Design KA
by the various recommended reference material
described in more detail in the following section.
A number in an entry indicates a specific section

© IEEE – Stoneman (Version 0.7) – April 2000 3–9

or chapter number. A “*” indicates a to the whole
document, generally either a journal paper or a
standard. An interval of the form “n1-n2“
indicates a specific range of pages, whereas an
interval of the form “n1:n2“ indicates a range of
sections. For Mar94, the letters refer to one of the
encyclopedia’s entry: “D” = Design; “DR” =
Design Representation; “DD” = Design of
Distributed systems”.

73. Note: Except for the “Key Issues in Software
Design” section, only the top two level of the
breakdown have been indicated in the matrix.
Otherwise, especially in the “Software Design
Notations” subsections, this would have lead to
very sparse lines (in an already quite sparse
matrix).

 B

C
K
9
8

B
M
R
+
9
6

B
R
J
9
9

B
u
d
9
4

D
T
9
7

F
W
8
3

I
E
E
9
8

I
S
O
9
5
b

J
A
I
9
7

M
a
r
9
4

M
e
y
9
7

P
f
l
9
8

P
r
e
9
7

S
B
9
3

74. I. Software Design
Basic Concepts

 General design
concepts

 1 *

 The context of
software design

 * D 2.2 2.2 : 2.7

 The software design
process

2.1,
2.3,
2.4

 2 266-
276

2-22 * * D

 Basic software
design concepts

6.1 6.3 * 5.1,
5.2,
6.2

 5.5 13.4:13.5,
23.2

 Key issues in
software design

 Concurrency DD 30 21.3

 Control and events 5.2 32.4,
32.5

5.3

 Distribution 8.3,
8.4

2.3 DD 30 28.1

 Exceptions 12 5.5

 Interaction
independence

6.2 2.4 32.2

 Modularity and
partitioning

 6.3 3 5.5

 Persistence 31

 Platform
independence

 2.5 32.2

75. II. Software
architecture

 Architectural
structures and
viewpoints

2.5 6.1 31 *

 Architectural styles
and patterns (macro-
arch.)

5.1,
5.2,
5.4

1.1:
1.3,
6.2

28 5.3

 Design patterns
(micro-arch.)

13.3 1.1:
1.3

28

 Families of
programs and
frameworks

 6.2 28

3–10 © IEEE – Stoneman (Version 0.7) – April 2000

 B
C
K
9
8

B
M
R
+
9
6

B
R
J
9
9

B
u
d
9
4

D
T
9
7

F
W
8
3

I
E
E
9
8

I
S
O
9
5
b

J
A
I
9
7

M
a
r
9
4

M
e
y
9
7

P
f
l
9
8

P
r
e
9
7

S
B
9
3

76. III. Software design
quality analysis
and evaluation

 Quality attributes 4.1 6.4 4.1:
4.3

 D 3 5.5

 Quality analysis and
evaluation

9.1,
9.2,
10.2,
10.3

 542-
576

 5.5,
7.3

 5.6,
5.7

 Metrics 5.6,
6.5,
7.4

 18.4,
23.4,23.5

77. IV. Software design
notations

 Structural
descriptions (static)

12.1,
12.2

 4, 8,
11,
12,
14,
30,
31

6 5.3,
6.3

DR 12.3, 12.4

 Behavioral
descriptions
(dynamic)

 18,
19,
24

6 181-
192

485-
490,
506-
513

 5.3,
7.2

DR 11 14.11
12.5

78. V. Software design
strategies and
methods

 General strategies 5.1:
5.4

 7.1,
8

 304-
320,
533-
539

 D 2.2

 Function-oriented
design

 170-
180

328-
352

 5.4 13.5,
13.6,

14.3:14.5

 OO design 148-
159,
160-
169

420-
436

 6.4 D 19.2,
19.3,

21.1:21.3

 Data-oriented design 514-
532

 D

 Other methods 14 181-
192

395-
407,
461-
468

 11 2.2

79. 6. RECOMMENDED REFERENCE

MATERIAL FOR THE SOFTWARE

DESIGN KA

80. In what follows, reference material for the various
topics presented in the proposed breakdown of
topics are suggested. Section 6.1 gives a brief
presentation of each of the recommended
reference. Then, in section 6.2, specific and
detailed references are given for each of the major
topics of the breakdown. Note that, for some

topics, a number of global references are given for
a non-leaf topic, rather a specific reference for
each particular leaf topic. This seemed preferable
because some of these topics were discussed in a
number of interesting references.

81. Note that few references to existing standards
have been included in this list, for the reasons
explained earlier. Also note that almost no
specific references have been given for the various
design methods except very general ones. See the
list of further readings in section 7 for more

© IEEE – Stoneman (Version 0.7) – April 2000 3–11

precise and detailed references on such methods,
especially for references to OO design methods.

82. 6.1 Brief description of the
recommended references

83. [BCK98] L. Bass, P. Clements, and R. Kazman.
Software Architecture in Practice.

84. A recent and major work on software
architecture. It covers all the major topics
associated with software architecture: what
software architecture is, quality attributes,
architectural styles, enabling concepts and
techniques (called unit operations),
architecture description languages,
development of product lines, etc.
Furthermore, it present a number of case
studies illustrating major architectural
concepts, including a chapter on CORBA and
one on the WWW.

85. [BMR+96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, and M. Stal. Pattern-
oriented Software Architecture – A System of
Patterns.

86. According to the Software Design KA
Description author’s humble opinion, this is
probably the best and clearest introduction to
the notions of software architecture and
patterns (both architectural and lower-level
ones). Distinct chapters are dedicated to
architectural patterns, design patterns and
lower-level idioms. Another chapter discusses
the relationships between patterns, software
architecture, methods, frameworks, etc. This
chapter also includes an interesting
presentation of so-called “enabling techniques
for software architecture”, discussing many of
the elements of the “Basic software design
concepts” section, e.g., abstraction,
encapsulation, information hiding, coupling
and cohesion, etc.

87. [BRJ99] G. Booch, J. Rumbauch, and I. Jacobson.
The Unified Modeling Language User Guide.

88. A comprehensive and thorough presentation of
UML, which incorporates many of the
notations mentioned in the “Software Design
Notations” section.

89. [Bud94] D. Budgen. Software Design.

90. One of the few books known to the author –
maybe the only one – which is neither a
general software engineering textbook nor a
book describing a specific software design
method. This is probably the book that comes
closest to the current Software Design KA

description, as it discusses topics such as the
followings: the nature of design; the software
design process; design qualities; design
viewpoints; design representations; design
strategies and methods (including brief
presentations of a number of such methods,
e.g., JSP, SSASD, JSD, OOD, etc.) The only
drawback might be its availability – at least in
Canada, as the author of the Software Design
KA description only managed to get hold of a
copy of this book a few days before delivering
the final version of the current KA description
(version 0.70) – but it is worth reading.

91. [DT97] M. Dorfman and R.H. Thayer (eds.).
Software Engineering.

92. This book contains a collection of papers on
software engineering in general. Two chapters
deal more specifically with software design.
One of them contains a general introduction to
software design, briefly presenting the
software design process and the notions of
software design methods and design
viewpoints. The other chapter contains an
introduction to object-oriented design and a
comparison of some existing OO methods.
The following articles are particularly
interesting for Software Design:

93. - D. Budgen, Software Design: An
Introduction, pp. 104-115.

94. - L.M. Northrop, Object-Oriented
Development, pp. 148-159.

95. - A.G. Sutcliffe, Object-Oriented Systems
Development: A Survey of Structured
Methods, pp.160-169.

96. - C. Ashworth, Structured Systems Analysis
and Design Method (SSADM), pp. 170-
180.

97. - R. Vienneau, A Review of Formal
Methods, pp. 181-192.

98. - J.D. Palmer, Traceability, pp. 266-276.

99. [FW83] P. Freeman and A.I. Wasserman. Tutorial
on Software Design Techniques, fourth edition.

100. Although this is an old book, it is a very
interesting one because it allows to better
understand the evolution of the software
design field. This book is a collection of
papers where each paper presents a software
design technique. The techniques range from
basic strategies like stepwise refinement to, at
the time, more refined method such as
structured design à la Yourdon and
Constantine. An historically important

3–12 © IEEE – Stoneman (Version 0.7) – April 2000

reference. The following articles are
particularly interesting for Software Design:

101. - P. Freeman, Fundamentals of Design, pp.
2-22.

102. - D.L. Parnas, On the Criteria to be Used in
Decomposing Systems into Modules, pp.
304-309.

103. - D.L. Parnas, Designing Software for Ease
of Extension and Contraction, pp. 310-320.

104. - W.P. Stevens, G.J. Myers and L.L.
Constantine, Structured Design, pp. 328-
352.

105. - G. Booch, Object-Oriented Design, pp.
420-436.

106. - S.H. Caine and E.K. Gordon, PDL – A
Tool for Software Design, pp. 485-490.

107. - C.M. Yoder and M.L. Schrag, Nassi-
Schneiderman Charts: An Alternative to
Flowcharts for Design, pp. 506-513.

108. - M.A. Jackson, Constructive Methods of
Program Design, pp. 514-532.

109. - N. Wirth, Program Development by
Stepwise Refinement, pp. 533-539.

110. - P. Freeman, Toward Improved Review of
Software Design, pp. 542-547.

111. - M.E. Fagan, Design and Code Inspections
to Reduce Errors in Program Development,
pp. 548-576.

112. [IEE98] IEEE Std 1016-1998. IEEE
Recommended Practice for Software Design
Descriptions.

113. This document describes the information
content and recommended organization that
should be used for software design
descriptions. The attributes describing design
entities are briefly described: identification,
type, purpose, function, subordinates,
dependencies, interfaces, resources, processing
and data. How these different elements should
be organized is then presented.

114. [ISO95b] ISO/IEC Std 12207. Information
technology – Software life cycle processes.

115. A detailed description of the ISO/IEC-12207
life cycle model. Clearly shows where
Software Design fits in the whole software
development life cycle.

116. [Jal97] P. Jalote. An integrated approach to
software engineering, 2nd ed.

117. A general software engineering textbook with
a good coverage of software design, as three

chapters discuss this topic: one on function-
oriented design, one on object-oriented design,
and the other on detailed design. Another
interesting point is that all these chapters have
a metrics section.

118. [Mar94] J.J. Marciniak. Encyclopedia of
Software Engineering.

119. A general encyclopedia that contains (at least)
three interesting articles discussing software
design. The first one, “Design” (K. Shumate),
is a general overview of design discussing
alternative development processes (e.g.,
waterfall, spiral, prototyping), design methods
(structured, data-centered, modular, object-
oriented). Some issues related with
concurrency are also mentioned. The second
one discusses the “Design of distributed
systems” (R.M. Adler): communication
models, client-server and services models. The
third one, “Design representation” (J. Ebert),
presents a number of approaches to the
representation of design. It is clearly not a
detailed presentation of any method; however,
it is interesting in that it tries to explicitly
identify, for each such method, the kinds of
components and connectors used within the
representation.

120. [Mey97] B. Meyer. Object-Oriented Software
Construction (Second Edition).

121. A detailed presentation of the Eiffel OO
language and its associated Design-By-
Contract approach, which is based on the use
of formal assertions (pre/post-conditions,
invariants, etc). It introduces the basic
concepts of OO design, along with a
discussion of many of the key issues
associated with software design, e.g., user
interface, exceptions, concurrency,
persistence, etc.

122. [Pfl98] S.L. Pfleeger. Software Engineering –
Theory and Practice.

123. A general software engineering book with one
chapter devoted to design. Briefly presents and
discusses some of the major architectural
styles and strategies and some of the concepts
associated with the issue of concurrency.
Another section presents the notions of
coupling and cohesion and also deals with the
issue of exception handling. Techniques to
improve and to evaluate a design are also
presented: design by contract, prototyping,
reviews. Although this chapter does not delve
into any topic, it can be an interesting starting
point for a number of issues not discussed in

© IEEE – Stoneman (Version 0.7) – April 2000 3–13

some of the other general software engineering
textbooks.

124. [Pre97] R.S. Pressman. Software Engineering – A
Practitioner's Approach (Fourth Edition).

125. Probably the classic among all the general
software engineering textbooks (4th edition!)
It contains over 10 chapters that deal with
notions associated with software design in one
way or another. The basic concepts and the
design methods are presented in two distinct
chapters. Furthermore, the topics pertaining to
the function-based (structured) approach are
separated (part III) from those pertaining to the
object-oriented approach (part IV).
Independent chapters are also devoted to
metrics applicable to each of those approaches,
a specific section addressing the metrics
specific to design. A chapter discusses formal
methods and another presents the Cleanroom
approach. Finally, another chapter discusses
client-server systems and distribution issues.

126. [SB93] G. Smith and G. Browne. Conceptual
foundations of design problem-solving.

127. An interesting paper that discusses what is
design in general. More specifically, it
presents the five basic concepts of design:
goals, constraints, alternatives, representations,
and solutions. The bibliography is a good
starting point for obtaining additional
references on design in general.

128. 6.2 Recommended references for each
of the KA topic

129. Note: The numbers after the reference key
indicate the appropriate chapter. In the case of
Mar94, the appropriate entry of the encyclopedia
is indicated as follows: “D” = Design; “DR” =
Design Representation; “DD” = Design of
Distributed systems”. Note that, contrary, to the
matrix presented in section 5, we have only
indicated the appropriate chapter (or part) number,
not the specific sections or pages.

130. I. Software Design Basic Concepts

131. General design concepts

132. [Bud94: 1][SB93]

133. The context of software design

134. [ISO95b][Mar94: D][Pfl98: 2][Pre97: 2]

135. The software design process

136. [BCK98: 2][DT97: 7][FW83: I][IEE98]
[ISO95b][Mar94]

137. Basic software design concepts

138. [BCK98: 6][BMR+96: 6][IEE98][Jal97: 5,
6][Pfl98: 5][Pre97: 13, 23]

139. Key Issues in Software Design

140. Concurrency considerations

141. [Mar94: DD][Mey97: 30][Pre97: 21]

142. Control and handling of events

143. [BCK98: 5][Mey97: 32][Pfl98: 5]

144. Distribution

145. [BCK98: 8][BMR+96: 2][Mar94:
DD][Mey97: 30][Pre97: 28]

146. Exception handling

147. [Mey97: 12][Pfl98: 5]

148. Interactive systems and dialogue independence

149. [BCK98: 6][BMR+96: 2.4][Mey97: 32]

150. Modularity and partitioning

151. [BMR+96: 6][Mey97: 3][Pfl98: 5]

152. Persistence

153. [Mey97: 31]

154. Platform independence

155. [BMR+96: 2][Mey97: 32]

156. II. Software Architecture

157. Architectural structures and viewpoints

158. [BCK98: 2][BMR+96: 6][BRJ99: 31][IEE98]

159. Architectural styles and patterns (macro-
architecture)

160. [BCK98: 5][BMR+96: 1, 6][BRJ99:
28][Pfl98: 5]

161. Design patterns (micro-architecture)

162. [BCK98: 13][BMR+96: 1][BRJ99: 28]

163. Design of families of programs and frameworks

164. [BMR+96: 6][BRJ99: 28]

165. III. Software Design Quality Analysis and
Evaluation

166. Quality attributes

167. [BCK98: 4][BMR+96: 6][Mar94: D][Mey97:
3][Pfl98: 5]

168. Quality analysis and evaluation tools

169. [BCK98: 9-10][FW83: VIII][Jal97: 5,
7][Pfl98: 5]

170. Metrics

171. [Jal97: 5-7][Pre97: 18, 23]

3–14 © IEEE – Stoneman (Version 0.7) – April 2000

172. IV. Software Design Notations

173. Structural descriptions (static view)

174. ADL (Architecture Description Languages)

175. [BCK98: 12]

176. Class and objects diagrams

177. [BRJ99: 8, 14][Jal97: 5,6]

178. CRC (Class-Responsibilities-Collaborators)
Cards

179. [BRJ99: 4][BMR+96]

180. Deployment diagrams

181. [BRJ99: 30]

182. ERD (Entity-Relationship Diagrams)

183. [DT97: 4][Mar94: DR]

184. IDL (Interface Description Languages)

185. [BCK98: 8][BJR99: 11]

186. Jackson structure diagrams

187. [DT97: 4][Mar94: DR]

188. Structure charts

189. [DT97: 4-5][Jal97: 5][Mar94: DR][Pre97:
12, 14]

190. Subsystems (packages) diagrams

191. [BRJ99: 12, 31][DW99: 7]

192. Behavioral descriptions (dynamic view)

193. Activity diagrams

194. [BRJ99: 19]

195. Collaboration diagrams

196. [BRJ99: 18]

197. Data flow diagrams

198. [Jal97: 5, 7][Mar94: DR][Pre97: 14]

199. Decision tables and diagrams

200. [Pre97: 14]

201. Flowcharts and structured flowcharts

202. [FW83: VII][Mar94: DR][Pre97: 14]

203. Formal specification languages

204. [Bud94: 14][DT97: 5][Mey97: 11]

205. Pseudo-code and PDL (Program Design
Language)

206. [FW83: VII][Jal97: 7][Pre97: 14]

207. Sequence diagrams

208. [BRJ99: 18]

209. State transition diagrams and statecharts

210. [BRJ99: 24][Mar94: DR][Jal97: 7]

211. V. Software Design Strategies and Methods

211. General strategies [Bud94: 8][Mar94: D]

212. Divide-and-conquer and stepwise refinement
[FW83: VII]

213. Data abstraction and information hiding
[FW83: V]

214. Iterative and incremental design [Pfl98: 2]

215. Heuristics-based design [Bud94: 7]

216. Pattern-based design and pattern languages
[BMR+96: 5]

217. Function-oriented design

218. [DT97: 5][FW83: V][Jal97: 5][Pre97: 13-14]

219. Object-oriented design

220. [DT97: 5][FW83: VI][Jal97: 6][Mar94:
D][Pre97: 19, 21]

221. Data-structure centered design

222. [FW83: III, VII][Mar94: D]

223. Other methods

224. Formal and rigorous methods [Bud94:
14][DT97: 5][Mey97: 11]

225. Transformational methods [Pfl98: 2]

226. 7. LIST OF FURTHER READINGS

227. The following section suggests a list of additional
interesting reading material related with Software
Design. A number of standards are mentioned;
additional standards that may be pertinent or
applicable to Software Design, although in a
somewhat less direct way, are also mentioned,
although not further described, in the general
References section at the end of the document.

228. [Boo94] G. Booch. Object Oriented Analysis and
Design with Applications, 2nd ed.

229. A classic in the field of OOD. The book
introduces a number of notations that were to
become part of UML (although sometimes
with some slight modifications): class vs.
objects diagrams, interaction diagrams,
statecharts-like diagrams, module and
deployment, process structure diagrams, etc. It
also introduces a process to be used for OOA
and OOD, both a higher-level (life cycle)
process and a lower-level (micro-) process.

230. [Cro84] N. Cross (ed.). Developments in Design
Methodology.

231. This book consists in a series of papers related
to design in general, that is, design in other
contexts than Software Design. Still, many

© IEEE – Stoneman (Version 0.7) – April 2000 3–15

notions and principles discussed in some of
these papers do apply to Software Design, e.g.,
the idea of design a wicked-problem solving.

232. [CY91] P. Coad and E. Yourdon. Object-Oriented
Design.

233. This is yet another classic in the field of OOD
– note that the second author is one of the
father of classical Structured Design. An OOD
model developed with their approach consists
of the following four components, trying to
separate how some of the key issues should be
handled: problem domain, human interaction,
task management and data management.

234. [DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The
Catalysis Approach.

235. A thorough presentation of a specific OO
approach with an emphasis on component
design. The development of static, dynamic
and interaction models is discussed. The
notions of components and connectors are
presented and illustrated with various
approaches (Java Beans, COM, Corba); how to
use such components in the development of
frameworks is also discussed. Another chapter
discusses various aspects of software
architecture. The last chapter introduces a
pattern system for dealing with both high-level
and detailed design, the latter level touching
on many key issues of design such as
concurrent, distribution, middleware, dialogue
independence, etc.

236. [FP97] N.E. Fenton and S.L. Pfleeger. Software
Metrics – A Rigorous & Practical Approach
(Second Edition).

237. This book contains a detailed presentation of
numerous software metrics. Although the
metrics are not necessarily presented based on
the software development life cycle, many of
those metrics, especially in chapter 7 and 8,
are applicable to software design.

238. [GHJV95] E. Gamma et al. Design Patterns –
Elements of Reusable Object-Oriented Software.

239. The seminal work on design patterns. A
detailed catalogue of patterns related mostly
with the micro-architecture level.

240. [Hut94] A.T.F. Hutt. Object Analysis and Design
– Description of Methods. Object Analysis and
Design – Comparison of Methods.

241. These two books describe (first book) and
compare (second book), in a very outlined
manner, a large number of OO analysis and

design methods. Useful as a starting point for
obtaining additional pointers and references to
OOD methods, not so much as a detailed
presentation of those methods.

242. [IEE90] IEEE Std 610.12-1990. IEEE Standard
Glossary of Software Engineering Terminology.

243. This standard is not specifically targeted to
Software Design, which is why it has not been
included in the recommended references. It
describes and briefly explains many of the
common terms used in the Software
Engineering field, including many terms from
Software Design.

244. [ISO91] ISO/IEC Std 9126. Information
technology – Software product evaluation –
Quality characteristics and guidelines for their
use.

245. This standard describes six high-level
characteristics that describe software quality:
functionality, reliability, usability, efficiency,
maintainability, portability.

246. [JBP+91] J. Rumbaugh et al. Object-Oriented
Modeling and Design.

247. This book is another classic in the field of
OOA and OOD. It was one of the first to
clearly introduce the distinction between
object, dynamic and functional modeling.
However, contrary to [Boo94] whose emphasis
is mostly on design, the emphasis here is
slightly more on analysis, although a number
of elements do apply to design too.

248. [JBR99] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.

249. A detailed and thorough presentation of the
Unified Software Development Process
proposed by the Rational amigos. The notion
of architecture plays a central role in this
development process, the process being said to
be architecture-centric. However, the
associated notion of architecture is slightly
different from the traditional purely design-
based one: an architecture description is
supposed to contain views not only from the
design model but also from the use-case,
deployment and implementation models. A
whole chapter is devoted to the presentation of
the iterative and incremental approach to
software development. Another chapter is
devoted to design per se, whose goal is to
produce both the design model, which includes
the logical (e.g., class diagrams,
collaborations, etc.) and process (active

3–16 © IEEE – Stoneman (Version 0.7) – April 2000

objects) views, and the deployment model
(physical view).

250. [Kru95] P.B. Kruchten. The 4+1 view model of
architecture.

251. A paper that explains in a clear and insightful
way the importance of having multiple views
to describe an architecture. Here, architecture
is understood in the UML Process sense
mentioned earlier, not in its strictly design-
related way. The first four views discusses in
the paper are the logical, process, development
and physical views, whereas the fifth one (the
“+1”) is the use case view, which binds
together the previous views. The views more
intimately related with Software Design are
the logical and process ones.

252. [McC93] S. McConnell. Code Complete.

253. Although this book is probably more closely
related with Software Construction, it does
contain a section on Software Design with a
number of interesting chapters, e.g.,
“Characteristics of a High-Quality Routines”,
“Three out of Four Programmers Surveyed
Prefer Modules”, “High-Level Design in
Construction”. One of these chapters
(“Characteristics […]”) contains an interesting
discussion on the use of assertions in the spirit
of Meyer’s Design-by-Contract; another
chapter (“Three […]”) discusses cohesion and
coupling as well as information hiding; the
other chapter (“High-Level […]”) gives a brief
introduction to some design methodologies
(structured design, OOD).

254. [Pre95] W. Pree. Design Patterns for Object-
Oriented Software Development.

255. This book is particularly interesting for its
discussion of framework design using what is
called the “hot-spot driven” approach to the
design of frameworks. The more specific topic
of design patterns is better addressed in
[BMR+96].

256. [Rie96] A.J. Riel. Object-Oriented Design
Heuristics.

257. This book, targeted mainly towards OO
design, presents a large number of heuristics
that can be used in software design. Those
heuristics address a wide range of issues, both
at the architectural level and at the detailed
design level.

258. [WBWW90] R. Wirfs-Brock, B. Wilkerson, and
L. Wiener. Designing Object-Oriented Software.

259. Interesting as it introduced the notion of
responsibility-driven design to OOD. Before
that, OOD was often considered synonymous
with data abstraction-based design. Although it
is true that an object does encapsulate data and
associated behavior, focusing strictly on this
aspect may not lead, according to the
responsibility-driven design approach, to the
best design.

260. [Wie98] R. Wieringa. A Survey of Structured and
Object-Oriented Software Specification Methods
and Techniques.

261. An interesting survey article that presents a
wide range of notations and methods for
specifying software systems and components.
It also introduces an interesting framework for
comparison based on the kinds of system
properties to be specified: functions, behavior,
communication or decomposition.

262. 8. REFERENCES

263. [BCK98] L. Bass, P. Clements, and R. Kazman.
Software Architecture in Practice. SEI Series in
Software Engineering. Addison-Wesley, 1998.

264. [BDA+98] P. Bourque, R. Dupuis, A. Abran, J.W.
Moore, L. Tripp, J. Shyne, B. Pflug, M. Maya,
and G. Tremblay. Guide to the software
engineering body of knowledge – a straw man
version. Technical report, Dépt. d'Informatique,
UQAM, Sept. 1998.

265. [BMR+96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, and M. Stal. Pattern-
oriented Software Architecture – A System of
Patterns. Wiley, West Sussex, England, 1996.

266. [Boo94] G. Booch. Object Oriented Analysis and
Design with Applications, 2nd ed. The
Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1994.

267. [BRJ99] G. Booch, J. Rumbauch, and I. Jacobson.
The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA, 1999.

268. [Bud94] D. Budgen. Software Design. Addison-
Wesley, Wokingham, England, 1994.

269. [Cop99] J. Coplien. Multi-Paradigm Design for
C++. Addison-Wesley, 1999.

270. [Cro84] N. Cross (ed.). Developments in Design
Methodology. John Wiley, 1984.

271. [CY91] P. Coad and E. Yourdon. Object-Oriented
Design. Yourdon Press, 1991.

© IEEE – Stoneman (Version 0.7) – April 2000 3–17

272. [DeM99] T. DeMarco. The Paradox of Software
Architecture and Design. Stevens Prize Lecture,
August 1999.

273. [DT97] M. Dorfman and R.H. Thayer. Software
Engineering. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

274. [DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The
Catalysis Approach. Addison-Wesley, Reading,
MA, 1999.

275. [FP97] N.E. Fenton and S.L. Pfleeger. Software
Metrics – A Rigorous & Practical Approach
(Second Edition). International Thomson
Computer Press, 1997.

276. [FW83] P. Freeman and A.I. Wasserman. Tutorial
on Software Design Techniques, fourth edition.
IEEE Computer Society Press, Silver Spring, MD,
1983.

277. [GHJV95] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Professional
Computing Series. Addison-Wesley, Reading,
MA, 1995.

278. [Hut94] A.T.F. Hutt. Object Analysis and Design
– Comparison of Methods. Object Analysis and
Design – Description of Methods. John Wiley &
Sons, New York, 1994.

279. [IEE88] IEEE. IEEE Standard Dictionary of
Measures to Produce Reliable Software. IEEE Std
982.1-1988, IEEE, 1988.

280. [IEE88b] IEEE. IEEE Guide for the Use of
Standard Dictionary of Measures to Produce
Reliable Software. IEEE Std 982.2 -1988, IEEE,
1988.

281. [IEE90] IEEE. IEEE Standard Glossary of
Software Engineering Terminology. IEEE Std
610.12-1990, IEEE, 1990.

282. [IEE98] IEEE. IEEE Recommended Practice for
Software Design Descriptions. IEEE Std 1016-
1998, IEEE, 1998.

283. [ISO91] ISO/IEC. Information technology –
Software product evaluation – Quality
characteristics and guidelines for their use.
ISO/IEC Std 9126: 1991, ISO/IEC, 1991.

284. [ISO95] ISO/IEC. Open distributed processing –
Reference model. ISO/IEC Std 10746: 1995,
ISO/IEC, 1995.

285. [ISO95b] ISO/IEC. Information technology –
Software life cycle processes. ISO/IEC Std 12207:
1995, ISO/IEC, 1995.

286. [Jal97] P. Jalote. An Integrated Approach to
Software Engineering, 2nd ed. Springer, New
York, NY, 1997.

287. [JBP+91] J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

288. [JBR99] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, Reading, Ma, 1999.

289. [JCJO92] I. Jacobson, M. Christerson, P. Jonsson,
and G. Overgaard. Object-Oriented Software
Engineering – A Use Case Driven Approach.
Addison-Wesley, 1992.

290. [Kru95] P.B. Kruchten. The 4+1 view model of
architecture. IEEE Software, 12(6):42–50, 1995.

291. [Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons, Inc., New York,
NY, 1994.

292. [McCr93] S. McConnell. Code Complete.
Microsoft Press, Redmond, WA, 1993.

293. [Mey97] B. Meyer. Object-Oriented Software
Construction (Second Edition). Prentice-Hall,
Upper Saddle River, NJ, 1997.

294. [OMG98] OMG. The common object request
broker: Architecture and specification. Technical
Report Revision 2.2, Object Management Group,
February 1998.

295. [OMG99] UML Revision Task Force. OMG
Unified Modeling Language specification, v. 1.3.
document ad/99-06-08, Object Management
Group, June 1999.

296. [otSESC98] Architecture Working Group of the
Software Engineering Standards Committee. Draft
recommended practice for information technology
– system design – architectural description.
Technical Report IEEE P1471/D4.1, IEEE, New
York, NY, December 1998.

297. [Pfl98] S.L. Pfleeger. Software Engineering –
Theory and Practice. Prentice-Hall, Inc., 1998.

298. [Pre95] W. Pree. Design Patterns for Object-
Oriented Software Development. Addison-Wesley
and ACM Press, 1995.

299. [Pre97] R.S. Pressman. Software Engineering – A
Practitioner's Approach (Fourth Edition).
McGraw-Hill, Inc., 1997.

300. [Rie96] A.J. Riel. Object-Oriented Design
Heuristics. Addison-Wesley, Reading, MA, 1996.

301. [SB93] G. Smith and G. Browne. Conceptual
foundations of design problem-solving. IEEE

3–18 © IEEE – Stoneman (Version 0.7) – April 2000

Trans. on Systems, Man, and Cybernetics,
23(5):1209–1219, 1993.

302. [WBWW90] R. Wirfs-Brock, B. Wilkerson, and
L. Wiener. Designing Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

303. [Wie98] R. Wieringa. A Survey of Structured and
Object-Oriented Software Specification Methods
and Techniques. ACM Computing Surveys, 30(4):
459–527, 1998.

© IEEE – Stoneman (Version 0.7) – April 2000 4–1

CHAPTER 4
SOFTWARE CONSTRUCTION

Terry Bollinger
The MITRE Corporation

Philippe Gabrini and Louis Martin
Université du Québec à Montréal

{gabrini.philippe} {martin.louis}@uqam.ca

TABLE OF CONTENTS

1. SOFTWARE CONSTRUCTION
1.1 Software Construction and Software
Design
1.2 The Role of Tools in Construction
1.3 The Role of Integrated Self-Evaluation in
Construction
1.4 The Role of Standards in Construction
1.5 The Spectrum of Construction
Techniques
1.6 Computer Languages
1.7 Construction Languages

2. STYLES OF CONSTRUCTION
3. PRINCIPLES OF ORGANIZATION
A TAXONOMY OF SOFTWARE CONSTRUCTION

METHODS
RECOMMENDED REFERENCES
FURTHER READINGS
STANDARDS RELEVANT TO SOFTWARE

CONSTRUCTIONS
MATRIX OF REFERENCE MATERIAL VERSUS

TOPICS

1. 1. Software Construction

2. Software construction is the most fundamental
act of software engineering: the construction of
working, meaningful software through a
combination of coding, self-validation, and self-
testing (unit testing) by a programmer. Far from
being a simple mechanistic “translation” of good
design into working software, software
construction burrows deeply into some of the
most difficult issues of software engineering. It
requires the establishment of a meaningful dialog
between a person and a computer – a
“communication of intent” that must reach from
the slow and fallible human to a fast and
unforgivingly literal computer. Such a dialog
requires that the computer perform activities for
which it is poorly suited, such as understanding
implicit meanings and recognizing the presence
of nonsensical or incomplete statements. On the

human side, software construction requires that
forgetful, sloppy, and unpredictable people train
themselves to be precise and thorough to the
point that, at the least, they do not appear to be
completely insane from the viewpoint of a very
literal computer. The relationship works only
because each side possesses certain capabilities
that the other lacks. In the symbiosis of disparate
entities that is software construction, the
computer provides astonishing reliability,
retention, and (once the need has been explained)
speed of performance. Meanwhile, the human
side provides something utterly lacking on the
part of the computer: Creativity and insight into
how to solve new, difficult problems, plus the
ability to express those solutions with sufficient
precision to be meaningful to the computer.
Perhaps the most remarkable aspect of software
construction is that it is possible at all, given the
strangeness of the symbiosis on which it is based.

3. 1.1 Software Construction and
Software Design

4. Software construction is closely related to
software design (see Knowledge Area
Description for Software Design). Software
design is a collection of skills and techniques for
breaking up a large, complex problems into
structured collections of smaller, easier-to-solve
problems. Software design methods can be
applied repeatedly until the resulting
subproblems are small enough to be handled with
confidence by a single developer. It is at this
point – that is, when the design process has
broken the larger problem up into easier-to-
handle chunks – that software construction is
generally understood to begin. This definition
also implies the distinction that while software
construction necessarily produces executable
software, software design does not necessarily
produce any executable products at all.

5. In practice, however, the boundary between
design and construction is seldom this clearly
defined. Firstly, software construction is greatly
influenced by the scale or size of the software

4–2 © IEEE – Stoneman (Version 0.7) – April 2000

product being constructed. Very small projects in
which the design problems are already
“construction size” may neither require nor need
an explicit design phase, and very large projects
may require a much more interactive relationship
between design and construction as different
prototyping alternatives are proposed, tested, and
discarded or used. Secondly, many of the
techniques of software design also apply to
software construction, since dividing problems
into smaller parts is just as much a part of
construction as it is design. Thirdly, effective
design techniques always contain some degree of
guessing or approximation in how they define
their subproblems. A few of the resulting
approximations will turn out to be wrong, and
will require corrective actions during software
construction. These corrective actions are most
easily taken if construction is capable of applying
the same techniques. (While another seemingly
obvious solution would be to remove guessing
and approximation altogether from design
methods, that would contradict the premise that
the original problem was too large and complex
to be solved in one step. Effective design
techniques instead acknowledge risk, work to
reduce it, and help make sure that effective
alternatives will be available when some choices
eventually prove wrong.)

6. Finally, there is a common misconception that
software design solves all of the “hard” problems
in software development, making software
construction into little more than a mechanistic
translation of software designs into final
software. This is simply not the case. Design and
construction both require sophisticated problem
solving skills, although the two activities have
somewhat different emphases. In design the
emphasis is on how to divide up a complex
problem effectively, while in construction the
emphasis is on finding a complete and executable
solution to a problem. When software
construction techniques do become so well-
defined that they can be applied mechanistically,
the proper route for the software engineer is to
automate those techniques and move on to new
problems, ones whose answers are not so well
defined. This trend toward automation of well-
defined tasks began with the first assemblers and
compilers, and it has continued unabated as new
generations of tools and computers have made
increasingly powerful levels of construction
automation possible. Projects that do contain
highly repetitive, mechanistic software
construction steps should examine their designs,
processes, and tools sets more closely for ways to

automate such needlessly repetitive steps out of
existence.

7. 1.2 The Role of Tools in Construction

8. In software engineering, a tool may be broadly
defined as any hardware or software device that
provides significant productivity or quality
improvements to the overall development
process (see Knowledge Area Description for
Engineering Tools and Methods). This is a very
inclusive definition, however, since it
encompasses general-purpose hardware devices
such as computers and peripherals that are part of
an overall software-engineering environment.
Software construction tools are a more specific
category of tools that are both software-based
and used primarily within the construction
process. Common examples of software
construction tools include compilers, version
control systems, design tools, and documentation
tools.

9. The best software construction tools bridge the
gap between methodical computer efficiency and
forgetful human creativity. Such tools allow
creative minds to express their thoughts easily,
but also enforce a level of rigor that keeps that
same creativity from seriously damaging the
overall construction process. Good tools also
improve quality by keeping people from doing
repetitive or precise work for which a computer
is better suited.

10. 1.3 The Role of Integrated Self-
Evaluation in Construction

10. Another important theme of software engineering
is the integrated self-evaluation of processes.
This concept encompasses such diverse activities
as testing, software quality assurance, and
metrics (see Knowledge Area Description for
Testing and Knowledge Area Description for
Software Quality). Integrated self-evaluation
means that a process (in this case a development
process) includes explicit continuous or periodic
internal “self-checks” to ensure that it is still
working correctly. These self-checks usually
consist of evaluations of intermediate work
products such as documents, designs, source
code, or compiled modules, but they may also
look at characteristics of the development
process itself. Examples of product evaluations
include design reviews, module compilations,
and unit tests. An example of process-level self-
evaluation would be periodic re-assessment of a

© IEEE – Stoneman (Version 0.7) – April 2000 4–3

code library to ensure its accuracy, completeness,
and self-consistency.

11. Integrated self-evaluation in software
engineering parallels the concept of integrated
self-test logic and built-in error recovery in
complex integrated circuits. Such features were
first added to integrated circuits when it was
realized the circuits had become so complex that
the assumption of perfect start-to-finish
reliability was no longer tenable. Similarly,
software engineering processes and products
have become so complex that even the illusion
that they can move from start (requirements) to
finish (delivery) without incurring significant
serious process errors along the way is no longer
plausible – and probably never was even in the
earliest days of computing. As with integrated
circuits, the purpose of integrated self-checking
in software processes is to ensure that they can
operate for long periods without generating
nonsensical answers.

12. Historically, software construction has tended to
be one of the software engineering steps in which
developers were particularly prone to omitting
self-checks of the process. While nearly all
developers practice some degree of informal self-
evaluation when constructing software, it is all
too common for authors to skip needed self-
evaluation steps because they are too confident
about the reliability and quality of their own
software constructions. Nonetheless, a wide
range of automated, semi-automated, and manual
self-evaluation methods have been developed for
use in the software construction phase.

13. The simplest and best-known form of software
construction self-evaluation is the use of unit
testing after completion of each well-defined
software unit. Automated techniques such as
compile-time checks and run-time checks help
verify the basic integrity of software units, and
manual techniques such as code reviews can be
used to search for more abstract classes of errors.
Tools for extracting metrics on code quality and
structure can also be used during construction,
although such measurement tools are more
commonly applied during integration of large

suites of software units. When collecting metrics,
it is particularly important that there be a well-
defined link between the metrics that are
collected and the self-evaluation goal that is
being pursued.

14. 1.4 The Role of Standards in
Construction

15. All forms of successful communication require a
common language. Standards are in many ways
best understood as agreements by which both
concepts and technologies can become part of the
shared “language” of a broader community of
users (see Software Evolution and Management).
While it is possible in principle to do software
construction without adhering to any standard
beyond the design of the computer hardware,
such an approach would be very slow,
remarkably painful, and phenomenally
expensive. It would, for example, require at least
the creation of a new computer language, of
operating system software, of tools to support
development, and of hardware drivers for all
devices. A much more practical approach is to
choose as broad and enduring a set of standards
as possible. Determining what this set should be
can be a difficult task, but it is one that is almost
always worth the trouble in the long term.

16. Software construction is particularly sensitive to
the selection of standards, which directly affects
such construction-critical issues as programming
languages, databases, communication methods,
platforms, and tools. Although such choices are
often made before construction begins, it is
important that the overall software development
process take the needs of construction into
account when standards are selected.

17. 1.5 The Spectrum of Construction
Techniques

18. Software construction techniques can be broadly
grouped in terms of how they fall between two
endpoints: manual construction techniques, and
automated construction techniques.

 Manual Construction Goal:
àà

Automated Construction

19. Usually procedural (i.e., order-dependent) àà Often non-procedural (e.g., descriptive)

20. Very large number of descriptive options àà Limited number of descriptive options

21. Emphasis on finding new problem solutions àà Emphasis on reusing old problem solutions

22. Process is defined by user (versus by tools) àà Process is defined mostly by the tools used

4–4 © IEEE – Stoneman (Version 0.7) – April 2000

 Manual Construction Goal:
àà

Automated Construction

23. Expensive, risky, and usable by few people àà Low-cost, safe, and usable by many people

24. More likely to be defined by a standard àà More likely to be custom to application area

25. Manual Construction

26. Manual construction means solving complex
problems in a language that a computer can
execute. Practitioners of manual construction
need a rich mix of skills that includes the ability
to break complex problems down into smaller
parts, a disciplined formal-proof-like approach to
problem analysis, and the ability to “forecast”
how constructions will change over time. Expert
manual constructors thus need not only the skills
of advanced logicians, but also the ability to
apply those skills within a complex, changing
environment such as a computer or network.

27. It would be easy to directly equate manual
construction to coding in a procedural
programming language, but it would also be an
incomplete definition. An effective manual
construction process should result in code that
fully and correctly processes data for its entire
problem space, anticipates and handles all
plausible (and some implausible) classes of
errors, runs efficiently, and is structured to be
resilient and easy-to-change over time. An
inadequate manual construction process will in
contrast result in code like an amateurish
painting, with critical details missing and the
entire construction stitched together poorly.

28. Automated Construction

29. While no form of software construction can be
fully automated, much or all of the overall
coordination of the software construction process
can be moved from people to the computer – that
is, overall control of the construction process can
be largely automated. Automated construction
thus refers to software construction in which an
automated tool or environment is primarily
responsible for overall coordination of the
software construction process. This removal of
overall process control can have a large impact
on the complexity of the software construction
process, since it allows human contributions to
be divided up into much smaller, less complex
“chunks” that require fewer problem solving
skills to solve. Automated construction is also
reuse-intensive construction, since by limiting
human options it allows the controlling software

to make more effective use of its existing store of
effective software problem solutions.

30. In its most extreme form, automated construction
consists of little more than configuring a
predefined set of options. For example, an
accounting application for small businesses
might lead users through a series of questions
that will result in a customized installation of the
application. When compared to using manual
construction for the same type of problem, this
form of automated construction “swallows” huge
chunks of the overall software engineering
process and replaces them with automated
selections that are controlled by the computer.
Toolkits provide a less extreme example in
which developers still have a great deal of
control over the construction process, but that
process has been greatly constrained and
simplified by the use of predefined components
with well-defined relationships to each other.

31. Automated construction is necessarily tool-
intensive construction, since the objective is to
move as much of the overall software
development process as possible away from the
human developer and into automated processes.
Automated construction tools tend to take the
form of program generators and fully integrated
environments that can more easily provide
automated control of the construction process. To
be effective in coordinating activities, automated
construction tools also need to have easy,
intuitive interfaces.

32. Moving Towards Automation

33. As indicated by the table, an important goal of
software engineering is to move construction
continually towards higher levels of automation.
That is, when selection from a simple set of
options is all that is really required to make
software work for a business or system, then the
goal of software engineers should continually be
to make their systems come as close to that level
of simplicity as possible. This not only makes
software more accessible, but also makes it safer
and more reliable by removing a plethora of
needless opportunities for error.

34. The concept of moving towards higher levels of
construction automation is so fundamental to
good design that it permeates nearly every aspect

© IEEE – Stoneman (Version 0.7) – April 2000 4–5

of software construction. When simple selections
from a list of options will not suffice, software
engineers often can still develop application
specific tool kits (that is, sets of reusable parts
designed to work with each other easily) to
provide a somewhat lesser level of control. Even
fully manual construction reflects the theme of
automation, since many coding techniques and
good programming practices are intended to
make code modification easier and more
automated. For example, even a concept as
simple as assigning a value to a constant at the
beginning of a software module reflects the
automation theme, since such constants
“automate” the appropriate insertion of new
values for the constant in the event that changes
to the program are necessary. Similarly, the
concept of class inheritance in object-oriented
programming helps automate and enforce the
conveyance of appropriate sets of methods into
new, closely related or derived classes of objects.

35. 1.6 Computer Languages

36. Since the fundamental task of software
construction is to communicate intent
unambiguously between two very different types
of entities (people and computers), it is not too
surprising that the interface between the two is
most commonly expressed as languages. The
resulting computer languages, such as Ada,
Python, Fortran, C, C++, Java, and Perl, are close
enough in form to human languages to allow
some “borrowing” of innate skills of
programmers in natural languages such as
English or French. However, computer languages
are also very literal from the perspective of
natural languages, since no computer yet built
has sufficient context and understanding of the
natural world to recognize invalid language
statements and constructions that would be
caught immediately in a natural language
context. As will be discussed below, computer
languages can also borrow from other non-
linguistic human skills such as spatial
visualization.

37. Computer languages are often created in
response to the needs of particular application
fields, but the quest for more universal or
encompassing programming language is
ongoing. As in many relatively young
disciplines, such quests for universality are as
likely to lead to short-lived fads as they are to
genuine insights into the fundamentals of
software construction. For this very reason, it is
important that software construction not be tied

too greatly on any programming language or
programming methodology.

38. 1.7 Construction Languages

39. Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a computer. The
simplest type of construction language is a
configuration language, in which developers
choose from a limited set of predefined options
to create new or custom installations of software.
The text-based configuration files used in both
Windows and Unix operating systems are
examples, and the menu-style selection lists of
some program generators are another. Toolkit
languages are used to build applications out of
toolkits (integrated sets of application-specific
reusable parts), and are more complex than
configuration languages. Toolkit languages be
explicitly defined as application programming
languages (e.g., scripts), or may simply be
implied by the collected set of interfaces of a
toolkit. As described earlier, computer languages
are the most flexible type of construction
languages, but they also contain the least
information about both application areas and
development processes, and so require the most
training and skill to use effectively.

40. 2. Styles of Construction

41. A good construction language moves detailed,
repetitive, or memory-intensive construction
tasks away from people and into the computer,
where such tasks can be performed faster and
more reliably. To accomplish this, construction
languages must present and receive information
in ways that are readily understandable to human
senses and capabilities. This need to rely on
human capabilities leads to three major styles of
software construction interfaces:

42. A. Linguistic: Linguistic construction
languages make statements of intent in the
form of sentences that resemble natural
languages such as French or English. In terms
of human senses, linguistic constructions are
generally conveyed visually as text, although
they can (and are) also sometimes conveyed
by sound. A major advantage of linguistic
construction interfaces is that they are nearly
universal among people. A disadvantage is
the imprecision of ordinary languages such a
English, which makes it hard for people to
express needs clearly with sufficient
precision when using linguistic interfaces to

4–6 © IEEE – Stoneman (Version 0.7) – April 2000

computers. An example of this problem is the
difficulty that most early students of
computer science have learning the syntax of
even fairly readable languages such as Pascal,
Ada, or Python.

43. B. Formal: The precision and rigor of
formal and logical reasoning make this style
of human thought especially appropriate for
conveying human intent accurately into
computers, as well as for verifying the
completeness and accuracy of a construction.
Unfortunately, formal reasoning is not nearly
as universal a skill as natural language, since
it requires both innate skills that are not as
universal as language skills, and also many
years of training and practice to use
efficiently and accurately. It can also be
argued that certain aspects of good formal
reasoning, such as the ability to realize all the
implications of a new assertion on all parts of
a system, cannot be learned by some people
no matter how much training they receive. On
the other hand, formal reasoning styles are
often notorious for focusing on a problem so
intently that all “complications” are discarded
and only a very small, very pristine subset of
the overall problem is actually addressed.
This kind of excessively narrow focus at the
expense of any complicating issues can be
disastrous in software construction, since it
can lead to software that is incapable of
dealing with the unavoidable complexities of
nearly any usable system.

44. C. Visual: Another very powerful and
much more universal construction interface
style is visual, in the sense of the ability to
use the same very sophisticated and
necessarily natural ability to “navigate” a
complex three-dimensional world of images,
as perceived primarily through the eye (but
also through tactile senses). The visual
interface is powerful not only as a way of
organizing information for presentation to a
human, but also as a way of conceiving and
navigating the overall design of a complex
software system. Visual methods are
particularly important for systems that require
many people to work on them – that is, for
organizing a software design process – since
they allow a natural way for people to
“understand” how and where they must
communicate with each other. Visual
methods are also deeply important for single-
person software construction methods, since
they provide ways both to present options to

people and to make key details of a large
body of information “pop out” to the visual
system.

45. Construction languages seldom rely solely on a
single style of construction. Linguistic and
formal style in particular are both heavily used in
most traditional computer languages, and visual
styles and models are a major part of how to
make software constructions manageable and
understandable in computer languages.
Relatively new “visual” construction languages
such as Visual Basic and Visual Java provide
examples that intimately combine all three styles,
with complex vi sual interfaces often constructed
entirely through non-textual interactions with the
software constructor. Data processing
functionality behind the interfaces can then be
constructed using more traditional linguistic and
formal styles within the same construction
language.

46. 3. Principles of Organization

47. In addition to the three basic human-oriented
styles of interfacing to computers, there are four
principles of organization that strongly affect the
way software construction is performed. These
principles are:

48. Reduction of Complexity: This principle of
organization reflects the relatively limited ability
of people to work with complex systems that
have many parts or interactions. A major factor
in how people convey intent to computers is the
severely limited ability of people to “hold”
complex structures and information in their
working memory, especially over long periods of
time. This need for simplicity in the human-to-
computer interface leads to one of the strongest
drivers in software construction: reduction of
complexity. The need to reduce complexity
applies to essentially every aspect of the software
construction, and is particularly critical to the
process of self-verification and self-testing of
software constructions.

49. There are three main techniques for reducing
complexity during software construction:

50. Removal of Complexity: Although trivial in
concept, one obvious way to reduce complexity
during software construction is to remove
features or capabilities that are not absolutely
required. This may or may not be the right way
to handle a given situation, but certainly the
general principle of parsimony – that is, of not

© IEEE – Stoneman (Version 0.7) – April 2000 4–7

adding capabilities that clearly will never be
needed when constructing software – is valid.

51. Automation of Complexity: A much more
powerful technique for removal of complexity is
to automate the handling of it. That is, a new
construction language is created in which
features that were previously time-consuming or
error-prone for a human to perform are migrated
over to the computer in the form of new software
capabilities. The history of software is replete
with examples of powerful software tools that
raised the overall level of development capability
of people by allowing them to address a new set
of problems. Operating systems are one example
of this principle, since they provide a rich
construction language by which efficient use of
underlying hardware resources can be greatly
simplified. Visual construction languages
similarly provide automation of visual aspects of
software that otherwise could be very laborious
to build.

52. Localization of Complexity: If complexity can
neither be removed nor automated, the only
remaining option is to localize complexity into
small “units” or “modules” that are small enough
for a person to understand in their entirety, and
(perhaps more importantly) sufficiently isolated
that meaningful assertions can be made about
them. This might even lead to components that
can be re-used. However, one must be careful, as
arbitrarily dividing a very long sequence of code
into small “modules” does not help, because the
relationships between the modules become
extremely complex and difficult to predict.
Localization of complexity has a powerful
impact on the design of computer languages, as
demonstrated by the growth in popularity of
object-oriented methods that seek to strictly limit
the number of ways to interface to a software
module, even though that might end up making
components more dependent. Localization is also
a key aspect of good design of the broader
category of construction languages, since new
feature that are too hard to find and use are
unlikely to be effective as tools for construction.
Classical design admonitions such as the goal of
having “cohesion” within modules and to
minimize “coupling” are also fundamentally
localization of complexity techniques, since they
strive to make the number and interaction of
parts within a module easy for a person to
understand.

53. Anticipation of Diversity: This principle has
more to do with how people use software than
with differences between computers and people.

Its motive is simple: There is no such thing as an
unchanging software construction. Any truly
useful software construction will change in
various ways over time, and the anticipation of
what those changes will be turns out to be one of
the fundamental drivers of nearly every aspect of
software construction. Useful software
constructions are unavoidably part of a changing
external environment in which they perform
useful tasks, and changes in that outside
environment trickle in to impact the software
constructions in diverse (and often unexpected)
ways. In contrast, formal mathematical
constructions and formulas can in some sense be
stable or unchanging over time, since they
represent abstract quantities and relationships
that do not require direct “attachment” to a
working, physical computational machine. For
example, even the software implementations of
“universal” mathematical functions must change
over time due to external factors such as the need
to port them to new machines, and the
unavoidable issue of physical limitations on the
accuracy of the software on a given machine.

54. Anticipation of the diversity of ways in which
software will change over time is one of the more
subtle principles of software construction, yet it
is vitally important for the creation of software
that can endure over time and add value to future
endeavors. Since it includes the ability to
anticipate changes due to design errors (bugs) in
software, it is also a fundamental part of the
ability to make software robust and error-free.
Indeed, one handy definition of “aging” software
is that it is software that no longer has the
flexibility to accommodate bug fixes without
breaking.

55. There are three main techniques for anticipating
change during software construction:

56. Generalization: It is very common for software
construction to focus first on highly specific
problems with limited, rather specific solutions.
This is common because the more general cases
often simply are not obvious in the early stages
of analysis. Generalization is the process of
recognizing how a few specific problem cases fit
together as part of some broader framework of
problems, and thus can be solved by a single
overarching software construction in place of
several isolated ones. Generalization of
functionality is a distinctly mathematical
concept, and not too surprisingly the best
generalizations that are developed are often
expressed in the language of mathematics. Good
design is equally an aspect of generalization,

4–8 © IEEE – Stoneman (Version 0.7) – April 2000

however. For example, software constructions
that use stacks to store data are almost always
more generalized than similar solutions using
fixed-sized arrays, since fixed sizes immediately
place artificial (and usually unnecessary)
constraints on the range of problem sizes that the
construction can solve.

57. Generalization anticipates diversity because it
creates solutions to entire classes of problems
that may not have even been recognized as
existing before. Thus just as Newton’s general
theory of gravity made a small number of
formulas applicable to a much broader range of
physics problems, a good generalization to a
number of discrete software problems often can
lead to the easy solution of many other
development problems. For example, developing
an easily customizable graphics user interface
could solve a very broad range of development
problems that otherwise would have required
individual, labor-intensive development of
independent solutions.

58. The greatest difficulty with generalization as a
technique for anticipating diversity is that it
depends very strongly on the ability of the
individual developer to find generalizations that
actually correspond to the eventual uses of the
software. Developers may have no particular
interest (or time) to develop the necessary
generalizations under the schedule pressures of
typical commercial projects. Even when the time
needed is available, it is surprisingly easy to
develop the wrong set of generalizations – that is,
to create generalizations that make the software
easier to change, but only in ways that prove not
to correspond to what is really needed.

59. For these reasons, generalization is both safer
and easier if it can be combined with the next
technique of experimentation. Change
experimentation makes generalization safer by
capturing realistic data on which generalizations
will be needed, and makes generalization easier
by providing schedule-conscious projects with
specific data on how generalizations can improve
their products.

60. Experimentation: Experimentation means using
early (sometimes very early) software
constructions in as many different user contexts
as possible, and as early in the development
process as possible, for the explicit purpose of
collecting data on how to generalize the
construction. Experimentation effectively
acknowledges the sizable difficulty of
anticipating all the ways in which software

constructions can change, and uses
experimentation to fill the gap in knowledge.

61. Obviously, experimentation is a process-level
technique rather than a code-level technique,
since its goal is to collect data to help guide
code-level processes such as generalization. This
means that it is constrained by whether the
overall development process allows it to be used
at the construction level. Construction-level
experimentation is most likely to be found in
projects that have incorporated experimentation
into their overall development process. The
Internet-based open source development process
that Linus Torvalds used to create the Linux
operating system is an example of a process that
both allowed and encouraged construction-level
use of experimentation. In Torvalds’ approach,
individual code constructions were very quickly
incorporated into an overall product and then
redistributed via the Internet, sometimes on the
same day. This encouraged further use,
experimentation, and updates to the individual
constructions.

62. Localization: Localization means keeping
anticipated changes as localized in a software
construction as possible. It is actually a special
case of the earlier pr inciple of localization of
complexity, since change is a particularly
difficult class of complexity. A software
construction that can be changed in a common
way by making only one change at one location
within the construction thus demonstrates good
locality for that particular class of modifications.

63. Localization is very common in software
construction, and often is used intuitively as the
“right way” to construct software. Objects are
one example of a localization technique, since
good object designs localize implementation
changes to within the object. An even simpler
example is using compile-time constants to
reduce the number of locations in a program that
must be changed manually should the constant
change. Layered architectures such as those used
in communication protocols are yet another
example of localization, since good layer designs
keep changes from crossing layers.

64. Structuring for Validation: No matter how
carefully a person designs and implements
software, the creative nature of non-trivial
software construction (that is, of software that is
not simply a re-implementation of previously
solved problems) means that mistakes and
omissions will occur. Structuring for validation
means building software in such a fashion that

© IEEE – Stoneman (Version 0.7) – April 2000 4–9

such errors and omissions can be ferreted out
more easily during unit testing and subsequent
testing activities. One of the single most
important implications of structuring for
validation is that software must generally be
modular in at least one of its major
representation spaces, such as in the overall
layout of the displayed or printed text of a
program. This modularity allows both improved
analysis and thorough unit-level testing of such
components before they are integrated into
higher levels in which their errors may be more
difficult to identify. As a principle of
construction, structuring for validation generally
goes hand-in-hand with anticipation of diversity,
since any errors found as a result of validation
represent an important type of “diversity” that
will require software changes (bug fixes). It is
not particularly difficult to write software that
cannot really be validated no matter how much it
is tested. This is because even moderately large
“useful” software components frequently cover
such a large range of outputs that exhaustive
testing of all possible outputs would take eons
with even the fastest computers. Structuring for
validation thus becomes a fundamental constraint
for producing software that can be shown to be
acceptably reliable within a reasonable time
frame. The concept of unit testing parallels
structuring for validation, and is used in parallel
with the construction process to help ensure that
validation occurs before the overall structure gets
“out of hand” and can no longer be readily
validated.

65. Use of External Standards: A natural language
that is spoken by one person would be of little
value in communicating with the rest of the
world. Similarly, a construction language that
has meaning only within the software for which
it was constructed can be a serious roadblock in
the long-term use of that software. Such
construction languages therefore should either
conform to external standards such as those used
for computer languages, or provide a sufficiently
detailed internal “grammar” (e.g.,
documentation) by which the construction
language can later be understood by others. The
interplay between reusing external standards and
creating new ones is a complex one, as it
depends not only on the availability of such
standards, but also on realistic assessments of the
long-term viability of such external standards.
With the advent of the Internet as a major force
in software development and interaction, the
importance of selecting and using appropriate
external standards for how to construct software

is more apparent than ever before. Software that
must share data and even working modules with
other software anywhere in the world obviously
must “share” many of the same languages and
methods as that other software. The result is that
selection and use of external standards – that is,
of standards such as language specifications and
data formats that were not originated within a
software effort – is becoming an even more
fundamental constraint on software construction
than it was in the past. It is a complex issue,
however, because the selection of an external
standard may need to depend on such difficult-
to-predict issues as the long-term economic
viability of a particular software company or
organization that promotes that standard.
Stability of the standard is especially important.
Also, selecting one level of standardization often
opens up an entire new set of standardization
issues. An example of this is the data description
language XML (eXtensible Markup Language).
Selecting XML as an external standard answers
many questions about how to describe data in an
application, but it also opens up the issue of
whether one of the growing numbers of
customizations of XML to specific problem
domains should also be used.

66. A Taxonomy of Software
Construction Methods

67. Let us begin by stating that it is not possible to
create a taxonomy of software construction
methods that provides much insight into the
relationships of software construction methods.
The problem is that traditional taxonomies use
exclusive tree structures to place each item in a
unique position on the tree. However, techniques
such as modularity are often so pervasive in their
impacts on software construction that any
attempt to force them into a single category of a
taxonomic breakdown will result in a taxonomy
that fails to explain the breadth of impact.

68. For this reason the taxonomy given here is more
properly understood as a taxonomy of principles
to which the impacts of individual construction
methods can be mapped. In this taxonomy, an
individual construction method may show up in
many different locations in the taxonomy, rather
than simply in one location. The number of
locations in which a method shows up indicates
its breadth of application, and thus an indication
of its importance to software construction as a
whole. Modularity is one example of a
construction method that has such broad impacts.

4–10 © IEEE – Stoneman (Version 0.7) – April 2000

Software Construction

Linguistic
Construction

Methods

Formal
Construction

Methods

Visual
Construction

Methods

Reduction in
Complexity

Anticipation of
Diversity

Structuring for
Validation

Use of External
Standards

Functions,
procedures,

and code block

Software
templates

Design
patterns

Component
libraries and
frameworks

Data structures

Encapsulation
and abstract

data type

Higher-level
and domain-

specific
languages

Information
hiding

Embedded
documentation

"Complete and
sufficient"

method sets

Object-oriented
class

inheritance

Creation of
"glue

languages" for
linking legagy
components

Table-driven
software

Configuration
files

Self-describing
software and

hardware

Modular design

Structured
programming

Style guides

Stepwise
refinement

Standardized
programming

languages
(e.g. Ada 95,

C++)

Standardized
data

description
languages
(e.g. XML)

Standardized
alphabet

representation
s (e.g.

Unicode)

Inter-process
communication

standards
(e.g. COM,
CORBRA)

Component-
based software

Reduction in
Complexity

Anticipation of
Diversity

Structuring for
Validation

Use of External
Standards

Traditional
functions and
procedures

Functional
programmig

Logic
programming

Concurrent
and real-time
programming
techniques

Spreadsheets

Mathematical
libraries of
functions

Functional
parameteri-

zation

Macro
parameteri-

zation

Extensible
mathematical

framework

Assertion-based
programming

(static and
dynamic)

State machine
logic

Redundant
systems, self-
diagnosis, and

failover methods

Hot-spot analysis
and performance

tuning

POSIX
standards

Data
communication

standards

Hardware
interface
standards

Standardized
mathematical
representation

languages
(e.g. MathML)

Mathematical
libraries of
functions

Reduction in
Complexity

Anticipation of
Diversity

Object-oriented
programming

Visual creation
and

customization
of user

interfaces

Visual (e.g.
visual C++)

programming

"Style" (visual
formatting)
aspect of
structured

programming

Object classes

Visual
configuration
specification

Separation of
GUI design and

functionality
implementation

Structuring for
validation

"Complete and
sufficient"
design of

object-oriented
class method

Dynamic
validation of

visual requests
in visual

languages

Use of External
Standards

Object-oriented
language
standards

Standadized
visual interface

models (e.g.
Microsoft
Windows)

Standardized
screen widgets

Visual Markup
languages

Objects

Standardized
documentation
(e.g. JavaDoc)

Foundation
classes (e.g.
MFC, JFC)

Generics

Objects

© IEEE – Stoneman (Version 0.7) – April 2000 4–11

69. A. Linguistic Construction Methods

70. Linguistic construction methods are
distinguished in particular by the use of
word-like strings of text to represent complex
software constructions, and the combination
of such word-like strings into patterns that
have a sentence-like syntax. Properly used,
each such string should have a strong
semantic connotation that provides an
immediate intuitive understanding of what
will happen when the underlying software
construction is executed. For example, the
term “search” has an immediate, readily
understandable semantic meaning in English,
yet the underlying software implementation
of such a term in software can be very
complex indeed. The most powerful
linguistic construction methods allow users to
focus almost entirely on the language-like
meanings of such term, as opposed (for
example) to frittering away mental efforts on
examining minor variations of what “search”
means in a particular context.

71. Linguistic construction methods are further
characterized by similar use of other
“natural” language skills such as using
patterns of words to build sentences,
paragraphs, or even entire chapters to express
software design “thoughts.” For example, a
pattern such as “search table for out-of-range
values” uses word-like text strings to imitate
natural language verbs, nouns, prepositions,
and adjectives. Just as having an underlying
software structure that allows a more natural
use of words reduces the number of issues
that a user must address to create new
software, an underlying software structure
that also allows use of familiar higher-level
patterns such as sentence further simplifies
the expression process.

72. Finally, it should be noted that as the
complexity of a software expression
increases, linguistic construction methods
begin to overlap unavoidably with visual
methods that make it easier to locate and
understand large sequences of statements.
Thus just as most written versions of natural
languages use visual clues such as spaces
between words, paragraphs, and section
headings to make text easier to “parse”
visually, linguistic construction methods rely
on methods such as precise indentation to
convey structural information visually.

73. The use of linguistic construction methods is
also limited by our inability to program
computers to understand the levels of
ambiguity typically found in natural
languages, where many subtle issues of
context and background can drastically
influence interpretation. As a result, the
linguistic model of construction usually
begins to weaken at the more complex levels
of construction that correspond to entire
paragraphs and chapters of text.

74. 1. Reduction in Complexity (Linguistic)

75. The main technique for reducing
complexity in linguistic construction is to
make short, semantically “intuitive” text
strings and patterns of text stand in for the
much more complex underlying software
that “implement” the intuitive meanings.
Techniques that reduce complexity in
linguistic construction include:

76. w Design patterns

77. w Software templates

78. w Functions, procedures, and code
blocks

79. w Data structures

80. w Encapsulation and abstract data types

81. w Objects

82. w Component libraries and frameworks

83. w Higher-level and domain-specific
languages

84. 2. Anticipation of Diversity (Linguistic)

85. Linguistic construction anticipates
diversity both by permitting extensible
definitions of “words,” and also by
supporting flexible “sentence structures”
that allow many different types of
intuitively unde rstandable statements to
be made with the available vocabulary.
An excellent example of using linguistic
construction to anticipate diversity is the
use of human-readable configuration files
to specify software or system settings.

86. w Information hiding

87. w Embedded documentation
(commenting)

88. w “Complete and sufficient” method sets

89. w Object-oriented class inheritance

90. w Creation of “glue languages” for
linking legacy components

91. w Table-driven software

4–12 © IEEE – Stoneman (Version 0.7) – April 2000

92. w Configuration files

93. w Self-describing software and hardware
(e.g., plug and play)

94. 3. Structuring for Validation (Linguistic)

95. Because natural language in general is too
ambiguous to allow safe interpretation of
completely free-form statements,
structuring for validation shows up
primarily as rules that at least partially
constrain the free use of natural
expressions in software. The objective is
to make such constructions as “natural”
sounding as possible, while not losing the
structure and precision needed to ensure
consistent interpretations of the source
code by both human users and computers.

96. w Modular design

97. w Structured programming

98. w Style guides

99. w Stepwise refinement

100. 4. Use of External Standards (Linguistic)

101. Traditionally, standardization of
programming languages was one of the
first areas in which external standards
appeared. The goal was (and is) to
provide standard meanings and ways of
using “words” in each standardized
programming language, which makes it
possible both for users to understand each
other’s software, and for the software to
be interpreted consistently in diverse
environments.

102. w Standardized programming languages
(e.g., Ada 95, C++, etc.)

103. w Standardized data description
languages (e.g., XML)

104. w Standardized alphabet representations
(e.g., Unicode)

105. w Standardized documentation (e.g.,
JavaDoc)

106. w Inter-process communication
standards (e.g., COM, CORBA)

107. w Component-based software

108. w Foundation classes (e.g., MFC, JFC)

109. B. Formal Construction Methods

110. Formal construction methods rely less on
intuitive, everyday meanings of words and text
strings, and more on definitions that are backed
up by precise, unambiguous, and fully formal (or
mathematical) definitions. Formal construction

methods are at the heart of most forms of system
programming, where precision, speed, and
verifiability are more important than ease of
mapping into ordinary language. Formal
constructions also use precisely defined ways of
combining symbols that avoid the ambiguity of
many natural language constructions. Functions
are an obvious example of formal constructions,
with their direct parallel to mathematical
functions in both form and meaning.

111. Formal construction techniques also include the
wide range of precisely defined methods for
representing and implementing “unique”
computer problems such as concurrent and multi-
threaded programming, which are in effect
classes of mathematical problems that have
special meaning and utility within computers.

112. The importance of the formal style of
programming cannot be understated. Just as the
precision of mathematics is fundamental to
disciplines such as physics and the hard science,
the formal style of programming is fundamental
to building up a reliable framework of software
“results” that will endure over time. While the
linguistic and visual styles work well for
interfacing with people, these less precise styles
can be unsuitable for building the interior of a
software system for the same reason that stained
glass should not be used to build the supporting
arches of a cathedral. Formal construction
provides a foundation that can eliminate entire
classes of errors or omissions from ever
occurring, whereas linguistic and visual
construction methods are much more likely to
focus on isolated instances of errors or
omissions. Indeed, one very real danger in
software quality assurance is to focus too much
on capturing isolated errors occurring in the
linguistic or visual modes of construction, while
overlooking the much more grievous (but harder
to identify and understand) errors that occur in
the formal style of construction.

113. 1. Reduction in Complexity (Formal)

114. As is the case with linguistic construction
methods, formal construction methods reduce
complexity by representing complex software
constructions as simple text strings. The main
difference is that in this case the text strings
follow the more precisely defined rules and
syntax of formal notations, rather than the
“fuzzier” rules of natural language. The
reading, writing, and construction of such
expressions requires generally more training,
but once mastered, the use of formal

© IEEE – Stoneman (Version 0.7) – April 2000 4–13

constructions tends to keep the ambiguity of
what is being specified to an absolute
minimum. However, as with linguistic
construction, the quality of a formal
construction is only as good as its underlying
implementation. The advantage is that the
precision of the formal definitions usually
translates into a more precise specification for
the software beneath it.

115. w Traditional functions and procedures

116. w Functional programming

117. w Logic programming

118. w Concurrent and real-time programming
techniques

119. w Spreadsheets

120. w Mathematical libraries of functions

121. 2. Anticipation of Diversity (Formal)

122. Diversity in formal construction is handled in
terms of precisely defined sets that can vary
greatly in size. While mathematical
formalizations are capable of very flexible
representations of diversity, they require
explicit anticipation and preparation for the
full range of values that may be needed. A
common problem in software construction is
to use a formal technique – e.g., a fixed-
length vector or array – when what is really
needed to accommodate future diversity is a
more generic solution that anticipates future
growth – e.g., an indefinite variable-length
vector. Since more generic solutions are often
harder to implement and harder to make
efficient, it is important when using formal
construction techniques to try to anticipate
the full range of future versions.

123. w Functional parameterization

124. w Macro parameterization

125. w Generics

126. w Objects

127. w Extensible mathematical frameworks

128. 3. Structuring for Validation (Formal)

129. Since mathematics in general is oriented
towards proof of hypothesis from a set of
axioms, formal construction techniques
provide a broad range of techniques to help
validate the acceptability of a software unit.
Such methods can also be used to
“instrument” programs to look for failures
based on sets of preconditions.

130. w Assertion-based programming (static and
dynamic)

131. w State machine logic

132. w Redundant systems, self-diagnosis, and
failover methods

133. w Hot-spot analysis and performance tuning

134. 4. Use of External Standards(Formal)

135. For formal construction techniques, external
standards generally address ways to define
precise interfaces and communication
methods between software systems and the
machines they reside on.

136. w POSIX standards

137. w Data communication standards

138. w Hardware interface standards

139. w Standardized mathematical representation
languages (e.g., MathML)

140. w Mathematical libraries of functions

141. C. Visual Construction Methods

142. Visual construction methods rely much less on
the text-oriented constructions of both linguistic
and formal construction, and instead rely on
direct visual interpretation and placement of
visual entities (e.g., “widgets”) that represent the
underlying software. Visual construction tends to
be somewhat limited by the difficulty of making
“complex” statements using only movement of
visual entities on a display. However, it can also
be a very powerful tool in cases where the
primary programming task is simply to build and
“tweak” a visual interface to a program whose
detailed behavior was defined earlier.

143. Object-oriented languages are an interesting
case. Although object-oriented languages use
text and words to describe the detailed properties
of objects, the style of reasoning that they
encourage is highly visual. For example,
experienced object-oriented programmers tend to
view their designs literally as objects interacting
in spaces of two or more dimensions, and a
plethora of object-oriented design tools and
techniques (e.g., Universal Modeling Language,
or UML) actively encourage this highly visual
style of reasoning.

144. However, object -oriented methods can also
suffer from the lack of precision that is part of
the more intuitive visual approach. For example,
it is common for new – and sometimes not-so-
new – programmers in object-oriented languages
to define object classes that lack the formal
precision that will allow them to work reliably

4–14 © IEEE – Stoneman (Version 0.7) – April 2000

over user-time (that is, long-term system support)
and user-space (e.g., relocation to new
environments). The visual intuitions that object-
oriented languages provide in such cases can be
somewhat misleading, because they can make the
real problem of how to define a class to be
efficient and stable over user-time and user-space
seem to be simpler than it really is. A complete
object-oriented construction model therefore
must explicitly identify the need for formal
construction methods throughout the object
design process. The alternative can be an object-
based system design that, like a complex stained
glass window, looks impressive but is too fragile
to be used in any but the most carefully designed
circumstances.

145. More explicitly visual programming methods
such as those found in Visual C++ and Visual
Basic reduce the problem of how to make precise
visual statements by “instrumenting” screen
objects with complex (and formally precise)
objects that lie behind the screen representations.
However, this is done at a substantial loss of
generality when compared to using C++ with
explicit training in both visual and formal
construction, since the screen objects are much
more tightly constrained in properties.

146. 1. Reduction in Complexity (Visual)

147. Especially when compared to the steps
needed to build a graphical interface to a
program using text-oriented linguistic or
formal construction, visual construction can
provide drastic reductions in the total effort
required. It can also reduce complexity by
providing a simple way to select between the
elements of a small set of choices.

148. w Object-oriented programming

149. w Visual creation and customization of user
interfaces

150. w Visual (e.g., visual C++) programming

151. w “Style” (visual formatting) aspects of
structured programming

152. 2. Anticipation of Diversity (Visual)

153. Provided that the total sets of choices are not
overly large, visual construction methods can
provide a good way to configure or select
options for software or a system. Visual
construction methods are analogous to
linguistic configuration files in this usage,
since both provide easy ways to specify and
interpret configuration information.

154. w Object classes

155. w Visual configuration specification

156. w Separation of GUI design and
functionality implementation

157. 3. Structuring for Validation (Visual)

158. Visual construction can provide immediate,
active validation of requests and attempted
configurations when the visual constructs are
“instrumented” to look for invalid feature
combinations and warn users immediately of
what the problem is.

159. w “Complete and sufficient” design of
object-oriented class methods

160. w Dynamic validation of visual requests in
visual languages

161. 4. Use of External Standards (Visual)

162. Standards for visual interfaces greatly ease
the total burden on users by providing
familiar, easily understood “look and feel”
interfaces for those users.

163. w Object-oriented language standards

164. w Standardized visual interface models (e.g.,
Microsoft Windows)

165. w Standardized screen widgets

166. w Visual Markup Languages

167. Recommended References

168. [BEN00] Bentley, Jon, Programming Pearls
(Second Edition). Addison-Wesley, 2000.
(Chapters 2, 3, 4, 11, 13 14)

169. [BOO94] Booch, Grady, and Bryan, Doug,
Software Engineering with Ada (Third edition).
Benjamin/Cummings, 1994. (Parts II, IV,
V)[HOR99] Horrocks, Ian, Constructing the
User Interface with Statecharts. Addison-
Wesley, 1999. (Parts II, IV)

170. [KER99] Kernighan, Brian W., and Pike, Rob,
The Practice of Programming. Addison-Wesley,
1999. (Chapters 1, 2, 3, 5, 6, 9)

171. [MAG93] Maguire, Steve, Writing Solid Code.
Microsoft Press, 1993.

172. [McCO93] McConnell, Steve, Code Complete.
Microsoft Press, 1993.

173. [MEY97] Meyer, Bertrand, Object-Oriented
Software Construction (Second Edition).
Prentice-Hall, 1997. (Chapters 6, 10, 11)

174. [SET96] Sethi, Ravi, Programming Languages –
Concepts & Constructs (Second Edition).
Addison-Wesley, 1996. (Parts II, III, IV, V)

© IEEE – Stoneman (Version 0.7) – April 2000 4–15

175. [WAR99] Warren, Nigel, and Bishop, Philip,
Java in Practice – Design Styles and Idioms for
Effective Java. Addison-Wesley, 1999. (Chapters
1, 2, 3, 4, 5, 10)

176. Further Readings

177. [BAR98] Barker, Thomas T., Writing Software
Documentation – A Task-Oriented Approach.
Allyn & Bacon, 1998.

178. [FOW99] Fowler, Martin, Refactoring –
Improving the Design of Existing Code.
Addison-Wesley, 1999.

179. [GLA95] Glass, Robert L., Software Creativity.
Prentice-Hall, 1995.

180. [HEN97] Henricson, Mats, and Nyquist, Erik,
Industrial Strength C++. Prentice-Hall, 1997.

181. [HOR99] Horrocks, Ian, Constructing the User
Interface with Statecharts. Addison-Wesley,
1999.

182. [HUM97] Humphrey, Watts S., Introduction to
the Personal Software Process. Addison-Wesley,
1997.

183. [HUN00] Hunt, Andrew, and Thomas, David,
The Pragmatic Programmer. Addison-Wesley,
2000.

184. [MAZ96] Mazza, C., et al., Software
Engineering Guides. Prentice-Hall, 1996. (Part
IV)

185. Standards Relevant to Software
Constructions

186. IEEE Std 829-1983 (Reaff 1991), IEEE Standard
for Software Test Documentation (ANSI)

187. IEEE Std 1008-1987 (Reaff 1993), IEEE
Standard for Software Unit Testing (ANSI)

188. IEEE Std 1028-1988 (Reaff 1993), IEEE
Standard for Software Reviews and Audits
(ANSI)

189. IEEE Std 1063-1987 (Reaff 1993), IEEE
Standard for Software User Documentation
(ANSI)

190. IEEE Std 1219-1992, IEEE Standard for
Software Maintenance (ANSI)

4–16 © IEEE – Stoneman (Version 0.7) – April 2000

191. Matrix of Reference Material versus Topics

 Topics Proposed reference material
192. Software Construction and Software Design [GLA95] Part III, IV

[MAZ96] Part IV
[McCO93] Chap. 1, 2, 3

193. The Role of Tools in Construction [HUN00] Chap. 3
[MAG93] Chap. 4
[MAZ96] Part IV
[McCO93] Chap. 20

194. The Role of Integrated Self-Evaluation in Construction [HUM97]
[MAG93] Chap. 8
[McCO93] Chap. 31, 32, 33

195. The Role of Standards in Construction [IEEE]
196. The Spectrum of Construction Techniques [HUN00] Chap. 3
197. Computer Languages [SET96]
198. Construction Languages [HUN00] Chap. 3

[SET96]
199. A. Linguistic Construction Methods [SET96] Part II
200. 1. Reduction in Complexity (Linguistic) [BEN00] Chap. 2, 3

[KER99] Chap. 2, 3
[McCO93] Chap. 4 to 19

201. 2. Anticipation of Diversity (Linguistic) [BOO94] Part VI
[McCO93] Chap. 30

202. 3. Structuring for Validation (Linguistic) [BEN00] Chap. 4
[KER99] Chap. 1, 5, 6
[MAG93] Chap. 2, 5, 7
[McCO93] Chap. 23, 24, 25, 26

203. 4. Use of External Standards (Linguistic) http://www.xml.org/
http://www.omg.org/corba/beginners.html

204. B. Formal Construction Methods [SET96] Part IV and V
205. 1. Reduction in Complexity (Formal) [BOO94] Part II and V

[MAG93] Chap. 6
[MEY97] Chap. 6, 10

206. 2. Anticipation of Diversity (Formal) [BEN00] Chap. 11, 13, 14
[KER99] Chap. 2, 9

207. 3. Structuring for Validation (Formal) [MAG93] Chap. 3
[MEY97] Chap. 6, 11

208. 4. Use of External Standards (Formal) Object Constraint Language:
http://www.omg.org/uml/

209. C. Visual Construction Methods [SET96] Part III
210. 1. Reduction in Complexity (Visual) [HOR99] Part II

[WAR99] Chap. 1, 2, 3, 4, 5, 10
211. 2. Anticipation of Diversity (Visual) [WAR99] Chap. 1, 2, 3, 4, 5, 10
212. 3. Structuring for Validation (Visual) [HOR99] Part IV

[MEY97] Chap. 11
213. 4. Use of External Standards (Visual) http://www.omg.org/uml/

© IEEE – Stoneman (Version 0.7) – April 2000 5–1

CHAPTER 5
SOFTWARE TESTING

A. Bertolino
Istituto di Elaborazione della Informazione

Consiglio Nazionale delle Ricerche
Pisa Research Area

Via Alfieri, 1, 56010 S. Giuliano Terme - PISA (Italy)
bertolino@iei.pi.cnr.it

TABLE OF CONTENTS

1. INTRODUCTION
2. DEFINITION OF THE SOFTWARE TESTING

KNOWLEDGE AREA
2.1 Conceptual Structure of the Breakdown
2.2 Overview

3. BREAKDOWN OF TOPICS FOR SOFTWARE

TESTING
A. Testing Basic Concepts and Definitions
B. Test Levels
C. Test Techniques
D. Test related measures
E. Managing the Test Process

4. BREAKDOWN RATIONALE
5. MATRIX OF TOPICS VS. REFERENCE
MATERIAL
6. CORE REFERENCES FOR SOFTWARE TESTING
7. LIST OF FURTHER READINGS

1. 1. INTRODUCTION

2. Testing is an important, mandatory part of
software development, for improving and
evaluating product quality.

3. In the Software Quality (SQ) Knowledge Area of
the Guide to the SWEBOK, activities and
techniques for quality analysis are categorized
into: static techniques (no code execution), and
dynamic techniques (code execution). Both
categories are useful. Although this chapter
focuses on testing, that is dynamic (see Sect. 2),
static techniques are as important for the purpose
of building quality in a software product. Static
techniques are covered into the SQ Knowledge
Area description.

4. In the years, the view of Software Testing has
evolved towards a more constructive attitude.
Testing is no longer seen as an activity that starts
only after the coding phase is complete, with the

limited purpose of detecting failures. Software
testing is nowadays seen as an activity that
encompasses the whole development process,
and is an important part itself of the actual
product construction. Indeed, planning for testing
should start since the early stages of requirement
analysis, and test plans and procedures must be
systematically and continuously refined as the
development proceeds. These activities of
planning and designing tests constitute
themselves a useful input to designers for
highlighting potential weaknesses.

5. As more extensively discussed in the SQ
Knowledge Area, the right attitude towards
quality is one of prevention: it is obviously much
better to avoid problems, rather than repairing
them. Testing must be seen as a means primarily
for demonstrating that the prevention has been
effective, but also for identifying anomalies in
those cases in which, for some reason, it has
been not. Finally, it is worth recognizing that
even after a good testing, the software could still
contain faults. The remedy to system failures that
are experienced after delivery is provided by
(corrective) maintenance actions. Maintenance
topics are covered into the Software Maintenance
chapter of the Guide to the SWEBOK.

6. 2. DEFINITION OF THE SOFTWARE
TESTING KNOWLEDGE AREA

7. Software testing consists of the dynamic
verification of the behavior of a program on a
finite set of test cases, suitably selected from the
usually infinite executions domain, against the
specified expected behavior.

8. In the above definition, and in the following as
well, underlined words correspond to key issues
in identifying the Knowledge Area of Software
Testing. In particular:

5–2 © IEEE – Stoneman (Version 0.7) – April 2000

9. w dynamic: this term means testing always
implies executing the program on valued
inputs. Static analysis techniques, such as
peer review and inspection (that sometimes
are improperly referred to as "static
testing"), are not considered as part of this
Knowledge Area (nor is program execution
on symbolic inputs, or symbolic
evaluation);

10. w finite: clearly the tests are not selected
literally from an infinite set of possible
tests, but a very large finite one (the set of
all bit strings shorter than some length).
Nonetheless, for even simple programs, so
many test cases are theoretically possible
that exhaustive testing could require even
years to execute. This is why in practice the
number of tests can generally be considered
infinite. However, the number of executions
which can realistically be observed in
testing must obviously be finite, and -more
than this- it must be manageable. Indeed,
testing always implies a trade-off between
limited resources and schedules, and
inherently unlimited test requirements: this
conflict points to well known problems of
testing, both technical in nature (criteria for
deciding test adequacy) and managerial in
nature (estimating the effort to put in
testing);

11. w selected: the many proposed test techniques
essentially differ in how they select the
(finite) test set, and testers must be aware
that different selection criteria may yield
largely different effectiveness. The problem
of identifying the most suitable selection
criterion under given conditions is still
under research;

12. w expected: it must be possible to decide
whether the observed outcomes of program
execution are acceptable or not, otherwise
the testing effort would be useless. The
observed behavior may be checked against
user's expectations (commonly referred to
as testing for validation) or against a
functional specification (testing for
verification). The test pass/fail decision is
referred to as the oracle problem, which can
be addressed with different approaches.

13. 2.1 Conceptual Structure of the
Breakdown

14. Software testing is usually performed at different
levels along the development process. That is to

say, the object of the test can vary: a whole
program, part of it (functionally or structurally
related), a single module.

15. The testing is conducted in view of a specific
purpose (test objective), which is stated more or
less explicitly, and with varying degrees of
precision. Stating the objective in precise,
quantitative terms allows for establishing control
over the test process.

16. One of testing aims is to expose failures (as
many as possible), and many popular test
techniques have been developed for this
objective. These techniques variously attempt to
"break" the program, by running identified
classes of (deemed equivalent) executions: the
leading principle underlying such techniques is
being as much systematic as possible in
identifying a representative set of program
behaviors (generally in the form of subclasses of
the input domain). However, a comprehensive
view of the Knowledge Area of Software Testing
as a means for quality must include other as
important objectives for testing, e.g., reliability
measurement, usability evaluation, contractor’s
acceptance, for which different approaches
would be taken. Note that the test objective
varies with the test object, i.e., in general
different purposes are addressed at the different
levels of testing.

17. The test objective determines how the test set is
identified, both with regard to its consistency -
how much testing is enough for achieving the
stated objective?- and its composition -which test
cases should be selected for achieving the stated
objective?- (although usually the "for achieving
the stated objective" part is left implicit and only
the first part of the two italicized questions above
is posed). Criteria for addressing the first
question are referred to as test adequacy criteria,
while for the second as test selection criteria.

18. Sometimes, it can happen that confusion is made
between test objectives and techniques. For
instance, branch coverage is a popular test
technique. Achieving a specified branch
coverage measure should not be considered per
se as the objective of testing: it is a means to
improve the chances of finding failures (by
systematically exercising every program branch
out of a decision point). To avoid such
misunderstandings, a clear distinction should be
made between test measures which evaluate the
thoroughness of the test set, like measures of
coverage, and those which instead provide an
evaluation of the program under test, based on
the observed test outputs, like reliability.

© IEEE – Stoneman (Version 0.7) – April 2000 5–3

19. Testing concepts, strategies, techniques and
metrics need to be integrated into a defined and
controlled process, which is run by people. The
test process supports testing activities and
provide guidance to testing teams, from test
planning to test outputs evaluation, in such a way
as to provide justified assurance that the test
objectives are met cost-effectively.

20. Software testing is a very expensive and labor-
intensive part of development. For this reason,
tools are instrumental to support test activities.
Moreover, in order to enhance cost-effectiveness
ratio, a key issue has always been pushing test
automation as much as possible.

21. 2.2 Overview

22. Following the above-presented conceptual
scheme, this description is organized as follows.

23. Part A deals with Testing Basic Concepts and
Definitions. It covers the basic definitions within
the Software Testing field, as well as an
introduction to the terminology. In the same part,
the scope of the Knowledge Area is laid down,
also in relation with other activities.

24. Part B deals with Test Levels. It consists of two
(orthogonal) subsections: B.1 lists the levels in
which the testing of large software systems is
traditionally subdivided. In B.2 testing for
specific conditions or properties is instead
considered, and is referred to as "Objectives of
testing". Clearly not all types of testing apply to
every system, nor has every possible type been
listed, but those most generally applied.

25. As said, several Test Techniques have been
developed in the last two decades according to
various criteria, and new ones are still proposed.
"Generally accepted" techniques are covered in
Part C.

26. Test-related Measures are dealt in Part D.

27. Finally, issues relative to Managing the Test
Process are covered in Part E.

28. Existing tools and concepts related to supporting
and automating the activities into the test process
are not addressed here. They are covered within
the Knowledge Area description of Software
Engineering Methods and Tools in this Guide.

29. 3. BREAKDOWN OF TOPICS FOR

SOFTWARE TESTING

30. This section gives the list of topics identified for
the Software Testing Knowledge Area, with
succinct descriptions and references. Two levels
of references are provided with topics: the core
reference material within brackets, and additional
references within parentheses. The core
references have been reasonably limited,
according to the guideline that they should
consist of the study material for a software
engineering licensing exam that a graduate
would pass after completing four years of work
experience. In particular, the core reference
material for Software Testing has been identified
into selected book chapters (for instance, Chapter
1 of reference Be is denoted as Be:c1), or, in
some cases, sections (for instance, Section 1.4 of
Chapter 1 of Be is denoted as Be:c1s1.4). The
Further Readings list includes several refereed
journal or conference papers and relevant
Standards, for a deeper study of the pointed
arguments.

31. The breakdown is also visually described by the
following tables (note that two decompositions
are proposed for the level 1 topic of Testing
Techniques)

Table 1: Level 1 Topics for Software Testing

32. A. Testing Basic Concepts and Definitions

33. B. Test Levels

34. C. Test Techniques

35. D. Test related measures

36.

Software
Testing

E. Managing the Test Process

5–4 © IEEE – Stoneman (Version 0.7) – April 2000

37. Table 1-A: Decomposition for Testing Basic Concepts and Definitions

38. Definitions of testing and related terminology

39.
A.1 Testing-related terminology

Faults vs. Failures

40. Test selection criteria/Test adequacy criteria (or stopping rules)

41. Testing effectiveness/Objectives for testing

42. Testing for defect removal

43. The oracle problem

44. Theoretical and practical limitations of testing

45. The problem of infeasible paths

46. Testability

47.

A. Testing
Basic

Concepts and
Definitions A.2 Theoretical foundations

Relationships of testing to other activities

48. Table 1-B: Decomposition for Test Levels

49. Unit testing

50. Integration testing

51.

B.1 The object of the test

System testing

52. Acceptance/qualification testing

53. Installation testing

54. Alpha and Beta testing

55. Conformance testing/ Functional testing/ Correctness testing

56. Reliability achievement and evaluation by testing

57. Regression testing

58. Performance testing

59. Stress testing

60. Back-to-back testing

61. Recovery testing

62. Configuration testing

63.

B. Test Levels

B.2 Objectives of testing

Usability testing

64. Table 1-C': Decomposition for Test Techniques (criterion “base on which tests are generated”)

65. C1.1 Based on tester's intuition Ad hoc

66. Equivalence partitioning

67. Boundary-value analysis

68. Decision table

69. Finite-state machine-based

70. Testing from formal specifications

71.

C1.2 Specification-based

Random testing

72. Reference models for code-based testing (flow graph, call graph)

73. Control flow-based criteria

74.

C. Test
Techniques

C1.3 Code-based

Data flow-based criteria

© IEEE – Stoneman (Version 0.7) – April 2000 5–5

64. Table 1-C': Decomposition for Test Techniques (criterion “base on which tests are generated”)

75. Error guessing

76.
C1.4 Fault-based

Mutation testing

77. Operational profile

78.
C1.5 Usage-based

SRET

79. Object-oriented testing

80. Component-based testing

81. GUI testing

82. Testing of concurrent programs

83. Protocol conformance testing

84. Testing of distributed systems

85. Testing of real-time systems

86.

C1.6 Based on nature of
application

Testing of scientific software

87. Functional and structural

88.

C3 Selecting and combining
techniques Coverage and operational/Saturation effect

89. Table 1-C”: Additional decomposition for Test Techniques
(criterion “ignorance or knowledge of implementation”)

90. Equivalence partitioning

91. Boundary-value analysis

92. Decision table

93. Finite-state machine-based

94. Testing from formal specifications

95. Error guessing

96. Random testing

97. Operational profile

98.

C2.1 Black -box techniques

SRET

99. Reference models for code-based testing (flow graph, call graph)

100. Control flow-based criteria

101. Data flow-based criteria

102.

C. Test
Techniques

C2.2 White -box techniques

Mutation testing

5–6 © IEEE – Stoneman (Version 0.7) – April 2000

103. Table 1-D: Decomposition for Test Related Measures

104. Program measurements to aid in planning and designing testing

105. Types, classification and statistics of faults

106. Remaining number of defects/Fault density

107. Life test, reliability evaluation

108.

D.1 Evaluation of the program
under test

Reliability growth models

109. Coverage/thoroughness measures

110. Fault seeding

111. Mutation score

112.

D. Test
Related

Measures

D.2 Evaluation of the tests
performed

Comparison and relative effectiveness of different techniques

113. Table 1-E: Decomposition for Managing the Test Process

114. Attitudes/Egoless programming

115. Test process

116. Test documentation

117. Internal vs. independent test team

118. Cost/effort estimation and other process metrics

119.

E.1 Management concerns

Test reuse

120. Planning

121. Test case generation

122. Test environment development

123. Execution

124. Test results evaluation

125. Trouble reporting/Test log

126.

E. Managing
the Test
Process

E.2 Test activities

Defect tracking

127. A. Testing Basic Concepts and
Definitions

128. A.1 Testing-related terminology

129. w Definitions of testing and related terminology
[Be:c1; Jo:c1,2,3,4; Ly:c2s2.2] (610)

130. A comprehensive introduction to the Knowledge
Area of Software Testing is provided by the core
references. Moreover, the IEEE Standard
Glossary of Software Engineering Terminology
(610) defines terms for the whole field of
software engineering, including testing-related
terms.

131. w Faults vs. Failures [Ly:c2s2.2; Jo:c1; Pe:c1;
Pf:c7] (FH+; Mo; ZH+:s3.5; 610;
982.2:fig3.1.1-1; 982.2:fig6.1-1)

132. Many terms are used in the software literature to
speak of malfunctioning, notably fault, failure,
error, and several others. Often these terms are
used interchangeably. However, in some cases
they are given a more precise meaning
(unfortunately, not in consistent ways between
different sources), in order to identify the
subsequent steps of the cause-effect chain that
originates somewhere, e.g., in the head of a
designer, and eventually leads to the system's
user observing an undesired effect. This
terminology is precisely defined in the IEEE Std
610.12-1990, Standard Glossary of Software
Engineering Terminology (610) and is also

© IEEE – Stoneman (Version 0.7) – April 2000 5–7

discussed in more depth in the SQ Knowledge
Area. What is essential in order to discuss
Software Testing, as a minimum, is to clearly
distinguish between the cause for a
malfunctioning, for which the term fault is used
here, and an undesired effect observed in the
system delivered service, that will be called a
failure. Testing can reveal failures, but then to
remove them it is the faults that must be fixed.

133. However, it should be recognized that not always
the cause of a failure can be univocally
identified, i.e., no theoretical criteria exists to
uniquely say what the fault was that caused a
failure. One may choose to say the fault was
"what was changed", but other things could have
been changed just as well. This is why some
authors instead of faults prefer to speak in terms
of failure-causing inputs (FH+), i.e., those sets of
inputs that when executed cause a failure.

134. A.2 Theoretical foundations

135. w Test selection criteria/Test adequacy criteria
(or stopping rules) [Pf:c7s7.3; ZH+:s1.1]
(We-b; WW+; ZH+)

136. A test criterion is a means of deciding which a
suitable set of test cases should be. A criterion
can be used for selecting the test cases, or for
checking if a selected test suite i s adequate, i.e.,
to decide if the testing can be stopped. In
mathematical terminology it would be a decision
predicate defined on triples (P, S, T), where P is
a program, S is the specification (intended here
to mean in general sense any relevant source of
information for testing) and T is a test set.

137. w Testing effectiveness/Objectives for testing
[Be:c1s1.4; Pe:c21] (FH+)

138. Testing amounts at observing a sample of
program executions. The selection of the sample
can be guided by different objectives: it is only
in light of the objective pursued that the
effectiveness of the test set can be evaluated.
This important issue is discussed at some length
in the references provided.

139. w Testing for defect identification [Be:c1;
KF+:c1]

140. In testing for defect identification a successful
test is one that causes the system to fail. This is
quite different from testing to demonstrate that
the software meets its specification, or other
desired properties, whereby testing is successful
if no (important) failures are observed.

141. w The oracle problem [Be:c1] (We-a; BS)

142. An oracle is any (human or mechanical) agent
that decides whether a program behaved
correctly on a given test, and produces
accordingly a verdict of "pass" or "fail". There
exist many different kinds of oracles; oracle
automation still poses several open problems.

143. w Theoretical and practical limitations of
testing [KF+:c2] (Ho)

144. Testing theory warns against putting a not
justified level of confidence on series of passed
tests. Unfortunately, most established results of
testing theory are negative ones, i.e., they state
what testing can never achieve (as opposed to
what it actually achieved). The most famous
quotation in this regard is Dijkstra aphorism that
"program testing can be used to show the
presence of bugs, but never to show their
absence". The obvious reason is that complete
testing is not feasible in real systems. Because of
this, testing must be driven based on risk, i.e.,
testing can also be seen as a risk management
strategy.

145. w The problem of infeasible paths [Be:c3]

146. Infeasible paths, i.e., control flow paths which
cannot be exercised by any input data, are a
significant problem in path-oriented testing, and
particularly in the automated derivation of test
inputs for code-based testing techniques.

147. w Testability [Be:c3,c13] (BM; BS; VM)

148. The term of software testability has been recently
introduced in the literature with two related, but
different meanings: on the one hand as the
degree to which it is easy for a system to fulfill a
given test coverage criterion, as in (BM); on the
other hand, as the likelihood (possibly measured
statistically) that the system exposes a failure
under testing, if it is faulty, as in (VM, BS). Both
meanings are important.

149. A.3 Relationships of testing to other
activities

150. Here the relation between the Software Testing
and other related activities of software
engineering is considered. Software Testing is
related to, but different from, static analysis
techniques, proofs of correctness, debugging and
programming. On the other side, it is informative
to consider testing from the point of view of
software quality analysts, users of CMM and
Cleanroom processes, and of certifiers. A non-
exhaustive list of interesting

151. w Testing vs. Static Analysis Techniques
[Be:c1; Pe:c17p359-360] (1008:p19)

5–8 © IEEE – Stoneman (Version 0.7) – April 2000

152. w Testing vs. Correctness Proofs [Be:c1s5;
Pf:c7]

153. w Testing vs. Debugging [Be:c1s2.1]
(1008:p19)

154. w Testing vs. Programming [Be:c1s2.3]

155. w Testing within SQA (see the SQ Knowledge
Area in this Guide to the SWEBOK)

156. w Testing within CMM (Po:p117-123)

157. w Testing within Cleanroom [Pf:c8s8.9]

158. w Testing and Certification (WK+)

159. B. Test Levels

160. B.1 The object of the test

161. Testing of large software systems usually
involves more steps [Be:c1; Jo:c12; Pf:c7]

162. w Unit testing [Be:c1; Pe:c17; Pf:c7s7.3] (1008)

163. Unit testing verifies the functioning in isolation
of software pieces that are separately testable.
Depending on the context, these could be the
individual subprograms or a larger component
made of tightly related units. A test unit is
defined more precisely in the IEEE Standard for
Software Unit Testing [1008], that also describes
an integrated approach to systematic and
documented unit testing. Clearly, unit testing
starts after a clean compile.

164. w Integration testing [Jo:c12,13; Pf:c7s7.4]

165. Integration testing is the process of verifying the
interaction between system components
(possibly already tested in isolation). Systematic,
incremental integration testing strategies, such as
top-down or bottom-up, are to be preferred to
putting all units together at once, that is
pictorially said "big-bang" testing.

166. w System testing [Jo:c14; Pf:c8]

167. System testing is concerned with the behavior of
a whole system, and at this level the main goal is
not to find functional failures (most of them
should have been already found at finer levels of
testing), but rather to demonstrate performance in
general. External interfaces to other applications,
utilities, hardware devices, or the operating
environment are also evaluated at this level.

168. There are many system properties one may want
to verify by testing, including conformance,
reliability, usability among others. These are
discussed below under part "Objectives of
testing".

169. B.2 Objectives of Testing [Pe:c8;
Pf:c8s8.3]

170. Testing of a software system (or subsystem) can
be aimed at verifying different properties. Test
cases can be designed to check that the
functional specifications are correctly
implemented, which is variously referred to in
the literature as conformance testing,
"correctness" testing, functional testing.
However several other non-functional properties
need to be tested as well. References cited above
give essentially a collection of the potential
different purposes. The topics separately listed
below (with the same or additional references)
are those most often cited in the literature.

171. Note that some kinds of testing are more
appropriate for custom made packages, e.g.
installation testing, while others for generic
products, e.g. beta testing.

172. w Acceptance/qualification testing [Pe:c10;
Pf:c8s8.5] (12207:s5.3.9)

173. Acceptance testing checks the system behavior
against the customer's requirements (the
"contract"), and is usually conducted by or with
the customer.

174. w Installation testing [Pe:c9; Pf:c8s8.6]

175. After completion of system and acceptance
testing, the system is verified upon installation in
the target environment, i.e., system testing is
conducted according to the hardware
configuration requirements. Installation
procedures are also verified.

176. w Alpha and Beta testing [KF+:c13]

177. Before releasing the system, sometimes it is
given in use to a small representative set of
potential users, in-house (alpha testing) or
external (beta testing), who report to the
developer potential experienced problems with
use of the product. Alpha and beta use is
uncontrolled, i.e., the testing does not refer to a
test plan.

178. B3. Conformance testing/Functional
testing/Correctness testing [KF+:c7;
Pe:c8] (WK+)

179. Conformance testing is aimed at verifying
whether the observed behavior of the tested
system conforms to its specificat ion.

180. w Reliability achievement and evaluation by
testing [Pf:c8s.8.4; Ly:c7] (Ha; Musa and
Ackermann in Po:p146-154)

© IEEE – Stoneman (Version 0.7) – April 2000 5–9

181. By testing failures can be detected. If the faults
that are the cause of the identified failures are
efficaciously removed, the software will be more
reliable. In this sense, testing is a means to
improve reliability. On the other hand, by
randomly generating test cases accordingly to the
operational profile, statistical measures of
reliability can be derived. Using reliability
growth models, both objectives can be pursued
together (see also part D.1).

182. w Regression testing [KF+:c7; Pe:c11,c12;
Pf:c8s8.1] (RH)

183. According to (610), regression testing is the
"selective retesting of a system or component to
verify that modifications have not caused
unintended effects [...]". Regression testing can
be conducted at each of the test levels in B.1.
[Be] defines it as any repetition of tests intended
to show that the software's behavior is
unchanged except insofar as required.

184. w Performance testing [Pe:c17; Pf:c8s8.3]
(WK+)

185. This is specifically aimed at verifying that the
system meets the specified performance
requirements, e.g., capacity and response time. A
specific kind of performance testing is volume
testing (Pe:p185, p487; Pf:p349), in which
internal program or system limitations are
proved.

186. w Stress testing [Pe:c17; Pf:c8s8.3]

187. Stress testing exercises a system at the maximum
design load as well as beyond it.

188. w Back-to-back testing

189. A same test set is presented to two implemented
versions of a system, and the results are
compared with each other.

190. w Recovery testing [Pe:c17; Pf:c8s8.3]

191. It is aimed at verifying system restart capabilities
after a "disaster".

192. w Configuration testing [KF+:c8; Pf:c8s8.3]

193. In those cases in which a system is built to serve
different users, configuration testing analyzes the
system under the various specified
configurations.

194. w Usability testing [Pe:c8; Pf:c8s8.3]

195. It evaluates the ease of using and learning the
system by the end users.

196. C. Test Techniques

197. In this section, two alternative classifications of
test techniques are proposed. It is arduous to find

a homogeneous criterion for classifying all
techniques, as there exist many and very
disparate.

198. The first classification, from C1.1 to C1.6, is
based on how tests are generated, i.e.,
respectively from: tester's intuition and expertise,
the specifications, the code structure, the (real or
artificial) faults to be discovered, the field usage
or finally the nature of application, which in
some case can require knowledge of specific test
problems and of specific test techniques.

199. The second classification is the classical
distinction of test techniques between black-box
and white-box (pictorial terms derived from the
world of integrated circuit testing). Test
techniques are here classified according to
whether the tests rely on information about how
the software has been designed and coded
(white-box, somewhere also said glass-box), or
instead only rely on the input/output behavior,
without no assumption about what happens in
between the “pins” of the system (black box).
Clearly this second classification is more coarse
than the first one, and it does not allow us to
categorize the techniques specialized on the
nature of application (section C1.6) nor ad hoc
approaches, because these can be either black-
box or white-box.

200. A final section, C3, deals with combined use of
more techniques.

201. C1: CLASSIFICATION “base on which tests
are generated”

202. C1.1 Based on tester's intuition
[KF+:c1]

203. Perhaps the most widely practiced technique
remains ad hoc testing: test cases are derived
relying on the tester skill and intuition
(“exploratory” testing), and on his/her experience
with similar programs. While a more systematic
approach is advised, this remains very useful to
identify special tests, not easily "captured" by
formalized techniques.

204. C1.2 Specification-based

205. w Equivalence partitioning [Jo:c6; KF+:c7]

206. The input domain is subdivided into a collection
of subsets, or "equivalent classes", which are
deemed equivalent according to a specified
relation, and a representative set of tests
(sometimes even one) is taken from within each
class.

207. w Boundary-value analysis [Jo:c5; KF+:c7]

5–10 © IEEE – Stoneman (Version 0.7) – April 2000

208. Test cases are chosen on and near the boundaries
of the input domain of variables, with the
underlying rationale that many defects tend to
concentrate near the extreme values of inputs. A
simple, and often worth, extension of this
technique is Robustness Testing, whereby test
cases are also chosen outside the domain, in fact
to test program robustness to unexpected,
erroneous inputs.

209. w Decision table [Be:c10s3] (Jo:c7)

210. Decision tables represent logical relationships
between conditions (roughly, inputs) and actions
(roughly, outputs). Test cases are systematically
derived by considering every possible
combination of conditions and actions. A related
techniques is Cause-effect graphing [Pf:c8].

211. w Finite-state machine-based [Be:c11;
Jo:c4s4.3.2]

212. By modeling a program as a finite state machine,
tests can be selected in order to cover states and
transitions on it, applying different techniques.
This technique is suitable for transaction-
processing, reactive, embedded and real-time
systems.

213. w Testing from formal specifications
[ZH+:s2.2] (BG+; DF; HP)

214. Giving the specifications in a formal language
(i.e., one with precisely defined syntax and
semantics) allows for automatic derivation of
functional test cases from the specifications, and
at the same time provides a reference output, an
oracle, for checking test results. Methods for
deriving test cases from model-based (DF, HP)
or algebraic specifications (BG+) are
distinguished.

215. w Random testing [Be:c13; KF+:c7]

216. Tests are generated purely random (not to be
confused with statistical testing from the
operational profile, where the random generation
is biased towards reproducing field usage, see
C1.5). Actually, therefore, it is difficult to
categorize this technique under the scheme of
"base on which tests are generated". It is put
under the Specification-based entry, as at least
which is the input domain must be known, to be
able to pick random points within it.

217. C1.3 Code-based

218. w Reference models for code-based testing
(flowgraph, call graph) [Be:c3; Jo:c4].

219. In code-based testing techniques, the control
structure of a program is graphically represented

using a flowgraph, i.e., a directed graph whose
nodes and arcs correspond to program elements.
For instance, nodes may represent statements or
uninterrupted sequences of statements, and arcs
the transfer of control between nodes.

220. w Control flow-based criteria [Be:c3 ; Jo:c9]
(ZH+:s2.1.1)

221. Control flow-based coverage criteria aim at
covering all the statements or the blocks in a
program, or proper combinations of them.
Several coverage criteria have been proposed
(like Decision/Condition Coverage), in the
attempt to get good approximations for the
exhaustive coverage of all control flow paths,
that is unfeasible for all but trivial programs.

222. w Data flow-based criteria [Be:c5] (Jo:c10;
ZH+:s2.1.2)

223. In data flow-based testing, the control flowgraph
is annotated with information about how the
program variables are defined and used.
Different criteria exercise with varying degrees
of precision how a value assigned to a variable is
used along different control flow paths. A
reference notion is a definition-use pair, which is
a triple (d,u,V) such that: V is a variable, d is a
node in which V is defined, and u is a node in
which V is used; and such that there exists a path
between d and u in which the definition of V in d
is used in u.

224. C1.4 Fault-based (Mo)

225. With different degrees of formalization, fault
based testing techniques devise test cases
specifically aimed at revealing categories of
likely or pre-defined faults.

226. w Error guessing [KF+:c7]

227. In error guessing, test cases are ad hoc designed
by testers trying to figure out those, which could
be the most plausible faults in the given program.
A good source of information is the history of
faults discovered in earlier projects, as well as
tester's expertise.

228. w Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

229. Originally conceived as a technique to evaluate a
test set (see D.2.2), mutation testing is also a
testing criterion in itself: either tests are
randomly generated until enough mutants are
killed or tests are specifically designed to kill
(survived) mutants. In the latter case, mutation
testing can also be categorized as a code-based
technique. The underlying assumption of
mutation testing, the coupling effect, is that by

© IEEE – Stoneman (Version 0.7) – April 2000 5–11

looking for simple syntactic faults, also more
complex, (i.e., real) faults will be found.

230. C1.5 Usage-based

231. w Operational profile [Jo:c14s14.7.2; Ly:c5;
Pf:c8]

232. In testing for reliability evaluation, the test
environment must reproduce as closely as
possible the product use in operation. In fact,
from the observed test results one wants to infer
the future reliability in operation. To do this,
inputs are assigned a probability distribution, or
profile, according to their occurrence in actual
operation.

233. w (Musa's) SRET [Ly:c6]

234. Software Reliability Engineered Testing (SRET)
is a testing methodology encompassing the
whole development process, whereby testing is
"designed and guided by reliability objectives
and expected relative usage and criticality of
different functions in the field".

235. C1.6 Based on nature of application

236. The above techniques apply to all types of
software, and their classification is based on how
test cases are derived. However, for some kinds
of applications some additional know-how is
required for test derivation. Here below a list of
few "specialized" testing techniques is provided,
based on the nature of the application under test.

237. w Object-oriented testing [Jo:c15; Pf:c7s7.5]
(Bi)

238. w Component-based testing

239. w GUI testing (OA+)

240. 1. Testing of concurrent programs (CT)

241. 2. Protocol conformance testing (Sidhu and
Leung in Po:p102-115; BP)

242. w Testing of distributed systems

243. w Testing of real-time systems (Sc)

244. w Testing of scientific software

245. C2: CLASSIFICATION “ignorance or
knowledge of implementation”

246. C2.1 Black-box techniques

247. w Equivalence partitioning [Jo:c6; KF+:c7]

248. w Boundary-value analysis [Jo:c5; KF+:c7]

249. w Decision table [Be:c10s3] (Jo:c7)

250. w Finite-state machine-based [Be:c11;
Jo:c4s4.3.2]

251. w Testing from formal specifications
[ZH+:s2.2] (BG+; DF; HP)

252. w Error guessing [KF+:c7]

253. w Random testing [Be:c13; KF+:c7]

254. w Operational profile [Jo:c14s14.7.2; Ly:c5;
Pf:c8]

255. w (Musa's) SRET [Ly:c6]

256. C2.2 White-box techniques

257. w Reference models for code-based testing
(flowgraph, call graph) [Be:c3; Jo:c4].

258. w Control flow-based criteria [Be:c3; Jo:c9]
(ZH+:s2.1.1)

259. w Data flow-based criteria [Be:c5] (Jo:c10;
ZH+:s2.1.2)

260. w Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

261. C3 Selecting and combining techniques

262. w Functional and structural [Be:c1s.2.2; Jo:c1,
c11s11.3; Pe:c17] (Po:p3-4; Po: Appendix 2)

263. Functional and structural approaches to test
selection are not to be seen as alternative, but
rather as complementary: in fact, they use
different sources of information and highlight
different kinds of problems. They should be used
in combination, compatibly with budget
availability.

264. w Coverage and operational/Saturation effect
(Ha; Ly:p541-547; Ze)

265. This topic discusses the differences and
complementarity of deterministic and statistical
approaches to test case selection.

266. D. Test related measures

267. Measurement is instrumental to quality analysis.
Indeed, product evaluation is effective only when
based on quantitative measures. This section
specifically focuses on measures that are
obtained from data collected by testing. A wider
coverage of the topic of quality measurement,
including fundamentals, metrics and techniques
for measurement, is provided in the SQ
Knowledge Area of the Guide to the SWEBOK.
A comprehensive reference is provided by the
IEEE Std. 982.2 "Guide for the Use of IEEE
Standard Dictionary of Measures to Produce
Reliable Software". It has been originally
conceived as a guide to using the companion
standard 982.1, that is the Dictionary. However,
the guide is also a valid and very useful reference

5–12 © IEEE – Stoneman (Version 0.7) – April 2000

by itself, for selection and application of
measures in a project.

268. Test related measures can be divided into two
classes: those relative to evaluating the program
under test, and those relative to evaluating the
test set. The first class, for instance, includes
measures that count and predict either faults
(e.g., fault density) or failures (e.g., reliability).
The second class instead evaluates the test suites
against selected test criteria; notably, this is what
is usually done by measuring the code coverage
achieved by the executed tests. Measures relative
to the test process for management purposes are
instead considered in part E.

269. D.1 Evaluation of the program under
test (982.2)

270. w Program measurements to aid in planning and
designing testing. [Be:c7s4.2; Jo:c9]
(982.2:sA16, BMa)

271. Measures based on program size (e.g., SLOC,
function points) or on program structure (e.g.,
complexity) is useful information to guide the
testing. These are also covered in the SQ
Knowledge Area.

272. w Types, classification and statistics of faults
[Be:c2; Jo:c1; Pf:c7] (1044, 1044.1; Be:
Appendix; Ly:c9; KF+:c4, Appendix A)

273. The testing literature is rich of classifications and
taxonomies of faults. Testing allows for
discovering defects. To make testing more
effective it is important to know which types of
faults could be found in the application under
test, and the relative frequency with which these
faults have occurred in the past. This information
can be very useful to make quality predictions as
well as for process improvement. The topic
"Defect Characterization" is also covered more
deeply in the SQ Knowledge Area. An IEEE
standard on how to classify software "anomalies"
(1044) exists, with a relative guide (1044.1) to
implement it. An important property for fault
classification is orthogonality, i.e., ensuring that
each fault can be univocally identified as
belonging to one class.

274. w Remaining number of defects/Fault density
[Pe:c20] (982.2:sA1; Ly:c9)

275. In common industrial practice a product under
test is assessed by counting and classifying the
discovered faults by their types (see also A1).
For each fault class, fault density is measured by
the ratio between the number of faults found and
the size of the program.

276. w Life test, reliability evaluation [Pf:c8] (Musa
and Ackermann in Po:p146-154)

277. A statistical estimate of software reliability, that
can be obtained by operational testing (see in
B.2), can be used to evaluate a product and
decide if testing can be stopped.

278. w Reliability growth models [Ly:c7; Pf:c8]
(Ly:c3, c4)

279. Reliability growth models provide a prediction of
reliability based on the failures observed under
operational testing. They assume in general that
the faults that caused the observed failures are
fixed (although some models also accept
imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There
exist now tens of published models, laid down on
some common assumptions as well as on
differing ones. Notably, the models are divided
into failures-count and time-between-failures
models.

280. D.2 Evaluation of the tests performed

281. w Coverage/thoroughness measures [Jo:c9;
Pf:c7] (982.2:sA5-sA6)

282. Several test adequacy criteria require the test
cases to systematically exercise a set of elements
identified in the program or in the specification
(see Part C). To evaluate the thoroughness of the
executed tests, testers can monitor the elements
covered, so that they can dynamically measure
the ratio (often expressed as a fraction of 100%)
between covered elements and the total number.
For example, one can measure the percentage of
covered branches in the program flowgraph, or
of exercised functional requirements among
those listed in the specification document. Code-
based adequacy criteria require appropriate
instrumentation of the program under test.

283. w Fault seeding [Pf:c7] (ZH+:s3.1)

284. Some faults are artificially introduced into the
program before test. By monitoring then which
and how many of the artificial faults are
discovered by the executed tests, this technique
allows for measuring testing effectiveness, and
for estimating how many (original) faults remain.

285. w Mutation score [ZH+:s3.2-s3.3]

286. A mutant is a slightly modified version of the
program under test, differing from it by a small,
syntactic change. Every test case exercises both
the original and all generated mutants: for the
technique to be effective, a high number of
mutants must be automatically derived in
systematic way. If a test case is successful in

© IEEE – Stoneman (Version 0.7) – April 2000 5–13

identifying the difference between the program
and a mutant, the latter is said to be killed.
Strong and weak mutation techniques have been
developed.

287. w Comparison and relative effectiveness of
different techniques [Jo:c8,c11; Pe:c17;
ZH+:s5] (FW; Weyuker in Po p64-72; FH+)

288. Several studies have been recently conducted to
compare the relative effectiveness of different
test techniques. It is important to be precise
relative to the property against which the
techniques are being assessed, i.e., what
"effectiveness" is exactly meant for. Possible
interpretations are how many tests are needed to
find the first failure, or the ratio of the number of
faults found by the testing to all the faults found
during and after the testing, or how much
reliability is improved. Analytical and empirical
comparisons between different techniques have
been conducted according to each of the above
specified notions of "effectiveness".

289. E. Managing the Test Process

290. E.1 Management concerns

291. w Attitudes/Egoless programming [Be:c13s3.2;
Pf:c7]

292. A very important component of successful
testing is a positive and collaborative attitude
towards testing activities. Managers should
revert a negative vision of testers as the
destroyers of developers' work and as heavy
budget consumers. On the contrary, they should
foster a common culture towards software
quality, by which early failure discover is an
objective for all involved people, and not only of
testers.

293. w Test process [Be:c13; Pe:c1,c2,c3,c4; Pf:c8]
(Po:p10-11; Po:Appendix 1;
12207:s5.3.9;s5.4.2;s6.4;s6.5)

294. A process is defined as "a set of interrelated
activities, which transform inputs into
outputs"[12207]. Test activities conducted at
different levels (see B.1) must be organized,
together with people, tools, policies,
measurements, into a well defined process,
which is integral part to the life cycle. In the
IEEE/EIA Standard 12207.0 testing is not
described as a stand alone process, but principles
for testing activities are included along with the
five primary life cycle processes, as well as along
with the supporting process.

295. w Test documentation and workproducts
[Be:c13s5; KF+:c12; Pe:c19; Pf:c8s8.8] (829)

296. Documentation is an integral part of the
formalization of the test process. As The IEEE
standard for Software Test Documentation [829]
provides a good description of test documents
and of their relationship with one another and
with the testing process. Test documents
includes, among others, Test Plan, Test Design
Specification, Test Procedure Specification, Test
Case Specification, Test Log and Test Incident or
Trouble Report. These documents should be
produced and continually updated, at the same
standards as other types of documentation in
development. Unfortunately, this is not yet
common practice.

297. The object of testing, with specified version and
identified hw/sw requirements before testing can
begin, is documented as the test item.

298. w Internal vs. independent test team
[Be:c13s2.2-2.3; KF+:c15; Pe:c4; Pf:c8]

299. Formalization of the test process requires
formalizing the test team organization as well.
The test team can be composed of members
internal to the project team, or of external
members, in the latter case bringing in an
unbiased, independent perspective, or finally of
both internal and external members. The decision
will be determined by considerations of costs,
schedule and application criticality.

300. w Cost/effort estimation and other process
metrics [Pe:c4, c21] (Pe:Appendix B;
Po:p139-145; 982.2:sA8-sA9)

301. In addition to those discussed in Part D, several
metrics relative to the resources spent on testing,
as well as to the relative effectiveness in fault
finding of the different test phases, are used by
managers to control and improve the test process.
Evaluation of test phase reports is often
combined with root cause analysis to evaluate
test process effectiveness in finding faults as
early as possible. Moreover, the resources that
are worth spending in testing should be
commensurate to the use/criticality of the
application: the techniques listed in part C have
different costs, and yield different levels of
confidence in product reliability. “Good enough”
testing should be planned.

302. w Test Reuse [Be:c13s5]

303. E.2 Test Activities

304. w Planning [KF+:c12; Pe:c19; Pf:c7s7.6]
(829:s4; 1008:s1, s2, s3)

5–14 © IEEE – Stoneman (Version 0.7) – April 2000

305. w Test case generation [KF+:c7] (Po:c2;
1008:s4, s5)

306. w Test environment development [KF+:c11]

307. w Execution [Be:c13; KF+:c11] (1008:s6, s7;)

308. w Test results evaluation [Pe:c20,c21] (Po:p18-
20; Po:p131-138)

309. w Trouble reporting/Test log [KF+:c5; Pe:c20]
(829:s9-s10)

310. w Defect tracking [KF+:c6]

311. 4. BREAKDOWN RATIONALE

312. The conceptual scheme followed in decomposing
the Software Testing Knowledge Area is
described in Section 2.1. Level 1 topics include
five entries, labeled from A to E, that correspond
to the fundamental and complementary concerns
forming the Software Testing knowledge: Basic
Concepts and Definitions, Levels, Techniques,
Measures, and Process. There is not a standard
way to decompose the Software Testing
Knowledge Area, each book on Software Testing
would structure its table of contents in different
ways. However any thorough book on Software
Testing would cover these five topics. A sixth
level 1 topic would be Test Tools. These are not
covered here, but in a specific section of the
Software Engineering Methods and Tools
chapter of the Guide to the SWEBOK.

313. The breakdown is three levels deep. The second
level is for making the decomposition more
understandable. The selection of level 3 topics,
that are the subjects of study, has been quite
difficult. This description is expected to be as
inclusive as possible (too many topics are
deemed better than having relevant topics
missing). On the other side, the proposed
breakdown should be compatible with
breakdowns generally found in industry, in
literature and in standards, and the selected
topics should be "generally accepted"

knowledge. Finding a breakdown of topics that is
"generally accepted" by all different
communities of potential users of the Guide to
the SWEBOK is challenging for Software
Testing, because there still exists a wide gap
between the literature on Software Testing and
current industrial test practice. There are topics
that have been taking a relevant position in the
academic literature for many years now, but are
not generally used in industry, for example data-
flow based or mutation testing. The position
taken in writing this document has been to
include any relevant topics in the literature, even
those that are likely not considered so relevant by
practitioners at the current time. The proposed
breakdown of topics for Software Testing is thus
considered as an inclusive list, from which each
stakeholder can pick according to his/her needs.

314. However, under the precise definition for
"generally accepted" adopted in the Guide to the
SWEBOK, i.e., knowledge to be included in the
study material of a software engineering with
four years of work experience , some of the
included topics (like the examples above) would
be lightly covered in a curriculum of a software
engineering with four years of experience. The
ratings in the Bloom's taxonomy of topics in an
Appendix of the entire Guide reflect this
guideline, and the core References have been
selected accordingly, i.e., they provide reading
material for the topics according to this precise
meaning of "generally accepted". Advanced
topics are more deeply covered in the Further
Reading list.

315. Finally, the reader should understand the high
difficulty of being selective in limiting topics and
references to a reasonable amount. As spelled out
in the specifications for the Stone Man Version
of the Guide to the SWEBOK, the breakdowns of
topics are expected to be “reasonable”, not
“perfect”, and definitely they are to be seen as
documents undergoing continuous improvement.

© IEEE – Stoneman (Version 0.7) – April 2000 5–15

316. 5. M ATRIX OF TOPICS VS. REFERENCE MATERIAL

317. A. Testing Basic Concepts and
Definitions [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]

318. Definitions of testing and related
terminology C1 C1,2,3,4 C2S2.2

319. Faults vs. Failures C1 C2S2.2 C1 C7
320. Test selection criteria/Test

adequacy criteria (or stopping
rules)

 C7S7.3 S1.1

321. Testing effectiveness/Objectives
for testing C1S1.4 C21

322. Testing for defect identification C1 C1
323. The oracle problem C1

324. Theoretical and practical
limitations of testing C2

325. The problem of infeasible paths C3

326. Testability C3,13

327. Testing vs. Static Analysis
Techniques C1 C17

328. Testing vs. Correctness Proofs C1S5 C7

329. Testing vs. Debugging C1S2.1

330. Testing vs. Programming C1S2.3

331. Testing within SQA

332. Testing within CMM
333. Testing within Cleanroom C8S8.9

334. Testing and Certification

335. B. Test Levels [Be] [Jo] [Ly] [KF+] [Pe] [Pf]
336. Unit testing C1 C17 C7S7.3
337. Integration testing C12,13 C7S7.4

338. System testing C14 C8

339. Acceptance/qualification testing C10 C8S8.5

340. Installation testing C9 C8S8.6

341. Alpha and Beta testing C13

342. Conformance testing/ Functional
testing/ Correctness testing C7 C8

343. Reliability achievement and evaluation
by testing C7 C8S8.4

345. Regression testing C7 C11,12 C8S8.1
346. Performance testing C17 C8S8.3

347. Stress testing C17 C8S8.3

348. Back-to-back testing

349. Recovery testing C17 C8S8.3

350. Configuration testing C8 C8S8.3

351. Usability testing C8 C8S8.3

5–16 © IEEE – Stoneman (Version 0.7) – April 2000

352. C. Test Techniques [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
353. Ad hoc C1
354. Equivalence partitioning C6 C7

355. Boundary-value analysis C5 C7

356. Decision table C10S3

357. Finite-state machine-based C11 C4S4.3.2

358. Testing from formal specifications S2.2

359. Random testing C13 C7
360. Reference models for code-based

testing (flow graph, call graph)
C3 C4

361. Control flow-based criteria C3 C9 C7

362. Data flow-based criteria C5
363. Error guessing C7

364. Mutation testing C17 S3.2, 3.3

365. Operational profile C14S14.7.2 C5 C8

366. SRET C6

367. Object-oriented testing C15 C7S7.5

368. Component-based testing
369. GUI testing

370. Testing of concurrent programs
371. Protocol conformance testing

372. Testing of distributed systems
373. Testing of real-time systems

374. Testing of scientific software
375. Functional and structural C1S2.2 C1,11S11.3 C17

376. Coverage and operational/Saturation
effect

377. D. Test Related Measures [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
378. Program measurements to aid in

planning and designing testing. C7S4.2 C9

379. Types, classification and statistics of
faults C2 C1 C7

380. Remaining number of defects/Fault
density

 C20

381. Life test, reliability evaluation C8

382. Reliability growth models C7 C8

383. Coverage/thoroughness measures C9 C7
384. Fault seeding C7

385. Mutation score S3.2, 3.3
386. Comparison and relative effectiveness

of different techniques C8,11 C17 S5

387. E. Managing the Test
Process [Be] [Jo] [Ly] [KF+] [Pe] [Pf]

388. Attitudes/Egoless programming C13S3.2 C7

389. Test process C13 C1,2,3,4 C8

390. Test documentation and workproducts C13S5 C12 C19 C8S8.8

391.
Internal vs. independent test team

C13S2.2,2.
3

 C15 C4 C8

© IEEE – Stoneman (Version 0.7) – April 2000 5–17

387. E. Managing the Test
Process [Be] [Jo] [Ly] [KF+] [Pe] [Pf]

392. Cost/effort estimation and other
process metrics

 C4,21

393. Test reuse C13

394. Planning C12 C19 C7S7.6

395. Test case generation C7

396. Test environment development C11

397. Execution C13 C11

398. Test results evaluation C20,21

399. Trouble reporting/Test log C5 C20

400. Defect tracking C6

401. 6. CORE REFERENCES FOR

SOFTWARE TESTING

402. [Be] Beizer, B. Software Testing Techniques 2nd
Edition. Van Nostrand Reinhold, 1990. [Chapters
1, 2, 3, 5, 7s4, 10s3, 11, 13]

403. [Jo] Jorgensen, P.C., Software Testing A
Craftsman's Approach, CRC Press, 1995.
[Chapters 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15]

404. [KF+] Kaner, C., Falk, J., and Nguyen, H. Q.,
Testing Computer Software, 2nd Edition, Wiley,
1999. [Chapters 1, 2, 5, 6, 7, 8, 11, 12, 13, 15]

405. [Ly] Lyu, M.R. (Ed.), Handbook of Software
Reliability Engineering, Mc-Graw-Hill/IEEE,
1996. [Chapters 2s2.2, 5, 6, 7]

406. [Pe] Perry, W. Effective Methods for Software
Testing, Wiley, 1995. [Chapters 1, 2, 3, 4, 9, 10,
11, 12, 17, 19, 20, 21]

407. [Pf] Pfleeger, S.L. Software Engineering Theory
and Practice, Prentice Hall, 1998. [Chapters 7,
8]

408. [ZH+] Zhu, H., Hall, P.A.V., and May, J.H.R.
Software Unit Test Coverage and Adequacy.
ACM Computing Surveys, 29, 4 (Dec. 1997) 366-
427. [Sections 1, 2.2, 3.2, 3.3,

409. 7. LIST OF FURTHER READINGS

410. Books

411. [Be] Beizer, B. Software Testing Techniques 2nd
Edition. Van Nostrand Reinhold, 1990.

412. [Jo] Jorgensen, P.C., Software Testing A
Craftsman's Approach, CRC Press, 1995.

413. [KF+] Kaner, C., Falk, J., and Nguyen, H. Q.,
Testing Computer Software, 2nd Edition, Wiley,
1999.

414. [Ly] Lyu, M.R. (Ed.), Handbook of Software
Reliability Engineering, Mc-Graw-Hill/IEEE,
1996.

415. [Pe] Perry, W. Effective Methods for Software
Testing, Wiley, 1995.

416. [Po] Poston, R.M. Automating Specification-
based Software Testing, IEEE, 1996.

417. Survey Papers

418. [Bi] Binder, R.V. Testing Object-Oriented
Software: a Survey. Software Testing
Verification and Reliability, 6, 3/4 (Sept-Dec.
1996) 125-252.

419. [ZH+] Zhu, H., Hall, P.A.V., and May, J.H.R.
Software Unit Test Coverage and Adequacy.
ACM Computing Surveys, 29, 4 (Dec. 1997) 366-
427.

420. Specific Papers

421. [BG+] Bernot, G., Gaudel, M.C., and Marre, B.
Software Testing Based On Formal
Specifications: a Theory and a Tool. Software
Engineering Journal (Nov. 1991) 387-405.

422. [BM] Bache, R., and Müllerburg, M. Measures
of Testability as a Basis for Quality Assurance.
Software Engineering Journal, 5 (March 1990)
86-92.

5–18 © IEEE – Stoneman (Version 0.7) – April 2000

423. [Bma] Bertolino, A., Marrè, M. “How many
paths are needed for branch testing?”, The
Journal of Systems and Software, Vol. 35, No. 2,
1996, pp.95-106.

424. [BP] Bochmann, G.V., and Petrenko, A. Protocol
Testing: Review of Methods and Relevance for
Software Testing. ACM Proc. Int. Symposium on
Sw Testing and Analysis (ISSTA’ 94), (Seattle,
Washington, USA, August 1994) 109-124.

425. [BS] Bertolino, A., and Strigini, L. On the Use of
Testability Measures for Dependability
Assessment. IEEE Transactions on Software
Engineering, 22, 2 (Feb. 1996) 97-108.

426. [CT] Carver, R.H., and Tai, K.C., Replay and
testing for concurrent programs. IEEE Software
(March 1991) 66-74

427. [DF] Dick, J., and Faivre, A. Automating The
Generation and Sequencing of Test Cases From
Model-Based Specifications. FME'93:
Industrial-Strenght Formal Method, LNCS 670,
Springer Verlag, 1993, 268-284.

428. [FH+] Frankl, P., Hamlet, D., Littlewood B., and
Strigini, L. Evaluating testing methods by
delivered reliability. IEEE Transactions on
Software Engineering, 24, 8, (August 1998),
586-601.

429. [FW] Frankl, P., and Weyuker, E. A formal
analysis of the fault detecting ability of testing
methods. IEEE Transactions on Software
Engineering, 19, 3, (March 1993), 202-

430. [Ha] Hamlet, D. Are we testing for true
reliability? IEEE Software (July 1992) 21-27.

431. [Ho] Howden, W.E., Reliability of the Path
Analysis Testing Strategy. IEEE Transactions on
Software Engineering, 2, 3, (Sept. 1976) 208-215

432. [HP] Horcher, H., and Peleska, J. Using Formal
Specifications to Support Software Testing.
Software Quality Journal, 4 (1995) 309-327.

433. [Mo] Morell, L.J. A Theory of Fault-Based
Testing. IEEE Transactions on Software
Engineering 16, 8 (August 1990), 844-857.

434. [MZ] Mitchell, B., and Zeil, S.J. A Reliability
Model Combining Representative and Directed
Testing. ACM/IEEE Proc. Int. Conf. Sw
Engineering ICSE 18 (Berlin, Germany, March
1996) 506-514.

435. [OA+] Ostrand, T., Anodide, A., Foster, H., and
Goradia, T. A Visual Test Development
Environment for GUI Systems. ACM Proc. Int.
Symposium on Sw Testing and Analysis (ISSTA’
98), (Clearwater Beach, Florida, USA, March
1998) 82-92.

436. [OB] Ostrand, T.J., and Balcer, M. J. The
Category-Partition Method for Specifying and
Generating Functional Tests. Communications of
ACM, 31, 3 (June 1988), 676-686.

437. [RH] Rothermel, G., and Harrold, M.J.,
Analyzing Regression Test Selection
Techniques. IEEE Transactions on Software
Engineering, 22, 8 (Aug. 1996) 529-

438. [Sc] Schütz, W. Fundamental Issues in Testing
Distributed Real-Time Systems. Real-Time
Systems Journal. 7, 2, (Sept. 1994) 129-157.

439. [VM] Voas, J.M., and Miller, K.W. Software
Testability: The New Verification. IEEE
Software, (May 1995) 17-28.

440. [We-a] Weyuker, E.J. On Testing Non-testable
Programs. The Computer Journal, 25, 4, (1982)
465-470

441. [We-b] Weyuker, E.J. Assessing Test Data
Adequacy through Program Inference. ACM
Trans. on Programming Languages and Systems,
5, 4, (October 1983) 641-655

442. [WK+] Wakid, S.A., Kuhn D.R., and Wallace,
D.R. Toward Credible IT Testing and
Certification, IEEE Software, (August 1999) 39-
47.

443. [WW+] Weyuker, E.J., Weiss, S.N, and Hamlet,
D. Comparison of Program Test Strategies in
Proc. Symposium on Testing, Analysis and
Verification TAV 4 (Victoria, British Columbia,
October 1991), ACM Press, 1-10.

444. Standards

445. [610] IEEE Std 610.12-1990, Standard Glossary
of Software Engineering Terminology.

446. [829] IEEE Std 829-1998, Standard for Software
Test Documentation.

447. [982.2] IEEE Std 982.2-1998, Guide for the Use
of IEEE Standard Dictionary of Measures to
Produce Reliable Software.

448. [1008] IEEE Std 1008-1987 (R 1993), Standard
for Software Unit Testing.

449. [1044] IEEE Std 1044-1993, Standard
Classification for Software Anomalies.

450. [1044.1] IEEE Std 1044.1-1995, Guide to
Classification for Software Anomalies.

451. [12207] IEEE/EIA 12207.0-1996, Industry
Implementation of Int. Std. ISO/IEC
12207:1995, Standard for Information
Technology-Software Life cycle processes

© IEEE – Stoneman (Version 0.7) – April 2000 6–1

CHAPTER 6
SOFTWARE MAINTENANCE

Thomas M. Pigoski
Technical Software Services (TECHSOFT), Inc.

31 West Garden Street, Suite 100
Pensacola, Florida 32501

USA
+1 850 469 0086

tmpigoski@techsoft.com

TABLE OF CONTENTS

Acronyms
1. INTRODUCTION

2. DEFINITION OF KNOWLEDGE AREA

3. BREAKDOWN OF TOPICS FOR SOFTWARE

MAINTENANCE

Introduction to Software Maintenance
Maintenance Activities
Maintenance Process
Organization Aspect of Maintenance
Problems of Software Maintenance
Maintenance Cost and Maintenance Cost 3.7
Estimation
Software Maintenance Measurements
Rationale for the breakdown
Coverage of the software breakdown topics by
the recommended references

4. RECOMMENDED REFERENCES FOR SOFTWARE

MAINTENANCE

References
5. LIST OF FURTHER READINGS

References
6. REFERENCES USED TO WRITE AND JUSTIFY THE

DESCRIPTION FOR SOFTWARE MAINTENANCE

References
APPENDIX A – COVERAGE OF THE BREAKDOWN

TOPICS BY THE RECOMMENDED REFERENCES

APPENDIX B – BREAKDOWN RATIONALE

1. Acronyms

2. CASE Computer Aided Software Engineering

3. CM Configuration Management

4. CMM Capability Maturity Model

5. ICSM International Conference on Software
Maintenance

6. SCM Software Configuration Management

7. 1. INTRODUCTION

8. Software maintenance is part of the software
engineering life cycle and is a misunderstood
area of software engineering. Although systems
have been maintained for years, relatively little
is written about software maintenance. Funding
for research is essentially non-existent and thus
the academic researchers publish very little
about software maintenance. Practitioners
publish even less because of corporate fear of
giving away the “competitive edge.” Whereas
they are many book devoted to software
engineering, there are very few books written
exclusively about maintenance.

9. Schneidewind [31] stressed the need for
standardization of maintenance and, as a result,
the IEEE Computer Society Software
Engineering Standards Subcommittee published
the “IEEE Standard for Software Maintenance”
[14] in 1993. Later in 1995 the International
Organization for Standards (ISO), developed an
international standard for software life-cycle
processes, ISO/IEC 12207 [15], which included
a maintenance process. ISO/IEC 14764 [16], the
ISO/IEC Standard for Software Maintenance,
elaborates the maintenance process of ISO/IEC
12207 [15].

10. Software engineering is the application of
engineering to software. The classic life-cycle
paradigm for software engineering includes:
system engineering, analysis, design, code,
testing, and maintenance. This paper addresses
the maintenance portion of software engineering
and the software life-cycle.

11. This paper presents an overview of the
Knowledge Area of software maintenance. Brief
descriptions of the topics are provided so that

6–2 © IEEE – Stoneman (Version 0.7) – April 2000

the reader can select the appropriate reference
material according to his/her needs.

12. 2. DEFINITION OF KNOWLEDGE

AREA

13. This section provides a definition of the
Software Maintenance Knowledge Area.
Definitions are derived from appropriate
standards and current usage.

14. Software maintenance is defined in the IEEE
Standard for Software Maintenance, IEEE 1219
[14], as the modification of a software product
after delivery to correct faults, to improve
performance, or to adapt the product to a
modified environment. It does, however, address
maintenance activities prior to delivery of the
software product but only in an information
annex of the standard. Sommerville [33] states
that maintenance means evolution.

15. The ISO/IEC 12207 Standard for Life Cycle
Processes [15], essentially depicts maintenance
as one of the primary life cycle processes and
describes maintenance as the process of a
software product undergoing “modification to
code and associated documentation due to a
problem or the need for improvement. The
objective is to modify existing software product
while preserving its integrity.” [15] Of note is
that ISO/IEC 12207 describes an activity called
“Process Implementation.” That activity
establishes the maintenance plan and procedures
that are later used during the maintenance
process.

16. ISO/IEC 14764 [16], the International Standard
for Software Maintenance, defines software
maintenance in the same terms as ISO/IEC
12207 and places emphasis on the predelivery
aspects of maintenance, e.g., planning.

17. A current definition generally accepted by
software researchers and practitioners, is as
follows:

18. SOFTWARE MAINTENANCE: The totality
of activities required to provide cost-
effective support to a software system.
Activities are performed during the
predelivery stage as well as the postdelivery
stage. Predelivery activities include planning
for postdelivery operations, supportability,
and logistics determination. postdelivery
activities include software modification,
training, and operating a help desk [28].

19. A similar definition is used by the Research
Institute in Software Evolution, formerly named
the Centre for Software Maintenance.

20. A maintainer is defined by ISO/IEC 12207 as an
organization that performs maintenance
activities [15].

21. ISO/IEC 12207 identifies the primary activities
of software maintenance as: process
implementation; problem and modification
analysis; modification implementation;
maintenance review/acceptance; migration; and
retirement. These activities are discussed in a
later section. They are further defined by the
tasks in the standard.

22. 3. BREAKDOWN OF TOPICS FOR

SOFTWARE MAINTENANCE

23. The breakdown of topics for software
maintenance is a decomposition of software
engineering topics that are “generally accepted”
in the software maintenance community. They
are general in nature and are not tied to any
particular domain, model, or business needs.
The presented topics can be used by small and
medium sized organizations, as well as by larger
software organizations. Organizations should
use those topics that are appropriate for their
unique situations. The topics are consistent with
what is found in current software engineering
literature and standards. The common themes of
quality, measurement, tools, and standards are
included in the breakdown of topics. The
breakdown of topics is provided in this section.

24. The breakdown of topics, along with a brief
description of each, is provided in this section.
Key references are provided. Table 2.1
describes the breakdown.

25. TABLE 2-1. SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

26. SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

27. Introduction to Software Maintenance

28. Need for Maintenance

29. Categories of Maintenance

30. Maintenance Activities

31. Unique Activities

32. Supporting Activities

33. Configuration Management

34. Quality

35. Maintenance Planning Activity

© IEEE – Stoneman (Version 0.7) – April 2000 6–3

26. SUMMARY OF THE SOFTWARE
MAINTENANCE BREAKDOWN

36. Maintenance Process

37. Maintenance Process Models

38. Organization Aspect of Maintenance

39. The Maintainer

40. Outsourcing

41. Organizational Structure

42. Problems of Software Maintenance

43. Technical

44. Limited Understanding

45. Testing

46. Impact Analysis

47. Maintainability

48. Management

49. Alignment with organizational issues

50. Staffing

51. Process issues

52. Maintenance Cost and Maintenance Cost
Estimation

53. Cost

54. Cost estimation

55. Parametric models

56. Experience

57. Software Maintenance Measurements

58. Establishing a Metrics Program

59. Specific Measures

60. Techniques for Maintenance

61. Program Comprehension

62. Re-engineering

63. Reverse Engineering

64. Impact Analysis

65. Resources

66. Introduction to Software Maintenance

67. The area of software maintenance and evolution
of systems was first addressed by Lehman in
1969. His research led to an investigation of the
evolution of OS/360 [19] and continues today
on the Feedback, Evolution, and Software
Technology (FEAST) research at Imperial
College, England.

68. Over a period of twenty years, that research led
to the formulation of eight Laws of Evolution
[20]. Simply put, Lehman stated that
maintenance is really evolutionary
developments and that maintenance decisions
are aided by understanding what happens to
systems (and software) over time. Others state
that maintenance is really continued
development, except that there is an extra input

(or constraint) – the existing software system.

69. Lehman’s Laws of Evolution are generally
accepted by the software engineering
community and these clearly depict what
happens over time. Key points from Lehman
include that large systems are never complete
and continue to evolve. As they evolve, they
grow more complex unless some action is taken
to reduce the complexity. As systems
demonstrate regular behavior and trends, these
can be measured and predicted. Pfleeger [25],
Sommerville [33], and Arthur [3] have excellent
discussions regarding software evolution.

70. A common perception of maintenance is that it
is merely fixing bugs. However, studies over the
years have indicated that the majority, over 80%,
of the maintenance effort is used for non-
corrective actions [33] [29] [28]. This
perception is perpetuated by users submitting
problem reports that in reality are major
enhancements to the system. This “lumping of
enhancement requests with problems”
contributes to some of the misconceptions
regarding maintenance. Software evolves over
its life cycle, as evidenced by the fact that over
80% of the effort after initial delivery goes to
implement non-corrective actions. Thus,
maintenance is similar to software development.
There is, however, another input or constraint –
the existing system.

71. The focus of software development is to solve
problems through producing code. The
generated code implements stated requirements
and should operate correctly. Maintenance is
different than development [25]. Maintainers
look back at development products and also the
present by working with users and operators.
Maintainers also look forward to anticipate
problems and to consider functional changes.
Pfleeger [25] states that maintenance has a
broader scope, with more to track and control.
Thus, configuration management is an important
aspect of software evolution and maintenance.

72. Maintenance, however, must learn from the
development effort. For the maintenance effort
to succeed there should be contact with the
developers and early involvement is encouraged.
Maintenance must take the products of the
development, e.g., code, documentation, and
evolve/maintain them over the life cycle.

73. Need For Maintenance

6–4 © IEEE – Stoneman (Version 0.7) – April 2000

74. Maintenance is needed to ensure that the system
continues to satisfy user requirements. The
system changes due to corrective and non-
corrective software actions. Maintenance must
be performed in order to:

75. w Correct errors.

76. w Correct design flaws.

77. w Interface with other systems that are new
or changed.

78. w Make enhancements.

79. w Make necessary changes to the system.

80. w Make changes in files or databases.

81. w Improve the design.

82. w Convert programs so that different
hardware, software, system features, and
telecommunications facilities can be used.

83. The four major aspects that evolution and
maintenance focus on are [25]:

84. w Maintaining control over the system’s day-
to-day functions.

85. w Maintaining control over system
modification.

86. w Perfecting existing acceptable functions.

87. w Preventing system performance from
degrading to unacceptable levels.

88. Accordingly, software must evolve and be
maintained.

89. Categories of maintenance

90. Lehman developed the concept of software
evolution. E. B. Swanson of UCLA was one of
the first to examine what really happens in
evolution and maintenance, using empirical data
from industry maintainers. Swanson believed
that, by studying the maintenance phase of the
life cycle, a better understanding of the
maintenance phase would result. Swanson was
able to create three different categories of
maintenance. These are reflected in software
maintenance standards such as, IEEE 1219 [14]
and ISO/IEC 14764 [16], as well as numerous
texts. Swanson’s categories of maintenance and
his definitions are as follows:

91. w Corrective maintenance. Reactive
modification of a software product
performed after delivery to correct
discovered faults.

92. w Adaptive maintenance. Modification of a

software product performed after delivery
to keep a computer program usable in a
changed or changing environment.

93. w Perfective maintenance. Modification of a
software product after delivery to improve
performance or maintainability.

94. The ISO Standard on Software Maintenance [16]
refers to Adaptive and Perfective maintenance
as enhancements. Another type of maintenance,
preventive maintenance, is defined in the IEEE
Standard on Software Maintenance [14] and the
ISO Standard on Software [16]. Preventive
maintenance is defined as maintenance
performed for the purpose of preventing
problems before they occur. This type of
maintenance could easily fit under corrective
maintenance but the international community,
and in particular those who are concerned about
safety, classify preventive as a separate type of
maintenance.

95. Of note is that Pfleeger [25], Sommerville [33],
and others address that the corrective portion of
maintenance is only about 20% of the total
maintenance effort. The remaining 80% is for
enhancements, i.e., the adaptive and perfective
categories of maintenance. This further
substantiates Lehman’s Laws of Evolution.

96. Maintenance Activities

97. Maintenance activities are similar to those of
software development. Maintainers perform
analysis, design, coding, testing, and
documenting. Maintainers must track
requirements just as they do in development.
However, for software maintenance, the
activities involve processes unique to
maintenance.

98. Unique Activities

99. Maintainers must possess an intimate
knowledge of the code’s structure and content
[25]. Unlike software development, maintainers
must perform impact analysis. Analysis is
performed in order to determine the cost of
making a change. The change request,
sometimes called a modification request and
often called a problem report, must first be
analyzed and translated into software terms [11].
The maintainer then identifies the affected
components. Several potential solutions are
provided and then a recommendation is made as
to the best course of action.

© IEEE – Stoneman (Version 0.7) – April 2000 6–5

100. Supporting Activities

101. Maintainers must also perform supporting
activities such as configuration management
(CM), verification and validation, quality
assurance, reviews, audits, operating a help desk,
and conducting user training. The IEEE Standard
for Software Maintenance, IEEE 1219 [14],
describes CM as a critical element of the
maintenance process. CM procedures should
provide for the verification, validation, and
certification of each step required to identify,
authorize, implement, and release the software
product. Training of maintainers, a supporting
process, is also a needed activity [28] [33] [24].
Maintenance also includes activities such as
planning, migration, and retiring of systems [14]
[28] [16] [15].

102. Configuration Management. It is not sufficient
to simply track modification requests or
problem reports. The software product and any
changes made to it must be controlled. This
control is established by implementing and
enforcing an approved software configuration
management process (SCM). The SCM process
is implemented by developing and following a
CM Plan and operating procedures.

103. Quality. Quality should be built into the
software maintenance processes. The
complexity of the software should be reduced to
improve the quality of the software product.
Software inspections should be used to improve
quality. Quality of Service Agreements should
be used to aid in quality improvement.

104. Maintenance Planning Activity

105. An important activity for software maintenance
is planning. Whereas developments typically can
last for 1-2 years, the operation and
maintenance phase typically lasts for many
years. Maintenance is performed during the
operation and maintenance phase [25].
Maintenance planning should begin with the
decision to develop a new system. A concept
and then a maintenance plan should be
developed. The concept for maintenance should
address:

106. w The scope of software maintenance.

107. w The tailoring of the postdelivery process.

108. w The designation of who will provide
maintenance.

109. w An estimate of life cycle costs.

110. Once the maintenance concept is determined,
the next step is to develop the maintenance plan.
The maintenance plan should be prepared during
software development and should specify how
users will request modifications or report
problems. Maintenance planning [28] is
addressed in IEEE 1219 [14] and ISO/IEC
14764 [16]. ISO/IEC 14764 [16] provides
guidelines for a maintenance plan.

111. Maintenance Process

112. The need for software processes is well
documented. The Software Engineering
Institute’s Software Capability Maturity Model
(CMM) provides a means to measure levels of
maturity. Of importance, is that there is a direct
correlation between levels of maturity and cost
savings. The higher the level of maturity, the
greater the cost savings. The CMM applies
equally to maintenance and maintainers should
have a documented maintenance process

113. Maintenance Process Models

114. Process models provide needed operations and
detailed inputs/outputs to those operations.
Maintenance process models are provided in the
software maintenance standards, IEEE 1219 [14]
and ISO/IEC 14764 [16].

115. The maintenance process model described in
IEEE 1219 [14], the Standard for Software
Maintenance, starts the software maintenance
effort during the post-delivery stage and
discusses items such as planning for
maintenance and metrics outside the process
model. That process model with the IEEE
maintenance phases is depicted in Figure 3.1.

6–6 © IEEE – Stoneman (Version 0.7) – April 2000

116. Figure 3.1: The IEEE Maintenance Process

117. ISO/IEC 14764 [16] is an elaboration of the
maintenance process of ISO/IEC 12207 [15].
The activities of the maintenance process are
similar although they are aggregated a little
differently. The maintenance process activities
developed by ISO/IEC are shown in Figure 3.2.

118. Figure 3.2: IEEE Maintenance Process
Activities

119. Each of these primary software maintenance
activities is further broken down into tasks.

120. Process Implementation tasks are:

121. w Maintenance planning and procedures.

122. w Procedures for Modification Requests.

123. w Interface with CM.

124. Problem and Modification tasks are:

125. w Perform initial analysis.

126. w Verify the problem.

127. w Develop options for implementing the
modification.

128. w Document the results.

129. w Obtain approval for modification option.

130. Modification Implementation tasks are:

131. w Perform detailed analysis.

132. w Develop, code, and test the modification.

133. Maintenance Review/Acceptance tasks are:

134. w Conduct reviews.

135. w Obtain approval for modification.

136. Migration tasks are:

137. w Ensure that migration is in accordance with
the Standard.

138. w Develop a migration plan.

139. w Notify users of migration plans.

140. w Conduct parallel operations.

141. w Notify user that migration has started.

142. w Conduct a post-operation review.

143. w Ensure that old data is accessible.

144. Software Retirement tasks are:

145. w Develop a retirement plan.

146. w Notify users of retirement plans.

147. w Conduct parallel operations.

148. w Notify user that retirement has started.

149. w Ensure that old data is accessible.

150. Takang and Grubb [35] provide a history of
maintenance process models leading up to the
development of the IEEE and ISO/IEC process
models. A good overview of a generic
maintenance process is given by Sommerville
[33].

151. Organization Aspect of Maintenance

152. The team that develops the software is not
always used to maintain the system once it is
operational.

153. The Maintainer

154. Often, a separate team (or maintainer) is
employed to ensure that the system runs
properly and evolves to satisfy changing needs
of the users. There are many pros and cons to
having the original developer or a separate team

Maintenance
Process

Process
Implementatio

Modification
Implementatio

Maintenance
Review and
Acceptance

Software
Retirement

Problem and
Modification

Analysis
Migration

© IEEE – Stoneman (Version 0.7) – April 2000 6–7

maintain the software [25] [28] [24]. That
decision should be made on a case-by-case
basis.

155. Outsourcing

156. Outsourcing of maintenance is becoming a
major industry. Large corporations are
outsourcing entire operations, including
software maintenance. Dorfman and Thayer [11]
provide some guidance in the area of
outsourcing maintenance.

157. Organizational Structure

158. Based on the fact there are almost as many
organizational structures as there are software
maintenance organizations, an organizational
structure for maintenance is best developed on a
case-by-case basis. What is important is the
delegation or designation of maintenance
responsibility to a group [28], regardless of the
organizational structure.

159. Problems of Software Maintenance

160. It is important to understand that software
evolution and maintenance provides unique
technical and management problems for
software engineers. Trying to find a defect in a
500K line of code system that the maintainer
did not develop is a challenge for the maintainer.
Similarly, competing with software developers
for resources is a constant battle. The following
discusses some of the technical and
management problems relating to software
evolution and maintenance.

161. Technical

162. Limited Understanding [25]. Several studies
indicate that some 40% to 60% of the
maintenance effort is devoted to understanding
the software to be modified. Thus, the topic of
program comprehension is one of extreme
interest to maintainers. It is often difficult to
trace the evolution of the software through its
versions, changes are not documented, and the
developers are usually not around to explain the
code. Thus, maintainers have a limited
understanding of the software and must learn the
software on their own.

163. Testing. The cost of repeating full testing on a
major piece of software can be significant in
terms of time and money. Thus, determining a
sub-sets of tests to perform in order to verify

changes are a constant challenge to maintainers
[11]. Finding time to test is often difficult [25].

164. Impact Analysis. The software and the
organization must both undergo impact analysis.
Critical skills and processes are needed for this
area. Impact analysis is necessary for risk
abatement.

165. Maintainability. The IEEE Computer Society
defines maintainability as the ease with which
software can be maintained, enhanced, adapted,
or corrected to satisfy specified requirements.
Maintainability features must be incorporated
into the software development effort to reduce
life-cycle costs. If this is done, the quality of
evolution and maintenance of the code can
improve. Maintainability is often a problem in
maintenance because maintainability is not
incorporated into the software development
process, documentation is non-existent, and
program comprehension is difficult. Means to
improve maintainability, and thereby constrain
life-cycle costs, is to define coding standards,
documentation standards, and standard test tools
in the software development phase of the life-
cycle.

166. Management

167. Alignment with organizational issues. Dorfman
and Thayer [11] relate that return on investment
is not clear with maintenance. Thus, there is a
constant struggle to obtain resources.

168. Staffing. Maintenance personnel often are
viewed as second class citizens [25] and morale
suffers [11]. Maintenance is not viewed as
glamorous work. Deklava provides a list of
staffing related problems based on survey data
[10].

169. Process issues. Maintenance requires several
activities that are not found in software
development, e.g. , help desk support. These
present challenges to management [11].

170. Maintenance Cost and Maintenance
Cost Estimation

171. Maintenance costs are high due to all the
problems of maintaining a system [25]. Software
engineers must understand the different
categories of maintenance, previously
discussed, in order to address the cost of
maintenance. For planning purposes, estimating

6–8 © IEEE – Stoneman (Version 0.7) – April 2000

costs is an important aspect of software
maintenance.

172. Cost

173. Maintenance now consumes a major share of the
life cycle costs. Prior to the mid-1980s, the
majority of costs went to development. Since
that time, maintenance consumes the majority
of life-cycle costs. Understanding the
categories of maintenance helps to understand
why maintenance is so costly. Also
understanding the factors that influence the
maintainability of a system can help to contain
costs. Pfleeger [25] and Sommerville [33]
address some of the technical and non-technical
factors affecting maintenance.

174. Impact analysis identifies all systems and
system products affected by a change request
and develops an estimate of the resources
needed to accomplish the change [3]. It is
performed after a change request enters the
configuration management process. It is used in
concert with the cost estimation techniques
discussed below.

175. Cost estimation

176. Maintenance cost estimates are affected by
many technical and non-technical factors.
Primary approaches to cost estimating include
use of parametric models and experience. Most
often a combination of these is used to estimate
costs.

177. Parametric models

178. The most significant and authoritative work in
the area of parametric models for estimating
was performed by Boehm [5]. His COCOMO
model, derived from COnstructive COst MOdel,
puts the software life cycle and the quantitative
life-cycle relationships into a hierarchy of
software cost-estimation models [25] [33] [28].
Of significance is that data from past projects is
needed in order to use the models. Jones [18]
discusses all aspects of estimating costs
including function points, and provides a
detailed chapter on maintenance estimating.

179. Experience

180. Experience should be used to augment data from
parametric models. Sound judgement, reason, a
work breakdown structure, educated guesses,
and use of empirical/historical data are several
approaches. Clearly the best approach to

maintenance estimation is to use empirical data
and experience. That data should be provided as
a result of a metrics program. In practice, cost
estimation relies much more on experience than
parametric models.

181. Software Maintenance Measurements

182. Software life cycle costs are growing and a
strategy for maintenance is needed. Software
measurement or software metrics need to be a
part of that strategy. Software measurement is
the result of a software measurement process.
Software metrics are often synonymous with
software measurement. Grady and Caswell [12]
discuss establishing a corporate-wide metrics
program. Software metrics are vital for software
process improvement but the process must be
measurable.

183. Takang and Grubb [35] state that measurement is
undertaken for evaluation, control, assessment,
improvement, and prediction. A program must
be established with specific goals in mind.

184. Establishing a metrics program

185. Successful implementation strategies were used
at Hewlett-Packard [12] and at the
NASA/Software Engineering Laboratory [8].
Common to many approaches is to use the Goal,
Question, Metric (GQM) paradigm put forth by
Basili [34]. This approach states that a metrics
program would consist of: identifying
organizational goals; defining the questions
relevant to the goals; and then selecting
measures that answer the questions.

186. The IEEE Standard For a Software Quality
Metrics Methodology, ANSI/IEEE 1061-1998,
[1] provides a methodology for establishing
quality requirements and identifying,
implementing, analyzing and validating process
and product software quality metrics. The
methodology applies to all software at all phases
of any software life cycle and is a valuable
resource for software evolution and
maintenance.

187. There are two primary lessons learned from
practitioners about metrics programs. The first
is to focus on a few key characteristics. The
second is not to measure everything. Most
organizations collect too much. Thus, a good
approach is to evolve a metrics program and to
use the GQM paradigm.

© IEEE – Stoneman (Version 0.7) – April 2000 6–9

188. Specific Measures

189. There are metrics that are common to all efforts
and the Software Engineering Institute (SEI)
identified these as: size; effort; schedule; and
quality [28]. Those metrics are a good starting
point for a maintainer.

190. Takang and Grubb [35] group metrics into areas
of: size; complexity; quality; understandability;
maintainability; and cost estimation.

191. Documentation regarding specific metrics to
use in maintenance is not often published.
Typically generic software engineering metrics
are used and the maintainer determines which
ones are appropriate for their organization. IEEE
1219 [14] provides suggested metrics for
software programs. Stark, et al [34] provides a
suggested list of maintenance metrics used at
NASA’s Mission Operations Directorate. That
list includes:

192. w Software size

193. w Software staffing

194. w Maintenance request processing

195. w Software enhancement processing

196. w Computer resource scheduling

197. w Fault density

198. w Software volatility

199. w Discrepancy report open duration

200. w Break/fix ration

201. w Software reliability

202. w Design complexity

203. w Fault type distribution

204. Techniques for Maintenance

205. Effective software maintenance is performed
using techniques specific to maintenance. The
following provides some of the best practice
techniques used by maintainers.

206. Program Comprehension

207. Studies indicate that 40% to 60% of a
maintenance programmer’s time is spent trying
to understand the code. Time is spent in reading
and comprehending programs in order to
implement changes. Browsers are a key tool in
program comprehension. Based on the
importance of this subtopic, an annual IEEE
workshop is now held to address program
comprehension [11]. Additional research and
experience papers regarding comprehension are

found in the annual proceedings of the IEEE
Computer Society’s International Conference
on Software Maintenance (ICSM). Takang and
Grubb [35] provide a detailed chapter on
comprehension.

208. Re-engineering

209. Re-engineering is the examination and alteration
of the subject system to reconstitute it in a new
form, and the subsequent implementation of the
new form. Dorfman and Thayer [11] state that
re-engineering is the most radical (and
expensive) form of alteration. Others believe
that re-engineering can be used for minor
changes. Re-engineering is often not undertaken
to improve maintainability but is used to replace
aging legacy systems. Arnold [2] provides a
comprehensive compendium of topics, e.g.,
concepts, tools and techniques, case studies, and
risks and benefits associated with re-
engineering.

210. Reverse engineering

211. Reverse engineering is the process of analyzing
a subject system to identify the system’s
components and their inter-relationships and to
create representations of the system in another
form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the
system, or result in a new one. A simple reverse
engineering effort may merely produce call
graphs and control flow graphs from source
code. One type of reverse engineering is
redocumentation. Another type is design
recovery [11].

212. Impact Analysis

213. Impact analysis identifies all systems and
system products affected by a change request
and develops an estimate of the resources
needed to accomplish the change [3]. It is
performed after a change request enters the
configuration management process. Arthur [3]
states that the objectives of impact analysis are:

214. w Determine the scope of a change in order
to plan and implement work.

215. w Develop accurate estimates of resources
needed to perform the work.

216. w Analyze the cost/benefits of the requested
change.

217. w Communicate to others the complexity of
a given change.

6–10 © IEEE – Stoneman (Version 0.7) – April 2000

218. Resources

219. Beside the references listed in this paper, there
are other resources available to learn more
about software maintenance. The IEEE
Computer Society sponsors the annual
International Conference on Software
Maintenance (ICSM). That conference started in
1983 and continues today. ICSM provides a
Proceedings, which incorporates numerous
research and practical industry papers
concerning evolution and maintenance topics.
Other venues, which address these topics,
include:

220. w The Workshop on Software Change and
Evolution (SCE).

221. w The International Workshop on the
Principles of Software Evolution (IWPSE).

222. w Manny Lehman’s work on the FEAST
project at the Imperial College in England
continues to provide valuable research into
software evolution.

223. w The Research Institute for Software
Evolution (RISE) at the University of
Durham, England, concentrates its research
on software maintenance and evolution.

224. The Journal of Software Maintenance ,
published by John Wiley & Sons, also is an
excellent resource.

225. Rationale for the breakdown

226. The breakdown of topics for software
maintenance is a decomposition of software
engineering topics that are “generally accepted”
in the software maintenance community. They
are general in nature. There is agreement in the
literature and in the standards on the topics.

227. A detailed discussion of the rationale for the
proposed breakdown, keyed to the SWEBOK
development criteria, is given in Appendix B.
The following is a narrative description of the
rationale for the breakdown.

228. The Introduction to Software Maintenance was
selected as the initial topic in order to introduce
the topic. The subtopics are needed to emphasis
why there is a need for maintenance. Categories
are critical to understand the underlying
meaning of maintenance. All pertinent texts use
a similar introduction.

229. The Maintenance Activities topic is needed to
differentiate maintenance from development and

to show the relationship to other software
engineering activities. Maintenance Process is
needed to provide the current references and
standards needed to implement the maintenance
process.

230. Every organization is concerned with who will
perform maintenance. The Organizational
Aspect of Maintenance provides some options.
There is always a discussion that maintenance is
hard. The topic on the Problems of Software
Maintenance was chosen to ensure that the
software engineers fully comprehended these
problems.

231. Every software maintenance reference discusses
the fact that maintenance consumes a large
portion of the life cycle costs. The topic on
Cost and Cost Estimation was provided to
ensure that the readers select references to help
with this difficult task.

232. The Software Maintenance Measurements topic
is one that is not addressed very well in the
literature. Most maintenance books barely touch
on the topic. Measurement information is most
often found in generalized measurement books.
This topic was chosen to highlight the need for
unique maintenance metrics and to provide
specify maintenance measurement references.

233. The Techniques topic was provided to introduce
some of the generally accepted techniques used
in maintenance operations.

234. Finally, there are other resources besides
textbooks and periodicals that are useful to
software engineers who wish to learn more
about software maintenance. The Resources
topic was provided to list these additional
resources.

235. Coverage of the software breakdown
topics by the recommended references

236. The cross-reference is shown in Appendix A.

237. 4. RECOMMENDED REFERENCES

FOR SOFTWARE MAINTENANCE

238. The following set of references provides the
best reading material to acquire knowledge on
specific topics identified in the breakdown.
They were chosen to provide coverage of all
aspects of software maintenance. Priority was
given to standards, maintenance specific

© IEEE – Stoneman (Version 0.7) – April 2000 6–11

publications, and then general software
engineering publications.

239. References

240. [1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE
Computer Society Press, 1998, pp. 3-13.

241. [2] R. S. Arnold. Software Reengineering. IEEE
Computer Society, 1992, pp. 3-22

242. [3] L. J. Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988, pp. 1-6, 39-57.

243. [5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981, pp. 534-553.

244. [8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990,
pp. 15-22.

245. [10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the
International Conference on Software
Maintenance, 1992, pp. 10-17.

246. [11] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press,
1997, pp. 289-307.

247. [12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987, Chapter 1.

248. [14] IEEE STD 1219: Standard for Software
Maintenance, 1993, pp. 1-17.

249. [15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995, pp. 6-9.

250. [16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000, pp. 1-35.

251. [18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998, pp. 595-636.

252. [19] M. M. Lehman and L. A. Belady, Program
Evolution – Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

253. [20] M . M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997, pp 108-124, pp.
108-124.

254. [24] G. Parikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986, pp.
361, 126-129.

255. [25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998, pp.
420-422, 422-423, 424, 425, 424-431, 427-
436.

256. [28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997, pp. 20-
27, 29-36, 89-99, 92-93, 103-106, 223-225,
309-322.

257. [29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997, pp. 762-763

258. [31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the IEEE, 77(4),
1987, pp. 618-624.

259. [33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996, pp. 121-124,
660-661, 662-663, 664-666, 666-670.

260. [34] G. E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

261. [35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997,
117-126, 117-130, 155-156.

262. 5. LIST OF FURTHER READINGS

263. A list of additional readings, called Further
Readings, is provided to provide additional
reference material for the Knowledge Area of
Software Maintenance. These references also
contain generally accepted knowledge.

264. References

265. [1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE
Computer Society Press, 1998.

266. [2] R. S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

267. [3] L. J. Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988.

268. [4] V. R. Basili, “Quantitative Evaluation of
Software Methodology,” Proceedings First
Pan-Pacific Computer Conference, September
1985.

269. [5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981.

270. [6] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The
AMES Approach to Application Understanding:
A Case Study,” Proceedings of the

6–12 © IEEE – Stoneman (Version 0.7) – April 2000

International Conference on Software
Maintenance-1995, IEEE Computer Society
Press, Los Alamitos, CA, 1995.

271. [7] M.A. Capretz and M. Munro, “Software
Configuration Management Issues in the
Maintenance of Existing Systems,” Journal of
Software Maintenance, Vol 6, No.2, 1994.

272. [8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990.

273. [9] J. Cardow, “You Can't Teach Software
Maintenance!,” Proceedings of the Sixth
Annual Meeting and Conference of the
Software Management Association, 1992.

274. [10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the
International Conference on Software
Maintenance, 1992.

275. [11] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press,
1997.

276. [12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987.

277. [13] R.B. Grady, Practical Software Metrics for
Project Management and Process
Improvement, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1992.

278. [14] IEEE STD 1219: Standard for Software
Maintenance, 1993.

279. [15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

280. [16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

281. [17] ISO/IEC TR 15271, Information
Technology - Guide for ISO/IEC 12207,
(Software Life Cycle Process)

282. [18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998.

283. [19] M. M. Lehman and L. A. Belady, Program
Evolution – Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

284. [20] M. M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997.

285. [21] T.M. Khoshgoftaar, R.M. Szabo, and J.M.
Voas, “Detecting Program Module with Low
Testability,” Proceedings of the International
Conference on Software Maintenance-1995,

IEEE Computer Society Press, Los Alamitos,
CA, 1995.

286. [22] P.W. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software
Maintainability, University of Idaho, Software
Engineering Test Lab, Technical Report, 91-08
TR, November 1991.

287. [23] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,”
Proceedings of the International Conference
on Software Maintenance-1992, IEEE
Computer Society Press, Los Alamitos, CA,
1992.

288. [24] G. Parikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986.

289. [25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998.

290. [26] T.M. Pigoski, “Maintainable Software: Why
You Want It and How to Get It,” Proceedings of
the Third Software Engineering Research
Forum-November 1993, University of West
Florida Press, Pensacola, FL, 1993.

291. [27] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John
Wiley & Sons, New York, NY, 1994.

292. [28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997.

293. [29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997.

294. [30] S. R. Schach, Classical and Object-
Oriented Software Engineering With UML and
C++, McGraw-Hill, 1999

295. [31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the IEEE, 1987.

296. [32] S. L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

297. [33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996.

298. [34] G. E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

299. [35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997.

300. [36] J.D. Vallett, S.E. Condon, L. Briand,
Y.M. Kim and V.R. Basili, “Building on

© IEEE – Stoneman (Version 0.7) – April 2000 6–13

Experience Factory for Maintenance,”
Proceedings of the Software Engineering
Workshop, Software Engineering Laboratory,
1994.

301. 6. REFERENCES USED TO WRITE

AND JUSTIFY THE DESCRIPTION FOR

SOFTWARE MAINTENANCE

302. The following set of references was chosen to
provide coverage of all aspects of software
evolution and maintenance. Priority was given to
standards, maintenance specific publications,
and then general software engineering
publications.

303. References

304. [1] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE
Computer Society Press, 1998.

305. [2] R. S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

306. [3] L. J. Arthur. Software Evolution: The
Software Maintenance Challenge. John Wiley
& Sons, 1988.

307. [4] V. R. Basili, “Quantitative Evaluation of
Software Methodology,” Proceedings First
Pan-Pacific Computer Conference, September
1985.

308. [5] B. W. Boehm. Software Engineering
Economics. Prentice-Hall, 1981.

309. [6] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The
AMES Approach to Application Understanding:
A Case Study,” Proceedings of the
International Conference on Software
Maintenance-1995, IEEE Computer Society
Press, Los Alamitos, CA, 1995.

310. [7] M.A. Capretz and M. Munro, “Software
Configuration Management Issues in the
Maintenance of Existing Systems,” Journal of
Software Maintenance, Vol 6, No.2, 1994.

311. [8] D. N. Card and R. L. Glass, Measuring
Software Design Quality, Prentice Hall, 1990.

312. [9] J. Cardow, “You Can't Teach Software
Maintenance!,” Proceedings of the Sixth
Annual Meeting and Conference of the
Software Management Association, 1992.

313. [10] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the

International Conference on Software
Maintenance, 1992.

314. [11] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press,
1997.

315. [12] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987.

316. [13] R.B. Grady, Practical Software Metrics for
Project Management and Process
Improvement, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1992.

317. [14] IEEE STD 1219: Standard for Software
Maintenance, 1993.

318. [15] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

319. [16] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

320. [17] ISO/IEC TR 15271, Information
Technology - Guide for ISO/IEC 12207,
(Software Life Cycle Process).

321. [18] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998.

322. [19] M . M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS
1149, Springer Verlag, 1997.

323. [20] M. M. Lehman and L. A. Belady, Program
Evolution – Processes of Software Change,
Academic Press Inc. (London) Ltd., 1985.

324. [21] T.M. Khoshgoftaar, R.M. Szabo, and J.M.
Voas, “Detecting Program Module with Low
Testability,” Proceedings of the International
Conference on Software Maintenance-1995,
IEEE Computer Society Press, Los Alamitos,
CA, 1995.

325. [22] P.W. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software
Maintainability, University of Idaho, Software
Engineering Test Lab, Technical Report, 91-08
TR, November 1991.

326. [23] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,”
Proceedings of the International Conference
on Software Maintenance-1992, IEEE
Computer Society Press, Los Alamitos, CA,
1992.

327. [24] G. Parikh. Handbook of Software
Maintenance. John Wiley & Sons, 1986.

6–14 © IEEE – Stoneman (Version 0.7) – April 2000

328. [25] S. L. Pfleeger. Software Engineering—
Theory and Practice. Prentice Hall, 1998.

329. [26] T.M. Pigoski, “Maintainable Software: Why
You Want It and How to Get It,” Proceedings of
the Third Software Engineering Research
Forum-November 1993, University of West
Florida Press, Pensacola, FL, 1993.

330. [27] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John
Wiley & Sons, New York, NY, 1994.

331. [28] T. M. Pigoski. Practical Software
Maintenance: Best Practices for Managing
your Software Investment. Wiley, 1997.

332. [29] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997.

333. [30] S. R. Schach, Classical and Object-
Oriented Software Engineering With UML and
C++, McGraw-Hill, 1999

334. [31] N. F. Schneidewind. The State of Software
Maintenance. Proceedings of the IEEE, 1987.

335. [32] S. L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

336. [33] I. Sommerville. Software Engineering.
McGraw-Hill, fifth edition, 1996.

337. [34] G. E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

338. [35] A. Takang and P. Grubb. Software
Maintenance Concepts and Practice.
International Thomson Computer Press, 1997.

339. [36] J.D. Vallett, S.E. Condon, L. Briand, Y.M.
Kim and V.R. Basili, “Building on Experience
Factory for Maintenance,” Proceedings of the
Software Engineering Workshop, Software
Engineering Laboratory, 1994.

© IEEE – Stoneman (Version 0.7) – April 2000 6–15

340. APPENDIX A – COVERAGE OF THE BREAKDOWN TOPICS BY THE RECOMMENDED REFERENCES

REFERENCE

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEEE
1219

ISO
12207

ISO
14764

Jon
98

LB
85

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

Sch
87

Som
96

SKV
94

TG
97TOPIC

[1] [2] [3] [5] [8] [10] [11] [12] [14] [15] [16] [18] [19] [20] [24] [25] [28] [29] [31] [33] [34] [35]

Introduction to Software
Maintenance

X X X X X X X X
X

X
X

X X X
X

X
X

Need for Maintenance X X X X X X X

Categories of
Maintenance

X
X

X
X

Maintenance Activities X X X X X X X X

Unique Activities X X X X X X

Supporting Activities X X X X X X X X X X X X

Configuration
Management

X X X X
X

X X
X X

Quality X X X X X X X X X

Maintenance Planning
Activity

X X X
X

X

Maintenance Process X X X X X X X X X X

Maintenance Process
Models

X X X X X
X

Organization Aspect of
Maintenance

X X X
X

X X
X

The Maintainer X X X X X X

Outsourcing X X X

Organizational Structure X

Problems of Software
Maintenance

X
X

X

Technical X X X

Limited Understanding X X X X

Testing X X X

Impact Analysis X X X

Maintainability X X X X X

Management X X X

Alignment with
organizational issues

X
X

X
X

Staffing X X X X X

Process issues X

Maintenance Cost and
Maintenance Cost
Estimation

X X X X X
X

X

Cost X X X X X X

Cost estimation X X X X X X

6–16 © IEEE – Stoneman (Version 0.7) – April 2000

REFERENCE

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEEE
1219

ISO
12207

ISO
14764

Jon
98

LB
85

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

Sch
87

Som
96

SKV
94

TG
97TOPIC

[1] [2] [3] [5] [8] [10] [11] [12] [14] [15] [16] [18] [19] [20] [24] [25] [28] [29] [31] [33] [34] [35]

Parametric models X X X X X X X

Experience X X X X

Software Maintenance
Measurements

X X X
X

X
X

X
X

Establishing a Metrics
Program

X X X X

Specific Measures X X X X X X X X

Techniques for Maintenance X X X

Program Comprehension X X X X

Re-engineering X X X X X X X X

Reverse Engineering X X X X X X

Impact Analysis X X

Resources X X X X X X

© IEEE – Stoneman (Version 0.7) – April 2000 6–17

341. APPENDIX B – BREAKDOWN

RATIONALE

342. Please note that criteria are defined in Appendix
A of entire Guide

343. Criterion (a): Number of topic breakdowns
344. One breakdown is provided.
345. Criterion (b): Reasonableness
346. The breakdowns are reasonable in that they

cover the areas typically discussed in texts and
standards, although there is less discussion
regarding the pre-maintenance activities, e.g.,
planning. Other topics such as metrics are also
often not addressed although they are getting
more attention now.

347. Criterion (c): Generally Accepted
348. The breakdowns are generally accepted in that

they cover the areas typically discussed in texts
and standards.

349. Criterion (d): No specific Application
Domains

350. No specific application domains are assumed.
351. Criterion (e): Compatibility with Various

Schools of Thought
352. Software maintenance concepts are stable and

mature.
353. Criterion (f): Compatible with Industry,

Literature, and Standards
354. The breakdown was derived from the literature

and key standards reflecting consensus opinion.
The extent to which industry implements the
software maintenance concepts in the literature
and in standards varies by company and project.

355. Criterion (g): As Inclusive as Possible
356. The primary topics are addressed within the page

constraints of the document.
357. Criterion (h): Themes of Quality,

Measurement, and Standards
358. Quality, Measurement and standards are

discussed.
359. Criterion (i): 2 to 3 levels, 5 to 9 topics at

the first level
360. The proposed breakdown satisfies this criterion.
361. Criterion (j): Topic Names Meaningful

Outside the Guide
362. Wording is meaningful. Version 0.5 review

indicates that the wording id meaningful.
363. Criterion (l): Topics only sufficiently described

to allow reader to select appropriate material

364. A tutorial on maintenance was not provided.
Generally accepted concepts were introduced
with appropriate references for additional
reading were provided.

365. Criterion (m): Text on the Rationale
Underlying the Proposed Breakdowns

366. The Introduction to Software Maintenance was
selected as the initial topic in order to introduce
the topic. The subtopics are needed to emphasis
why there is a need for maintenance. Categories
are critical to understand the underlying
meaning of maintenance. All pertinent texts use
a similar introduction.

367. The Maintenance Activities topic is needed to
differentiate maintenance from development and
to show the relationship to other software
engineering activities. Maintenance Process is
needed to provide the current references and
standards needed to implement the maintenance
process.

368. Every organization is concerned with who will
perform maintenance. The Organizational
Aspect of Maintenance provides some options.
There is always a discussion that maintenance is
hard. The topic on the Problems of Software
Maintenance was chosen to ensure that the
software engineers fully comprehended these
problems.

369. Every software maintenance reference discusses
the fact that maintenance consumes a large
portion of the life cycle costs. The topic on
Cost and Cost Estimation was provided to
ensure that the readers select references to help
with this difficult task.

370. The Software Maintenance Measurements topic
is one that is not addressed very well in the
literature. Most maintenance books barely touch
on the topic. Measurement information is most
often found in generalized measurement books.
This topic was chosen to highlight the need for
unique maintenance metrics and to provide
specify maintenance measurement references.

371. The Techniques topic was provided to introduce
some of the generally accepted techniques used
in maintenance operations.

372. Finally, there are other resources besides
textbooks and periodicals that are useful to
software engineers who wish to learn more
about software maintenance. This topic is
provided to list these additional resources.

© IEEE – Stoneman (Version 0.7) – April 2000 7–1

CHAPTER 7
SOFTWARE CONFIGURATION MANAGEMENT

John A. Scott and David Nisse
Lawrence Livermore National Laboratory

7000 East Avenue
P.O. Box 808, L-632

Livermore, CA 94550, USA
(925) 423-7655
scott7@llnl.gov

TABLE OF CONTENTS

INTRODUCTION
Acronyms

DEFINITION OF THE SCM KNOWLEDGE AREA

BREAKDOWN OF TOPICS FOR SCM
Breakdown of Topics
Rationale for the Breakdown

RECOMMENDED REFERENCES FOR SCM
Cross Reference Matrix
Recommended References
Further Reading

APPENDIX A. CROSS REFERENCE TABLE

APPENDIX B. RATIONALE DETAILS

1. INTRODUCTION

2. This paper presents an overview of the
knowledge area of software configuration
management for the Guide to the Software
Engineering Body of Knowledge (SWEBOK)
project. A breakdown of topics is presented for
the knowledge area along with a succinct
description of each topic. References are given to
materials that provide more in-depth coverage of
the key areas of software configuration
management. Important knowledge areas of
related disciplines are also identified.

3. Acronyms
4. CCB Configuration Control Board

5. CM Configuration Management

6. FCA Functional Configuration Audit

7. PCA Physical Configuration Audit

8. SCI Software Configuration Item

9. SCR Software Change Request

10. SCM Software Configuration Management

11. SCMP Software Configuration Management P lan

12. SCSA Software Configuration Status Accounting

13. SDD Software Design Description

14. SQA Software Quality Assurance

15. SRS Software Requirements Specification

16. DEFINITION OF THE SCM
KNOWLEDGE AREA

17. A system can be defined as a collection of
components organized to accomplish a specific
function or set of functions [IEEE 610]. The
configuration of a system is the function and/or
physical characteristics of hardware, firmware,
software or a combination thereof as set forth in
technical documentation and achieved in a
product [Buckley]. It can also be thought of as a
collection of specific versions of hardware,
firmware, or software items combined according
to specific build procedures to accomplish a
particular purpose. Configuration management
(CM), then, is the discipline of identifying the
configuration of a system at distinct points in
time for the purpose of systematically controlling
changes to the configuration and maintaining the
integrity and traceability of the configuration
throughout the system life cycle [Bersoff, (3)].
CM is formally defined [IEEE 610] as:

18. “A discipline applying technical and
administrative direction and surveillance to:
identify and document the functional and
physical characteristics of a configuration
item, control changes to those characteristics,
record and report change processing and
implementation status, and verify compliance
with specified requirements.”

19. The concepts of configuration management apply
to all items to be controlled although there are
some differences in implementation between
hardware CM and software CM.

7–2 © IEEE – Stoneman (Version 0.7) – April 2000

20. This paper presents a breakdown of the key
software configuration management (SCM)
concepts along with a succinct description of
each concept. The concepts are generally
accepted in that they cover the areas typically
addressed in texts and standards. The
descriptions cover the primary activities of SCM
and are only intended to be sufficient for
allowing the reader to select appropriate
reference material according to the reader’s
needs. The SCM activities are: the management
of the software configuration management
process, software configuration identification,
software configuration control, software
configuration status accounting, software
configuration auditing, and software release
management and delivery.

21. Figure 1 shows a stylized representation of these
activities.

22. Following the breakdown, key references for
SCM are listed along with a cross-reference of
topics that each listed reference covers. Finally,
topics in related disciplines that are important to
SCM are identified.

23. BREAKDOWN OF TOPICS FOR

SCM

24. Breakdown of Topics

25. An outline of the breakdown of topics is shown
below. The following sections provide a brief
description of each topic. The breakdown covers
the concepts and activities of SCM. The variety
of SCM tools and tool systems now available, as
well as the variety of characteristics of the
projects to which they are applied, may make the
implementation of these concepts and the nature
of the activities appear quite different from

project to project. However, the underlying
concepts and types of activities still apply.

26. I. Management of the SCM Process
27. A. Organizational Context for SCM
28. B. Constraints and Guidance for SCM
29. C. Planning for SCM
30. 1. SCM Organization and Responsibilities
31. 2. SCM Resources and Schedules
32. 3. Tool Selection and Implementation
33. 4. Vendor/Subcontractor Control

34. 5. Interface Control
35. D. Software Configuration Management Plan

36. E. Surveillance of Software Configuration
Management

37. 1. SCM Metrics and Measurement
38. 2. In-Process Audits of SCM

39. II. Software Configuration Identification
40. A. Identifying Items to be Controlled

41. 1. Software Configuration
42. 2. Software Configuration Item
43. 3. Software Configuration Item

Relationships

44. 4. Software Versions
45. 5. Baseline
46. 6. Acquiring Software Configuration

Items

47. B. Software Library
48. III. Software Configuration Control
49. A. Requesting, Evaluating and Approving

Software Changes

50. 1. Software Configuration Control Board
51. 2. Software Change Request Process
52. B. Implementing Software Changes
53. C. Deviations & Waivers
54. IV. Software Configuration Status Accounting
55. A. Software Configuration Status Information
56. B. Software Configuration Status Reporting
57. V. Software Configuration Auditing
58. A. Software Functional Configuration Audit
59. B. Software Physical Configuration Audit
60. C. In-process Audits of a Software Baseline
61. VI. Software Release Management and Delivery
62. A. Software Building

63. B. Software Release Management

64. I. Management of the SCM Process

65. Software configuration management is a
supporting software life cycle process that
benefits project and line management,
development and maintenance activities,
assurance activities, and the customers and users
of the end product. From a management
perspective, SCM controls the evolution of a

Mgmt. &
Planning

SCMP

Configuration Identification

Control Status
Accounting

Release
Processing

Auditing

Management

Development
Team

Coordination of Change Activities (“Code Management”)

Authorization of Changes
 (Should changes be made?)

Project Management
 Product Assurance
 Development Team

Status for:

Supports
 Customer
 Maintenance Team

Physical &
 Functional
 Completeness

Figure 1. SCM Activities

© IEEE – Stoneman (Version 0.7) – April 2000 7–3

product by identifying its elements, managing
and controlling change, and verifying, recording
and reporting on configuration information.
From the developer’s perspective, SCM
facilitates the development and change
implementation activities. A successful SCM
implementation requires careful planning and
management. This, in turn, requires an
understanding of the organizational context for,
and the constraints placed upon, the design and
implementation of the SCM process.

66. I.A Organizational Context for SCM

67. To plan an SCM process for a project, it is
necessary to understand the organizational
structure and the relationships among
organizational elements. SCM interacts with
several other activities or organizational
elements.

68. SCM, like other processes such as software
quality assurance and software verification and
validation, is categorized as a supporting life
cycle process [ISO/IEC 12207]. The
organizational elements responsible for these
processes may be structured in various ways.
Although the responsibility for performing
certain SCM tasks might be assigned to other
organizations, such as the development
organization, the overall responsibility for SCM
typically rests with a distinct organizational
element or designated individual.

69. Software is frequently developed as part of a
larger system containing hardware and firmware
elements. In this case, SCM activities take place
in parallel with hardware and firmware CM
activities and must be consistent with system
level CM. Buckley [5] describes SCM within this
context.

70. SCM is closely related to the software quality
assurance (SQA) activity. The goals of SQA can
be characterized [Humphrey] as monitoring the
software and its development process, ensuring
compliance with standards and procedures, and
ensuring that product, process, and standards
defects are visible to management. SCM
activities are closely related to these SQA goals
and, in some project contexts, e.g. see [IEEE
730], specific SQA requirements prescribe
certain SCM activities.

71. SCM might also interface with an organization’s
quality assurance activity on issues such as
records management and non-conforming items.
Regarding the former, some items under SCM
control might also be project records subject to

provisions of the organization’s quality
assurance program. Managing non-conforming
items is usually the responsibility of the quality
assurance activity, however, SCM might assist
with tracking and reporting on software items
that fall in this category.

72. Perhaps the closest relationship is with the
software development and maintenance
organizations. The environment for engineering
software includes such things as the:

73. w software life cycle model and its resulting
plans and schedules,

74. w project strategies such as concurrent or
distributed development activities,

75. w software reuse processes,

76. w development and target platforms, and

77. w software development tools.

78. This environment is also the environment within
which many of the software configuration
control tasks are conducted. Frequently, the same
tools support development, maintenance and
SCM purposes.

79. I.B Constraints and Guidance for SCM

80. Constraints affecting, and guidance for, the SCM
process come from a number of sources. Policies
and procedures set forth at corporate or other
organizational levels might influence or prescribe
the design and implementation of the SCM
process for a given project. In addition, the
contract between the acquirer and the supplier
might contain provisions affecting the SCM
process. For example, certain configuration
audits might be required or it might be specified
that certain items be placed under configuration
management. When software products to be
developed have the potential to affect the public
safety, external regulatory bodies may impose
constraints. For example, see [USNRC]. Finally,
the particular software life cycle model chosen
for a software project and the tools selected to
implement the software affect the design and
implementation of the SCM process [Bersoff,
(4)].

81. Guidance for designing and implementing an
SCM process can also be obtained from ‘best
practice’ as reflected in standards and process
improvement or process assessment models such
as the Software Engineering Institute’s
Capability Maturity Model [Paulk] or the ISO
SPICE project [El Emam]. ‘Best practice’ is also
reflected in the standards on software
engineering issued by the various standards

7–4 © IEEE – Stoneman (Version 0.7) – April 2000

organizations. Moore [31] provides a roadmap to
these organizations and their standards.

82. I.C Planning for SCM

83. The planning of an SCM process for a given
project should be consistent with the
organizational context, applicable constraints,
commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major
activities covered are Software Configuration
Identification, Software Configuration Control,
Software Configuration Status Accounting,
Software Configuration Auditing, and Software
Release Management and Delivery. In addition,
issues such as organization and responsibilities,
resources and schedules, tool selection and
implementation, vendor and subcontractor
control, and interface control are typically
considered. The results of the planning activity
are recorded in a Software Configuration
Management Plan (SCMP). The SCMP is
typically subject to SQA review and audit.

84. I.C.1 SCM Organization and Responsibilities

85. To prevent confusion about who will perform
given SCM activities or tasks, organizations to
be involved in the SCM process need to be
clearly identified. Specific responsibilities for
given SCM activities or tasks also need to be
assigned to organizational entities, either by title
or organizational element. The overall authority
for SCM should also be identified, although this
might be accomplished in the project
management or quality assurance planning.

86. I.C.2 SCM Resources and Schedules

87. The planning for SCM identifies the staff and
tools involved in carrying out SCM activities and
tasks. It addresses schedule questions by
establishing necessary sequences of SCM tasks
and identifying their relationships to the project
schedules and milestones. Any training
requirements necessary for implementing the
plans are also specified.

88. I.C.3 Tool Selection and Implementation

89. Different types of tool capabilities, and
procedures for their use, support the SCM
activities. Depending on the situation, these tool
capabilities can be made available with some
combination of manual tools, automated tools
providing a single SCM capability, automated
tools integrating a range of SCM (and, perhaps
other) capabilities, or integrated tool
environments that serve the needs of multiple

participants in the software development process
(e.g., SCM, development, V&V). Automated
tool support becomes increasingly important, and
increasingly difficult to establish, as projects
grow in size and as project environments get
more complex. These tool capabilities provide
support for:

90. w the SCM Library,

91. w the software change request and approval
procedures,

92. w code and change management tasks,

93. w reporting software configuration status and
collecting SCM metrics,

94. w software auditing,

95. w performing software builds, and

96. w managing and tracking software releases
and their distribution.

97. The use of tools in these areas increases the
potential for obtaining product and process
measurements to be used for project management
and process improvement purposes. Royce [37]
describes seven core metrics of value in
managing software processes. Information
available from the various SCM tools relates to
Royce’s Work and Progress management
indicator and to his quality indicators of Change
Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF(mean time
between failures) and Maturity. Reporting on
these indicators can be organized in various
ways, such as by software configuration item or
by type of change requested. Details on specific
goals and metrics for software processes are
described in [Grady].

98. Figure 2 shows a representative mapping of tool
capabilities and procedures to the SCM
Activities.

99. In this example, code management systems
support the operation of software libraries by
controlling access to library elements,
coordinating the activities of multiple users, and
helping to enforce operating procedures. Other
tools support the process of building software
and release documentation from the software
elements contained in the libraries. Tools for
managing software change requests support the
change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for
management, development, and quality
assurance activities. As mentioned above, the
capabilities of several tool types might be

© IEEE – Stoneman (Version 0.7) – April 2000 7–5

integrated into SCM systems, which, in turn, are
closely coupled to software development and
maintenance activities.

100. The planning activity assesses the SCM tool
needs for a given project within the context of
the software engineering environment to be used
and selects the tools to be used for SCM. The
planning considers issues that might arise in the
implementation of these tools, particularly if
some form of culture change is necessary. An
overview of SCM systems and selection
considerations is given in [Dart, (7)], a recent
case study on selecting an SCM system is given
in [Midha], and [Hoek] provides a current web-
based resource listing web links to various SCM
tools.

101. I.C.4 Vendor/Subcontractor Control

102. A software project might acquire or make use of
purchased software products, such as compilers.
The planning for SCM considers if and how
these items will be taken under configuration
control (e.g., integrated into the project libraries)
and how changes or updates will be evaluated
and managed.

103. Similar considerations apply to subcontracted
software. In this case, the SCM requirements to
be imposed on the subcontractor’s SCM process
as part of the subcontract and the means for
monitoring compliance also need to be
established. The latter includes consideration of
what SCM information must be available for
effective compliance monitoring.

104. I.C.5 Interface Control

105. When a software item will interface with another
software or hardware item, a change to either
item can affect the other. The planning for the
SCM process considers how the interfacing items
will be identified and how changes to the items
will be managed and communicated. The SCM
role may be part of a larger system-level process

for interface specification and control and may
involve interface specifications, interface control
plans, and interface control documents. In this
case, SCM planning for interface control takes
place within the context of the system level
process. A discussion of the performance of
interface control activities is given in [Berlack].

106. I.D Software Configuration Management Plan

107. The results of SCM planning for a given project
are recorded in a Software Configuration
Management Plan (SCMP). The SCMP is a
‘living document’ that serves as a reference for
the SCM process. It is maintained (i.e., updated
and approved) as necessary during the software
life cycle. In implementing the plans contained in
the SCMP, it may be necessary to develop a
number of more detailed, subordinate procedures
that define how specific requirements will be
carried out during day-to-day activities.

108. Guidance for the creation and maintenance of an
SCMP, based on the information produced by the
planning activity, is available from a number of
sources, such as [IEEE 828]. This reference
provides requirements for the information to be
contained in an SCMP. It also defines and
describes six categories of SCM information to
be included in an SCMP:

109. 1. Introduction (purpose, scope, terms used)

110. 2. SCM Management (organization,
responsibilities, authorities, applicable
policies, directives, and procedures)

111. 3. CM Activities (configuration identification,
configuration control, etc.)

112. 4. CM Schedules (coordination with other
project activities)

113. 5. CM Resources (tools, physical, and human
resources)

114. 6. CMP Maintenance

115. I.E Surveillance of Software Configuration
Management

116. After the SCM process has been implemented,
some degree of surveillance may be conducted to
ensure that the provisions of the SCMP are
properly carried out. There are likely to be
specific SQA requirements for ensuring
compliance with specified SCM processes and
procedures. This could involve an SCM authority
ensuring that the defined SCM tasks are
performed correctly by those with the assigned
responsibility. The software quality assurance

Planning

SCMP

Control Status
Accounting

Release
Processing

Auditing

Management

Development
Team

Baselines,
Libraries,

SCRs

Code Mgmt
Systems

Change
Evaluation
& Approval

CCBs

Change
Implementation

DBMS, Code Mgmt Systems

Release
Authorization
& Preparation

Audit
Procedures

Configuration Identification

Figure 2. Characterization of SCM Tools
and Related Procedures

7–6 © IEEE – Stoneman (Version 0.7) – April 2000

authority, as part of a compliance auditing
activity, might also perform this surveillance.

117. The use of integrated SCM tools that have
capabilities for process control can make the
surveillance task easier. Some tools facilitate
process compliance while providing flexibility
for the developer to adapt procedures. Other
tools enforce process, leaving the developer less
flexibility.

118. I.E.1 SCM Metrics and Measurement

119. SCM metrics can be designed to provide specific
information on the evolving product or to
provide insight into the functioning of the SCM
process. A related goal of monitoring the SCM
process is to discover opportunities for process
improvement. Quantitative measurements against
SCM process metrics provide a good means for
monitoring the effectiveness of SCM activities
on an ongoing basis. These measurements are
useful in characterizing the current state of the
process as well as in providing a basis for
making comparisons over time. Analysis of the
measurements may produce insights leading to
process changes and corresponding updates to
the SCMP.

120. The software libraries and the various SCM tool
capabilities provide sources for extracting
information about the characteristics of the SCM
process (as well as providing project and
management information). For example,
information about the processing time required
for various types of changes would be useful in
an evaluation of the criteria for determining what
levels of authority are optimal for certain types
of changes.

121. Care must be taken to keep the focus of the
surveillance on the insights that can be gained
from the measurements, not on the
measurements themselves.

122. I.E.2 In-process Audits of SCM

123. Audits can be carried out during the development
process to investigate the current status of
specific elements of the configuration or to
assess the implementation of the SCM process.
In-process auditing of SCM provides a more
formal mechanism for monitoring selected
aspects of the process and may be coordinated
with the SQA auditing function.

124. II. Software Configuration Identification

125. The software configuration identification activity
identifies items to be controlled, establishes

identification schemes for the items and their
versions, and establishes the tools and techniques
to be used in acquiring and managing controlled
items. These activities provide the basis for the
other SCM activities.

126. II.A Identifying Items to be Controlled

127. A first step in controlling change is to identify
the software items to be controlled. This involves
understanding the software configuration within
the context of the system configuration, selecting
software configuration items, developing a
strategy for labeling software items and
describing their relationships, and identifying the
baselines to be used, along with the procedure for
a baseline’s acquisition of the items.

128. II.A.1 Software Configuration

129. A software configuration is the set of functional
and physical characteristics of software as set
forth in the technical documentation or achieved
in a product [IEEE 1042]. It can be viewed as a
part of an overall system configuration.

130. II.A.2 Software Configuration Item

131. A software configuration item (SCI) is an
aggregation of software that is designated for
configuration management and is treated as a
single entity in the SCM process [IEEE 1042]. A
variety of items, in addition to the code itself, are
typically controlled by SCM. Software items
with potential to become SCIs include plans,
specifications, testing materials, software tools,
source and executable code, code libraries, data
and data dictionaries, and documentation for
installation, maintenance, operations and
software use.

132. Selecting SCIs is an important process that must
achieve a balance between providing adequate
visibility for project control purposes and
providing a manageable number of controlled
items. A list of criteria for SCI selection is given
in [Berlack].

133. II.A.3 Software Configuration Item Relationships

134. The structural relationships among the selected
SCIs, and their constituent parts, affect other
SCM activities or tasks, such as software
building or analyzing the impact of proposed
changes. The design of the identification scheme
for these items should consider the need to map
the identified items to the software structure as
well as the need to support the evolution of the
software items and their relationships.

© IEEE – Stoneman (Version 0.7) – April 2000 7–7

135. II.A.4 Software Versions

136. Software items evolve as a software project
proceeds. A version of a software item is a
particular identified and specified item. It can be
thought of as a state of an evolving item
[Conradi]. A revision is a new version of an item
that is intended to replace the old version of the
item. A variant is a new version of an item that
will be added to the configuration without
replacing the old version. The management of
software versions in various software
engineering environments is a current research
topic; see [Conradi], [Estublier], and
[Sommerville, (39)].

137. II.A.5 Baseline

138. A software baseline is a set of software items
formally designated and fixed at a specific time
during the software life cycle. The term is also
used to refer to a particular version of a software
item that has been agreed upon. In either case,
the baseline can only be changed through formal
change control procedures. A baseline, together
with all approved changes to the baseline,
represents the current approved configuration.

139. Commonly used baselines are the functional,
allocated, developmental, and product baselines.
The functional baseline corresponds to the
reviewed system requirements. The allocated
baseline corresponds to the reviewed software
requirements specification and software interface
requirements specification. The developmental
baseline represents the evolving software
configuration at selected times during the
software life cycle. The product baseline
corresponds to the completed software product
delivered for system integration. The baselines to
be used for a given project, along with their
associated levels of authority needed for change
approval, are typically identified in the SCMP.

140. II.A.6 Acquiring Software Configuration Items

141. Software configuration items are placed under
SCM control at different times; i.e. they are
incorporated into a particular baseline at a
particular point in the software life cycle. The
triggering event is the completion of some form
of formal acceptance task, such as a formal
review. Figure 3 characterizes the growth of
baselined items as the life cycle proceeds. This
figure is based on a waterfall model for purposes
of illustration only; the subscripts used in the
figure indicate versions of the evolving items.
The software change request (SCR) is described
in section III.A.

142. Following the acquisition of an SCI, changes to
the item must be formally approved as
appropriate for the SCI and the baseline
involved. Following the approval, the item is
incorporated into the software baseline according
to the appropriate procedure.

143. II.B Software Library

144. A software library is a controlled collection of
software and related documentation designed to
aid in software development, use, and
maintenance [IEEE 610]. It is also instrumental
in software release and delivery activities.
Several types of libraries might be used, each
corresponding to a particular level of maturity of
the software item. For example a working library
could support coding, whereas a master library
could be used for finished products. An
appropriate level of SCM control (associated
baseline and level of authority for change) is
associated with each library. Security, in terms of
access control and the backup facilities, is a key
aspect of library management. A model of a
software library is described in [Berlack].

145. The tool(s) used for each library must support the
SCM control needs for that library, both in terms
of controlling SCIs and controlling access to the
library. At the working library level, this is a
code management capability serving developers,
maintainers and SCM. It is focused on managing
the versions of software items while supporting
the activities of multiple developers. At higher
levels of control, access is more restricted and
SCM is the primary user.

146. These libraries are also an important source of
information for measurements of work and
progress.

SRSA

Requirements
 Review

SRSB

SDDA

Design
 Review

SCR control
of SRS mods

SRSC

SDDB

CodeA

Test
 PlansA

Test Readiness
 Review

SCR control
of SRS, SDD
mods

SRSD

SDDC

CodeB

Test
 PlansB

User
 ManualA

Regression
 Test DBA

Acceptance

SCR control
of SRS, SDD,
Code, Test
Plans

Figure 3. Acquisition of Items

7–8 © IEEE – Stoneman (Version 0.7) – April 2000

147. III. Software Configuration Control

148. Software configuration control is concerned with
managing changes during the software life cycle.
It covers the process for determining what
changes to make, the authority for approving
certain changes, support for the implementation
of those changes, and the concept of formal
deviations and waivers from project
requirements. Information derived from these
activities is useful in measuring change traffic,
breakage, and aspects of rework.

149. III.A. Requesting, Evaluating and Approving
Software Changes

150. The first step in managing changes to controlled
items is determining what changes to make. A
software change request (SCR) process (see
Figure 4) provides formal procedures for
submitting and recording change requests,
evaluating the potential cost and impact of a
proposed change, and accepting, modifying or
rejecting the proposed change. Requests for
changes to software configuration items may be
originated by anyone at any point in the software
life cycle. One source of change requests is the
initiation of corrective action in response to
problem reports. Regardless of the source, the
type of change (e.g. defect or enhancement) is
usually recorded on the SCR. This provides an
opportunity for tracking defects and collecting
change activity measurements by change type.
Once an SCR is received, a technical evaluation
(also known as an impact analysis) is performed
to determine the extent of modifications that
would be necessary should the change request be
accepted. A good understanding of the

relationships among software items is important
for this task. Finally, an established authority,
commensurate with the affected baseline, the SCI

involved, and the nature of the change, will
evaluate the technical and managerial aspects of
the change request and either accept, modify or
reject the proposed change.

151. III.A.1. Software Configuration Control Board

152. The authority for accepting or rejecting proposed
changes rests with an entity typically known as a
Configuration Control Board (CCB). In smaller
projects, this authority actually may reside with
the responsible leader or an assigned individual
rather than a multi-person board. There can be
multiple levels of change authority depending on
a variety of criteria, such as the criticality of the
item involved, the nature of the change (e.g.,
impact on budget and schedule), or the current
point in the life cycle. The composition of the
CCBs used for a given system varies depending
on these criteria (an SCM representative would
always be present). All stakeholders, appropriate
to the level of the CCB, are represented. When
the scope of authority of a CCB is strictly
software, it is known as a software configuration
control board (SCCB). The activities of the CCB
are typically subject to SQA audit or review.

153. III.A.2 Software Change Request Process

154. The software change request process requires the
use of supporting tools and procedures ranging
from paper forms and a documented procedure to
an electronic tool for originating change requests,
enforcing the flow of the change process,
capturing CCB decisions, and reporting change
process information. A link between this tool
capability and the problem reporting system can
facilitate the tracking of solutions for reported
problems. Change process descriptions and
supporting forms (information) are given in a
variety of references, e.g. [Berlack] and [IEEE
1042]. Typically, change management tools are
tailored to local processes and tool suites and are
often locally developed. The current trend is
towards integration of these kinds of tools within
a suite referred to as a software engineering
environment.

155. III.B. Implementing Software Changes

156. Approved change requests are implemented
according to the defined software procedures.
Since a number of approved change requests
might be implemented simultaneously, it is
necessary to provide a means for tracking which
change requests are incorporated into particular
software versions and baselines. As part of the
closure of the change process, completed

Need for
Change

 Change
 identified with
controlled item

SCR generated

 SCR evaluated incomplete

 Preliminary
Investigation

CCB Review

Assign to
 Software
 Engineer

 Schedule,
 design, test,
complete change

Approved

Rejected Inform
Requester

‘Emergency Path’
usually also exists.

Changes can be
implemented with
change process
performed afterward

complete

Figure 4. Flow of a Change Control Process

© IEEE – Stoneman (Version 0.7) – April 2000 7–9

changes may undergo configuration audits and
SQA verification. This includes ensuring that
only approved changes were made. The change
request process described above will typically
document the SCM and other approval
information for the change.

157. The actual implementation of a change is
supported by the library tool capabilities that
provide version management and code repository
support. At a minimum, these tools provide
source file check-in/out and associated version
control. More powerful tools can support parallel
development and geographically distributed
environments. These tools may be manifested as
separate specialized applications under control of
an independent SCM group. They may also
appear as an integrated part of the software
development environment. Finally, they may be
as elementary as the rudimentary change control
systems provided with many operating systems,
such as UNIX.

158. III.C. Deviations and Waivers

159. The constraints imposed on a software
development effort or the specifications
produced during the development activities
might contain provisions that cannot be satisfied
at the designated point in the life cycle. A
deviation is an authorization to depart from a
provision prior to the development of the item. A
waiver is an authorization to use an item,
following its development, that departs from the
provision in some way. In these cases, a formal
process is used for gaining approval for
deviations to, or waivers of, the provisions.

160. IV. Software Configuration Status
Accounting

161. Software configuration status accounting (SCSA)
is the recording and reporting of information
needed for effective management of the software
configuration. The design of the SCSA capability
can be viewed from an information systems
perspective, utilizing accepted information
systems design techniques.

162. IV.A. Software Configuration Status Information

163. The SCSA activity designs and operates a system
for the capture and reporting of necessary
information as the life cycle proceeds. As in any
information system, the configuration status
information to be managed for the evolving
configurations must be identified, collected, and
maintained. Various information and

measurements are needed to support the SCM
process and to meet the configuration status
reporting needs of management, software
engineering, and other related activities. The
types of information available include the
approved configuration identification as well as
the identification and current implementation
status of changes, deviations and waivers. A
partial list of important data elements is given in
[Berlack].

164. Some form of automated tool support is
necessary to accomplish the SCSA data
collection and reporting tasks. This could be a
database capability, such as a relational or
object-oriented database management system.
This could be a stand-alone tool or a capability of
a larger, integrated tool environment.

165. IV.B. Software Configuration Status Reporting

166. Reported information can be used by various
organizational and project elements, including
the development team, the maintenance team,
project management, and quality assurance
activities. Reporting can take the form of ad hoc
queries to answer specific questions or the
periodic production of pre-designed reports.
Some information produced by the status
accounting activity during the course of the life
cycle might become quality assurance records.

167. In addition to reporting the current status of the
configuration, the information obtained by SCSA
can serve as a basis for various measurements of
interest to management, development, and SCM.
Examples include the number of change requests
per SCI and the average time needed to
implement a change request.

168. V. Software Configuration Auditing

169. A software audit is an activity performed to
independently evaluate the conformance of
software products and processes to applicable
regulations, standards, guidelines, plans, and
procedures [IEEE 1028]. Audits are conducted
according to a well-defined process consisting of
various auditor roles and responsibilities.
Consequently, each audit must be carefully
planned. An audit can require a number of
individuals to perform a variety of tasks over a
fairly short period of time. Tools to support the
planning and conduct of an audit can greatly
facilitate the process. Guidance for conducting
software audits is available in various references,
such as [Berlack], [Buckley], and [IEEE 1028].

7–10 © IEEE – Stoneman (Version 0.7) – April 2000

170. The software configuration auditing activity
determines the extent to which an item satisfies
the required functional and physical
characteristics. Informal audits of this type can
be conducted at key points in the life cycle. Two
types of formal audits might be required by the
governing contract (e.g., in contracts covering
critical software): the Functional Configuration
Audit (FCA) and the Physical Configuration
Audit (PCA). Successful completion of these
audits can be a prerequisite for the establishment
of the product baseline. Buckley [5] contrasts the
purposes of the FCA and PCA in hardware
versus software contexts and recommends
careful evaluation of the need for the software
FCA and PCA before performing them.

171. V.A. Software Functional Configuration Audit

172. The purpose of the software FCA is to ensure
that the audited software item is consistent with
its governing specifications. The output of the
software verification and validation activities is a
key input to this audit.

173. V.B. Software Physical Configuration Audit

174. The purpose of the software PCA is to ensure
that the design and reference documentation is
consistent with the as-built software product.

175. V.C. In-process Audits of a Software Baseline

176. As mentioned above, audits can be carried out
during the development process to investigate the
current status of specific elements of the
configuration. In this case, an audit could be
applied to sampled baseline items to ensure that
performance was consistent with specification or
to ensure that evolving documentation was
staying consistent with the developing baseline
item.

177. VI. Software Release Management and
Delivery

178. The term “release” is used in this context to refer
to the distribution of a software configuration
item outside the development activity. This
includes internal releases as well as distribution
to customers. When different versions of a
software item are available for delivery, such as
versions for different platforms or versions with
varying capabilities, it is frequently necessary to
recreate specific versions and package the correct
materials for delivery of the version. The
software library is a key element in
accomplishing release and delivery tasks.

179. VI.A. Software Building

180. Software building is the activity of combining
the correct versions of software items, using the
appropriate configuration data, into an
executable program for delivery to a customer or
other recipient, such as the testing activity. For
systems with hardware or firmware, the
executable is delivered to the system building
activity. Build instructions ensure that the proper
build steps are taken and in the correct sequence.
In addition to building software for new releases,
it is usually also necessary for SCM to have the
capability to reproduce previous releases for
recovery, testing, or additional release purposes.

181. Software is built using particular versions of
supporting tools, such as compilers. It might be
necessary to rebuild an exact copy of a
previously built software item. In this case, the
supporting tools need to be under SCM control to
ensure availability of the correct versions of the
tools.

182. A tool capability is useful for selecting the
correct versions of software items for a given
target environment and for automating the
process of building the software from the
selected versions and appropriate configuration
data. For large projects with parallel
development or distributed development
environments, this tool capability is necessary.
Most software development environments
provide this capability and it is usually referred
to as the “make” facility (as in UNIX). These
tools vary in complexity from requiring the
engineer to learn a specialized scripting language
to graphics-oriented approaches that hide much
of the complexity of an “intelligent” build
facility.

183. The build process and products are often subject
to SQA verification.

184. VI.B Software Release Management

185. Software release management encompasses the
identification, packaging and delivery of the
elements of a product, for example, the
executable, documentation, release notes, and
configuration data. Given that product changes
can be occurring on a continuing basis, one issue
for release management is determining when to
issue a release. The severity of the problems
addressed by the release and measurements of
the fault densities of prior releases affect this
decision [Sommerville, (38)]. The packaging
task must identify which product items are to be
delivered and select the correct variants of those

© IEEE – Stoneman (Version 0.7) – April 2000 7–11

items, given the intended application of the
product. The set of information documenting the
physical contents of a release is known as a
version description document and may exist in
hardcopy or electronic form. The release notes
typically describe new capabilities, known
problems, and platform requirements necessary
for proper product operation. The package to be
released also contains loading or upgrading
instructions. The latter can be complicated by the
fact that some current users might have versions
that are several releases old. Finally, in some
cases, the release management activity might be
required to track the distribution of the product to
various customers. An example would be a case
where the supplier was required to notify a
customer of newly reported problems.

186. A tool capability is needed for supporting these
release management functions. It is useful to
have a connection with the tool capability
supporting the change request process in order to
map release contents to the SCRs that have been
received. This tool capability might also
maintain information on various target platforms
and on various customer environments.

187. Rationale for the Breakdown

188. One of the primary goals of the Guide to the
SWEBOK is to arrive at a breakdown that is
‘generally accepted’. Consequently, the
breakdown of SCM topics was developed largely
by attempting to synthesize the topics covered in
the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on
Software Release Management and Delivery is
an exception since it has not commonly been
broken out separately in the past. The precedent
for this was set by the ISO/IEC 12207 standard
[23], which identifies a ‘Release Management
and Delivery’ activity.

189. There is widespread agreement in the literature
on the SCM activity areas and their key
concepts. However, there continues to be active
research on implementation aspects of SCM.
Examples are found in ICSE workshops on SCM
such as [Estublier] and [Sommerville, (39)].

190. The hierarchy of topics chosen for the
breakdown presented in this paper is expected to
evolve as the Guide to the SWEBOK review
processes proceed. A detailed discussion of the
rationale for the proposed breakdown, keyed to
the Guide to the SWEBOK development criteria,
is given in Appendix B.

191. RECOMMENDED REFERENCES

FOR SCM

192. Cross Reference Matrix

193. Table 1, in Appendix A, provides a cross
reference between the recommended references
and the topics of the breakdown. Note that,
where a recommended reference is also shown in
the Further Reading section, the cross reference
reflects the full text rather than just the specific
passage referenced in the Recommended
References.

194. Recommended References

195. Specific recommendations are made here to
provide additional information on the topics of
the SCM breakdown.

196. W.A. Babich, Software Configuration
Management, Coordination for Team
Productivity [1] Pages 20-43 address the basics
of code management.

197. H.R. Berlack, Software Configuration
Management [2] See pages 101-175 on
configuration identification, configuration
control and configuration status accounting, and
pages 202-206 on libraries.

198. F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and
Firmware [5] See pages 10-19 on organizational
context, pages 21-38 on CM planning, and 228-
250 on CM auditing.

199. R. Conradi and B. Westfechtel, "Version Models
for Software Configuration Management" [6] An
in-depth article on version models used in
software configuration management. It defines
fundamental concepts and provides a detailed
view of versioning paradigms. The versioning
characteristics of various SCM systems are
discussed.

200. S.A. Dart, Spectrum of Functionality in
Configuration Management Systems [7] This
report covers features of various CM systems
and the scope of issues concerning users of CM
systems. As of this writing, the report can be
found on the Internet at:
http://www.sei.cmu.edu/about/website/search.ht
ml

201. Hoek, “Configuration Management Yellow
Pages,” [13] This web page provides a current
compilation of SCM resources.

7–12 © IEEE – Stoneman (Version 0.7) – April 2000

http://www.cs.colorado.edu/users/andre/configur
ation_management.html

202. IEEE/EIA Std 12207.0-1996, Software Life
Cycle Processes, [20] and IEEE/EIA Std
12207.1-1996, Software Life Cycle Processes -
Life Cycle Data, [21] These standards provide
the ISO/IEC view of software processes along
with specific information on life cycle data keyed
to software engineering standards of other
standards bodies.

203. IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans [17] and IEEE
Std.1042-1987, IEEE Guide to Software
Configuration Management [19] These standards
focus on SCM activities by specifying
requirements and guidance for preparing the
SCMP. These standards reflect commonly
accepted practice for software configuration
management.

204. A.K. Midha, "Software Configuration
Management for the 21st Century" [30] This
article discusses the characteristics of SCM
systems, assessment of SCM needs in a
particular environment, and the issue of selecting
and implementing an SCM system. It is a current
case study on this issue.

205. J.W. Moore, Software Engineering Standards, A
User’s Road Map [31] Pages 118-119 cover
SCM and pages 194-223 cover the perspective of
the 12207 standards.

206. M.C. Paulk, et al., Key Practices of the
Capability Maturity Model [32] Pages 180-191
cover the SCM key process area of the SEI
CMM.

207. R.S. Pressman, Software Engineering: A
Practitioner’s Approach [36] Pages 209-226
address SCM in the context of a textbook on
software engineering.

208. Walker Royce, Software Project Management, A
United Framework [37] Pages 188-202 and 283-
298 cover metrics of interest to software project
management that are closely related to SCM.

209. I. Sommerville, Software Engineering [38] Pages
675-696 cover SCM with an emphasis on
software building and release management.

210. Further Reading

211. The following set of references was chosen to
provide coverage of all aspects of SCM, from
various perspectives and to varying levels of
detail. The author and title are cited; the
complete reference is given in the References

section. Some items overlap with those in the
Recommended References since they cover the
full texts rather than specific passages.

212. W.A. Babich, Software Configuration
Management, Coordination for Team
Productivity [1] This text is focused on code
management issues from the perspective of the
development team.

213. H.R. Berlack, Software Configuration
Management [2] This textbook provides detailed,
comprehensive coverage of the concepts of
software configuration management. This is one
of the more recent texts with this focus.

214. F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and
Firmware [5] This text presents an integrated
view of configuration management for projects
in which software, hardware and firmware are
involved. It is a recent text that provides a view
of software configuration management from a
systems perspective.

215. J. Estublier, Software Configuration
Management, ICSE SCM-4 and SCM-5
Workshops Selected Papers [10] These
workshop proceedings are representative of
current experience and research on SCM. This
reference is included with the intention of
directing the reader to the whole class of
conference and workshop proceedings.

216. The suite of IEEE/EIA and ISO/IEC 12207
standards, [20]-[24] These standards cover
software life cycle processes and address SCM in
that context. These standards reflect commonly
accepted practices for software life cycle
processes. Note - the developing ISO/IEC TR
15504 (SPICE99) expands on SCM within the
context of the ISO/IEC 12207 standard.

217. IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management [19] This standard
provides guidance, keyed to IEEE 828, for
preparing the SCMP.

218. J.W. Moore, Software Engineering Standards, A
User’s Road Map [31] This text provides a
comprehensive view of current standards and
standards activities in the area of software
engineering.

219. M.C. Paulk, et al., Key Practices of the
Capability Maturity Model [32] This report
describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices
provides a view of SCM from a software process
assessment perspective.

© IEEE – Stoneman (Version 0.7) – April 2000 7–13

220. R.S. Pressman, Software Engineering: A
Practitioner’s Approach [36] This reference and
the Sommerville reference address SCM in the
context of a textbook on software engineering.

221. I. Sommerville, Software Engineering [38] This
reference and the Pressman reference address
SCM in the context of a textbook on software
engineering.

222. J.P. Vincent, et al., Software Quality Assurance
[41] In this text, SCM is described from the
perspective of a complete set of assurance
processes for a software development project.

223. D. Whitgift, Methods and Tools for Software
Configuration Management [43] This text covers
the concepts and principles of SCM. It provides
detailed information on the practical questions of
implementing and using tools. This text is out of
print but still available in libraries.

224. REFERENCES

225. These references were used in preparing this
paper; the recommended references for SCM are
listed in Section 3.1.

226. [1] W.A. Babich, Software Configuration
Management: Coordination for Team
Productivity, Addison-Wesley, Reading,
Massachusetts, 1986.

227. [2] H.R. Berlack, Software Configuration
Management, John Wiley & Sons, New
York, 1992.

228. [3] E.H. Bersoff, "Elements of Software
Configuration Management", Software
Engineering, M. Dorfman and R.H.
Thayer ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997.

229. [4] E.H. Bersoff and A.M. Davis, "Impacts of
Life Cycle Models on Software
Configuration Management",
Communications of the ACM, Vol. 34, no
8, August 1991, pp104-118.

230. [5] F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and
Firmware, Second Edition, IEEE
Computer Society Press, Los Alamitos,
CA, 1996.

231. [6] R. Conradi and B. Westfechtel, "Version
Models for Software Configuration
Management," ACM Computing Surveys,
Vol. 30, no 2, June 1998, pp. 232-282.

232. [7] S.A. Dart, Spectrum of Functionality in
Configuration Management Systems,

Technical Report CMU/SEI-90-TR-11,
Software Engineering Institute, Carnegie
Mellon University, 1990.

233. [8] S.A. Dart, "Concepts in Configuration
Management Systems," Proceedings of
the Third International Workshop on
Software Configuration Management,
ACM Press, New York, 1991, pp1 -18.

234. [9] Khaled El Emam, et al., SPICE, The
Theory and Practice of Software Process
Improvement and Capability
Determination, IEEE Computer Society,
Los Alamitos, CA, 1998.

235. [10] J. Estublier, Software Configuration
Management, ICSE SCM-4 and SCM-5
Workshops Selected Papers, Springer-
Verlag, Berlin, 1995.

236. [11] P.H. Feiler, Configuration Management
Models in Commercial Environments,
Technical Report CMU/SEI-91-TR-7,
Software Engineering Institute, Carnegie
Mellon University, 1991.

237. [12] R.B. Grady, Practical Software Metrics
for Project Management and Process
Improvement, Prentice-Hall, Englewook
Cliffs, NJ, 1992.

238. [13] A. Hoek, “Configuration Management
Yellow Pages,”
http://www.cs.colorado.edu/users/andre/
configuration_management.html

239. [14] W.S. Humphrey, Managing the Software
Process, Addison-Wesley, Reading, MA,
1989.

240. [15] IEEE Std.610.12-1990, IEEE Standard
Glossary of Software Engineering
Terminology, IEEE, Piscataway, NJ,
1990.

241. [16] IEEE Std.730-1998, IEEE Standard for
Software Quality Assurance Plans, IEEE,
Piscataway, NJ, 1998.

242. [17] IEEE Std.828-1998, IEEE Standard for
Software Configuration Management
Plans, IEEE, Piscataway, NJ, 1998.

243. [18] IEEE Std.1028-1997, IEEE Standard for
Software Reviews, IEEE, Piscataway, NJ,
1997.

244. [19] IEEE Std.1042-1987, IEEE Guide to
Software Configuration Management,
IEEE, Piscataway, NJ, 1987.

7–14 © IEEE – Stoneman (Version 0.7) – April 2000

245. [20] IEEE/EIA Std 12207.0-1996, Software
Life Cycle Processes, IEEE, Piscataway,
NJ, 1996.

246. [21] IEEE/EIA Std 12207.1-1996, Guide for
Software Life Cycle Processes – Life
Cycle Data, IEEE, Piscataway, NJ, 1996.

247. [22] IEEE/EIA Std 12207.2-1996, Guide for
Software Life Cycle Processes –
Implementation Considerations, IEEE,
Piscataway, NJ, 1996.

248. [23] ISO/IEC 12207:1995(E), Information
Technology - Software Life Cycle
Processes, ISO/IEC, Geneve, Switzerland,
1995.

249. [24] ISO/IEC TR 15846:1998, Information
Technology - Software Life Cycle
Processes - Configuration Management,
ISO/IEC, Geneve, Switzerland, 1998.

250. [25] ISO/DIS 9004-7 (now ISO 10007),
Quality Management and Quality System
Elements, Guidelines for Configuration
Management, International Organization
for Standardization, Geneve, Switzerland,
1993.

251. [26] P. Jalote, An Integrated Approach to
Software Engineering, Springer-Verlag,
New York, 1997

252. [27] John J. Marciniak and Donald J. Reifer,
Software Acquisition Management,
Managing the Acquisition of Custom
Software Systems, John Wiley & Sons,
1990.

253. [28] J.J. Marciniak, "Reviews and Audits,"
Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997.

254. [29] K. Meiser, "Software Configuration
Management Terminology," Crosstalk,
1995, http://www.stsc.hill.af.mil/crosstalk
/1995/jan/terms.html, February 1999.

255. [30] A.K. Midha, "Software Configuration
Management for the 21st Century," Bell
Labs Technical Journal, Winter 1997.

256. [31] J.W. Moore, Software Engineering
Standards, A User's Roadmap, IEEE
Computer Society, Los Alamitos, CA,
1998.

257. [32] M.C. Paulk, et al., Key Practices of the
Capability Maturity Model, Version 1.1,
Technical Report CMU/SEI-93-TR-025,
Software Engineering Institute, Carnegie
Mellon University, 1993

258. [33] M.C. Paulk, et al., The Capability
Maturity Model, Guidelines for
Improving the Software Process,
Addison-Wesley, Reading,
Massachusetts, 1995.

259. [34] S.L. Pfleeger, Software Engineering:
Theory and Practice, Prentice Hall, Upper
Saddle River, NJ, 1998

260. [35] R.K. Port, "Software Configuration
Management Technology Report,
September 1994", http://www.stsc.hill.af.
mil/cm/REPORT.html, February 1999.

261. [36] R.S. Pressman, Software Engineering: A
Practitioner's Approach, McGraw-Hill,
New York, 1997.

262. [37] Walker Royce, Software Project
Management, A United Framework,
Addison-Wesley, Reading,
Massachusetts, 1998.

263. 38] I. Sommerville, Software Engineering,
Fifth Edition, Addison-Wesley, Reading,
Massachusetts, 1995.

264. [39] I. Sommerville, Software Configuration
Management, ICSE SCM-6 Workshop,
Selected Papers, Springer-Verlag, Berlin,
1996.

265. [40] USNRC Regulatory Guide 1.169,
Configuration Management Plans for
Digital Computer Software Used in
Safety Systems of Nuclear Power Plants,
U.S. Nuclear Regulatory Commission,
Washington DC, 1997.

266. [41] J.P. Vincent, et al., Software Quality
Assurance, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

267. [42] W.G. Vincenti, What Engineers Know
and How They Know It, The Johns
Hopkins University Press, Baltimore,
MD, 1990.

268. [43] D. Whitgift, Methods and Tools for
Software Configuration Management,
John Wiley & Sons, Chichester, England,
1991.

© IEEE – Stoneman (Version 0.7) – April 2000 7–15

269. APPENDIX A. CROSS REFERENCE TABLE

270. Table 1. Coverage of the Breakdown Topics by the Recommended References

B
ab

ic
h

B
er

la
ck

B
uc

kl
ey

C
on

ra
di

D
ar

t

H
oe

k

IE
EE

 8
28

IE
EE

/E
IA

 1
22

07

M
id

ha

M
oo

re

P
au

lk

P
re

ss
m

an

R
oy

ce

S
om

m
er

vi
lle

I. Management

 I.A. Org. Context X X X X X

 I.B Constraints X X X X X

 I.C Planning X X X X X
 I.C.1 Org. & Resp. X X X X
 I.C.2 Resources & Sched. X X X X X
 I.C.3 Tool Selection X X X X X X X X X
 I.C.4 Vendor Control X X X X
 I.C.5 Interface Control X X X

 I.D SCM Plan X X X X X X

 I.E Surveillance X X X
 I.E.1 Metrics/Meas. X X
 I.E.2 In-Process Audit X X X

II. SW Config Identification

 II.A Identifying Items X X X X X
 II.A.1 SW Configuration X X X X
 II.A.2 SW Config. Item X X X X X X X
 II.A.3 SCI Relationships X X X X
 II.A.4 Software Versions X X X
 II.A.5 Baselines X X X X X X
 II.A.6 Acquiring SCIs X X

 II.B Software Library X X X X X X X X
 (SCM Library Tool) X X X X X X X

7–16 © IEEE – Stoneman (Version 0.7) – April 2000

271. Table 1. Coverage of the Breakdown Topics by the Recommended References (cont.)

B
ab

ic
h

B
er

la
ck

B
uc

kl
ey

C
on

ra
di

D
ar

t

H
oe

k

IE
EE

 8
28

IE
EE

/E
IA

 1
22

07

M
id

ha

M
oo

re

P
au

lk

P
re

ss
m

an

R
oy

ce

S
om

m
er

vi
lle

III. SW Configuration Control X X X X X X X

 III.A Requesting Changes X X X X X X X X
 III.A.1 SW CCB X X X X X X
 (Change Mgmt Tool) X X X
 III.A.2 SW Change Process X X X X X

 III.B Implementing Changes X X X X X X X
 (Change Cntl Tool) X X X X X X
 III.C Deviations & Waivers X X

IV. SW Config Status Acctg

 IV.A. Status Information X X X X X
 (CSA Tool)

 IV.B Status Reporting X X X X X X

V. SW Configuration Audit X X X X X X X

 V.A Functional Config Audit X X X X

 V.B Physical Config Audit X X X X

 V.C In-Process Audit X X X

VI. SW Release Mgmt & Del X X

 VI.A SW System Building X X
 (SW Build Tools) X X X X

 VI.B SW Release Mgmt X X
 (SW Release Tool) X

© IEEE – Stoneman (Version 0.7) – April 2000 7–17

272. APPENDIX B. RATIONALE DETAILS

273. Criteria are defined in Appendix A of the entire
Guide.

274. Criterion (a): Number of topic breakdowns

275. One breakdown is provided.

276. Criterion (b): Reasonableness

277. The breakdowns are reasonable in that they cover
the areas typically discussed in texts and
standards, although there is somewhat less
discussion of release management as a separate
topic. In response to comments on version 0.5 of
the paper, the tool discussion under ‘Planning for
SCM’ has been expanded. The various tool
subheadings used throughout the text have been
removed (so they do not appear as topics),
however, the supporting text has been retained
and incorporated into the next higher level
topics.

278. Criterion (c): Generally Accepted

279. The breakdowns are generally accepted in that
they cover the areas typically discussed in texts
and standards.

280. At level 1, the breakdown is identical to that
given in IEC 12207 (Section 6.2) except that the
term “Management of the Software
Configuration Management Process” was used
instead of “Process Implementation” and the
term “Software Configuration Auditing” was
used instead of “Configuration Evaluation.” The
typical texts discuss Software Configuration
Management Planning (our topic A.3); We have
expanded this to a “management of the process”
concept in order to capture related ideas
expressed in many of the references that we have
used. These ideas are captured in topics A.1
(organizational context), A.2 (constraints and
guidance), and A.4 (surveillance of the SCM
process). A similar comparison can also be made
to [Buckley] except for the addition of “Software
Release Management and Delivery.”

281. We have chosen to include the word “Software”
as a prefix to most of the configuration topics to
distinguish the topics from hardware CM or
system level CM activities. We would reserve
“Configuration Management” for system
purposes and then use HCM and SCM for
hardware and software respectively.

282. The topic A.1, “Software Configuration
Management Organizational Context,” covers

key topics addressed in multiple texts and
articles and it appears within the level 1 headings
consistently with the placement used in the
references. This new term on organizational
context was included as a placeholder for
capturing three concepts found in the references.
First, [Buckley] discusses SCM in the overall
context of a project with hardware, software, and
firmware elements. We believe that this is a link
to a related discipline of system engineering.
(This is similar to what IEEE 828 discusses
under the heading of “Interface Control”).
Second, SCM is one of the product assurance
processes supporting a project, or in IEC 12207
terminology, one of the supporting lifecycle
processes. The processes are closely related and,
therefore, interfaces to them should be
considered in planning for SCM. Finally, some
of the tools for implementing SCM might be the
same tools used by the developers. Therefore, in
planning SCM, there should be awareness that
the implementation of SCM is strongly affected
by the environment chosen for the development
activities.

283. The inclusion of the topic “Release Management
and Delivery” is somewhat controversial since
the majority of texts on software configuration
management devote little or no attention to the
topic. We believe that most writers assume the
library function of configuration identification
would support release management and delivery
but, perhaps, assume that these activities are the
responsibility of project or line management. The
IEC 12207 standard, however, has established
this as a required area for SCM. Since this has
occurred and since this topic should be
recognized somewhere in the overall description
of software activities, “Release Management and
Delivery” has been included.

284. Criterion (d): No Specific Application Domains

285. No specific application domains have been
assumed.

286. Criterion (e): Compatible with Various Schools
of Thought

287. SCM concepts are fairly stable and mature.

288. Criterion (f): Compatible with Industry,
Literature, and Standards

289. The breakdown was derived from the literature
and from key standards reflecting consensus

7–18 © IEEE – Stoneman (Version 0.7) – April 2000

opinion. The extent to which industry
implements the SCM concepts in the literature
and in standards varies by company and project.

290. Criterion (g): As Inclusive as Possible

291. The inclusion of the level 1 topic on management
of SCM expands the planning concept into a
larger area that can cover all management-related
topics, such as surveillance of the SCM process.
For each level 1 topic, the level 2 topics
categorize the main areas in various references’
discussions of the level 1 topic. These are
intended to be general enough to allow an open-
ended set of subordinate level 3 topics on
specific issues. The level 3 topics cover specifics
found in the literature but are not intended to
provide an exhaustive breakdown of the level 2
topic.

292. Criterion (h): Themes of Quality, Tools,
Measurement, and Standards

293. The relationship of SCM to product assurance is
provided for in the breakdowns. The description
will also convey the role of SCM in achieving a
consistent, verified, and validated product.

294. A number of level 3 topics were included
throughout the breakdown in order to call
attention to the types of tool capabilities that are
needed for efficient work within the areas
described by particular level 1 and level 2 topics.
These are intended to address capabilities, not
specific tools; i.e. one tool may perform several
of the capabilities described. These topics may
not be significant enough to stand alone; if not,
we would combine the discussion and place it in
the management section or include the discussion
in the higher level topic. One or more references
on the subject of tool selection will be listed.

295. A similar approach was taken toward the use of
measures.

296. Standards are explicitly included in the
breakdowns.

297. Criterion (i): 2 to 3 levels, 5 to 9 topics at the
first level

298. The proposed breakdown satisfies this criterion.

299. Criterion (j): Topic Names Meaningful Outside
the Guide

300. For the most part, we believe this is the case.
Some terms, such a “Baselines” or “Physical
Configuration Audit” require some explanation
but they are obviously the terms to use since
appear throughout the literature.

301. Criterion (l): Topics only sufficiently described
to allow reader to select appropriate material

302. We believe this has been accomplished. We have
not attempted to provide a tutorial on SCM.

303. Criterion (m): Text on the Rationale Underlying
the Proposed Breakdowns

304. This document provides the rationale.

© IEEE – Stoneman (Version 0.7) – April 2000 8–1

CHAPTER 8
SOFTWARE ENGINEERING MANAGEMENT

Stephen G. MacDonell and Andrew R. Gray
University of Otago, Dunedin, New Zealand

+64 3 479 8135 (phone) +64 3 479 8311 (fax)
stevemac@infoscience.otago.ac.nz

TABLE OF CONTENTS

1. INTRODUCTION

2. DEFINITION OF KNOWLEDGE AREA

3. BREAKDOWN OF TOPICS
3.1 Life-cycle breakdown
3.2 Topic-based breakdown

4. BREAKDOWN RATIONALE
4.1 Life-cycle breakdown
4.2 Topic-based breakdown

5. MATRIX OF TOPICS VS. REFERENCE

MATERIAL
6. RECOMMENDED REFERENCES

7. LIST OF FURTHER READINGS

8. REFERENCES USED TO WRITE AND JUSTIFY

THE DESCRIPTION

9. GLOSSARY

10. REFERENCES

1. 1. INTRODUCTION

2. This is the current draft (version 0.7) of the
Knowledge Area description for Software
Engineering Management. The primary goals of
this draft are to:

3. 1. define the Software Engineering
Management Knowledge Area,

4. 2. present two alternative breakdowns of the
knowledge area in hierarchical topic
frameworks,

5. 3. provide the topic-reference matrix,

6. 4. list the three classes of references
(recommended, further readings, and those
used in preparing this document).

7. A draft glossary (without definitions) is included.
We have found considerable differences in
definitions amongst the reviewers and feel that
such a glossary, either for this document or all
Knowledge Area documents, is essential.

8. 2. DEFINITION OF KNOWLEDGE

AREA

9. The Software Engineering Management
Knowledge Area addresses the management of
software development projects and the
measurement and modeling of such projects.
While measurement is an important aspect of all
Guide to the SWEBOK Knowledge Areas, it is
here that the topic is most focused, particularly
with regard to issues involved in model
development and testing.

10. There is considerable overlap with other
Knowledge Areas, and reading the following
Knowledge Area documents along side this one
may be useful. Material is not duplicated here
that is covered in these separate documents. Of
course all Knowledge Area documents share
some commonalties with this one, these are
simply those with more obvious and extensive
overlap.

11. Software Quality, as quality is constantly a goal
of management and involves many activities
that must be managed.

12. Software Testing, where this is a managed
phase in the development process and with
regard to quality.

13. Software Engineering Process, where these
activities must be managed.

14. As alluded to above, the Software Engineering
Management knowledge area consists of both the
measurement/metrics and management process
sub-areas. Whilst these two topics are often
regarded (and generally taught) as being
separate, and indeed they do possess many
mutually unique aspects, their close relationship
has led to their combined treatment here as part
of the Guide to the SWEBOK. In essence,
management without measurement-qualitative
and quantitative -suggests a lack of rigor, and
measurement without management suggests a
lack of purpose or context. In the same way,

8–2 © IEEE – Stoneman (Version 0.7) – April 2000

however, management and measurement without
expert knowledge is equally ineffectual so we
must be careful to avoid overemphasizing the
quantitative aspects of Software Engineering
Management. Effective management requires a
combination of both numbers and stories.

15. The following working definitions are used in
this document.

16. Measurement/metrics refers to the assignment
of values and labels to aspects of software
development (products, processes, and
resources as defined by [Fenton and Pfleeger,
1997]) and the models that may be derived
therefrom whether these models are developed
using statistical, expert knowledge, or other
techniques.

17. Management process refers to the activities
that are undertaken in order to ensure that the
software development process is performed in
a manner consistent with the organization's
policies, goals, and requirements.

18. The management process sub-area makes (in
theory at least) extensive use of the
measurement/metrics sub-area-ideally this
exchange between the two sub-areas occurs
continuously throughout the software
development processes.

19. 3. BREAKDOWN OF TOPICS

20. It is immediately apparent that there are several
different ways of looking at the breakdown of
topics in this Knowledge Area, and between
ourselves and reviewer comments we have
selected just two: a life-cycle approach and a
topic-based approach. Each is discussed in this
section in turn and the following section
discusses the justification of each. In both cases
the management and measurement sub-topics are
separated which will no doubt please many of the
reviewers whilst not troubl ing those happy with
the combination of these in the one Knowledge
Area.

21. In many ways these two breakdowns
complement each other, providing different
perspectives on the same ideas which may be
beneficial to students and practitioners alike. The
latter topic-based breakdown may be especially
useful for those who disagree with the topics
included and wish to produce more focused
courses, for example, simply covering software
project management in a minimalist fashion
without dealing with measurement and metric
issues or more general management topics. It

may also prove to be more suitable for smaller
organizations who wish to concentrate on
particular aspects of the breakdown as opposed
to the approach in its entirety.

22. 3.1 Life-cycle breakdown

23. 1. Measurement

24. 1. Determining the goals of a measurement
program

25. 1. Organizational objectives (broad
issues)

26. 2. Software process improvement goals
(specific issues)

27. 3. Determining specific measurement
goals

28. 2. Measuring software and its development

29. 1. Size measurement (for example, lines
of code)

30. 2. Complexity measurement

31. 3. Performance measurement

32. 4. Resource measurement

33. 3. Selection of measurements

34. 1. The Goal/Question/Metric approach (as
an example)

35. 2. Other metric frameworks (such as
Practical Software Measurement (PSM))

36. 3. Measurement validity (scales)

37. 4. Collection of data (ongoing)

38. 1. Survey techniques and questionnaire
design

39. 2. Automated and manual data collection

40. 5. Software metric models

41. 1. Model building, calibration and
evaluation

42. 2. Implementation, interpretation and
refinement of models

43. 3. Existing models (examples as case
studies)

44. 2. Organizational management and coordination

45. 1. Portfolio management

46. 1. Strategy development and coordination

47. 2. General investment management
techniques

48. 3. Project selection

49. 4. Portfolio construction (risk
minimization and value maximization)

© IEEE – Stoneman (Version 0.7) – April 2000 8–3

50. 2. Acquisition decisions and management

51. 1. Vendor management

52. 2. Subcontract management

53. 3. Policy management

54. 1. Standards

55. 2. Means of policy development

56. 3. Policy dissemination and
enforcement

57. 4. Personnel management (ongoing)

58. 1. Hiring and firing

59. 2. Training and motivation

60. 3. Directing personnel career
development

61. 4. Team structures

62. 5. Communication (ongoing)

63. 1. Meeting procedures

64. 2. Written presentations

65. 3. Oral presentations

66. 4. Negotiation

67. 3. Initiation and scope definition

68. 1. Collection and negotiation of requirements

69. 1. Requirements analysis management

70. 2. Use cases (as an example)

71. 2. Proposal construction

72. 3. Feasibility analysis (ongoing)

73. 1. Technical feasibility

74. 2. Financial feasibility

75. 3. Social/political feasibility

76. 4. Process for the revision of requirements

77. 5. Iterative development (ongoing)

78. 1. Low fidelity prototyping (as an
example)

79. 2. Prototype evolution

80. 4. Planning

81. 1. Risk management (ongoing)

82. 1. Risk analysis

83. 2. Critical risk assessment

84. 3. Techniques for modeling risk

85. 4. Contingency planning

86. 5. Project abandonment policies

87. 2. Process planning

88. 1. Life-cycle approach

89. 2. Methodologies

90. 3. Standards

91. 4. Planning techniques

92. 1. GANTT

93. 2. PERT

94. 3. Tools for supporting planning

95. 3. Determine deliverables

96. 4. Quality management (ongoing)

97. 1. Defining quality

98. 2. Quality control and assurance

99. 5. Schedule and cost estimation

100. 1. Effort estimation

101. 2. Task dependencies

102. 3. Duration estimation

103. 6. Resource allocation

104. 1. Equipment and facilities

105. 2. People

106. 7. Task and responsibility allocation

107. 8. Implementing a metrics process

108. 5. Enactment

109. 1. Implementation of plan

110. 2. Monitor process

111. 1. Reporting

112. 2. Variance analysis

113. 3. Control process

114. 1. Change control

115. 2. Configuration management

116. 3. Scenario analysis

117. 4. Feedback

118. 1. Reporting

119. 2. Problem detection

120. 3. Crisis identification

121. 6. Review and evaluation

122. 1. Determining satisfaction of requirements

123. 1. User review

124. 2. Verification

125. 3. Validation

126. 2. Reviewing and evaluating performance

127. 1. Personnel performance

128. 2. Tool and technique evaluation

129. 3. Process assessment

130. 7. Project close out (closure)

8–4 © IEEE – Stoneman (Version 0.7) – April 2000

131. 1. Determining closure

132. 2. Archival activities

133. 1. Measurement database

134. 2. Organizational learning-lessons learned

135. 3. Duration of retention

136. 8. Post-closure activities

137. 1. Maintenance

138. 2. System retirement

139. The topics are not listed strictly in temporal order
since there are in fact three somewhat distinct
processes being performed here, namely
measurement/metrics, coordination, and the
management process. Figure 1 shows this more
clearly. We have decided to treat the first process
as the actual activity of developing and releasing
models, and the second and third as the usage of
those pre-existing models in coordination and
management activities. This is discussed in more
detail later in the document.

© IEEE – Stoneman (Version 0.7) – April 2000 8–5

140. Figure 1: Software engineering management flowchart

Feasibility analysis (ongoing)

Process for the revision of requirements

Iterative development (ongoing)

Collection and negociation of requirements

Proposal construction

Initiation and scope definition

Determining the goals of a measurement program

Measuring software and its development

Selection of measurements

Collection of data from systems and documents (ongoing)

Measurement

Building and calibration

Evalution

Implementation

Refinement

Existing models

Software metrics models

Risk management (ongoing)

Process planning

Determining deliverables

Quality management (ongoing)

Schedule/cost estimation

Resource allocation

Task/responsability allocation

Implementating a metrics process

Planning

Portfolio management

Organizational management and contribution

Acquisition decisions and management

Policy management

Personnel management (ongoing)

Communication (ongoing)

Start of
project

Completion
of project

Enactement

Implementation of plan

Monitor process

Control process

Feedback

Review and evaluation

Determining satisfaction of requirements

Reviewing and evaluation performance

Close out

Determining closure

Archival activities

Post-closure activities

8–6 © IEEE – Stoneman (Version 0.7) – April 2000

141. 3.2 Topic-based breakdown

142. This is a more recently created outline,
containing the same topics as the life-cycle
breakdown, but organized according to what we
see as common themes. This remains quite
similar to the life-cycle breakdown since
obviously life-cycle stages have some inherent
cohesion.

143. 1. Mathematical, statistical, and model building
topics

144. 1. Measuring software and its development

145. 1. Size measurement (for example, lines
of code)

146. 2. Complexity measurement

147. 3. Performance measurement

148. 4. Resource measurement

149. 2. Selection of measurements

150. 1. The Goal/Question/Metric approach (as
an example)

151. 2. Other metric frameworks (such as
Practical Software Measurement (PSM))

152. 3. Measurement validity (scales)

153. 3. Collection of data (ongoing)

154. 1. Survey techniques and questionnaire
design

155. 2. Automated and manual data collection

156. 4. Software metric models

157. 1. Model building, calibration and
evaluation

158. 2. Implementation, interpretation and
refinement of models

159. 3. Existing models (examples as case
studies)

160. 5. Schedule and cost estimation

161. 1. Effort estimation

162. 2. Task dependencies

163. 3. Duration estimation

164. 6. Implementing a metrics process

165. 2. Software engineering management topics

166. 1. Determining the goals of a software
measurement program

167. 1. Organizational objectives (broad
issues)

168. 2. Software process improvement goals
(specific issues)

169. 3. Determining specific measurement
goals

170. 2. Collection and negotiation of requirements

171. 1. Requirements analysis management

172. 2. Use cases (as an example)

173. 3. Proposal construction

174. 4. Feasibility analysis (ongoing)

175. 1. Technical feasibility

176. 2. Financial feasibility

177. 3. Social/political feasibility

178. 5. Process for the revision of requirements

179. 6. Iterative development (ongoing)

180. 1. Low fidelity prototyping (as an
example)

181. 2. Prototype evolution

182. 7. Process planning

183. 1. Life-cycle approach

184. 2. Methodologies

185. 3. Standards

186. 8. Determine deliverables

187. 9. Control process

188. 1. Change control

189. 2. Configuration management

190. 3. Scenario analysis

191. 10. Determining satisfaction of requirements

192. 1. User review

193. 2. Verification

194. 3. Validation

195. 11. Post-closure activities

196. 1. Maintenance

197. 2. System retirement

198. 3. Management topics

199. 1. Portfolio management

200. 1. Strategy development and coordination

201. 2. General investment management
techniques

202. 3. Project selection

203. 4. Portfolio construction (risk
minimization and value maximization)

204. 2. Acquisition decisions and management

205. 1. Vendor management

206. 2. Subcontract management

207. 3. Policy management

© IEEE – Stoneman (Version 0.7) – April 2000 8–7

208. 1. Standards

209. 2. Means of policy development

210. 3. Policy dissemination and enforcement

211. 4. Personnel management (ongoing)

212. 1. Hiring and firing

213. 2. Training and motivation

214. 3. Directing personnel career
development

215. 4. Team structures

216. 5. Communication (ongoing)

217. 1. Meeting procedures

218. 2. Written presentations

219. 3. Oral presentations

220. 4. Negotiation

221. 6. Risk management (ongoing)

222. 1. Risk analysis

223. 2. Critical risk assessment

224. 3. Techniques for modeling risk

225. 4. Contingency planning

226. 5. Project abandonment policies

227. 7. Planning techniques

228. 1. GANTT

229. 2. PERT

230. 3. Tools for supporting planning

231. 8. Quality management (ongoing)

232. 1. Defining quality

233. 2. Quality control and assurance

234. 9. Resource allocation

235. 1. Equipment and facilities

236. 2. People

237. 10. Task and responsibility allocation

238. 11. Implementation of plan

239. 12. Monitor process

240. 1. Reporting

241. 2. Variance analysis

242. 13. Feedback

243. 1. Reporting

244. 2. Problem detection

245. 3. Crisis identification

246. 14. Reviewing and evaluating performance

247. 1. Personnel performance

248. 2. Tool and technique evaluation

249. 3. Process assessment

250. 15. Determining closure

251. 16. Archival activities

252. 1. Measurement database

253. 2. Organizational learning-lessons learned

254. 3. Duration of retention

255. 4. BREAKDOWN RATIONALE

256. 4.1 Life-cycle breakdown

257. It is important to note that we have not based this
breakdown (or the topic-based breakdown) on
existing breakdowns per se. While these have
provided inspiration, we have aimed for
consistency and completeness rather then picking
our favorite hierarchy of topics.

258. This outline is, as we have said, very much a
"life-cycle'' based breakdown. Topics tend to
appear in the same order as their associated
activities are enacted in a software development
project-with the obvious exceptions of the
Organizational management and coordination
topics and the measurement/metrics sub-area
which encompass the entire process. Many of
these stages are also iterative, especially planning
and development when prototyping. Any
ongoing activities, such as risk management and
quality management, are indicated as such
(although this obviously depends on the specific
development and management processes used).

259. In several places quite specific techniques are
listed, such as Function Point Analysis and the
Goal/Question/Metric approach. This generally
indicates that the technique is suggested as being
a good tutorial/case-study example of the overall
concept, rather than a crucial topic to be
mastered. Other specific techniques could be
used to replace these if desired.

260. Within the measurement/metrics sub-area five
main subtopics are addressed: measurement
program goals, fundamental measurement,
measurement selection, data collection and
model development and use. The first four
subtopics are primarily concerned with the actual
theory and purpose behind measurement and
address issues such as measurement scales and
measure selection (such as by GQM). The
collection of measures is included as an issue to
be addressed here. This involves both technical
issues (automated extraction) and human issues
(questionnaire design, responses to
measurements being taken). The fifth subtopic

8–8 © IEEE – Stoneman (Version 0.7) – April 2000

(software metric models) is concerned with the
task of building models using both data and
knowledge. Such models need to be evaluated
(for example, by testing their performance on
holdout samples) to ensure that their levels of
accuracy are sufficient and that their limitations
are known. The refinement of models, which
could take place during or after projects are
completed is another activity here. The
implementation of metric models is more
management-oriented since the use of such
models has an influential effect on the subject's
(for want of a better word) behavior. (Note: We
have continued to use the common terminology
(in software engineering circles) of software
metrics here, rather than limiting ourselves to
measurement. We recognize that this could lead
to some confusion with engineers familiar with
the empirical model-building process from
another discipline, necessitating careful wording.
The alternative of using more standard
terminology however, whilst well intentioned,
would make less obvious the connection between
this work and many excellent papers and books
(including Fenton and Pfleeger's seminal work
[Fenton and Pfleeger, 1997]). On the other hand
Zuse's excellent book [Zuse, 1997] does include
"measurement'' in the title rather than "metrics''.
Here it seems that the best solution is to use both
sets of expressions in a somewhat
interchangeable manner so that practitioners are
familiar with both.)

261. In the management process sub-area the notion
of management "in the large'' is considered in the
coordination topic, addressing issues including
portfolio development and management, project
selection and system acquisition, the
development and implementation of policies,
personnel management, and communication. The
remaining topics then correspond (roughly) to
stages in the project development life cycle. First
is the initiation and scope-definition topic, which
covers the management of the requirements,
gathering process and the specification of
procedures and methods for their revision.
Feasibility analysis is included as part of this
topic even though this is an ongoing activity.
Here the focus is on high-level feasibility, as in
"is it possible''. Feasibility may well be
determined by reference to some formal model.
Planning is the next set of activities for a
software-engineering manager. Management of
risk is included here, as is planning for the
process(es) used. Ongoing quality management

is begun at this point. The tasks of schedule and
cost estimation also fall within this topic. Given
schedule estimates it is possible to perform
resource then task allocation. Responsibilities
need to be allocated and quality control
procedures implemented. The outcome of this
stage would be a series of plans. These plans are
then put into action in the enactment topic. The
project must then be monitored for deviations
and corrective actions may be taken. Change
control and configuration management are
important activities at this stage in the process.
The timeliness and format of reports is also
important if feedback is to be successful. The
review topic involves determining that the
requirements have indeed been satisfied by the
system. Performance assessment, of individuals,
tools, techniques and processes is necessary for
performance improvement and as part of the
organization's learning process. Finally, the
project needs to be closed and all useful
information securely recorded. These archival
activities are often neglected in both practice and
education so we would like to emphasize their
necessity for supporting a measurement program.

262. The above breakdown of topics is based on a
division into measurement/metrics and
management processes. The former refers to the
actual creation of models, which can then be
used as part of the latter. These activities may be
performed by the same person, but they could
then be seen to be "wearing different hats.''

263. 4.2 Topic-based breakdown

264. This contains the same topics as the life-cycle
breakdown, but organizes them according to
three broad topic areas: mathematical, statistical,
and model building topics; software engineering
management topics; and management topics.
This breakdown may be more useful for partial
or more specific courses, etc.

265. The same justifications for the topics are used for
the life-cycle approach also apply here.

266. 5. MATRIX OF TOPICS VS.
REFERENCE MATERIAL

267. The level of granularity used in Table 1 is a
mixture of second and third level topics,
depending on the specificity of the topic in
question. The topics are in the order given in the
life-cycle breakdown.

© IEEE – Stoneman (Version 0.7) – April 2000 8–9

 Topic Reference (sections and pages)

268. Determining the goals of a measurement program 3.2, 83-95; 13.1-13.6, 464-483; 14.1-14.4, 487-514 [Fenton and
Pfleeger, 1997]

269. Size measurement 7.1-7.4, 244-267 [Fenton and Pfleeger, 1997]

270. Complexity measurement 7.5, 267-275 [Fenton and Pfleeger, 1997] 8.2.2.1- 8.2.2.3, 293-296
[Fenton and Pfleeger, 1997]

271. Performance measurement 7.5, 267-275 [Fenton and Pfleeger, 1997]

272. Resource measurement 3.1.3, 82-83 [Fenton and Pfleeger, 1997] 15.3, 529- 531 [Fenton and
Pfleeger, 1997]

273. Goal/Question/Metric S3.2, 83-95 [Fenton and Pfleeger, 1997]

274. Measurement validity (scales) 2.7-2.8, 42-55 [Zuse, 1997]

275. Survey techniques and questionnaire design 4.1, 118-125 [Fenton and Pfleeger, 1997]

276. Data collection 1.3.3, 16-17 [Fenton and Pfleeger, 1997] 5.3-5.5, 169-180 [Fenton
and Pfleeger, 1997] 30.5.1, 626-627 [Sommerville, 1996]

277. Model building and calibration 6.2-6.3, 190-215 [Fenton and Pfleeger, 1997]3.3, 98-113 [Pfleeger,
1998]

278. Model evaluation 3.3, 98-113 [Pfleeger, 1998]

279. Implementation of models 4.6, 95-97 [Pressman, 1997]

280. Interpretation of models 6.2-6.3, 190-215 [Fenton and Pfleeger, 1997]3.3, 98-113 [Pfleeger,
1998]

281. Function Point Analysis 4.3.2-4.3.3, 85-90; 4.4, 90-92; 5.7.1, 120-121 [Pressman, 1997]

282. COCOMO 5.7.1-5.7.2, 120-124 [Pressman, 1997]

283. Portfolio management Still seeking an appropriate reference

284. Vendor management 1.4, 14-15 [Pfleeger, 1998]

285. Subcontract management 1.4, 14-15 [Pfleeger, 1998]

286. Policy management 2.3-2.4, 58-69 [Pfleeger, 1998]

287. Personnel management [Weihrich] [Thayer] [Zwacki] 3.2, 59-66 [Pressman, 1997] 3.2, 89-
98 [Pfleeger, 1998]

288. Communication [Weihrich] [Thayer]

289. Requirements analysis [Faulk] 3.2, 59-66 [Pressman, 1997]

290. Use cases 20.4.1, 592-594 [Pressman, 1997]

291. Proposal construction 3.1-3.2, 47-51 [Sommerville, 1996]

292. Feasibility analysis 4.1, 67-68 [Sommerville, 1996] 10.6, 250-259 [Pressman, 1997]

293. Portfolio management Still seeking an appropriate reference

294. Revision of requirements 4.2-4.4, 68-75 [Sommerville, 1996]

295. Prototyping 8.1-8.3, 140-153 [Sommerville, 1996]

296. Risk management 6.1-6.8, 133-150 [Pressman, 1997] [Thayer and Fairley] 3.4, 113-
117 [Pfleeger, 1998]

297. Process planning 2.2-2.11, 26-49; 7.3-7.8, 160-175 [Pressman, 1997]

298. Determining deliverables 3.3, 51-52 [Sommerville, 1996]3.1, 76-88 [Pfleeger, 1998]

299. Quality management 8.1-8.10, 180-203 [Pressman, 1997]30.1-30.6, 615-634
[Sommerville, 1996] [Dunn]

300. Schedule and cost estimation 12.3-12.4, 435-448 [Fenton and Pfleeger, 1997] [Brooks]
[Heemstra]

301. Resource allocation 5.4, 108-111 [Pressman, 1997] 3.4, 52-57 [Sommerville, 1996]

302. Task and responsibility allocation [Weihrich] [Thayer]

303. Implementing a metrics program 4.6, 95-97 [Pressman, 1997]14.1-14.4, 487-514 [Fenton and
Pfleeger, 1997]

304. Revision of requirements 4.2-4.4, 68-75 [Sommerville, 1996]

305. Implementing plans 7.8, 174-175 [Pressman, 1997] 3.5, 118-119 [Pfleeger, 1998] 3.2,
48-51 [Sommerville, 1996]

306. Process monitoring 31.2-31.3, 641-647 [Sommerville, 1996]

8–10 © IEEE – Stoneman (Version 0.7) – April 2000

 Topic Reference (sections and pages)

307. Change control 9.5, 220-223 [Pressman, 1997]

308. Configuration management 9.19.4, 210-220 [Pressman, 1997]

309. Scenario analysis Still seeking an appropriate reference

310. Feedback [Weihrich] [Thayer]

311. Determining satisfaction of requirements 4.9, 174-178 [Pfleeger, 1998]

312. Reviewing and evaluating performance 8.5, 190-194 [Pressman, 1997] [Marciniak]

313. Determining closure 4.9, 174-178 [Pfleeger, 1998]

314. Archival activities Still seeking an appropriate reference

315. Implementing plans 7.8, 174-175 [Pressman, 1997] 3.5, 118-119 [Pfleeger, 1998] 3.2,
48-51 [Sommerville, 1996]

316. Maintenance 32,1-32.5, 662-672 [Sommerville, 1996] [Bennett]

317. System retirement 2.3.8, 36 [Sommerville, 1996]

318. Table 1: Topics and their references

319. [Thayer and Thayer] is an excellent glossary of
project management terminology and can be
added to this list as a general reference.

321. 6. RECOMMENDED REFERENCES

322. The Topic-Reference matrix as shown in Section
5 requires the following references to be included
in the Guide to the SWEBOK.

323. [Fenton and Pfleeger, 1997] 16-17, 82-95, 118-
125, 169-180, 190-215, 244-267, 293-296,
435-448, 464-483, 487-514, 529-531 Total:
155 pages

324. [Dorfman and Thayer, 1997]13-22, 82-103,
256-265, 289-303, 374-386 Total: 70 pages

325. [Pfleeger, 1998]14-15, 58-69, 76-119, 174-178
Total: 63 pages

326. [Pressman, 1997] 26-49, 59-66, 85-92, 95-97,
108-111, 120-124, 133-150, 160-175, 210-223,
250-259, 592-594 Total: 113 pages

327. [Reifer, 1997] 292-293 Total: 2 pages

328. [Sommerville, 1996] 36, 47-57, 67-75, 140-
153, 615-634, 641-647, 662-672 Total: 73
pages

329. [Thayer, 1997] 4-13, 72-104, 195-202, 433-
440, 506-529 Total: 83 pages

330. [Zuse, 1997] 42-55 Total: 14 pages

331. This totals 573 pages (assuming that part pages
count as wholes) with three topics yet to be
referenced. There does not appear to be any easy
way to reduce this much further without overly
reducing the topics or their coverage.

332. 7. LIST OF FURTHER READINGS

333. The following texts (which include all of the
required references) are suggested as useful
sources of information about this Knowledge
Area.

334. [Dorfman and Thayer, 1997] 531 pages

335. [Fenton and Pfleeger, 1997] 638 pages

336. [Karolak] 171 pages

337. [McConell, 1996] 647 pages

338. [McConell, 1997] 250 pages

339. [Moore, 1998] 296 pages

340. [Pfleeger, 1998] 576 pages

341. [Pressman, 1997] 852 pages

342. [Reifer, 1997] 652 pages

343. [Sommerville, 1996] 742 pages

344. [Thayer, 1997] 531 pages

345. [Zuse, 1997] 755 pages

346. These total 6641 pages (before subtracting the
above-cited pages and without accounting for the
duplicated papers in the three collections). With
these adjustments the total page count should be
around 5000 pages.

347. 8. REFERENCES USED TO WRITE
AND JUSTIFY THE DESCRIPTION

348. [Duncan, 1996]

349. [Vincenti, 1990]

© IEEE – Stoneman (Version 0.7) – April 2000 8–11

350. 9. GLOSSARY
351. The terms below have not been defined in this

version, they are provided to indicate some terms
that we have found to require entries.

352. Control:
353. Coordination:
354. Life -cycle:
355. Measurement:
356. Metric:
357. Model:
358. Monitoring:
359. Plan:
360. Planning:
361. Policy:
362. Portfolio:
363. Portfolio management:
364. Process:
365. Quality:
366. Quality assurance:
367. Quality control:
368. Requirements:
369. Resource:
370. Risk assessment:
371. Risk management:
372. Stakeholder:
373. Standard:
374. Users:

375. 10. REFERENCES
376. [Bennett] Keith H. Bennett. Software

maintenance: a tutorial. Pages 289-303. In
[Dorfman and Thayer, 1997].

377. [Brooks] Frederick P. Brooks . No silver bullet:
essence and accidents of software engineering.
Pages 13-22. In [Dorfman and Thayer, 1997].

378. [Dorfman and Thayer, 1997] Merlin Dorfman
and Richard H. Thayer. 1997. Software
engineering. Ed. Merlin Dorfman and Richard H.
Thayer. IEEE Computer Society.

379. [Duncan, 1996] W.R. Duncan. 1996. A guide to
the project management body of knowledge.

380. [Dunn] Robert H. Dunn. Software Quality
Assurance: A Management Perspective . Pages
433-440. In [Thayer, 1997].

381. [Faulk] Stuart R. Faulk. Software
Requirements: A Tutorial. Pages 82-103. In
[[Dorfman and Thayer, 1997].

382. [Fenton and Pfleeger, 1997] Norman E. Fenton
and Shari Lawrence Pfleeger. 1997. Software
metrics: a rigorous practical approach. PWS
Publishing Company.

383. [Heemstra] F.J. Heemstra. Software cost
estimation. Pages 374-386. In [Dorfman and
Thayer, 1997].

384. [Karolak] Dale Walter Karolak. 1996. Software
engineering risk management. IEEE Computer
Society.

385. [Marciniak] John J. Marciniak. Reviews and
audits. Pages 256-265. In [Dorfman and Thayer,
1997].

386. [McConell, 1996] Steve C McConell. 1996.
Rapid Development: Taming Wild Software
Schedules. Microsoft Press.

387. [McConell, 1997] Steve C McConell. 1997.
Software Project Survival Guide. Microsoft
Press.

388. [Moore, 1998] James W. Moore. 1998.
Software engineering standards: a user's road
map. IEEE Computer Society.

389. [Pfleeger, 1998] Shari Lawrence Pfleeger.
1998. Software engineering: theory and practice.
Prentice Hall.

390. [Pressman, 1997] Roger S. Pressman. 1997.
Software engineering: a practitioner's approach.
McGraw-Hill.

391. [Reifer, 1997] Donald J. Reifer. 1997. Software
management, 5th edition. IEEE Computer
Society.

392. [Sommerville, 1996] Ian Sommerville. 1996.
Software engineering. Addison-Wesley.

393. [Thayer] Richard H. Thayer. Software
Engineering Project Management . Pages 72-
104. In [Thayer, 1997].

394. [Thayer and Fairley] Richard H. Thayer and
Richard E. Fairley. Software Risk
Management. Pages 195-202. In [Thayer, 1997].

395. [Thayer and Thayer] Richard H. Thayer and
Mildred C. Thayer. Software Engineering
Project Management Glossary . Pages 506-529.
In [Thayer, 1997].

396. [Thayer, 1997] Richard H. Thayer . 1997.
Software engineering project management. Ed.
Richard H. Thayer. IEEE Computer Society.

397. [Vincenti, 1990] W.G. Vincenti . 1990. What
engineers know and how they know it-analytical
studies from aeronautical history. John Hopkins.

398. [Weihrich] Heinz Weihrich. Management:
Science, Theory, and Practice . Pages 4-13. In
[Thayer, 1997].

399. [Zuse, 1997] Horst Zuse. 1997. A framework of
software measurement. Walter de Gruyter.

400. [Zwacki] Robert A. Zawacki . How to pick
eagles. Pages 292-293. In [Reifer, 1997].

© IEEE – Stoneman (Version 0.7) – April 2000 9–1

CHAPTER 9
SOFTWARE ENGINEERING PROCESS

Khaled El Emam
NRC, Canada

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Acronyms

2. DEFINITION
2.1 Scope
2.2 Currency of Material
2.3 Structure of the KA

3. BREAKDOWN OF TOPICS
3.1 Basic Concepts and Definitions
3.2 Process Infrastructure
3.3 Process Measurement
3.4 Process Definition
3.5 Qualitative Process Analysis
3.6 Process Implementation and Change

4. KEY REFERENCES

5. KEY REFERENCES VS. TOPICS MAPPING
6. GENERAL REFERENCES

1. 1. INTRODUCTION

2. The software engineering process area has
witnessed dramatic growth over the last decade.
This was partly fueled by a recognition by major
acquirers of systems where software is a major
component that process issues can have an
important impact on the ability of their suppliers
to deliver. Therefore, they encouraged a focus on
the software process as a way to remedy this.
Furthermore, the academic community has
pursued an active research agenda in developing
new tools and techniques to support software
processes, and also empirically studying software
processes and their improvement. It should also
be recognized that other disciplines have been
studying software processes for many years,
namely, the Management Information Systems
community, albeit they used a different
terminology. With the publication of a few
success stories, industrial adoption of software
process technology has also been growing.
Therefore, there is in fact an extensive body of
knowledge on the software engineering process.

3. This document presents a description of the
knowledge area of software engineering process
for the Guide to the Software Engineering Body

of Knowledge (SWEBOK) project. The intention
is to provide a coherent framework where the
different types of knowledge can be organized,
and key references identified. A breakdown of
topics is presented for the knowledge area along
with a succinct description of each topic.
References are given to materials that provide
more in-depth coverage of the important areas of
software process. Where available, web
addresses where cited material can be
downloaded have been added.

4. 1.1 Acronyms

5. CBA IPI CMM Based Appraisal for Internal
Process Improvement

6. CMM Capability Maturity Model

7. EF Experience Factory

8. G/Q/Q Goal/Question/Metric

9. HRM Human Resources Management

10. IDEAL Initiating-Diagnosing-Establishing-
Acting-Leveraging (model)

11. MIS Management Information Systems

12. PDCA Plan-Do-Check-Act (cycle)

13. QIP Quality Improvement Paradigm

14. ROI Return on Investment

15. SCE Software Capability Evaluation

16. SEPG Software Engineering Process Group

17. SW-CMM Capability Maturity Model for
Software

18. 2. DEFINITION

19. The software engineering process Knowledge
Area (KA) can be examined at two levels. The
first level encompasses the technical and
managerial activities that are performed during
software development, maintenance, acquisition,
and retirement. The second is the meta-level,
which is concerned with the definition,
implementation, measurement, management,
change and improvement of the software

9–2 © IEEE – Stoneman (Version 0.7) – April 2000

processes. The latter we will term software
process engineering.

20. The first level is covered by the other KA’s of
the Guide to the Software Engineering Body of

Knowledge. This knowledge area is concerned
with the second: software process engineering.

21. It is important to orient the readers and reviewers by making the following clarification. This KA description has
been developed with the following example uses in mind:

22. w If one were to write a book on the topic of software process engineering, this KA description would identify
the chapters and provide the initial references for writing the chapters. The KA description is not the book.

23. w If one were to prepare a certification exam that includes software process engineering, this KA description
would identify the sections of the exam and provide the initial references for writing the questions. The KA
description by itself will not be the source of questions.

24. w If one were to prepare a course on software process engineering, this KA description would identify the
sections of the course and the course material, and identify the initial references to use as the basis for
developing the course material. The KA description is not the course material by itself.

25. 2.1 Scope

26. The scope of the KA is defined to exclude the
following:

27. w Human resources management (as
embodied in the People CMM 309 for
example)

28. w Systems engineering processes

29. The reason for this exclusion is that, while
important topics in themselves, they are outside
the direct scope of software process engineering.
However, where relevant, interfaces to HRM and
systems engineering will be addressed.

30. 2.2 Currency of Material

31. The software process engineering discipline is
rapidly changing, with new paradigms and new
models. The breakdown and references included
here are pertinent at the time of writing. An
attempt has been made to focus on concepts to
shield the knowledge area description from
changes in the field, but of course this cannot be
100% successful, and therefore the material here
must be evolved over time. A good example is
the on-going CMM Integration effort and the
Team Software Process effort 342, both of which
are likely to have a considerable influence on the
software process community once widely
disseminated, and would therefore have to be
accommodated in the knowledge area
description.

32. 2.3 Structure of the KA

33. To structure this KA in a way that is directly
related to practice, we have defined a generic
process model for software process engineering.
This model identifies the activities that are
performed in a process engineering context. The
topics are mapped to these activities. The
advantage of such a structure is that one can see,
in practice, where each of the topics is relevant,
and provides an overall rationale for the topics.
This generic model is based on the PDCA cycle,
which should be familiar to many readers.

34. 3. BREAKDOWN OF TOPICS

35. Below is the overall breakdown of the topics in
this knowledge area. Further explanations are
provided in the subsequent sections.

36. Basic Concepts and Definitions

37. Themes

38. Terminology

39. Process Infrastructure

40. The Experience Factory

41. The Software Engineering Process Group

42. Process Measurement

43. Methodology in Process Measurement

44. Process Measurement Paradigms

45. Analytic Paradigm

46. Benchmarking Paradigm

47. Process Definition

© IEEE – Stoneman (Version 0.7) – April 2000 9–3

48. Types of Process Definitions

49. Life Cycle Models

50. Software Life Cycle Models

51. Notations for Process Definitions

52. Process Definition Methods

53. Automation

54. Qualitative Process Analysis

55. Process Definition Review

56. Root Cause Analysis

57. Process Implementation and Change

58. Paradigms for Process Implementation and
Change

59. Guidelines for Process Implementation and
Change

60. Evaluating the Outcome of Process
Implementation and Change

61. 3.1 Basic Concepts and Definitions

62. 3.1.1 Themes

63. Dowson 313 notes that “All process work is
ultimately directed at ‘software process
assessment and improvement’”. This means that
the objective is to implement new or better
processes in actual practices, be they individual,
project or organizational practices.

64. We describe the main topics in the software
process engineering (i.e., the meta-level that has
been alluded to earlier) area in terms of a cycle
of process change, based loosely on the
commonly known PDCA (plan-do-check-act)
cycle. This cycle highlights that individual
process engineering topics are part of a larger
process to improve practice, and that process
evaluation and feedback is an important element
of process engineering.

65. Software process engineering consists of four
activities as illustrated in the model in Figure 1.
The activities are sequenced in an iterative cycle
allowing for continuous feedback and
improvement of the software process.

66. The “Establish Process Infrastructure” activity
consists of establishing commitment to process
implementation and change, and putting in place
an appropriate infrastructure (resources and
responsibilities) to make it happen.

67. The activities “Analyze Process” and
“Implement and Change Process” are the core
ones in process engineering, in that they are

essential for any long-lasting benefit from
process engineering to accrue. In “Analyze
Process” the objective is to understand the
current business objectives and process needs of
the organization1, identify its strengths and
weaknesses, and make a plan for process
implementation and change. In “Implement and
Change Process”, the objective is to execute the
plan, deploy new processes (which may involve,
for example, the deployment of tools and training
of staff), and/or change existing processes.

68. The fourth activity, “Evaluate Process” is
concerned with finding out how well the
implementation and change went; whether the
expected benefits materialized. This is then used
as input for subsequent cycles.

69. At the centre of the cycle is the “Process
Experience Base”. This is intended to capture
lessons from past iterations of the cycle (e.g.,
previous evaluations, process definitions, and
plans). Evaluation lessons can be qualitative or
quantitative. No assumptions are made about the
nature or technology of this “Process Experience
Base”, only that it be a persistent storage. It is
expected that during subsequent iterations of the
cycle, previous experiences will be adapted and
reused.

70. With this cycle as a framework, it is possible to
map the topics in this knowledge area to the
specific activities where they would be most
relevant. This mapping is also shown in Figure 1.

71. It should be noted that this cycle is not intended
to imply that software process engineering is
relevant to only large organizations. To the
contrary, process-related activities can, and have
been, performed successfully by small
organizations, teams, and individuals. The way
the activities defined in the cycle are performed
would be different depending on the context.
Where it is relevant, we will present examples of
approaches for small organizations.

1 The term “organization” is meant in a loose sense here. It

could be a project, a team, or even an individual.

9–4 © IEEE – Stoneman (Version 0.7) – April 2000

Establish
Process

Infrastructure
Analyze
Process

Implement
and Change

Process

Evaluate
Process

Process
Experience

Base

! Process
Infrastructure

!
!

!

 Process Definition
 Process
Measurement
 Qualitative Process
Analysis

!
!
!

 Process Measurement
 Qualitative Process Analysis
 Process Implementation and
Change

! Process
Implementation and
Change

72. Figure 1: A model of the software process engineering cycle, and the relationship of its activities to the KA topics.

© IEEE – Stoneman (Version 0.7) – April 2000 9–5

73. The topics in this KA are as follows:

74. Process Infrastructure: This is concerned with
putting in place an infrastructure for software
process engineering.

75. Process Measurement: This is concerned with
quantitative techniques to diagnose software
processes; to identify strengths and weaknesses.
This can be performed to initiate process
implementation and change, and afterwards to
evaluate the consequences of process
implementation and change.

76. Process Definition: This is concerned with
defining processes in the form of models, plus
the automated support that is available for the
modeling task, and for enacting the models
during the software process.

77. Qualitative Process Analysis: This is concerned
with qualitative techniques to analyze software
processes, to identify strengths and weaknesses.
This can be performed to initiate process
implementation and change, and afterwards to
evaluate the consequences of process
implementation and change.

78. Process Implementation and Change: This is
concerned with deploying processes for the first
time and with changing existing process. This
topic focuses on organizational change. It
describes the paradigms, infrastructure, and
critical success factors necessary for successful
process implementation and change. Within the
scope of this topic, we also present some
conceptual issues about the evaluation of process
change.

79. The main, generally accepted, themes in the
software engineering process field have been
described by Dowson in 313. His themes are a
subset of the topics that we cover in this KA.
Below are Dowson’s themes:

80. w Process definition: covered in topic 0 of this
KA breakdown

81. w Process assessment: covered in topic 0 of
this KA breakdown

82. w Process improvement: covered in topics 0
and 0 of this KA breakdown

83. w Process support: covered in topic 0 of this
KA breakdown

84. We also add one theme in this KA description,
namely the qualitative process analysis (covered
in topic 0).

85. 3.1.2 Terminology

86. There is no single universal source of
terminology for the software engineering process
field, but good sources that define important
terms are 326363, and the vocabulary (Part 9) in
the ISO/IEC 15504 documents 351.

87. 3.2 Process Infrastructure

88. At the initiation of process engineering, it is
necessary to have an appropriate infrastructure in
place. This includes having the resources
(competent staff and funding), as well as the
assignment of responsibilities. This is an
indication of management commitment to the
process engineering effort. Various committees
may have to be established, such as a steering
committee to oversee the process engineering
effort.

89. It is widely recognized that a team separate from
the developers/maintainers must be set up and
tasked with process analysis, implementation and
change 296. The main reason for this is that the
priority of the developers/maintainers is to
produce systems or releases, and therefore
process engineering activities will not receive as
much attention as they deserve or need. In a
small organization, outside help (e.g.,
consultants) may be required to assist in making
up a process team.

90. Two types of infrastructure are embodied in the
concepts of the Experience Factory 289290 and
the Software Engineering Process Group 329.
The IDEAL handbook 366 provides a good
description of infrastructure for process
improvement in general.

91. 3.2.1 The Experience Factory

92. The EF is different from the project organization
which focuses on the development and
maintenance of applications. Their relationship is
depicted in Figure 2.

93. The concept of the EF is intended to
institutionalize the collective learning of an
organization by developing, updating, and
delivering to the project organization experience
packages (e.g., guide books, models, and training
courses). The project organization offers to the
experience factory their products, the plans used
in their development, and the data gathered
during development and operation. Examples of
experience packages include:

94. w resource models and baselines (e.g., local
cost models, resource allocation models)

9–6 © IEEE – Stoneman (Version 0.7) – April 2000

95. w change and defect baselines and models
(e.g., defect prediction models, types of
defects expected for the application)

96. w project models and baselines (e.g., actual
vs. expected product size)

97. w process definitions and models (e.g.,
process models for Cleanroom, Ada
waterfall model)

98. w method and technique evaluations (e.g.,
best method for finding interface faults)

99. w products and product parts (e.g., Ada
generics for simulation of satellite orbits)

100. w quality models (e.g., reliability models,
defect slippage models, ease of change
models), and

101. w lessons learned (e.g., risks associated with
an Ada development).

Application
Developers

Experience Factory:
Capture, Analyze, and Package

Experiences

Project
Organization:

Develop
Applications

Mission
Analysts

Application
Testers

Data Base
Personnel

Researchers

Packagers

metrics &
lessons
learned

guide books,
models,
training

Application

102. Figure 2: The relationship between the Experience Factory and the project organization as implemented at the
Software Engineering Laboratory at NASA/GSFC. This diagram is reused here from 291 with permission of the
authors.

103. 3.2.2 The Software Engineering Process
Group

104. The SEPG is intended to be the central focus for
process improvement within an organization.
According to 388, the analysts within the EF are
comparable to the SEPG. Therefore, the SEPG
can in principle fit within the EF.

105. The SEPG typically has the following ongoing
activities:

106. w Obtains and maintains the support of all
levels of management

107. w Facilitates software process assessments
(see below)

108. w Works with line managers whose projects
are affected by changes in software
engineering practice

109. w Maintains collaborative working
relationships with software engineers

110. w Arranges for any training or continuing
education related to process implementation
and change

111. w Tracks, monitors, and reports on the status
of particular improvement efforts

112. w Facilitates the creation and maintenance of
process definitions

113. w Maintains a process database

114. w Provides process consultation to
development projects and management

115. Fowler and Rifkin 329 suggest the establishment
of a steering committee consisting of line and
supervisory management. This would allow
management to guide process implementation
and change, and also provides them with
visibility. Furthermore, technical working groups
may be established to focus on specific issues,
such as selecting a new design method to setting
up a measurement program.

© IEEE – Stoneman (Version 0.7) – April 2000 9–7

116. 3.3 Process Measurement

117. Process measurement, as used here, means that
quantitative information about the process is
collected, analyzed, and interpreted.
Measurement is used to identify the strengths and
weaknesses of processes, and to evaluate
processes after they have been implemented
and/or changed (e.g., evaluate the ROI from
implementing a new process).2

118. The assumption upon which most process
engineering work is premised can be depicted by
the path diagram in Figure 3. Here, we assume
that the process has an impact on process
outcomes. Process outcomes could be, for
example, product quality (faults per KLOC),
maintainability (effort to make a certain type of
change), productivity (LOC per person month),
time-to-market, the extent of process variation,
or customer satisfaction (as measured through a
customer survey). This relationship depends on
the particular context (e.g., size of the
organization, or size of the project).

Process Process
Outcomes

Context

119. Figure 3: Path diagram showing the relationship
between process and outcomes (results).

120. Not every process will have a positive impact on
outcomes. For example, the introduction of
software inspections may reduce testing effort
and cost, but may increase interval time if each
inspection introduces large delays due to the
scheduling of inspection meetings. Therefore, it
is preferred to use multiple process outcome
measures that are important for the
organization’s business.

121. In general, we are not really interested in the
process itself, rather we are most concerned
about the process outcomes. However, in order to
achieve the process outcomes that we desire
(e.g., better quality, better maintainability,

2 Process measurement may serve other purposes as well.

For example, process measurement is useful for
managing a software project. Some of these are covered
in the Project Management and other KA’s. Here we
focus on process measurement for the purpose of process
implementation and change.

greater customer satisfaction) we have to
implement the appropriate process.

122. Of course, it is not only process that has an
impact on outcomes, other factors such as the
capability of the staff and the tools that are used
play an important role. But here we focus only
on the process as an antecedent.

123. One can measure the quality of the software
process itself, or the process outcomes. The
methodology in Section 3.3.1 is applicable to
both. We will focus in Section 3.3.2 on process
measurement since the measurement of process
outcomes is more general and applicable in other
knowledge areas.

124. 3.3.1 Methodology in Process
Measurement

125. A guide for measurement using the G/Q/M
method is provided in 391, and the “Practical
Software Measurement” guidebook provides
another good overview of measurement 374. A
good practical text on establishing and operating
a measurement program has been produced by
the Software Engineering Laboratory 389. This
also discusses the cost of measurement. Texts
that present experiences in implementing
measurement in software organizations include
356371380. An emerging international standard
that defines a generic measurement process is
also available (ISO/IEC CD 15939: Information
Technology – Software Measurement Process)
352.

126. Two important issues in the measurement of
software engineering processes are reliability and
validity. Reliability becomes important when
there is subjective measurement, for example,
when assessors assign scores to a particular
process. There are different types of validity that
ought to be demonstrated for a software process
measure, but the most critical one is predictive
validity. This is concerned with the relationship
between the process measure and the process
outcome. A discussion of both of these and
different methods for achieving them can be
found in 319334. An IEEE Standard describes a
methodology for validating metrics (IEEE
Standard for a Software Quality Metrics
Methodology. IEEE Std 1061-1998) 346.

127. An overview of existing evidence on reliability
of software process assessments can be found in
324, and for predictive validity in 334357322.

9–8 © IEEE – Stoneman (Version 0.7) – April 2000

128. 3.3.2 Process Measurement Paradigms

129. Two general paradigms that are useful for
characterizing the type of process measurement
that can be performed have been described by
Card 301. The distinction made by Card is a
useful conceptual one. Although, there may be
overlaps in practice.

130. The first is the analytic paradigm. This is
characterized as relying on "quantitative
evidence to determine where improvements are
needed and whether an improvement initiative
has been successful".3 The second, the
benchmarking paradigm, "depends on identifying
an 'excellent' organization in a field and
documenting its practices and tools".
Benchmarking assumes that if a less-proficient
organization adopts the practices of the excellent
organization, it will also become excellent. Of
course, both paradigms can be followed at the
same time, since they are based on different
types of information.

131. The analytic paradigm is exemplified by the
Quality Improvement Paradigm (QIP) consisting
of a cycle of understanding, assessing, and
packaging 388. The benchmarking paradigm is
exemplified by the software process assessment
work (see below).

132. We use these paradigms as general titles to
distinguish between different types of
measurement.

133. 3.3.2.1 Analytic Paradigm4

134. w Experimental and Observational Studies

135. Experimentation involves setting up
controlled or quasi experiments in the
organization to evaluate processes 367.
Usually, one would compare a new process
with the current process to determine
whether the former has better process
outcomes. Correlational (nonexperimental)
studies can also provide useful feedback for
identifying process improvements (e.g.,
283).

136. w Process Simulation

137. The process simulation approach can be
used to predict process outcomes if the

3 Although qualitative evidence also can play an important

role. In such a case, see Section 0 on qualitative process
analysis.

4 These are intended as examples of the analytic paradigm,
and reflect what is currently done in practice. Whether a
specific organization uses all of these techniaues will
depend, at least partially, on its maturity.

current process is changed in a certain way
382. Initial data about the performance of
the current process needs to be collected,
however, as a basis for the simulation.

138. w Orthogonal Defect Classification

139. Orthogonal Defect Classification is a
technique that can be used to link faults
found with potential causes. It relies on a
mapping between fault types and fault
triggers 302303. There exists an IEEE
Standard on the classification of faults (or
anomalies) that may also be useful in this
context (IEEE Standard for the
Classification of Software Anomalies. IEEE
Std 1044-1993) 347.

140. w Statistical Process Control

141. Placing the software process under
statistical process control, through the use
of control charts and their interpretations, is
an effective way to identify stability, or
otherwise, in the process 328.

142. w The Personal Software Process

143. This defines a series of improvements to an
individual’s development practices in a
specified order 340. It is ‘bottom-up’ in the
sense that it stipulates personal data
collection and improvements based on the
data interpretations.

144. 3.3.2.2 Benchmarking Paradigm

145. This paradigm involves measuring the
capability/maturity of an organization’s
processes. A general introductory overview of
the benchmarking paradigm and its application is
provided in 398.

146. w Process assessment models

147. Architectures of assessment models

148. There are two general architectures for an
assessment model that make different
assumptions about the order in which
processes must be measured: the continuous
and the staged architectures 375. At this
point it is not possible to make a
recommendation as to which approach is
better than another. They have considerable
differences. An organization should
evaluate them to see which are most
pertinent to their needs and objectives when
selecting a model.

149. Assessment models

150. The most commonly used assessment
model in the software community is the

© IEEE – Stoneman (Version 0.7) – April 2000 9–9

SW-CMM 387. It is also important to
recognize that ISO/IEC 15504 is an
emerging international standard on software
process assessments 321351. It defines an
exemplar assessment model and
conformance requirements on other
assessment models. ISO 9001 is also a
common model that has been applied by
software organizations 396. Other notable
examples of assessment models are
Trillium 300, Bootstrap 394, and the
requirements engineering capability model
393. There are also maturity models for
other software processes available, such as
for testing 298299, a measurement maturity
model 297, and a maintenance maturity
model 314 (although, there have been many
more capability/maturity models that have
been defined, for example, for design,
documentation, and formal methods, to
name a few). A maturity model for systems
engineering has also been developed, which
would be useful where a project or
organization is involved in the development
and maintenance of systems including
software 317. A voiced concern has been
the applicability of assessment models to
small organizations. This is addressed in
355385, where assessments models tailored
to small organizations are presented.

151. w Process assessment methods

152. Purpose

153. In order to perform an assessment, a
specific assessment method needs to be
followed. In addition to producing a
quantitative score that characterizes the
capability of the process (or maturity of the
organization), an important purpose of an
assessment is to create a climate for change
within the organization 316. In fact, it has
been argued that the latter is the most
important purpose of doing an assessment
315.

154. Assessment methods

155. The most well known method that has a
reasonable amount of publicly available
documentation is the CBA IPI 316. Many
other methods are refinements of this for
particular contexts. Another well known
method for supplier selection is the SCE
287. Requirements on methods that reflect
what are believed to be good assessment
practices are provided in 365351.

156. 3.4 Process Definition

157. Software engineering processes are defined for a
number of reasons, including: facilitating human
understanding and communication, supporting
process improvement, supporting process
management, providing automated process
guidance, and providing automated execution
support 308339327. The types of process
definitions required will depend, at least
partially, on the reason.

158. It should be noted also that the context of the
project and organization will determine the type
of process definition that is most important.
Important variables to consider include the
nature of the work (e.g., maintenance or
development), the application domain, the
structure of the delivery process (e.g., waterfall,
incremental, evolutionary), and the maturity of
the organization.

159. There are different approaches that can be used
to define and document the process. Under this
topic the approaches that have been presented in
the literature are covered, although at this time
there is no data on the extent to which these are
used in practice.

160. 3.4.1 Types of Process Definitions

161. Processes can be defined at different levels of
abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs.
proscriptive). The differentiation amongst these
has been described in 364340376.

162. Orthogonal to the levels above, there are also
types of process definitions. For example, a
process definition can be a procedure, a policy,
or a standard.

163. 3.4.2 Life Cycle Models

164. These models serve as a high level definition of
the activities that occur during development.
They are not detailed definitions, but only the
high level activities and their interrelationships.
The common ones are: the waterfall model,
throwaway prototyping model, evolutionary
prototyping model, incremental/iterative
development, spiral model, reusable software
model, and automated software synthesis. (see
292307354376378). Comparisons of these
models are provided in 307310, and a method for
selection amongst many of them in 284.

9–10 © IEEE – Stoneman (Version 0.7) – April 2000

165. 3.4.3 Software Life Cycle Process
Models

166. Definitions of life cycle process models tend to
be more detailed than life cycle models. Another
difference being that life cycle process models do
not attempt to order their processes in time.
Therefore, in principle, the life cycle processes
can be arranged to fit any of the life cycle
models. The two main references in this area are
ISO/IEC 12207: Information Technology –
Software Life Cycle Processes 350 and ISO/IEC
TR 15504: Information Technology – Software
Process Assessment 351321. Extensive guidance
material for the application of the former has
been produced by the IEEE (Guide for
Information Technology - Software Life Cycle
Processes - Life cycle data, IEEE Std 12207.1-
1998, and Guide for Information Technology -
Software Life Cycle Processes – Implementation.
Considerations. IEEE Std 12207.2-1998)
348349. The latter defines a two dimensional
model with one dimension being processes, and
the second a measurement scale to evaluate the
capability of the processes. In principle, ISO/IEC
12207 would serve as the process dimension of
ISO/IEC 15504.

167. The IEEE standard on developing life cycle
processes also provides a list of processes and
activities for development and maintenance
(IEEE Standard for Developing Software Life
Cycle Processes, IEEE Std 1074-1991) 344, and
provides examples of mapping them to life cycle
models. A standard that focuses on maintenance
processes is also available from the IEEE (IEEE
Standard for Software Maintenance, IEEE Std
1219-1992) 345.

168. 3.4.4 Notations for Process Definitions

169. Different elements of a process can be defined,
for example, activities, products (artifacts), and
resources 339. Detailed frameworks that
structure the types of information required to
define processes are described in 369285.

170. There are a large number of notations that have
been used to define processes. They differ in the
types of information defined in the above
frameworks that they capture. A text that
describes different notations is 390.

171. Because there is no data on which of these was
found to be most useful or easiest to use under
which conditions, we cover what seemingly are
popular approaches in practice: data flow
diagrams 330, in terms of process purpose and

outcomes 351, as a list of processes decomposed
in constituent activities and tasks defined in
natural language 350, Statecharts 358382 (also
see 336 for a comprehensive description of
Statecharts), ETVX 381, Actor-Dependency
modeling 294397, SADT notation 368, Petri nets
286, IDEF0 390, rule-based 288, and System
Dynamics 282. Other process programming
languages have been devised, and these are
described in 308327339.

172. 3.4.5 Process Definition Methods

173. These methods specify the activities that must be
performed in order to define a process model.
These may include eliciting information from
developers to build a descriptive process
definition from scratch, and to tailoring an
existing standard or commercial process. In
general, there is a strong similarity amongst them
in that they tend to follow a traditional software
development life cycle: 369368293294359.

174. 3.4.6 Automation

175. Automated tools either support the execution of
the process definitions, or they provide guidance
to humans performing the defined processes. In
cases where process analysis is performed, some
tools allow different types of simulations (e.g.,
discrete event simulation).

176. There exist tools that support each of the above
process definition notations. Furthermore, these
tools can execute the process definitions to
provide automated support to the actual
processes, or to fully automate them in some
instances. An overview of process modeling
tools can be found in 327, and of process-
centered environments in 332333.

177. Recent work on the application of the www to
the provision of real -time process guidance is
described in 360.

178. 3.5 Qualitative Process Analysis

179. The objective of qualitative process analysis is to
identify the strengths and weaknesses of the
software process. It can be performed as a
diagnoses before implementing or changing a
process. It could also be performed after a
process is implemented or changed to determine
whether the change has had the desired effect.

180. Below we present two techniques for qualitative
analysis that have been used in practice.
Although it is plausible that new techniques
would emerge in the future.

© IEEE – Stoneman (Version 0.7) – April 2000 9–11

181. 3.5.1 Process Definition Review

182. Qualitative evaluation means reviewing a process
definition (either a descriptive or a prescriptive
one, or both), and identifying deficiencies and
potential process improvements. Typical
examples are presented in 286358. An easily
operational way to analyze a process is to
compare it to an existing standard (national,
international, or profesisonal body), such as
ISO/IEC 12207 350.

183. With this approach, one does not collect
quantitative data on the process. Or if
quantitative data is collected, it plays a
supportive role. The individuals performing the
analysis of the process definition use their
knowledge and capabilities to decide what
process changes would potentially lead to
desirable process outcomes.

184. 3.5.2 Root Cause Analysis

185. Another common qualitative technique that is
used in practice is a “Root Cause Analysis”. This
involves tracing back from detected problems
(e.g., faults) to identify the process causes, with
the aim of changing the process to avoid the
problems in the future. Examples of this for
different types of processes are described in
293320306373.

186. With this approach, one starts from the process
outcomes, and traces back along the path in
Figure 3 to identify the process causes of the
undesirable outcomes. The Orthogonal Defect
Classification technique described in Section
3.3.2.1 can be considered a more formalized
approach to root cause analysis using
quantitative information.

187. 3.6 Process Implementation and
Change

188. This topic describes the situation when processes
are deployed for the first time (e.g., introducing
an inspection process within a project or a
complete methodology, such as Fusion 305 or
the Unified Process 353), and when current
processes are changed (e.g., introducing a tool, or
optimizing a procedure).5 In both instances,
existing practices have to be modified. If the
modifications are deep, then changes in the
organizational culture may be necessary.

5 This can also be termed “process evolution”.

189. 3.6.1 Paradigms for Process
Implementation and Change

190. Two general paradigms that have emerged for
driving process implementation and change are
the Quality Improvement Paradigm 388 and the
IDEAL model 366. The two paradigms are
compared in 388. A concrete instantiation of the
QIP is described in 296.

191. 3.6.2 Guidelines for Process
Implementation and Change

192. Process implementation and change is an
instance of organizational change. Most
successful organizational change efforts treat the
change as a project in its own right, with
appropriate plans, monitoring, and review.

193. Guidelines about process implementation and
change within software engineering
organizations, including action planning,
training, management sponsorship and
commitment, and the selection of pilot projects,
and that cover both the transition of processes
and tools, are given in 395311361379392385. An
empirical study evaluating success factors for
process change is reported in 323. Grady
describes the process improvement experiences
at HP, with some general guidance on
implementing organizational change 335.

194. The role of change agents in this activity should
not be underestimated. Without the enthusiasm,
influence, credibility, and persistence of a change
agent, organizational change has little chance of
succeeding. This is further discussed in 343.

195. Process implementation and change can also be
seen as an instance of consulting (either internal
or external). A suggested text, and classic, on
consulting is that of Schein 386.

196. One can also view organizational change from
the perspective of technology transfer. The
classic text on the stages of technology transfer is
that by Rogers 384. Software engineering articles
that discuss technology transfer, and the
characteristics of recipients of new technology
(which could include process related
technologies) are 377383.

197. 3.6.3 Evaluating the Outcome of Process
Implementation and Change

198. Evaluation of process implementation and
change outcomes can be qualitative or
quantitative. The topics above on qualitative
analysis and measurement are relevant when

9–12 © IEEE – Stoneman (Version 0.7) – April 2000

evaluating implementation and change since they
describe the techniques. Below we present some
conceptual issues that become important when
evaluating the outcome of implementation and
change.

199. There are two ways that one can approach
evaluation of process implementation and
change. One can evaluate it in terms of changes
to the process itself, or in terms of changes to the
process outcomes (for example, measuring the
Return on Investment from making the change).
This issue is concerned with the distinction
between cause and effect (as depicted in the path
diagram in Figure 3), and is discussed in 296.

200. Sometimes people have very high expectations
about what can be achieved in studies that
evaluate the costs and benefits of process
implementation and change. A pragmatic look at
what can be achieved from such evaluation
studies is given in 338.

201. Overviews of how to evaluate process change,
and examples of studies that do so can be found
in 322334357362361367.

202. 4. KEY REFERENCES

203. The following are the key references that are
recommended for this knowledge area. The
mapping to the topics is given in Section 5.

204. K. El Emam and N. Madhavji (eds.): Elements of
Software Process Assessment and Improvement,
IEEE CS Press, 1999.

205. This IEEE edited book provides detailed chapters
on the software process assessment and
improvement area. It could serve as a general
reference for this knowledge area, however,
specifically chapters 1, 7, and 11 cover quite a bit
of ground in a succinct manner.

206. K. El Emam, J-N Drouin, W. Melo: SPICE: The
Theory and Practice of Software Process
Improvement and Capability Determination.
IEEE CS Press, 1998.

207. This IEEE edited book describes the emerging
ISO/IEC 15504 international standard and its
rationale. Chapter 3 provides a description of the
overall architecture of the standard, which has
since then been adopted in other assessment
models.

208. S-L. Pfleeger: Software Engineering: Theory and
Practice. Prentice-Hall, 1998.

209. This general software engineering reference has
a good chapter, chapter 2, that discusses many
issues related to the process modeling area.

210. Fuggetta and A. Wolf: Software Process, John
Wiley & Sons, 1996.

211. This edited book provides a good overview of
the process area, and covers modeling as well as
assessment and improvement. Chapters 1 and 2
are reviews of modeling techniques and tools,
and chapter 4 gives a good overview of the
human and organizational issues that arise during
process implementation and change.

212. R. Messnarz and C. Tully (eds.): Better Software
Practice for Business Benefit: Principles and
Experiences, IEEE CS Press, 1999.

213. This IEEE edited book provides a comprehensive
perspective on process assessment and
improvement efforts in Europe. Chapter 7 is a
review of the costs and benefits of process
improvement, with many references to prior
work. Chapter 16 describes factors that affect the
success of process improvement.

214. J. Moore: Software Engineering Standards: A
User’s Road Map. IEEE CS Press, 1998.

215. This IEEE book provides a comprehensive
framework and guidance on software engineering
standards. Chapter 13 is the process standards
chapter.

216. N. Madhavji: “The Process Cycle”. In Software
Engineering Journal, 6(5):234-242, 1991.

217. This article provides an overview of different
types of process definitions and relates them
within an organizational context.

218. M. Dowson: “Software Process Themes and
Issues”. In Proceedings of the 2nd International
Conference on the Software Process, pages 54-
62, 1993.

219. This article provides an overview of the main
themes in the software process area. Although
not recent, most of the issues raised are still valid
today.

220. P. Feiler and W. Humphrey: “Software Process
Development and Enactment: Concepts and
Definitions”. In Proceedings of the Second
International Conference on the Software
Process, pages 28-40, 1993.

221. This article was one of the first attempts to define
terminology in the software process area. Most
of its terms are commonly used nowadays.

222. L. Briand, C. Differding, and H. D. Rombach:
“Practical Guidelines for Measurement-Based

© IEEE – Stoneman (Version 0.7) – April 2000 9–13

Process Improvement”. In Software Process
Improvement and Practice, 2:253-280, 1996.

223. This article provides a pragmatic look at using
measurement in the context of process
improvement, and discusses most of the issues
related to setting up a measurement program.

224. Software Engineering Laboratory: Software
Process Improvement Guidebook. NASA/GSFC,
Technical Report SEL-95-102, April 1996.
(available from http://sel.gsfc.nasa.gov/doc-
st/docs/95-102.pdf)

225. This is a standard reference on the concepts of
the QIP and EF.

226. P. Fowler and S. Rifkin: Software Engineering
Process Group Guide. Software Engineering
Institute, Technical Report CMU/SEI-90-TR-24,
1990. (available from http://www.sei.cmu.edu)

227. This is the standard reference on setting up and
running an SEPG.

228. M. Dorfmann and R. Thayer (eds.): Software
Engineering, IEEE CS Press, 1997.

229. Chapter 11 of this IEEE volume gives a good
overview of contemporary life cycle models.

230. K. El Emam and D. Goldenson: “An Empirical
Review of Software Process Assessments”. In
Advances in Computers, 2000.

231. This chapter provides the most up-to-date review
of evidence supporting process assessment and
improvement, as well as a historical perspective
on some of the early MIS work.

232. 5. KEY REFERENCES VS. TOPICS

MAPPING

233. Below are the matrices linking the topics to key
references. In an attempt to limit the number of
references and the total number of pages, as
requested, some relevant articles are not included
in this matrix. The reference list below provides
a more comprehensive coverage.

234. In the cells, where there is a tick indicates that
the whole reference (or most of it) is relevant.
Otherwise, specific chapter numbers are
provided in the cell.

9–14 © IEEE – Stoneman (Version 0.7) – April 2000

 Elements
318

SPICE
321

Pfleeger
376

Fuggetta
331

Messnarz
370

Moore
372

Madhavji
364

Dowson
313

235. Basic Concepts and Definitions

236. Themes √

237. Terminology

238. Process Infrastructure

239. The Experience Factory

240. The Software Engineering Process

241. Process Measurement

242. Methodology in Process
Measurement

243. Process Measurement Paradigms Ch. 1, 7 Ch. 3

244. Process Definition

245. Types of Process √

246. Life Cycle Models Ch. 2

247. Software Life Cycle Process Models Ch. 13

248. Notations for Process Definitions Ch. 1

249. Process Definition Methods Ch. 7

250. Automation Ch. 2 Ch. 2

© IEEE – Stoneman (Version 0.7) – April 2000 9–15

 Elements
318

SPICE
321

Pfleeger
376

Fuggetta
331

Messnarz
370

Moore
372

Madhavji
364

Dowson
313

251. Qualitative Process Analysis

252. Process Definition Review Ch. 7

253. Root Cause Analysis Ch. 7

254. Process Impleme ntation and Change

255. Paradigms for Process
Implementation and Change

Ch. 1, 7

256. Guidelines for Process
Implementation and Change

Ch. 11 Ch. 4 Ch. 16

257. Evaluating the Outcome of Process
Implementation and Change

 Ch. 7

9–16 © IEEE – Stoneman (Version 0.7) – April 2000

 Feiler & Humphrey

326

Briand et al.

295

SEL

388

SEPG

329

Dorfmann & Thayer

312

El Emam &
Goldenson

325

258. Basic Concepts and Definitions

259. Themes

260. Terminology √

261. Process Infrastructure

262. The Experience Factory √

263. The Software Engineering Process
Group

 √

264. Process Measurement

265. Methodology in Process
Measurement

 √ √

266. Process Measurement Paradigms √

267. Process Definition

268. Types of Process Definitions

269. Life Cycle Models Ch. 11

270. Software Life Cycle Process Models

271. Notations for Process Definitions

272. Process Definition Methods

273. Automation

© IEEE – Stoneman (Version 0.7) – April 2000 9–17

 Feiler &
Humphrey

326

Briand et al.

295

SEL

388

SEPG

329

Dorfmann &
Thayer

312

El Emam &
Goldenson

325

274. Qualitative Process Analysis

275. Process Definition Review √

276. Root Cause Analysis √

277. Process Implementation and
change

278. Paradigms for Process
Implementation and Change

 √ √

279. Guidelines for Process
Implementation and Change

 √ √ √

280. Evaluating the Outcome of
Process Implementation and
Change

 √ √

9–18 © IEEE – Stoneman (Version 0.7) – April 2000

281. 6. GENERAL REFERENCES

282. [1]T. Abdel-Hamid and S. Madnick: Software
Project Dynamics: An Integrated Approach.
Prentice-Hall, 1991.

283. [2] W. Agresti: “The Role of Design and
Analysis in Process Improvement”. In K. El
Emam and N. Madhavji (eds.): Elements of
Software Process Assessment and Improvement,
IEEE CS Press, 1999.

284. [3] L. Alexander and A. Davis: “Criteria for
Selecting Software Process Models”. In
Proceedings of COMPSAC’91, pages 521-528,
1991.

285. [4] J. Armitage and M. Kellner: “A Conceptual
Schema for Process Definitions and Models”. In
Proceedings of the Third International
Conference on the Software Process, pages 153-
165, 1994.

286. [5] S. Bandinalli, A. Fuggetta, L. Lavazza, M.
Loi, and G. Picco: “Modeling and Improving an
Industrial Software Process”. In IEEE
Transactions on Software Engineering,
21(5):440-454, 1995.

287. [6] R. Barbour: Software Capability Evaluation –
Version 3.0 : Implementation Guide for Supplier
Selection. Software Engineering Institute,
Technical Report CMU/SEI-95-TR012, 1996.
(available from http://www.sei.cmu.edu).

288. [7] N. Barghouti, D. Rosenblum, D. Belanger,
and C. Alliegro: “Two Case Studies in Modeling
Real, Corporate Processes”. In Software Process
– Improvement and Practice , Pilot Issue, 17-32,
1995.

289. [8] V. Basili, G. Caldiera, and G. Cantone: “A
Reference Architecture for the Component
Factory”. In ACM Transactions on Software
Engineering and Methodology, 1(1):53-80. 1992.

290. [9] V. Basili, G. Caldiera, F. McGarry, R.
Pajerski, G. Page, and S. Waligora: “The
Software Engineering Laboratory – An
Operational Software Experience Factory”. In
Proceedings of the International Conference on
Software Engineering, pages 370-381, 1992.

291. [10] V. Basili, S. Condon, K. El Emam, B.
Hendrick, and W. Melo: “Characterizing and
Modeling the Cost of Rework in a Library of
Reusable Software Components”. In
Proceedings of the 19th International
Conference on Software Engineering, pages 282-
291, 1997.

292. [11] B. Boehm: “A Spiral Model of Software
Development and Enhancement”. In Computer,
21(5):61-72, 1988.

293. [12] L. Briand, V. Basili, Y. Kim, and D. Squire:
“A Change Analysis Process to Characterize
Software Maintenance Projects”. In Proceedings
of the International Conference on Software
Maintenance, 1994.

294. [13] L. Briand, W. Melo, C. Seaman, and V.
Basili: “Characterizing and Assessing a Large-
Scale Software Maintenance Organization”. In
Proceedings of the 17th International Conference
on Software Engineering, 1995.

295. [14] L. Briand, C. Differding, and H. D.
Rombach: “Practical Guidelines for
Measurement-Based Process Improvement”. In
Software Process Improvement and Practice,
2:253-280, 1996.

296. [15] L. Briand, K. El Emam, and W. Melo: “An
Inductive Method for Software Process
Improvement: Concrete Steps and Guidelines”.
In K. El Emam and N. Madhavji (eds.): Elements
of Software Process Assessment and
Improvement, IEEE CS Press, 1999.

297. [16] F. Budlong and J. Peterson: “Software
Metrics Capability Evaluation Guide”. The
Software Technology Support Center, Ogden Air
Logistics Center, Hill Air Force Base, 1995.

298. [17] I. Burnstein, T. Suwannasart, and C.
Carlson: “Developing a Testing Maturity Model:
Part I”. In Crosstalk, pages 21-24, August 1996.

299. [18] I. Burnstein, T. Suwannasart, and C.
Carlson: “Developing a Testing Maturity Model:
Part II”. In Crosstalk, pages 1926-24, September
1996.

300. [19] F. Coallier, J. Mayrand, and B. Lague:
“Risk Management in Software Product
Procurement”. In K. El Emam and N. Madhavji
(eds.): Elements of Software Process Assessment
and Improvement, IEEE CS Press, 1999.

301. [20] D. Card: “Understanding Process
Improvement”. In IEEE Software, pages 102-
103, July 1991.

302. [21] R. Chillarege, I. Bhandhari, J. Chaar, M.
Halliday, D. Moebus, B. Ray, and M. Wong:
“Orthogonal Defect Classification – A Concept
for In-Process Measurement”. In IEEE
Transactions on Software Engineering,
18(11):943-956, 1992.

303. [22] R. Chillarege: “Orthogonal Defect
Classification”. In M. Lyu (ed.): Handbook of

© IEEE – Stoneman (Version 0.7) – April 2000 9–19

Software Reliability Engineering, IEEE CS
Press, 1996.

304. [23] A. Christie: Software Process Automation:
The Technology and its Adoption. Springer
Verlag, 1995.

305. [24] D. Coleman, P. Arnold, S. Godoff, C.
Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes:
Object-Oriented Development: The Fusion
Method. Englewood Cliffs, NJ:Prentice Hall,
1994.

306. [25] J. Collofello and B. Gosalia: “An
Application of Causal Analysis to the Software
Production Process”. In Software Practice and
Experience, 23(10):1095-1105, 1993.

307. [26] E. Comer: “Alternative Software Life Cycle
Models”. In M. Dorfmann and R. Thayer (eds.):
Software Engineering, IEEE CS Press, 1997.

308. [27] B. Curtis, M. Kellner, and J. Over: “Process
Modeling”. In Communications of the ACM,
35(9):75-90, 1992.

309. [28] B. Curtis, W. Hefley, S. Miller, and M.
Konrad: “The People Capability Maturity Model
for Improving the Software Workforce”. In K. El
Emam and N. Madhavji (eds.): Elements of
Software Process Assessment and Improvement,
IEEE CS Press, 1999.

310. [29] A. Davis, E. Bersoff, and E. Comer: “A
Strategy for Comparing Alternative Software
Development Life Cycle Models”. In IEEE
Transactions on Software Engineering,
14(10):1453-1461, 1988.

311. [30] R. Dion: “Starting the Climb Towards the
CMM Level 2 Plateau”. In K. El Emam and N.
Madhavji (eds.): Elements of Software Process
Assessment and Improvement, IEEE CS Press,
1999.

312. [31] M. Dorfmann and R. Thayer (eds.):
Software Engineering, IEEE CS Press, 1997.

313. [32] M. Dowson: “Software Process Themes and
Issues”. In Proceedings of the 2nd International
Conference on the Software Process, pages 54-
62, 1993.

314. [33] D. Drew: “Tailoring the Software
Engineering Institute’s (SEI) Capability Maturity
Model (CMM) to a Software Sustaining
Engineering Organization”. In Proceedings of
the International Conference on Software
Maintenance, pages 137-144, 1992.

315. [34] K. Dymond: “Essence and Accidents in
SEI-Style Assessments or ‘Maybe this Time the
Voice of the Engineer Will be Heard’”. In K. El
Emam and N. Madhavji (eds.): Elements of

Software Process Assessment and Improvement,
IEEE CS Press, 1999.

316. [35] D. Dunnaway and S. Masters: CMM-Based
Appraisal for Internal Process Improvement
(CBA IPI): Method Description. Software
Engineering Institute, Technical Report
CMU/SEI-96-TR-007, 1996. (available from
http://www.sei.cmu.edu)

317. [36] EIA: EIA/IS 731 Systems Engineering
Capability Model. (available from
http://www.geia.org/eoc/G47/index.html)

318. [37] K. El Emam and N. Madhavji (eds.):
Elements of Software Process Assessment and
Improvement, IEEE CS Press, 1999.

319. [39] K. El Emam and D. R. Goldenson: “SPICE:
An Empiricist’s Perspective”. In Proceedings of
the Second IEEE International Software
Engineering Standards Symposium, pages 84-97,
August 1995.

320. [39] K. El Emam, D. Holtje, and N. Madhavji:
“Causal Analysis of the Requirements Change
Process for a Large System”. In Proceedings of
the International Conference on Software
Maintenance , pages 214-221, 1997.

321. [40] K. El Emam, J-N Drouin, W. Melo: SPICE:
The Theory and Practice of Software Process
Improvement and Capability Determination.
IEEE CS Press, 1998.

322. [41] K. El Emam and L. Briand: “Costs and
Benefits of Software Process Improvement”. In
R. Messnarz and C. Tully (eds.): Better Software
Practice for Business Benefit: Principles and
Experiences, IEEE CS Press, 1999.

323. [42] K. El Emam, B. Smith, P. Fusaro: “Success
Factors and Barriers for Software Process
Improvement: An Empirical Study”. In R.
Messnarz and C. Tully (eds.): Better Software
Practice for Business Benefit: Principles and
Experiences, IEEE CS Press, 1999.

324. [43] K. El Emam: “Benchmarking Kappa:
Interrater Agreement in Software Process
Assessments”. In Empirical Software
Engineering: An International Journal, 4(2):113-
133, 1999.

325. [44] K. El Emam and D. Goldenson: “An
Empirical Review of Software Process
Assessments”. In Advances in Computers, 2000.

326. [45] P. Feiler and W. Humphrey: “Software
Process Development and Enactment: Concepts
and Definitions”. In Proceedings of the Second
International Conference on the Software
Process, pages 28-40, 1993.

9–20 © IEEE – Stoneman (Version 0.7) – April 2000

327. [46] A. Finkelstein, J. Kramer, and B. Nuseibeh
(eds.): Software Process Modeling and
Technology. Research Studies Press Ltd., 1994.

328. [47] W. Florac and A. Carleton: Measuring the
Software Process: Statistical Process Control for
Software Process Improvement. Addison
Wesley, 1999.

329. [48] P. Fowler and S. Rifkin: Software
Engineering Process Group Guide. Software
Engineering Institute, Technical Report
CMU/SEI-90-TR-24, 1990. (available from
http://www.sei.cmu.edu)

330. [49] D. Frailey: “Defining a Corporate-Wide
Software Process”. In Proceedings of the 1st
International Conference on the Software
Process, pages 113-121, 1991.

331. [50] A. Fuggetta and A. Wolf: Software Process,
John Wiley & Sons, 1996.

332. [51] P. Garg and M. Jazayeri: Process-Centered
Software Engineering Environments. IEEE CS
Press, 1995.

333. [52] P. Garg and M. Jazayeri: “Process-Centered
Software Engineering Environments: A Grand
Tour”. In A. Fuggetta and A. Wolf: Software
Process, John Wiley & Sons, 1996.

334. [53] D. Goldenson, K. El Emam, J. Herbsleb,
and C. Deephouse: “Empirical Studies of
Software Process Assessment Methods”. In K. El
Emam and N. Madhavji (eds.): Elements of
Software Process Assessment and Improvement,
IEEE CS Press, 1999.

335. [54] R. Grady: Successful Software Process
Improvement. Prentice Hall, 1997.

336. [55] D. Harel and M. Politi: Modeling Reactive
Systems with Statecharts: The Statemate
Approach. McGraw-Hill, 1998.

337. [56] J. Henry and B. Blasewitz: “Process
Definition: Theory and Reality”. In IEEE
Software, page 105, November 1992.

338. [57] J. Herbsleb: “Hard Problems and Hard
Science: On the Practical Limits of
Experimentation”. In IEEE TCSE Software
Process Newsletter, No. 11, pages 18-21, 1998.
(available from http://www.seg.iit.nrc.ca/SPN)

339. [58] K. Huff: “Software Process Modeling”. In
A. Fuggetta and A. Wolf: Software Process, John
Wiley & Sons, 1996.

340. [59] W. Humphrey: Managing the Software
Process. Addison Wesley, 1989.

341. [60] W. Humphrey: A Discipline for Software
Engineering. Addison Wesley, 1995.

342. [61] W. Humphrey: An Introduction to the Team
Software Process. Addison-Wesley, 1999.

343. [62] D. Hutton: The Change Agent’s Handbook:
A Survival Guide for Quality Improvement
Champions. Irwin, 1994.

344. [63] IEEE: IEEE Standard for Developing
Software Life Cycle Processes. IEEE Std 1074-
1991.

345. [64] IEEE: IEEE Standard for Software
Maintenance, IEEE Std 1219-1992.

346. [65] IEEE: IEEE Standard for a Software
Quality Metrics Methodology. IEEE Std 1061-
1998.

347. [66] IEEE: IEEE Standard for the Classification
of Software Anomalies. IEEE Std 1044-1993.

348. [67] IEEE: Guide for Information Technology -
Software Life Cycle Processes - Life cycle data.
IEEE Std 12207.1-1998.

349. [68] IEEE: Guide for Information Technology -
Software Life Cycle Processes – Implementation.
Considerations. IEEE Std 12207.2-1998.

350. [69] ISO/IEC 12207: Information Technology –
Software Life Cycle Processes. 1995.

351. [70] ISO/IEC TR 15504: Information
Technology – Software Process Assessment,
1998. (parts 1-9; part 5 was published in 1999).
Available from http://www.seg.iit.nrc.ca/spice.

352. [71] ISO/IEC CD 15939: Information
Technology – Software Measurement Process,
2000.

353. [72] I. Jacobson, G. Booch, and J. Rumbaugh:
The Unified Software Development Process.
Addison-Wesley, 1998 .

354. [73] P. Jalote: An Integrated Approach to
Software Engineering. Springer, 1997.

355. [74] D. Johnson and J. Brodman: “Tailoring the
CMM for Small Businesses, Small
Organizations, and Small Projects”. In K. El
Emam and N. Madhavji (eds.): Elements of
Software Process Assessment and Improvement,
IEEE CS Press, 1999.

356. [75] C. Jones: Applied Software Measurement.
McGraw-Hill, 1994.

357. [76] C. Jones: “The Economics of Software
Process Improvements”. In K. El Emam and N.
Madhavji (eds.): Elements of Software Process
Assessment and Improvement, IEEE CS Press,
1999.

358. [77] M. Kellner and G. Hansen: “Software
Process Modeling: A Case Study”. In

© IEEE – Stoneman (Version 0.7) – April 2000 9–21

Proceedings of the 22nd International Conference
on the System Sciences, 1989.

359. [78] M. Kellner, L. Briand, and J. Over: “A
Method for Designing, Defining, and Evolving
Software Processes”. In Proceedings of the 4th
International Conference on the Software
Process, pages 37-48, 1996.

360. [79]M. Kellner, U. Becker-Kornstaedt, W.
Riddle, J. Tomal, and M. Verlage: “Process
Guides: Effective Guidance for Process
Participants”. In Proceedings of the 5th
International Conference on the Software
Process, pages 11-25, 1998.

361. [80] B. Kitchenham: “Selecting Projects for
Technology Evaluation”. In IEEE TCSE
Software Process Newsletter, No. 11, pages 3 -6,
1998. (available from
http://www.seg.iit.nrc.ca/SPN)

362. [81] H. Krasner: “The Payoff for Software
Process Improvement: What it is and How to Get
it”. In K. El Emam and N. Madhavji (eds.):
Elements of Software Process Assessment and
Improvement, IEEE CS Press, 1999.

363. [82] J. Lonchamp: “A Structured Conceptual and
Terminological Framework for Software Process
Engineering”. In Proceedings of the Second
International Conference on the Software
Process, pages 41-53, 1993.

364. [83] N. Madhavji: “The Process Cycle”. In
Software Engineering Journal, 6(5):234-242,
1991.

365. [84] S. Masters and C. Bothwell: CMM
Appraisal Framework – Version 1.0. Software
Engineering Institute, Technical Report
CMU/SEI-TR-95-001, 1995. (available from
http://www.sei.cmu.edu)

366. [85] B. McFeeley: IDEAL: A User’s Guide for
Software Process Improvement. Software
Engineering Institute, Handbook CMU/SEI-96-
HB-001, 1996. (available from
http://www.sei.cmu.edu)

367. [86] F. McGarry, R. Pajerski, G. Page, S.
Waligora, V. Basili, and M. Zelkowitz: Software
Process Improvement in the NASA Software
Engineering Laboratory. Software Engineering
Institute, Technical Report CMU/SEI-94-TR-22,
1994.

368. [87] C. McGowan and S. Bohner: “Model Based
Process Assessments”. In Proceedings of the
International Conference on Software
Engineering, pages 202-211, 1993.

369. [88] N. Madhavji, D. Hoeltje, W. Hong, T.
Bruckhaus: “Elicit: A Method for Eliciting
Process Models”. In Proceedings of the Third
International Conference on the Software
Process, pages 111-122, 1994.

370. [89] R. Messnarz and C. Tully (eds.): Better
Software Practice for Business Benefit:
Principles and Experiences, IEEE CS Press,
1999.

371. [90] K. Moller and D. Paulish: Software Metrics.
Chapman & Hall, 1993.

372. [91] J. Moore: Software Engineering Standards:
A User’s Road Map. IEEE CS Press, 1998.

373. [92] T. Nakajo and H. Kume: “A Case History
Analysis of Software Error Cause-Effect
Relationship”. In IEEE Transactions on Software
Engineering, 17(8), 1991.

374. [93] Office of the Under Secretary of Defense for
Acquisitions and Technology: Practical Software
Measurement: A Foundation for Objective
Project Management, 1998 (available from
http://www.psmsc.com).

375. [94] M. Paulk and M. Konrad: “Measuring
Process Capability Versus Organizational
Process Maturity”. In Proceedings of the 4th
International Conference on Software Quality,
1994.

376. [95] S-L. Pfleeger: Software Engineering:
Theory and Practice. Prentice-Hall, 1998.

377. [96] S-L Pfleeger: “Understanding and
Improving Technology Transfer in Software
Engineering”. In The Journal of Systems and
Software, 47:111-124, 1999.

378. [97] R. Pressman: Software Engineering: A
Practitioner’s Approach. McGraw-Hill, 1997.

379. [98] J. Puffer: “Action Planning”. In K. El Emam
and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS
Press, 1999.

380. [99] L. Putnam and W. Myers: Measures for
Excellence: Reliable Software on Time, Within
Budget. Yourdon Press, 1992.

381. [100] R. Radice, N. Roth, A. O’Hara Jr., and W.
Ciarfella: “A Programming Process
Architecture”. In IBM Systems Journal, 24(2):79-
90, 1985.

382. [101] D. Raffo and M. Kellner: “Modeling
Software Processes Quantitatively and
Evaluating the Performance of Process
Alternatives”. In K. El Emam and N. Madhavji

9–22 © IEEE – Stoneman (Version 0.7) – April 2000

(eds.): Elements of Software Process Assessment
and Improvement, IEEE CS Press, 1999.

383. [102] S. Raghavan and D. Chand: “Diffusing
Software-Engineering Methods”. In IEEE
Software, pages 81-90, July 1989.

384. [103] E. Rogers: Diffusion of Innovations. Free
Pressm 1983.

385. [104] M. Sanders (ed.): The SPIRE Handbook:
Better, Faster, Cheaper Software Development
in Small Organisations. Published by the
European Comission, 1998.

386. [105] E. Schein: Process Consultation Revisited:
Building the Helping Relationship. Addison-
Wesley, 1999.

387. [106] Software Engineering Institute: The
Capability Maturity Model: Guidelines for
Improving the Software Process. Addison
Wesley, 1995.

388. [107] Software Engineering Laboratory:
Software Process Improvement Guidebook.
NASA/GSFC, Technical Report SEL-95-102,
April 1996. (available from
http://sel.gsfc.nasa.gov/doc-st/docs/95-102.pdf)

389. [108] Software Engineering Laboratory:
Software Measurement Guidebook.
NASA/GSFC, Technical Report SEL-94-002,
July 1994.

390. [109] Software Productivity Consortium:
Process Definition and Modeling Guidebook.
SPC-92041-CMC, 1992.

391. [110] R. van Solingen and E. Berghout: The
Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software
Development. McGraw Hill, 1999.

392. [111] I. Sommerville and T. Rodden: “Human,
Social and Organisational Influences on the
Software Process”. In A. Fuggetta and A. Wolf:
Software Process, John Wiley & Sons, 1996.

393. [112] I. Sommerville and P. Sawyer:
Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, 1997.

394. [113] H. Steinen: “Software Process Assessment
and Improvement: 5 Years of Experiences with
Bootstrap”. In K. El Emam and N. Madhavji
(eds.): Elements of Software Process Assessment
and Improvement, IEEE CS Press, 1999.

395. [114] K. Wiegers: Creating a Software
Engineering Culture. Dorset house, 1996.

396. [115] S. Weissfelner: “ISO 9001 for Software
Organizations”. In K. El Emam and N. Madhavji

(eds.): Elements of Software Process Assessment
and Improvement, IEEE CS Press, 1999.

397. [116] E. Yu and J. Mylopolous: “Understanding
‘Why’ in Software Process Modeling, Analysis,
and Design”. In Proceedings of the 16th
International Conference on Software
Engineering, 1994.

398. [117] S. Zahran: Software Process Improvement:
Practical Guidelines for Business Success.
Addison Wesley, 1998.

© IEEE – Stoneman (Version 0.7) – April 2000 10–1

CHAPTER 10
SOFTWARE ENGINEERING TOOLS AND METHODS

David Carrington
Department of Computer Science and Electrical Engineering

The University of Queensland
Brisbane, Qld 4072

Australia
+61 7 3365 3310

davec@csee.uq.edu.au

TABLE OF CONTENTS

1. INTRODUCTION
2. DEFINITION OF KNOWLEDGE AREA
3. BREAKDOWN OF TOPICS
4. BREAKDOWN RATIONALE
5. MATRIX OF TOPICS VS REFERENCE MATERIAL
6. RECOMMENDED REFERENCES
7. LIST OF FURTHER READINGS
8. ACKNOWLEDGMENTS
9. REFERENCES
 APPENDIX: TOPIC-REFERENCE MATRICES

1. 1. INTRODUCTION

2. This document provides an initial breakdown of
topics within the Software Engineering
Infrastructure Knowledge Area as defined by the
document “Approved Baseline for a List of
Knowledge Areas for the Stone Man Version of
the Guide to the Software Engineering Body of
Knowledge”. Earlier versions of this Knowledge
Area included material on integration and reuse,
but this has been removed. Consequently the
Knowledge Area has been renamed from
“Software Engineering Infrastructure” to
“Software Engineering Tools and Methods”.

3. The five texts [DT97, Moo98, Pfl98, Pre97, and
Som96] have been supplemented by Tucker
[Tuc96], who provides nine chapters on software
engineering topics. In particular, Chapter 112,
“Software Tools and Environments” by Steven
Reiss [Rei96] was particularly helpful for this
Knowledge Area. Specialized references have
been identified for particular topics, e.g., Object-
oriented development.

4. 2. DEFINITION OF KNOWLEDGE

AREA

5. The Software Engineering Tools and Methods
Knowledge Area includes both the development
methods and the software development
environments knowledge areas identified in the
Straw Man version of the guide.

6. Development methods impose structure on the
software development activity with the goal of
making the activity systematic and ultimately
more likely to be successful. Methods usually
provide a notation and vocabulary, procedures
for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope,
from a single life cycle phase to the complete life
cycle. The emphasis in this Knowledge Area is
on methods that encompass multiple lifecycle
phases since phase-specific methods are likely to
be covered in other Knowledge Areas.

7. Software development environments are the
computer-based tools that are intended to assist
the software development process. Tools allow
repetitive, well-defined actions to be automated,
thus reducing the cognitive load on the software
engineer. The engineer is then free to concentrate
on the creative aspects of the process. Tools are
often designed to support particular methods,
reducing any administrative load associated with
applying the method manually. Like methods,
they are intended to make development more
systematic, and they vary in scope from
supporting individual tasks to encompassing the
complete life cycle.

10–2 © IEEE – Stoneman (Version 0.7) – April 2000

8. 3. BREAKDOWN OF TOPICS

9. This section contains a top-level breakdown of
topics in the Software Engineering Tools and
Methods Knowledge Area.

10. I. Software Tools

11. A. Software Requirements Tools

12. B. Software Design Tools

13. C. Software Construction Tools

14. 1. program editors

15. 2. compilers

16. 3. debuggers

17. D. Software Testing Tools

18. 1. test generators

19. 2. test execution frameworks

20. 3. test evaluation tools

21. 4. test management tools

22. E. Software Maintenance Tools

23. 1. comprehension tools

24. 2. reverse engineering tools

25. 3. re-engineering tools

26. 4. traceability tools

27. F. Software Engineering Process Tools

28. 1. integrated CASE environments

29. 2. process-centered software engineering
environments

30. 3. process modeling tools

31. G. Software Quality Tools

32. 1. inspection tools

33. 2 static analysis tools

34. 3. performance analysis tools

35. H. Software Configuration Management
Tools

36. 1. version management tools

37. 2. release and build tools

38. I. Software Engineering Management Tools

39. 1. project planning and tracking tools

40. 2. risk analysis and risk management tools

41. 3. measurement tools

42. 4. defect, enhancement, issue and problem
tracking tools

43. J. Infrastructure support tools

44. 1. interpersonal communication tools

45. 2. information retrieval tools

46. 3. system administration and support tools

47. K. Miscellaneous

48. 1. tool integration techniques

49. 2. meta tools

50. 3. tool evaluation

51. II. Software Development Methods

52. A. Heuristic methods

53. 1. ad-hoc (unstructured) methods

54. 2. structured methods

55. 3. data-oriented methods

56. 4. object-oriented methods

57. 5. domain-specific methods:

58. B. Formal methods

59. 1. specification languages & notations

60. 2. refinement

61. 3. verification

62. C. Prototyping methods

63. 1. styles

64. 2. prototyping target

65. 3. evaluation techniques

66. D. Miscellaneous

67. 1. method evaluation

68. Software Tools

69. The top-level partitioning of the Software Tools
section uses the same structure as the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge. The first five
subsections correspond to the five Knowledge
Areas (Requirements, Design, Construction,
Testing, and Maintenance) that correspond to a
phase of a software lifecycle, so these sections
provide a location for phase-specific tools. The
next four subsections correspond to the
remaining Knowledge Areas (Process, Quality,
Configuration Management and Management),
and provide a location for phase-independent
tools that are associated with activities described
in these Knowledge Areas. Two additional
subsections are provided: one for infrastructure
support tools that do not fit in any of earlier
sections, and a Miscellaneous subsection for
topics, such as tool integration techniques, that
are potentially applicable to all classes of tools.
Because software engineering tools evolve
rapidly and continuously, the hierarchy and

© IEEE – Stoneman (Version 0.7) – April 2000 10–3

description avoids discussing particular tools as
far as possible.

70. Software Requirements Tools

71. Tools used for eliciting, recording, analysing and
validating software requirements belong in this
section.

72. Software Design Tools

73. This section covers tools for creating and
checking software designs. There is a variety of
such tools, with much of this variety being a
consequence of the diversity of design notations
and methods.

74. Software Construction Tools

75. Program editors are tools used for creation and
modification of programs (and possibly
associated documents). These tools can be
general-purpose text or document editors, or they
can be specialized for a target language. Editing
refers to human-controlled development tools
whereas compilers are generally not interactive.
Some environments provide both interactive
editing and compilation via one interface. The
compilers topic also covers pre-processors,
linkers/loaders, and code generators. Debugging
tools have been made a separate topic since they
support the construction process but are different
from program editors or compilers.

76. Software Testing Tools

77. Testing tools can be categorized according to
where in the testing process they are used. Test
generators assist the development of test cases.
Test execution frameworks enable the execution
of test cases in a controlled environment where
the behavior of the object under test is observed.
Test evaluation tools support the assessment of
the results of test execution, helping to determine
whether the observed behavior conforms to the
expected behavior. Test management tools
provide support for the testing process.

78. Software Maintenance Tools

79. The first topic in this section concerns tools to
assist human comprehension of programs.
Example tools include visualization tools such as
animators and program slicers. The next topic is
reverse engineering tools that assist the process
of working backwards from an existing product
to create artefacts such as design and
specification descriptions. Re -engineering tools

extend this approach by applying transformations
to generate a new product from an old one. Such
tools allow translation of a program to a new
programming language, or a database to a new
format. Traceability tools have been included in
this section since a major goal of traceability is
to facilitate maintenance.

80. Software Engineering Process Tools

81. Computer-aided software engineering tools or
environments that cover multiple phases of the
software development lifecycle have been
incorporated in this section. Such tools perform
multiple functions and hence potentially interact
with the software process that is being enacted.
The second topic covers those environments that
explicitly incorporate software process
information and that guide and monitor the user
according to a defined process. The third topic
covers tools to model and investigate software
processes.

82. Software Quality Tools

83. The first topic in this section covers tools to
support reviews and inspections. The second
topic deals with tools that analyse software
artefacts, such as syntactic and semantic
analysers, and data, control flow and dependency
analysers. Such tools are intended for checking
software artefacts for conformance or for
verifying desired properties. The third topic deals
with analysis of dynamic behaviour or
performance.

84. Software Configuration Management
Tools

85. Tools for configuration management have been
categorized as either related to version
management or to software release and build
management.

86. Software Engineering Management
Tools

87. Management tools have been subdivided into
four categories: project planning and tracking,
risk analysis and risk management,
measurement, and tools for tracking defects,
enhancements, issues and problems.

88. Infrastructure support tools

89. This section covers tools that provide
interpersonal communication, information
retrieval, and system administration and support.

10–4 © IEEE – Stoneman (Version 0.7) – April 2000

These tools, such as e-mail, databases, web
browsers and file backup tools, are generally not
specific to a particular lifecycle stage, nor to a
particular development method.

90. Miscellaneous

91. This section covers tool integration techniques,
meta-tools and tool evaluation. Tool integration
is important for making individual tools
cooperate. The kinds of tool integration are
platform, presentation, process, data, and control
[Sommeville, Section 25.2]. Meta-tools generate
other tools; compiler-compilers are the classic
example. Because of the continuous evolution of
software engineering tools, tool evaluation is an
important topic.

92. Software Development Methods

93. This section is divided into four subsections:
heuristic methods dealing with informal
approaches, formal methods dealing with
mathematically based approaches, prototyping
methods dealing with software development
approaches based on various forms of
prototyping, and miscellaneous. The first three
subsections are not disjoint; rather they represent
distinct concerns. For example, an object-
oriented method may incorporate formal
techniques and rely on prototyping for
verification and validation. Like software
engineering tools, methodologies evolve
continuously. Consequently, the Knowledge
Area description avoids naming particular
methodologies as far as possible.

94. Heuristic methods

95. This subsection contains five categories: ad-hoc,
structured, data-oriented, object -oriented and
domain-specific. The domain-specific category
includes specialized methods such as real-time
development methods.

96. Formal methods

97. This subsection deals with mathematically based
development methods and is subdivided by
different aspects of formal methods. Topic 1 is
the specification notation or language used.
Specification languages are commonly classified
as model-oriented, property-oriented or behavior-
oriented. Topic 2 deals with how the method
refines (or transforms) the specification into a
form that is closer to the desired final form of an
executable program. Topic 3 covers the
verification properties that are specific to the

formal approach and covers both theorem
proving and model checking.

98. Prototyping methods

99. The third subsection covers methods involving
software prototyping and is subdivided into
prototyping styles, targets and evaluation
techniques. The topic of prototyping styles
identifies the different approaches: throwaway,
evolutionary and the executable specification.
Example targets of a prototyping method may be
requirements, architectural design or the user
interface.

100. Miscellaneous

101. The final subsection is intended to cover topics
not covered elsewhere. The only topic identified
so far is method evaluation.

102. Links to common themes

103. Quality

104. Development methods are intended to provide
guidance to software developers, primarily with
the goal of making it easier to produce a high
quality product. Different methods emphasize
different software qualities. Software tools also
contribute to quality by automating activities
thus assisting the software developer.

105. Standards

106. Software engineering standards represent the
collected wisdom and conventions of the
software engineering community. As methods
mature and gain widespread use, standardization
provides a way to codify the knowledge. No
standards for software development
methodologies have been identified for this
document although individual methods are
standardized. For software tools, the relevant
IEEE standards are:

107. w Trial-Use Standard Reference Model for
Computing System Tool Interconnections,
IEEE Std 1175-1992

108. w IEEE Recommended Practice for the
Evaluation and Selection of CASE Tools,
IEEE Std 1209-1992 (ISO/IEC 14102)

109. w IEEE Recommended Practice for the
Adoption of CASE Tools, IEEE Std 1348-
1995 (ISO/IEC 14471).

110. Two relevant ECMA standards are:

© IEEE – Stoneman (Version 0.7) – April 2000 10–5

111. w ECMA TR/55 Reference Model for
Frameworks of Software Engineering
Environments, 3 rd edition, June 1993,

112. w ECMA TR/69 Reference Model for Project
Support Environments, December 1994.

113. Measurement

114. Specific development methods often incorporate
particular measurements. Tools can assist
software developers perform measurement
activities and this is a specific category of
management tools.

115. 4. BREAKDOWN RATIONALE

116. The Stone Man Version of the Guide to the
Software Engineering Body of Knowledge
conforms at least partially with the partitioning
of the software life cycle in the ISO/IEC 12207
Standard [ISO95]. Some Knowledge Areas, such
as this one, are intended to cover knowledge that
applies to multiple phases of the life cycle. One
approach to partitioning topics in this Knowledge
Area would be to use the software life cycle
phases. For example, software methods and tools
could be classified according to the phase with
which they are associated. This approach was not
seen as effective. If software engineering
infrastructure could be cleanly partitioned by life
cycle phase, it would suggest that this
Knowledge Area could be eliminated by
allocating each part to the corresponding life
cycle Knowledge Area, e.g., infrastructure for
software design to the Software Design
Knowledge Area. Such an approach would fail to
identify the commonality of, and
interrelationships between, both methods and
tools in different life cycle phases. However
since tools are a common theme to most
Knowledge Areas, several reviewers of Version
0.5 of this Knowledge Area suggested that a
breakdown based on Knowledge Area for tools
would be helpful. This suggestion was endorsed
by the Industry Advisory Board.

117. There are many links between methods and tools,
and one possible structure would seek to exploit
these links. However because the relationship is
not a simple “one-to-one” mapping, this structure
has not been used to organize topics in this
Knowledge Area. This does mean that these links
are not explicitly identified.

118. Some topics in this Knowledge Area do not have
corresponding reference materials identified in
the matrices in Appendix 2. There are two

possible conclusions: either the topic area is not
relevant to this Knowledge Area, or additional
reference material needs to be identified.
Feedback from reviewers will be helpful to
resolve this issue.

119. 5. MATRIX OF TOPICS VS

REFERENCE MATERIAL

120. The matrices in the Appendix indicate for each
topic sources of information within the selected
references (see Section 2).

121. 6. RECOMMENDED REFERENCES

122. This section briefly describes each of the
recommended references.

123. [CW96] Edmund M. Clarke et al. Formal
Methods: State of the Art and Future Directions.

124. This tutorial on formal methods explains
techniques for formal specification, model
checking and theorem proving, and describes
some successful case studies and tools.

125. [DT97] Merlin Dorfman and Richard H. Thayer
(eds.). Software Engineering.

126. This tutorial volume contains a collection of
papers organized into chapters. The following
papers are referenced (section numbers have
been added to reference individual papers more
conveniently in the matrices in the Appendix):

127. Chapter 4: Software Requirements
Engineering and Software Design

128. 4.1 Software Requirements: A Tutorial,
Stuart Faulk

129. 4.2 Software Design: An Introduction,
David Budgen

130. Chapter 5: Software Development
Methodologies

131. 5.1 Object-oriented Development, Linda M.
Northrup

132. 5.2 Object-oriented Systems Development:
Survey of Structured Methods, A.G.
Sutcliffe

133. 5.4 A Review of Formal Methods, Robert
Vienneau

134. Chapter 7: Software Validation, Verification
and Testing

135. 7.4 Traceability, James D. Palmer

136. Chapter 12 Software Technology

10–6 © IEEE – Stoneman (Version 0.7) – April 2000

137. 12.2 Prototyping: Alternate Systems
Development Methodology, J.M. Carey

138. 12.3 A Classification of CASE Technology,
Alfonso Fuggetta

139. [Pfl98] S.L. Pfleeger. Software Engineering 
Theory and Practice.

140. This text is structured according to the phases
of a life cycle so that discussion of methods
and tools is distributed throughout the book.

141. [Pre97] R.S. Pressman. Software Engineering 
A Practitioner’s Approach (4th Ed.)

142. Chapter 29 covers “Computer-Aided
Software Engineering” including a taxonomy
of case tools (29.3). There is not much detail
about any particular class of tool but it does
illustrate the wide range of software
engineering tools. The strength of this book is
its description of methods wi th chapters 10-
23 covering heuristic methods, chapters 24
and 25 covering formal methods. Section
11.4 describes prototyping methods and tools.

143. [Rei96] Steven P. Reiss. Software Tools and
Environments

144. This chapter from [Tuc96] provides an
overview of software tools. The emphasis is
on programming tools rather than tools for
analysis and design although CASE tools are
mentioned briefly.

145. [Som96] Ian Sommerville. Software Engineering
(5th Ed.)

146. Chapters 25, 26 and 27 introduce computer-
aided software engineering with the emphasis
being on tool integration and large-scale
environments. Static analysis tools are
covered in Section 24.3. Chapter 9, 10 and 11
introduce formal methods with formal
verification being described in Section 24.2
and the Cleanroom method in Section 24.4.
Prototyping is discussed in Chapter 8.

147. [Was96] Anthony I. Wasserman. Towards a
Discipline of Software Engineering

148. This general article discusses the role of both
methods and tools in software engineering.
Although brief, the paper integrates the major
themes of the discipline.

149. 7. LIST OF FURTHER READINGS

150. A commentary on the additional reference
material listed in the bibliography is to be added
in this section.

151. 8. ACKNOWLEDGMENTS

152. This document was developed from the jump-
start document written by Tuong Vinh Ho. Phil
Cook, Andrew Coyle, Ian MacColl and Jim
Welsh helped identify relevant information
sources and offered helpful advice. Their
contribution is gratefully acknowledged. The two
reviewers for version 0.1, Don Bagert and Jorge
Diaz-Herrera, provided useful advice about
topics and structure (see Appendix 3). Valuable
feedback from numerous reviewers of version
0.5 has been incorporated into the document. A
separate document detailing this feedback and its
disposition is available on the SWEBOK website
(www.swebok.org).

153. 9. REFERENCES

154. Edward V. Berard. Essays on Object-oriented
software Engineering. Prentice-Hall, 1993.

155. Edmund M. Clarke, Jeanette M. Wing et al.
Formal Methods: State of the Art and Future
Directions. ACM Computer Surveys, 28(4):626-
643, 1996.

156. Derek Coleman et al. Object-Oriented
Development: The Fusion Method. Prentice Hall,
1994.

157. Dan Craigen, Susan Gerhart and Ted Ralston.
Formal Methods Reality Check: Industrial
Usage, IEEE Transactions on Software
Engineering, 21(2):90-98, February 1995.

158. Merlin Dorfman and Richard H. Thayer, Editors.
Software Engineering. IEEE Computer Society,
1997.

159. ECMA. TR/55 Reference Model for Frameworks
of Software Engineering Environments, 3rd
edition, June 1993.

160. ECMA TR/69 Reference Model for Project
Support Environments, December 1994.

161. Pankaj K. Garg and Mehdi Jazayeri. Process-
Centered Software Engineering Environments,
IEEE Computer Society, 1996.

162. IEEE. Trial-Use Standard Reference Model for
Computing System Tool Interconnections, IEEE
Std 1175-1992.

163. IEEE. Recommended Practice for the Evaluation
and Selection of CASE Tools, IEEE Std 1209-
1992 (ISO/IEC 14102, 1995).

164. IEEE Recommended Practice for the Adoption
of CASE Tools, IEEE Std 1348-1995 (ISO/IEC
14471).

© IEEE – Stoneman (Version 0.7) – April 2000 10–7

165. ISO/IEC Standard for Information Technology
Software Life Cycle Processes, ISO/IEC
12207 (IEEE/EIA 12207.0-1996), 1995.

166. Stan Jarzabek and Riri Huang. The Case for
User-Centered CASE Tools, Communications of
the ACM, 41(8):93-99, August 1998.

167. B. Kitchenham, L. Pickard, and S.L. Pfleeger.
Case Studies for Method and Tool Evaluation,
IEEE Software, 12(4):52-62, July 1995.

168. Bertrand Meyer. Object-oriented Software
Construction (2nd Ed.). Prentice Hall, 1997.

169. James W. Moore. Software Engineering
Standards: A User’s Road Map. IEEE Computer
Society, 1998.

170. Vicky Mosley. How to Assess Tools Efficiently
and Quantitatively, IEEE Software, 9(3):29-32,
May 1992.

171. H.A. Muller, R.J. Norman and J. Slonim (eds.).
Computer Aided Software Engineering, Kluwer,
1996. (A special issue of Automated Software
Engineering, 3(3/4), 1996).

172. Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.

173. R.M. Poston. Automating specification-based
Software Testing. IEEE, 1996.

174. Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. 4th edition, McGraw-
Hill, 1997.

175. Steven P. Reiss. Software Tools and
Environments, Ch. 112, pages 2419-2439. In
Tucker [Tuc96], 1996.

176. C. Rich and R.C. Waters. Knowledge Intensive
Software Engineering Tools, IEEE Transactions
on Knowledge and Data Engineering, 4(5):424-
430, October 1992.

177. Ian Sommerville. Software Engineering. 5th
edition, Addison-Wesley, 1996.

178. Xiping Song and Leon J. Osterweil. Towards
Objective, Systematic Design-Method
Comparisons, IEEE Software, 9(3):43-53, May
1992.

179. Allen B. Tucker, Jr., Editor-in-chief. The
Computer Science and Engineering Handbook.
CRC Press, 1996.

180. Walter G. Vincenti. What Engineers Know and
How They Know It: Analytical Studies from
Aeronautical History. John Hopkins University
Press, 1990.

181. Anthony I. Wasserman. Toward a Discipline of
Software Engineering, IEEE Software, 13(6): 23-
31, November 1996.

10–8 © IEEE – Stoneman (Version 0.7) – April 2000

182. APPENDIX: TOPIC VS REFERENCE MATERIAL MATRICES

I. Software Tools CW96 DT97 Pfl98 Pre97 Rei96 Som96 Was96 Other
 A. Software Requirements Tools 4.1

pp.98-100
12.3

 11.4.2,
29.3

 26.2

 B. Software Design Tools 12.3 29.3 26.2
 C. Software Construction Tools 12.3 29.3 112.2 26.1
 1. program editors
 2. compilers
 3. debuggers
 D. Software Testing Tools 12.3 7.7, 8.7 29.3 112.3 26.3
 1. test generators
 2. test execution frameworks
 3. test evaluation tools
 4. test management
 E. Software Maintenance Tools 12.3 10.5 29.3
 1. comprehension tools 112.5
 2. Reverse engineering tools
 3. Re-engineering tools
 4. traceability tools 7.4

pp.273-4

 F. Software Engineering Process
Tools

 12.3 25, 26,
27

 1. integrated CASE environments 29 112.3,
112.4

 2. Process-centered software
engineering environments

 29.6 112.5

 3. Process modeling tools 2.3, 2.4
 G. Software Quality Tools 12.3
 1. inspection tools
 2. static analysis tools 3 7.7 29.3 112.5 24.3
 3. performance analysis tools 112.5
 H. Software Configuration

Management Tools
 12.3 10.5 112.3

 1. version management tools 29
 2. release and build tools 29.3
 I. Software Engineering Management

Tools
 12.3

 1. project planning and tracking
tools

 29.3

 2. risk analysis and management
tools

 3. measurement tools 29.3
 4. defect, enhancement, issue and

problem tracking tools
 29.3

 J. Infrastructure Support Tools 12.3
 1. interpersonal communication

tools
 29.3

 2. information retrieval tools 29.3
 3. system administration and

support tools
 29.3

 K. Miscellaneous 12.3
 1. tool integration techniques 1.8

(p.35)
 112.4 3

 2. meta tools
 3. tool evaluation 8.10

(p.388)

© IEEE – Stoneman (Version 0.7) – April 2000 10–9

II. Development Methods CW96 DT97 Pfl98 Pre98 Som96 Was96 Other

 A. Heuristic Methods 10-23 3

 1. ad-hoc methods
 2. structured methods 4.2, 5.2 4.5 10-18 15
 3 data-oriented methods 4.2, 5.2 12.8
 4 object-oriented methods 5.1, 5.2 4.4, 7.5 19-23 6.3, 14
 5 domain-specific methods 15 16

 B. Formal Methods 5.4 24, 25 9-11,
24.4

 1. specification languages 3 4.5 24.4
 2. refinement 25.3

 3. verification/proving
properties

3 5.7, 7.3 24.2

 C. Prototyping Methods 2.5 8 3

 1. styles 12.2 4.6, 5.6 11.4
 2. prototyping targets 12.2
 3. evaluation techniques

 D. Miscellaneous

 1. Method evaluation

© IEEE – Stoneman (Version 0.7) – April 2000 11–1

CHAPTER 11
SOFTWARE QUALITY

Dolores Wallace and Larry Reeker
National Institute of Standards and Technology

Gaithersburg, Maryland 20899 USA
{Dolores.Wallace, Larry.Reeker}@NIST.gov

TABLE OF CONTENTS

1. INTRODUCTION: DEFINING THE
KNOWLEDGE AREA

2. TOPIC BREAKDOWN FOR SOFTWARE

QUALITY

3. SOFTWARE QUALITY CONCEPTS
3.1 Measuring the Value of Quality
3.2 ISO 9126 Quality Description
3.3 Dependability
3.4 Special Types of Systems and Quality
Needs
3.5 Quality Attributes for Engineering Process

4. DEFINING SQA AND V&V

5. PLANNING FOR SQA AND V&V
5.1 The SQA Plan
5.2 The V&V Plan

6. ACTIVITIES AND TECHNIQUES FOR SQA AND

V&V
6.1 Static Techniques
6.2 Dynamic Techniques

7. MEASUREMENT APPLIED TO SQA AND V&V
7.1 Fundamentals of Measurement
7.2 Metrics
7.3 Measurement Techniques
7.4 Defect Characterization
7.5 Additional uses of SQA and V&V data

8. REFERENCES
8.1 References Keyed to Text Topics
8.2 Reference Lists

1. 1. INTRODUCTION: DEFINING THE

KNOWLEDGE AREA

2. Software Quality Assurance (SQA) and
Verification and Validation (V&V) are the
processes of the Knowledge Area on Software
Quality. The scope of this Knowledge Area is the
quality of the product being produced by the
Software Engineer, where the term “product”
means any artifact that is the output of any
process used to build the final software product.

Examples of a product include, but are not
limited to, an entire system specification, a
software requirements specification for a
software component of a system, a design
module, code, test documentation, or reports
from quality analysis tasks. While most
treatments of quality are described in terms of
the final system’s performance, sound
engineering practice requires that intermediate
products relevant to quality be checked
throughout the development and maintenance
process.

3. Because of the pervasiveness of quality
considerations in software, there is a large body
of literature on the subject, and the authors have
had to make difficult choices. It is necessary to
limit the number of specific references to make
the SWEBOK maximally useful as a distillation
of the knowledge of the field, so the basic set of
Core References is included for the topics
covered herein. Other authors may have chosen
different or additional references, but these cover
the points that are most essential. A set of
Additional Readings includes some additional
books and articles that the authors wish to call to
the attention of the reader. In addition, the
remainder of the books and articles from which
the core references have been specified might be
useful to the reader. Even the extended reading
set, though, does not cover everything that might
be found useful to a person interested in
Software Quality, and new material appears
regularly.

4. The reader will notice many pointers to other
knowledge areas (KAs) in the SWEBOK. This is
again an expression of the ubiquity of software
quality concerns within the field of Software
Engineering. There may be some duplication of
material between this knowledge area and the
other KAs, but the pointers are intended to
minimize such duplication.

11–2 © IEEE – Stoneman (Version 0.7) – April 2000

5. 2. TOPIC BREAKDOWN FOR

SOFTWARE QUALITY

6. The quality of a given product is sometimes
defined as "the totality of characteristics [of the
product] that bear on its ability to satisfy stated
or implied needs" 1. Quality is software is
sometimes also defined as “the efficient,
effective, and comfortable use by a given set of
users for a set of purposes under specified
conditions”. These two definitions can be much
the same if the requirements are properly
elicited, but both of them require some way of
communicating to the engineer what will
constitute quality for the given system. In this
chapter, therefore, the first topic is the meaning
of quality and some of the product characteristics
that relate to it. The Knowledge Area on
Software Requirements deals with how these
qualities will be elicited and expressed.

7. Sections on the processes SQA and V&V that
focus on software quality follow the discussion
on software quality concepts. These quality-
focused processes help to ensure better software.
They also provide information needed to
improve the quality of the entire software and
maintenance processes. The knowledge areas
Software Engineering Process and Software
Engineering Management, discuss quality
programs for the organization developing
software systems, which use the results of SQA
and V&V for improving the quality of the
process.

8. Engineering for quality requires the measurement
of quality in a concrete way, so this knowledge
area contains a section on measurement as
applied to SQA and V&V. Other processes for
assuring software product quality are discussed
in other parts of the SWEBOK. One of these,
singled out in SWEBOK as a separate
knowledge area within the software life cycle,
Software Testing, is also used in both SQA and
V&V. Another process fundamental to the
software development and maintenance and also
important to software quality is Software
Configuration Management.

 SOFTWARE QUALITY KNOWLEDGE AREA
 9. 1. Introduction: Defining the Knowledge Area
10. 2. Topic Breakdown for Software Quality
11. 3. Software Quality Concepts

1 From Quality—Vocabulary, (ISO 8402: 1986, note 1).

12. 3.1 Measuring the Value of Quality
13. 3.2 ISO 9126 Quality Description
14. 3.3 Dependability
15. 3.4 Special Types of Systems and Quality Needs
16. 3.5 Quality Attributes for Engineering Process
17. 4. Defining SQA and V&V
18. 5. Planning for SQA and V&V
19. 5.1 The SQA Plan
20. 5.2 The V&V Plan
21. 6. Activities and Techniques for SQA and V&V
22. 6.1 Static Techniques
23. 6.1.1 Audits, Reviews, and Inspections
24. 6.1.2 Analytic Techniques
25. 6.2 Dynamic Techniques
26. 7. Measurement Applied to SQA and V&V
27. 7.1 Fundamentals of Measurement
28. 7.2 Metrics
29. 7.3 Measurement Techniques
30. 7.4 Defect Characterization
31. 7.5 Additional uses of SQA and V&V data
32. 8. References
33. 8.1 Topics and References
34. 8.2 Reference Lists

35. 3. SOFTWARE QUALITY CONCEPTS

36. What is software quality, and why is it so
important that it is pervasive in the Software
Engineering Body of Knowledge? Within an
information system, software is a tool, and tools
have to be selected for quality and for
appropriateness. That is the role of requirements.
But software is more than a tool. It dictates the
performance of the system, and it is therefore
important to the system quality. Much thought
must therefore go into the value to place on each
quality desired and on the overall quality of the
information system. This section discusses the
value and the attributes of quality.

37. The notion of “quality” is not as simple as it may
seem. For any engineered product, there are
many desired qualities relevant to a particular
project, to be discussed and determined at the
time that the product requirements are
determined. Qualities may be present or absent,
or may be matters of degree, with tradeoffs
among them, with practicality and cost as major
considerations. The software engineer has a
responsibility to elicit the system’s quality
requirements that may not be explicit at the
outset and to discuss their importance and the
difficulty of attaining them. All processes
associated with software quality (e.g. building,

© IEEE – Stoneman (Version 0.7) – April 2000 11–3

checking, improving quality) will be designed
with these in mind and carry costs based on the
design. Thus, it is important to have in mind
some of the possible attributes of quality.

38. Various researchers have produced models
(usually taxonomic) of software quality
characteristics or attributes that can be useful for
discussing, planning, and rating the quality of
software products. The models often include
metrics to “measure” the degree of each quality
attribute the product attains. Usually these
metrics may be applied at any of the product
levels. They are not always direct measures of
the quality characteristics of the finished product,
but may be relevant to the achievement of overall
quality. Some of the classical thinking in this
area is found in McCall, Boehm [Boe78], and
others and is discussed in the texts of Pressman
[Pr], Pfleeger [Pf] and Kan [Kan94]. Each model
may have a different set of attributes at the
highest level of the taxonomy, and selection of
and definitions for the attributes at all levels may
differ. The important point is that the system
software requirements define the quality
requirements and the definitions of the attributes
for them.

39. 3.1 Measuring the Value of Quality

40. A motivation behind a software project is a
determination that it has a value, and this value
may or not be quantified as a cost, but the
customer will have some maximum cost in mind.
Within that cost, the customer expects to attain
the basic purpose of the software and may have
some expectation of the necessary quality, or
may not have thought through the quality issues
or cost. The software engineer, in discussing
software quality attributes and the processes
necessary to assure them, should keep in mind
the value of each one. Is it merely an adornment
or it essential to the system? If it is somewhere in
between, as almost everything is, it is a matter of
making the customer fully aware of both costs
and benefits. There is no definite rule for how
this is done, but it is good for the software
engineer to have some notion of how to go about
this process. A discussion of measuring cost and
value of quality requirements can be found in
[Wei93], Chapter 8, pp118-134] and [Jon91],
Chapter 5.

41. 3.2 ISO 9126 Quality Description

42. Terminology for quality attributes differs from
one model to another; each model may have

different numbers of hierarchical levels and a
different total number of attributes. One attempt
to standardize terminology in an inclusive model
resulted in ISO 9126 (Information Technology-
Software Product Quality, Part 1: Quality Model,
1998), of which a synopsis is included in this KA
as Table 1. ISO 9126 is concerned primarily with
the definition of quality characteristics in the
final product. ISO 9126 sets out six quality
characteristics, each very broad in nature. They
are divided into 21 sub-characteristics. In the
1998 revision, “compliance” to application-
specific requirements is included as a sub-
characteristic of each characteristic.

43. Some terms for characteristics and their
attributes are used differently in the other models
mentioned above, but ISO 9126 has taken the
various sets and arrangements of quality
characteristics and has reached consensus for that
model. Other models may have different
definitions for the same attribute. A software
engineer understands the underlying meanings of
quality characteristics regardless of their names,
as well as their value to the system under
development or maintenance.

44. 3.3 Dependability

45. For systems whose failure may have extremely
severe consequences, dependability of the overall
system (hardware, software, and humans) is the
main goal in addition to the realization of basic
functionality. Software dependability is the
subject of IEC 50-191 and the IEC 300 series of
standards. Some types of systems (e.g., radar
control, defense communications, medical
devices) have particular needs for high
dependability, including such attributes as fault
tolerance, safety, security, usability. Reliability is
a criterion under dependability and also is found
among the ISO/IEC 9126 (Table 1). Reliability is
defined similarly, but not identically, in the two
places. In Moore’s treatment [M], Kiang’s
factors are used as shown in the following list,
with the exception of the term Trustability from
Laprie.

46. w Availability: The product’s readiness for
use on demand

47. w Reliability: The longevity of product
performance

48. w Maintainability: The ease of maintenance
and upgrade

49. w Maintenance support: Continuing support to
achieve availability performance objectives

11–4 © IEEE – Stoneman (Version 0.7) – April 2000

50. w Trustability: System’s ability to provide
users with information about service
correctness.

51. There is a large body of literature for systems
that must be highly dependable (“high
confidence” or “high integrity systems”).
Terminology from systems that do not include
software have been imported for discussing
threats or hazards, risks, system integrity, and
related concepts, and may be found in the
references cited for this section.

52. 3.4 Special Types of Systems and
Quality Needs

53. As implied above, there are many particular
qualities of software that may or may not fit
under ISO 9126. Particular classes of application
systems may have other quality attributes to be
judged. This is clearly an open-ended set, but the
following are examples:

54. w Intelligent and Knowledge Based Systems –
“Anytime” property (guarantees best
answer that can be obtained within a given
time if called upon for an answer in that
amount of time), Explanation Capability
(explains reasoning process in getting an
answer).

55. w Human Interface and Interaction Systems –
Adaptivity (to user’s traits, interests),
Intelligent Help, Display Salience.

56. w Information Systems – Ease of query, High
recall (obtaining most relevant
information), High Precision (not returning
irrelevant information).

57. 3.5 Quality Attributes for Engineering
Process

57. Other considerations of software systems are
known to affect the software engineering process
while the system is being built and during its
future evolution or modification, and these can
be considered elements of product quality. These
software qualities include, but are not limited to:

58. w Code and object reusability

59. w Traceability of requirements from code and
test documentation and to code and test
documentation from requirements

60. w Modularity of code and independence of
modules.

61. These software quality attributes and their
subjective or objective measurement are

important in the development process,
particularly in large software projects. They can
also be important in maintenance (if code is
traceable to requirements – and vice/versa, then
modification for new requirements is facilitated).
They can improve the quality of the process and
of future products (code that is designed to be
reusable, if it functions well, avoids rewriting
which could introduce defects).

© IEEE – Stoneman (Version 0.7) – April 2000 11–5

62. Table 1. Software Quality Characteristics and Attributes – ISO 9126-1998 View
63. Characteristics &

Subcharacteristics
Short Description of the Characteristics and Subcharacteristics

64. Functionality Characteristics relating to achievement of the basic purpose for which the software is being
engineered

65. . Suitability The presence and appropriateness of a set of functions for specified tasks

66. . Accuracy The provision of right or agreed results or effects

67. . Interoperability Software’s ability to interact with specified systems

68. . Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data.

69. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

70. Reliability Characteristics relating to capability of software to maintain its level of performance under stated
conditions for a stated period of time

71. . Maturity Attributes of software that bear on the frequency of failure by faults in the software

72. . Fault tolerance Ability to maintain a specified level of performance in cases of software faults or unexpected inputs

73. . Recoverability Capability and effort needed to reestablish level of performance and recover affected data after possible
failure

74. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

75. Usability Characteristics relating to the effort needed for use, and on the individual assessment of such
use, by a stated or implied set of users

76. . Understandability The effort required for a user to recognize the logical concept and its applicability

77. . Learnability The effort required for a user to learn its application, operation, input, and output

78. . Operability The ease of operation and control by users

79. . Attractiveness The capability of the software to be attractive to the user

80. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

81. Efficiency Characteristic related to the relationship between the level of performance of the software
and the amount of resources used, under stated conditions

82. . Time behavior The speed of response and processing times and throughput rates in performing its function

83. . Resource utilization The amount of resources used and the duration of such use in performing its function

84. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

85. Maintainability Characteristics related effort needed to make modifications, including corrections, improvements
or adaptation of software to changes in environment, requirements and functional specifications

86. . Analyzability The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be
modified

87. . Changeability The effort needed for modification fault removal or for environmental change

88. . Stability The risk of unexpected effect of modifications

89. . Testability The effort needed for validating the modified software

90. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

91. Portability Characteristics related to the ability to transfer the software from one organization or hardware or
software environment to another

92. . Adaptability The opportunity for its adaptation to different specified environments

93. . Installability The effort needed to install the software in a specified environment

94. . Co-existence The capability of a software product to co-exist with other independent software in common environment

95. . Replaceability The opportunity and effort of using it in the place of other software in a particular environment

96. . Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

11–6 © IEEE – Stoneman (Version 0.7) – April 2000

97. 4. DEFINING SQA AND V&V

98. The KA on Software Requirements describes
how the requirements and their individual
features are defined, prioritized and documented
and how the quality of that documentation can be
measured. The set of requirements has a direct
effect on the quality of other products, down to
the delivered software. While the software
engineering process builds quality into software
products and prevents defects, the software
engineering process also employs supporting
processes to examine and assure software
products for quality. The software engineering
process and the many standards and models for
Software Engineering Process are discussed in
that KA of the SWEBOK. The supporting
processes conduct activities to ensure that the
software engineering process required by the
project is followed. This section of the Software
Quality KA addresses two of those supporting
processes, SQA and V&V, which examine
software through its development and
maintenance. These processes detect defects and
provide visibility to the management in
determining how well the software carries out the
documented requirements.

99. SQA and V&V provide management with
visibility into the quality of the products at each
stage in their development or maintenance. The
visibility comes from the data and measurements
produced through the performance of tasks to
assess (examine and measure) the quality of the
outputs of the software development and
maintenance processes while they are developed.

100. The SQA process provides assurance that the
software products and processes in the project
life cycle conform to their specified requirements
and adhere to their established plans. The SQA
process is a planned systematic set of activities to
help build quality into software from the
beginning, that is, by ensuring that the problem is
clearly and adequately stated and that the
solution's requirements are properly defined and
expressed. Then SQA retains the quality
throughout the development and maintenance of
the product by execution of a variety of
activities. The SQA role with respect to process
is to ensure that planned processes are
appropriate and have been implemented
according to their plans and that relevant
measurements about processes are provided to
the appropriate organization. Process and process
improvement are discussed in both the Software

Engineering Management and Software
Engineering Process KAs.

101. The V&V process determines whether products
of a given development or maintenance activity
conform to the requirements of that activity and
those imposed by previous activities, and
whether the final software product (through its
evolution) satisfies its intended use and user
needs. Verification ensures that the product is
built correctly, that is, verification determines
that software products of an activity fulfill
requirements imposed on them in the previous
activities. Validation ensures that the right
product is built, that is, the final product fulfills
its specific intended use. The activities of
validation begin early in the development or
maintenance process, as do those of verification.
V&V provides an examination of every product
relative both to its immediate predecessor and to
the system requirements it must satisfy.

102. Sometimes the terms SQA and V&V are
associated with organizations rather than
processes. SQA often is the name of a unit within
an organization and sometimes an independent
organization is contracted to conduct V&V.
Testing may occur in BOTH SQA and V&V and
is discussed in this KA in relation to those
processes. Details on testing are found in the KA
on Software Testing. The purpose of this KA is
not to define organizations but rather the
disciplines of SQA and V&V. Some discussion
on organizational issues appears in [Hum98], and
the IEEE Std. 1012.

103. First, to re-emphasize, many SQA and V&V
evaluation techniques may be employed by the
software engineers who are building the product.
Second, the techniques may be conducted in
varying degrees of independence from the
development organization. Finally, the integrity
level of the product may drive the degree of
independence and the selection of techniques.

104. 5. PLANNING FOR SQA AND V&V

105. Planning for software quality involves planning,
or defining, the required product along with its
quality attributes and the processes to achieve the
required product. Planning of these processes is
discussed in other KAs: Software Engineering
Management, Software Engineering Design, and
Software Engineering Methods and Tools. These
topics are different from planning the SQA and
V&V processes. The SQA and V&V processes
assess the implementation of those plans, that is,

© IEEE – Stoneman (Version 0.7) – April 2000 11–7

how well software products satisfy customer
requirements, provide value to the customers and
users, and meet the quality requirements
specified in the system requirements.

106. System requirements vary among systems as do
the activities selected from the disciplines of
SQA and V&V. Various factors influence
planning, management and selection of activities
and techniques. Some of these factors include,
but are not limited to:

107. 1. the environment of the system in which the
software will reside;

108. 2. system and software requirements;

109. 3. the commercial or standard components to
be used in the system;

110. 4. the specific software standards used in
developing the software;

111. 5. the software standards used for quality;

112. 6. the methods and software tools to be used
for development and maintenance and for
quality evaluation and improvement;

113. 7. the budget, staff, project organization, plans
and schedule (size is inherently included) of
all the processes;

114. 8. the intended users and use of the system, and

115. 9. the integrity level of the system.

116. Information from these factors influences how
the SQA and V&V processes are planned
organized, and documented, and the selection of
specific SQA and V&V activities and needed
resources as well as resources that impose
bounds on the efforts. One factor, the integrity
level of the system, needs some explanation.
This level is determined from the possible
consequences of failure of the system and the
probability of failure. For software systems
where safety or security is important, techniques
such as hazard analysis for safety or threat
analysis for security may be used in the planning
process to help identify where potential trouble
spots may be. This information would help in
planning the activities. Failure history of similar
systems may help in identifying which activities
will be most useful in detecting faults and
assessing quality.

117. 5.1 The SQA Plan

118. The SQA plan defines the processes and
procedures that will be used to ensure that
software developed for a specific product meets
its requirements and is of the highest quality

possible within project constraints. This plan
may be governed by software quality assurance
standards, life cycle standards, quality
management standards and models, company
policies and procedures for quality and quality
improvement, and the management, development
and maintenance plans for the software.
Standards and models such as ISO9000, CMM,
Baldrige, SPICE, TickIT influence the SQA plan
and are addressed in Software Engineering
Process.

119. The SQA plan defines the activities and tasks to
be conducted, their management, and their
schedule in relation to those in the software
management, development or maintenance plans.
The SQA plan may encompass Software
Configuration Management and V&V or may
call for separate plans for either of those
processes. The SQA plan identifies documents,
standards, practices, and conventions that govern
the project and how they will be checked and
monitored to ensure adequacy or compliance.
The SQA plan identifies metrics, statistical
techniques, procedures for problem reporting and
corrective action, resources such as tools,
techniques and methodologies, security for
physical media, training, and SQA
documentation to be retained. The SQA plan
addresses assurance of any other type of function
addressed in the software plans, such as supplier
software to the project or commercial off-the-
shelf software (COTS), installation, and service
after delivery of the system.

120. 5.2 The V&V Plan

121. The V&V plan is the instrument to explain the
requirements and management of V&V and the
role of each technique in satisfying the objectives
of V&V. An understanding of the different types
of purposes of each verification and validation
activity will help in planning carefully the
techniques and resources needed to achieve their
purposes. Verification activities examine a
specific product, that is, output of a process, and
provide objective evidence that specified
requirements have been fulfilled. The “specified
requirements” refer to the requirements of the
examined product, relative to the product from
which it is derived. For example, code is
examined relative to requirements of a design
description, or the software requirements are
examined relative to system requirements.

122. Validation examines a specific product to
provide objective evidence that the particular
requirements for a specific intended use are

11–8 © IEEE – Stoneman (Version 0.7) – April 2000

fulfilled. The validation confirms that the
product traces back to the software system
requirements and satisfies them. This includes
planning for system test more or less in parallel
with the system and software requirements
process. This aspect of validation often serves as
part of a requirements verification activity. While
some communities separate completely
verification from validation, the activities of each
actually service the other.

123. V&V activities are exercised at every step of the
life cycle, often on the same product, possibly
using the same techniques in some instances. The
difference is in the technique's objectives for that
product, and the supporting inputs to that
technique. Sequentially, verification and
validation will provide evidence from
requirements to the final system, a step at a time.
This process holds true for any life cycle model,
gradually iterating or incrementing through the
development. The process holds in maintenance
also.

124. The plan for V&V addresses the management,
communication, policies and procedures of the
V&V activities and their iteration, evaluation of
methods and tools for the V&V activities, defect
reports, and documentation requirements. The
plan describes V&V activities, techniques and
tools used to achieve the goals of those activities.

125. The V&V process may be conducted in various
organizational arrangements. First, to re-
emphasize, many V&V techniques may be
employed by the software engineers who are
building the product. Second, the V&V process
may be conducted in varying degrees of
independence from the development
organization. Finally, the integrity level of the
product may drive the degree of independence.

126. 6. ACTIVITIES AND TECHNIQUES

FOR SQA AND V&V

127. The SQA and V&V processes consist of
activities to indicate how software plans (e.g.,
management, development, configuration
management) are being implemented and how
well the evolving and final products are meeting
their specified requirements. When these
resources are formally organized, results from
these activities are collected into reports for
management before corrective actions are taken.
The management of SQA and V&V are tasked
with ensuring the quality of these reports, that is,
that the results are accurate.

128. Specific techniques to support the activities
software engineers perform to assure quality may
depend upon their personal role (e.g.,
programmer, quality assurance staff) and project
organization (e.g., test group, independent
V&V). To build or analyze for quality, the
software engineer understands development
standards and methods and the genesis of other
resources on the project (e.g., components,
automated tool support) and how they will be
used. The software engineer performing quality
analysis activities is aware of and understands
considerations affecting quality assurance:
standards for software quality assurance, V&V,
testing, the various resources that influence the
product, techniques, and measurement (e.g., what
to measure and how to evaluate the product from
the measurements).

129. The SQA and V&V activities consist of many
techniques; some may directly find defects and
others may indicate where further examination
may be valuable. These may be referred to as
direct-defect finding and supporting techniques.
Some often serve as both, such as people-
intensive techniques like reviews, audits, and
inspection and some static techniques like
complexity analysis and control flow analysis.
The SQA and V&V techniques can be
categorized as two types: static and dynamic.
Static techniques do not involve the execution of
code, whereas dynamic techniques do. Static
techniques involve examination of the
documentation (e.g., requirements specification,
design, plans, code, test documentation) by
individuals or groups of individuals and
sometimes with the aid of automated tools.
Often, people tend to think of testing as the only
dynamic technique, but simulation is an example
of another one. Sometimes static techniques are
used to support dynamic techniques, and vice-
versa. An individual, perhaps with the use of a
software tool, may perform some techniques; in
others, several people are required to conduct the
technique. Such techniques are "people-
intensive". Depending on project size, others,
such as testing, may involve many people, but
are not people-intensive in the sense described
here.

130. Static and dynamic techniques are used in either
SQA or V&V. Their selection, specific
objectives and organization depend on project
and product requirements. Discussion in the
following sections and the tables in the
appendices provide only highlights about the
various techniques; they are not inclusive. There

© IEEE – Stoneman (Version 0.7) – April 2000 11–9

are too many techniques to define in this
document but the lists and references provide a
flavor of SQA and V&V techniques and will
yield to the serious software engineer insights for
selecting techniques and for pursuing additional
reading about techniques.

131. 6.1 Static Techniques

132. Static techniques involve examination of the
project’s documentation, software and other
information about the software products without
executing them. The techniques may include
activities that require two or more people
(“people intensive”) or analytic activities
conducted by individuals, with or without the
assistance of automated tools. These support
both SQA and V&V processes and their specific
implementation can serve the purpose of SQA,
verification, or validation, at every stage of
development or maintenance.

133. 6.1.1 Audits, Reviews, and Inspections

134. The setting for audits, reviews, inspections, and
other people-intensive techniques may vary. The
setting may be a formal meeting, an informal
gathering, or a desk-check situation, but always
two or more people are involved. Preparation
ahead of time may be necessary. Resources in
addition to the items under examination may
include checklists and results from analytic
techniques and testing. Another technique that
may be included in this group is the
walkthrough. These are activities are discussed
throughout the IEEE Std. 1028 on reviews and
audits, [Fre82], [Hor96], and [Jon91], [Rak97].

135. Reviews that specifically fall under the SQA
process are technical reviews, that is, on
technical products. However, the SQA
organization may be asked to conduct
management reviews as well. Persons involved
in the reviews are usually a leader, a recorder,
technical staff, and in the management review,
management staff.

136. Management reviews determine adequacy of and
monitor progress or inconsistencies against plans
and schedules and requirements. These reviews
may be exercised on products such as audit
reports, progress reports, V&V reports and plans
of many types including risk management,
project management, software configuration
management, software safety, risk management
plans and risk assessment reports and others.

137. Technical reviews examine products such as
software requirement specifications, software

design documents, test documentation, user
documentation, installation procedures but the
coverage of the material may vary with purpose
of the review. The subject of the review is not
necessarily the completed product, but may be a
portion at any stage of its development or
maintenance. For example, a subset of the
software requirements may be reviewed for a
particular set of functionality, or several design
modules may be reviewed, or separate reviews
may be conducted for each category of test for
each of its associated documents (plans, designs,
cases and procedures, reports).

138. An audit is an independent evaluation of
conformance of software products and processes
to applicable regulations, standards, plans, and
procedures. Audits may examine plans like
recovery, SQA, and maintenance, design
documentation. The audit is a formally organized
activity, with participants having specific roles,
such as lead auditor, other auditors, a recorder,
an initiator, and a representative of the audited
organization. While for reviews and audits there
may be many formal names such as those
identified in the IEEE Std. 1028, the important
point is that they can occur on almost any
product at any stage of the development or
maintenance process.

139. Software inspections generally involve the
author of a product, while reviews likely do not.
Other persons include a reader, and the
inspectors. The inspector team may consist of
different expertise, such as domain expertise, or
design method expertise, or language expertise,
etc. Inspections are usually conducted on a
relatively small section of the product. Often the
inspection team may have had a few hours to
prepare, perhaps by applying an analytic
technique to a small section of the product, or to
the entire product with a focus only on one
aspect, e.g., interfaces. A checklist, with
questions germane to the issues of interest, is a
common tool used in inspections. Inspection
sessions last a couple hours, whereas reviews and
audits are usually broader in scope and take
longer.

140. The walkthrough is similar to an inspection, but
is conducted by only members of the
development group, who examine a specific part
of a product. With the exception of the
walkthrough – primarily an assurance technique
used only by the developer, these people-
intensive techniques are traditionally considered
to be SQA techniques, but may be performed by
others. The technical objectives may also change,

11–10 © IEEE – Stoneman (Version 0.7) – April 2000

depending on who performs them and whether
they are conducted as verification or as
validation activities. Often, when V&V is an
organization, it may be asked to support these
techniques, either by previous examination of the
products or by attending the sessions to conduct
the activities.

141. 6.1.2 Analytic Techniques

142. An individual generally applies analytic
techniques. Sometimes several people may be
assigned the technique, but each applies it to
different parts of the product. Some are tool-
driven; others are primarily manual. With the
References (Section 7.1) there are tables of
techniques according to their primary purpose.
However, many techniques listed as support may
find some defects directly but are typically used
as support to other techniques. Some howe ver
are listed in both categories because they are
used either way. The support group of techniques
also includes various assessments as part of
overall quality analysis.

143. Each type of analysis has a specific purpose and
not all are going to be applied to every project.
An example of a support technique is complexity
analysis, useful for determining that the design or
code may be too complex to develop correctly, to
test or maintain; the results of a complexity
analysis may be used in developing test cases.
Some listed under direct defect finding, such as
control flow analysis, may also be used as
support to another activity. For a software system
with many algorithms, then algorithm analysis is
important, especially when an incorrect
algorithm could cause a catastrophic result.
There are too many analytic techniques to define
in this document but the lists and references
provide a flavor of software analysis and will
yield to the serious software engineer insights for
selecting techniques and for pursuing additional
reading about techniques.

144. A class of analytic techniques that is gaining
greater acceptance is the use of formal methods
to verify software requirements and designs.
Proof of correctness may also be applied to
different parts of programs. Their acceptance to
date has mostly been in verification of crucial
parts of critical systems, such as specific security
and safety requirements [NAS97].

145. 6.2 Dynamic Techniques

146. Different kinds of dynamic techniques are
performed throughout the development and

maintenance of software systems. Generally,
these are testing techniques but techniques such
as simulation and symbolic execution may be
considered dynamic. Code reading is considered
a static technique but experienced software
engineers may execute the code as they read
through it. In this sense, code reading may also
fit under dynamic. This discrepancy in
categorizing indicates that people with different
roles in the organization may consider and apply
these techniques differently.

147. Some testing may fall under the development
process, the SQA process, or V&V, again
depending on project organization. The
discipline of V&V encompasses testing and
requires activities for testing at the very
beginning of the project. Because both the SQA
and V&V plans address testing, this section
includes some commentary about testing. The
knowledge area on Software Testing provides
discussion and technical references to theory,
techniques for testing, and automation.
Supporting techniques for testing fall under test
management, planning and documentation. V&V
testing generally includes component or module,
integration, system, and acceptance testing. V&V
testing may include test of commercial off-the-
shelf software (COTS) and evaluation of tools to
be used in the project

148. The assurance processes of SQA and V&V
examine every output relative to the software
requirement specification to ensure the output's
traceability, consistency, completeness,
correctness, and performance. This confirmation
also includes exercising the outputs of the
development and maintenance processes, that is,
the analysis consists of validating the code by
testing to many objectives and strategies, and
collecting, analyzing and measuring the results.
SQA ensures that appropriate types of tests are
planned, developed, and implemented, and V&V
develops test plans, strategies, cases and
procedures.

149. Two types of testing fall under SQA and V&V
because of their responsibility for quality of
materials used in the project:

150. w Evaluation and test of tools to be used on
the project

151. w Conformance test (or review of
conformance test) of components and
COTS products to be used in the product.

152. The SWEBOK knowledge area on Software
Testing addresses special purpose testing. Many
of these types are also considered and performed

© IEEE – Stoneman (Version 0.7) – April 2000 11–11

during planning for SQA or V&V testing.
Occasionally the V&V process may be asked to
perform these other testing activities according to
the project’s organization. Sometimes an
independent V&V organization may be asked to
monitor the test process and sometimes to
witness the actual execution, to ensure that it is
conducted in accordance with specified
procedures. And, sometimes, V&V may be
called on to evaluate the testing itself: adequacy
of plans and procedures, and adequacy and
accuracy of results.

153. Another type of testing that may fall under a
V&V organization is third party testing. The
third party is not the developer or in any way
associated with the development of the product.
Instead, the third party is an independent facility,
usually accredited by some body of authority.
Their purpose is to test a product for
conformance to a specific set of requirements.
Discussion on third party testing appears in the
July/August 1999 IEEE Software special issue on
software certification.

154. 7. MEASUREMENT APPLIED TO

SQA AND V&V

155. SQA and V&V discover information about the
quality of the software system at all stages of its
development and maintenance and provide
visibility into the software development and
maintenance processes. Some of this information
is about defects, where “defect” refers to errors,
faults, and failures. Different cultures and
standards may differ somewhat in their meaning
for these same terms. Partial definitions taken
from the IEEE Std 610.12-1990 (“IEEE Standard
Glossary of Software Engineering
Terminology”) are these:

156. w Error: “A difference…between a computed
result and the correct result”

157. w Fault: “An incorrect step, process, or data
definition in a computer program”

158. w Failure: “The [incorrect] result of a fault”

159. w Mistake: “A human action that produces an
incorrect result”.

160. Mistakes (as defined above) are the subject of the
quality improvement process, which is covered
in the Knowledge Area Software Engineering
Process. Failures found in testing as the result of
software faults are included as defects in the
discussion of this section.. "Failure" is the term
used in reliability models, in which these models

are built from failure data collected during
system testing or from systems in service. These
models are generally used to predict failure and
to assist decisions on when to stop testing.

161. Many SQA and V&V techniques find
inadequacies and defects, but information about
these findings may be lost unless it is recorded.
For some techniques (e.g., reviews, audits,
inspections), recorders are usually present to
record issues, decisions, and information about
inadequacies and defects. When automated tools
are used, the tool output may provide the defect
information. For others And even for output of
tools, data about defects are collected and
recorded on some “trouble report” form and may
further be entered into some type of database,
either manually or automatically from an
analysis tool. Reports about the defects are
provided to the software management and
development organizations.

162. One probable action resulting from SQA and
V&V reports is to remove the defects from the
product under examination. Other actions enable
achieving full value from the findings of the
SQA and V&V activities. These actions include
analyzing and summarizing the findings with use
of measurement techniques to improve the
product and the process ands to track the defects
and their removal. Process improvement is
primarily discussed in Software Engineering
Process, but some supporting information will be
addressed here.

163. 7.1 Fundamentals of Measurement

164. Theories of measurement establish the
foundation on which meaningful measurements
can be made. Measuring implies classification
and numbers, and various scales apply to
different types of data. The four scales for
measurement include nominal scale or a
classification into exhaustive and mutually
exclusive categories (e.g., boys, girls), ordinal
scale (comparison in order, e.g., small, medium,
large), interval scale (exact differences between
two measurement points, e.g., addition and
subtraction apply), and ratio scale (an absolute
point can be located in the interval scale, and
division, multiplication, addition and subtraction
apply). An example in software is the number of
defects. In module 1, there may be 10 defects per
function point of SLOC, in module 2, 15 and in
module 3, 20. The difference between module 1
and 2 is 5 and module 3 has twice as many
defects as module 1. Theories of measurement
and scales are discussed in [Kan94], pp. 54-82.

11–12 © IEEE – Stoneman (Version 0.7) – April 2000

165. Measurement for measurement's sake does not
help define the quality. Instead, the software
engineer needs to define specific questions about
the product, and hence the objectives to be met to
answer those questions. Only then can specific
measures be selected. Basili’s paradigm on Goal-
Question-Metric has been used since the early
80's and is used as a basis for some software
measurement programs [Bas]. Another approach
is “Plan-Do-Check-Act” discussed in Rakitin.
Others are discussed in the references on
software measurement. The point is that there
has to be a reason for collecting data, that is,
there is a question to be answered. Measurement
programs are not arbitrary, but require planning
and setting objectives according to some
formalized procedure, as do other software
engineering processes.

166. Other important measurement practices deal with
experimentation and data collection.
Experimentation is useful in determining the
value of a development, maintenance, or
assurance technique and results may be used to
predict where faults may occur. Data collection
is non-trivial and often too many types of data
are collected. Instead, it is important to decide
what is the purpose, that is, what question is to
be answered from the data, then decide what data
is needed to answer the question and then to
collect only that data. While a measurement
program has costs in time and money, it may
result in savings. Methods exist to help estimate
the costs of a measurement program. Discussion
on the following key topics for measurement
planning are found in ([Bas84], [Kan94], [Pr],
[Pf], [Rak97], [Zel98]:

167. w Experimentation

168. w Selection of approach for measurement

169. w Methods

170. w Costing

171. w Data Collection process.

172. 7.2 Metrics

173. Measurement models and frameworks for
software quality enable the software engineer to
establish specific product measures as part of the
product concept. Models and frameworks for
software quality are discussed in [Kan94], [Pf],
and [Pr].

174. Data can be collected on various characteristics
of software products. Many of the metrics are
related to the quality characteristics defined in
Section 2 of this Knowledge Area. Much of the

data can be collected as results of the static
techniques previously discussed and from
various testing activities (see Software Testing
Knowledge Area). The types of metrics for
which data are collected fall into these categories
and are discussed in [Jon91], [Lyu96], [Pf], [Pr],
[Lyu96], and [Wei93]:

175. w Quality characteristics measures

176. w Reliability models & measures

177. w Defect features (e.g., counts, density)

178. w Customer satisfaction

179. w Product features (e.g., size including SLOC,
function points, number of requirements)

180. w Structure metrics (e.g., modularity,
complexity, control flow)

181. w Object-oriented metrics.

182. 7.3 Measurement Techniques

183. While the metrics for quality characteristics and
product features may be useful in themselves (for
example, the number of defective requirements
or the proportion of requirements that are
defective), mathematical and graphical
techniques can be applied to aid in interpretation
of the metrics. These fit into the following
categories and are discussed in [Fen97], [Jon91],
[Kan94], [Lyu96] and [Mus98].

184. w Statistically based (e.g., Pareto analysis, run
charts, scatter plots, normal distribution)

185. w Statistical tests (e.g., binomial test; chi-
squared test)

186. w Trend analysis

187. w Prediction, e.g., reliability models.

188. The statistically based techniques and tests often
provide a snapshot of the more troublesome areas
of the software product under examination. The
resulting charts and graphs are visualization aids
that the decision makers can use to focus
resources where they appear most needed.
Results from trend analysis may indicate whether
a schedule may be slipped, such as in testing, or
may indicate that certain classes of faults will
gain in intensity unless some corrective action is
taken in development. And the predictive
techniques assist in planning test time and
predicting failure. However, generally the
decisions to be made from these techniques are
not part of SQA and V&V. More discussion on
these should appear in “Software Engineering
Process” and “Software Engineering
Management”.

© IEEE – Stoneman (Version 0.7) – April 2000 11–13

189. 7.4 Defect Characterization

190. SQA and V&V processes discover defects.
Characterizing those defects enables
understanding of the product, facilitates
corrections to the process or the product, and
informs the project management or customer of
the status of the process or product. Many defect
(fault) taxonomies exist and while attempts have
been made to get consensus on a fault and failure
taxonomy, the literature indicates that quite a few
are in use (IEEE Std. 1044, [Bei90], [Chi92],
[Gra92]).

191. As new design methodologies and languages
evolve, along with advances in overall
application technologies, new classes of defects
appear, or, the connection to previously defined
classes requires much effort to realize. When
tracking defects, the software engineer is
interested not only in the count of defects, but the
types. Without some classification, information
will not really be useful in identifying the
underlying causes of the defects because no one
will be able to group specific types of problems
and make determinations about them. The point,
again, as in selecting a measurement approach
with quality characteristics, metrics and
measurement techniques, is to establish a defect
taxonomy that is meaningful to the organization
and software system.

192. The above references as well as [Kan94],
[Fen95] and [Pf], and [Jon89] all provide
discussions on analyzing defects, that is,
measuring their occurrences and then applying
statistical methods to understand the types of
defects that occur most frequently, that is, where
do mistakes occur (their density), to understand
the trends and how well detection techniques are
working, and, how well the development and
maintenance processes are doing.2 Measuring
test coverage helps to estimate how much test
effort remains and to predict possible remaining
defects. From these measurement methods, one
can develop defect profiles for a specific
application domain. Then, for the next software
system within that organization, the profiles can
be used to guide the SQA and V&V processes,
that is, to expend the effort where the problems
are likeliest to occur. Similarly, benchmarks, or
defect counts typical of that domain, may serve

2 Discussion on using data from SQA and V&V to

improve development and maintenance processes
appears in Software Engineering Management and

Software Engineering Process.

as one aid in determining when the product is
ready for delivery.

193. The following topics are useful for establishing
measurement approaches for the software
products:

194. w Defect classification and descriptions

195. w Defect analysis

196. w Measuring adequacy of the SQA and V&V
activities

197. w Test coverage

198. w Benchmarks, profiles, baselines, defect
densities.

199. 7.5 Additional uses of SQA and V&V
data

200. The measurement section of this KA on SQA
and V&V touches only minimally on
measurement, for measurement is a major topic
itself. The purpose here is only to provide some
insight on how the SQA and V&V processes use
measurement directly to support achieving their
goals. There are a few more topics which
measurement of results from SQA and V&V
may support. These include some assistance in
deciding when to stop testing. Reliability models
and benchmarks, both using fault and failure
data, are useful for this objective. Again, finding
a defect, or perhaps trends among the defects,
may help to locate the source of the problem.

201. The cost of SQA and V&V processes is almost
always an issue raised in deciding how to
organize a project. Often generic models of cost,
based on when the defect is found and how much
effort it takes to fix the defect relative to finding
the defect earlier, are used. Data within an
organization from that organization’s projects
may give a better picture of cost for that
organization. Discussion on this topic may be
found in [Rak97], pp. 39-50.

202. Finally, the SQA and V&V reports themselves
provide valuable information not only to these
processes but to all the other software
engineering processes for use in determining
how to improve them. Discussions on these
topics are found in [McC93] and IEEE Std. 1012.

2 0 3 .
2 0 4 .

11–14 © IEEE – Stoneman (Version 0.7) – April 2000

203 8. REFERENCES

204. 8.1 References Keyed to Text Topics

205.
Software Quality

Concepts

[B
oe

78
]

[D
]

[F
en

97
]

[K
ia

95
]

[L
ap

91
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
]

[W
al

96
]

[W
ei

96
]

206. Value of Quality X X X

207. Functionality X

208. Reliability X X X X X X X X

209. Efficiency X X X

210. Usability X X X X X X X

211. Maintainability X X X X X X X

212. Portability X X X X X

213. Dependability X X X X X X X X X

214. Other Qualities X X X X X X X

215.

Definition &
Planning for Quality

[G
ra

92
]

[H
or

96
]

[K
az

99
]

[L
ew

92
]

[L
yu

96
]

[M
cC

93
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

216. Overall X X X X

217. SQA X X X X X X X X X

218. VV X X X X X X X X X

219. Independent V&V X X X X X X X

220. Hazard, threat anal. X X X X X

221. Risk assessment X X X X X X X

222. Performance analysis X X X

223.
Techniques

Requiring Two or
More People

[A
ck

97
]

[E
be

94
]

[F
re

82
]

[G
ra

92
]

[H
or

96
]

[L
ew

92
]

[M
cC

96
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

224. Audit X X X X X

225. Inspection X X X X X X X X X X X X X

226. Review X X X X X X X X X

227. Walkthrough X X X X X X X X

© IEEE – Stoneman (Version 0.7) – April 2000 11–15

228.

Support to
Other

Techniques

[B
ei

90
]

[C
on

86
]

[F
ri9

5]

[H
et

84
]

[L
ev

95
]

 [
L

ew
92

]

[L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
]

[F
ri9

5]

[W
al

89
]

[W
al

96
]

229. Change Impact
Anal.

 X X X X

230. Checklists X X X X

231. Complexity
Analysis

X X X X X

232. Coverage
Analysis

X X X

233. Consistency
Analysis

 X X X

234. Criticality
Analysis

 X X X X

235. Hazard Analysis X X X X X

236. Sensitivity
Analysis

 X X

237. Slicing X X X

238. Test documents X X X X X X

239. Tool evaluation X X X

240. Traceability
Analysis

 X X X X X X

241. Threat Analysis X X X X X

242.

Testing Special to
SQA or V&V

[F
ri9

5]

[L
ev

95
]

[L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[V
oa

99
]

[W
ak

99
]

[W
al

89
]

243. Conformance
Test.

X X

244. Configuration
Test.

 X

245. Certification
Testing

 X X X X X X X

246. Reliability Testing X X X X X

247. Safety Testing X X X X

248. Security Testing X

249. Statistical Testing X X X X X X

250. Usability Testing X X

251. Test Monitoring X

252. Test Witnessing X

11–16 © IEEE – Stoneman (Version 0.7) – April 2000

253.
Defect Finding

Techniques [B
ei

90
]

[F
en

96
]

[F
ri9

5]

H
et

ze
l

[H
or

96
]

[I
pp

95
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

M
oo

re

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
al

89
]

254. Algorithm Analysis X X X X X

255. Boundary Value Anal. X X X X X X

256. Change Impact Anal. X X X X X X

257. Checklists X X

258. Consistency Analysis X X X

259. Control Flow Analysis X X X X X X X X

260. Database Analysis X X X X X X X

261. Data Flow Analysis X X X X X X X X X

262. Distrib. Arch. Assess. X

263. Evaluation of Docts.:

Concept, Reqmts.

 X X X X X X

264. Evaluation of Docts.:

Design, Code, Test

 X X X X X

265. Evaluation of Doc.:

User, Installation

 X X X X X

266. Event Tree Analysis X X

267. Fault Tree Analysis X X X X X

268. Graphical Analysis X X X X

269. Hazard Analysis X X X X X X X

270. Interface Analysis X X X X X X X

271. Formal Proofs X X X X X

272. Mutation Analysis X X X X

273. Perform. Monitoring X X

274. Prototyping X X X X X

275. Reading X X

276. Regression Analysis X X X X X X

277. Simulation X X

278. Sizing & Timing Anal. X X X X X X

279. Threat Analysis X X X

© IEEE – Stoneman (Version 0.7) – April 2000 11–17

280.
Measurement in
Software Quality

Analysis [B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

95
]

[F
en

97
]

[F
ri9

5]

[G
ra

92
]

[H
et

84
]

[H
or

96
]

[J
on

91
]

[K
an

94
]

[M
us

89
]

[L
ew

92
]

[L
yu

96
]

[M
us

98
]

[P
en

92
]

[P
f]

[P
r]

[M
cC

93
]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
ei

93
]

[Z
el

98
]

281. Benchmarks, profiles, etc. X X X X X

282. Company Metric Progs. X X X X X X

283. Costing X X X X X X X X X X X X

284. Customer satisfaction X X X

285. Data Collection process X X X X X X

286. Debugging X X X X X X

287. Defect Analysis X X X X X X X X X X X X X X

288. Defect Classif. and Descr. X X X X X X X X X X X X

289. Defect Features X X X X X X X X

290. Example of applied GQM X X

291. Experimentation: X X X X X X

292. Framework X X

293. GQM X X X X X X

294. Methods X X X X X X X

295. Metrics X X X X X X X X X X X X

296. Models X X X X

297. Prediction X X X X X

298. Prod. features: O/O Metr. X

299. Prod. Features: Structure X X X X X X

300. Product features: Size X X X X X

301. Quality Attributes X X X X

302. Quality Character. Meas. X X X X

303. Reliab. Models & Meas. X X X X X X X X

304. Scales X X X X

305. SQA & V&V reports * X X X X

306. Statistical tests X X X X X X

307. Statistical Analysis &
measurement

 X X X X X X X X X

308. Test coverage X X

309. Theory X X X X

310. Trend analysis X

311. When to stop testing* X X X

312. *See also [Musa89]

11–18 © IEEE – Stoneman (Version 0.7) – April 2000

313.

Standards

Quality

Requirements
& planning

Reviews/
Audits

SQA/ V&V
planning

Safety/
security
analysis,

tests

Documentation
of quality
analysis

Measurement

314. ISO 9000 X X X X

315. ISO 9126 X

316. IEC 61508 X X

317. ISO/IEC 14598 X X X

318. ISO/IEC 15026 X

319. ISO FDIS
15408

X X

320. FIPS 140-1 X X

321. IEEE 730 X X X

322. IEEE 1008 X

323. IEEE 1012 X X X X

324. IEEE 1028 X

325. IEEE 1228 X

326. IEEE 829 X

327. IEEE 982.1,.2 X

328. IEEE 1044 X

329. IEEE 1061 X

330. 8.2 Reference Lists

331. 8.2.1 Basic SWEBOK References

332. Dorfman, M., and R. H. Thayer, Software
Engineering. IEEE Computer Society Press,
1997. [D]

333. Moore, J. W., Software Engineering Standards:
A User’s Road Map. IEEE Computer Society
Press, 1998. [M]

334. Pfleeger, S. L., Software Engineering – Theory
and Practice. Prentice Hall, 1998. [Pf]

335. Pressman, R. S., Software Engineering: A
Practitioner’s Approach (4th edition). McGraw-
Hill, 1997. [Pr]

336. Sommerville, I., Software Engineering (5th
edition). Addison-Wesley, 1996. [S]

337. Vincenti, W. G., What Engineers Know and
How They Know It – Analytical Studies form
Aeronautical History. Baltimore and London:
John Hopkins, 1990. [V]

338. 8.2.2 Core References

339. (N.B. Some of these will be removed in the next
version, but we are checking to make sure that
every topic is adequately covered before we do
so. See also the note at 8.2.3)

340. Abran, A.; Robillard, P.N. , Function Points
Analysis: An Empirical Study of its
Measurement Processes, in IEEE Transactions
on Software Engineering, vol. 22, 1996, pp. 895-
909. [Abr96].

341. Ackerman, Frank A., "Software Inspections and
the Cost Effective Production of Reliable
Software," in [D] pp. 235-255. [Ack97]

342. Basili, Victor R. and David M. Weiss, A
Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on
Software Engineering, pp. 728-738, November
1984. [Bas84]

343. Beizer, Boris, Software Testing Techniques,
International Thomson Press, 1990. [Bei90]

344. Boehm, B.W. et al., Characteristics of Software
Quality", TRW series on Software Technologies,
Vol. 1, North Holland, 1978. [Boe78]

© IEEE – Stoneman (Version 0.7) – April 2000 11–19

345. Chilllarege, Ram, Chap. 9, pp359-400, in
[Lyu96]. [Chi96]

346. Conte, S.D., et al, Software Engineering Metrics
and Models, The Benjamin / Cummings
Publishing Company, Inc., 1986. [Con86]

347. Ebenau, Robert G., and Susan Strauss, Software
Inspection Process, McGraw-Hill, 1994. [Ebe94]

348. Fenton, Norman E., Software Metrics,
International Thomson Computer Press, 1995.
[Fen95]

349. Fenton, Norman E., and Shari Lawrence
Pfleeger, Software Metrics, International
Thomson Computer Press, 1997. [Fen97]

350. Freedman, Daniel P., and Gerald M. Weinberg,
Handbook of Walkthroughs, Inspections, and
Technical Reviews, Little, Brown and Company,
1982. [Fre82]

351. Friedman, Michael A., and Jeffrey M. Voas,
Software Assessment, John Wiley & Sons, Inc.,
1995. [Fri95]

352. Grady, Robert B, Practical Software Metrics for
project Management and Process Management,
Prentice Hall, Englewood Cliffs, NJ 07632,
1992. [Gra92]

353. Hetzel, William, The Complete Guide to
Software Testing, QED Information Sciences,
Inc., 1984, pp177-197. [Het84]

354. Horch, John W., Practical Guide to Software
Quality Management, Artech-House Publishers,
1996. [Hor96]

355. Humphrey, Watts S., Managing the Software
Process, Addison Wesley, 1989 Chapters 8, 10,
16. [Hum89]

356. Ince, Darrel, ISO 9001 and Software Quality
Assurance , McGraw-Hill, 1994. [Inc94]

357. Ippolito, Laura M. and Dolores R. Wallace,
NISTIR 5589, A Study on Hazard Analysis in
High Integrity Software Standards and
Guidelines,@ U.S. Department. of Commerce,
Technology Administration, National Institute of
Standards and Tech., Jan 1995.
http://hissa.nist.gov/HAZARD/ [Ipp95]

358. Jones, Capers, Applied Software Measurement,
McGraw-Hill, Inc., 1991; (Chap. 4: Mechanics
of Measurement; Chapter 5: User Satisfaction).
[Jon91]

359. Kan, Stephen, H., Metrics and Models in
Software Quality Engineering, Addison-Wesley
Publishing Co., 1994. [Kan94]

360. Kazman, R., M. Barbacci, M. Klein, S. J.
Carriere, S. G. Woods, Experience with

Performing Architecture Tradeoff Analysis,
Proceedings of ICSE 21, (Los Angeles, CA),
IEEE Computer Society, May 1999, 54-63.
[Kaz99]

361. Kiang, David, Harmonization of International
Software Standards on Integrity and
Dependability, Proc. IEEE International
Software Engineering Standards Symposium,
IEEE Computer Society Press, Los Alamitos,
CA, 1995, pp. 98-104. [Kia95]

362. Laprie, J.C., Dependability: Basic Concepts and
Terminology, IFIP WG 10.4, Springer-Verlag,
New York 1991. [Lap91]

363. Leveson, Nancy, SAFEWARE: system safety and
requirements, Addison-Wesley, 1995. [Lev95]

364. Lewis, Robert O., Independent Verification and
Validation, John Wiley & Sons, Inc., 1992.
[Lew92]

365. Lyu , Michael R., Handbook of Software
Reliability Engineering, McGraw Hill, 1996.
[Lyu96]

366. McConnell, Steven C., Code Complete: a
practical handbook of software construction,
Microsoft Press, 1993. [McC93]

367. Musa, John D., and A. Frank Ackerman,
"Quantifying Software Validation: When to stop
testing?" IEEE Software, May 1989, 31-38.
[Mus89]

368. Musa, John, Software Reliability Engineering,
McGraw Hill, 1998. [Mus98]

369. NASA, Formal Methods Specification and
Analysis Guidebook for the Verification of
Software and Computer Systems, Volume II: A
Practitioner's Companion, [NASA-GB-001-97],
1997,
http://eis.jpl.nasa.gov/quality/Formal_Methods/.
[NAS97]

370. Palmer, James D., "Traceability," In: [Dorf], pp.
266-276. [Pal97]

371. Peng, Wendy W. and Dolores R. Wallace,
"Software Error Analysis," NIST SP 500-209,
National Institute of Standards and Technology,
Gaithersburg, MD 20899, December 1992.]
http://hissa.nist.gov/SWERROR/. [Pen92]

372. Rakitin, Steven R., Software Verification and
Validation, A Practitioner's Guide, Artech
House, Inc., 1997. [Rak97]

373. Rosenberg, Linda, Applying and Interpreting
Object-Oriented Metrics, Software Tech. Conf.
1998,

11–20 © IEEE – Stoneman (Version 0.7) – April 2000

http://satc.gsfc.nasa.gov/support/index.html.
[Ros98]

374. Rubin, Jeffrey, Handbook of Usability Testing,
JohnWiley & Sons, 1994. [Rub94]

375. Schulmeyer, Gordon C., and James I. McManus,
Handbook of Software Quality Assurance, Third
Edition, Prentice Hall, NJ, 1998. [Sch98]

376. Voas, Jeffrey, "Certifying Software For High
Assurance Environments, " IEEE Software, July-
August, 1999, pp. 48-54. [Voa99]

377. Wakid, Shukri, D. Richard Kuhn, and Dolores R.
Wallace, "Software Measurement: Testing and
Certification," IEEE Software, July-August 1999,
39-47. [Wak99]

378. Wallace, Dolores R., and Roger U. Fujii,
"Software Verification and Validation: An
Overview," IEEE Software, May 1989, 10-17
 . [Wal89]

379. Wallace, Dolores R., Laura Ippolito, and Barbara
Cuthill, Reference Information for the Software
Verification and Validation Process,@ NIST SP
500-234, NIST, Gaithersburg, MD 20899, April,
1996. http://hissa.nist.gov/VV234/. [Wal96]

380. Weinberg, Gerald M., Quality Software
Management, Vol 2: First-Order Measurement,
Dorset House, 1993. (Ch. 8, Measuring Cost and
Value). [Wei93]

381. Zelkowitz, Marvin V. and Dolores R. Wallace,
Experimental Models for Validating Computer
Technology, Computer , Vol. 31 No.5, 1998
pp.23-31. [Zel98]

382. 8.2.3 Additional Readings

383. (Note: A portion of the sources now in 8.2.2 will
be included here, but we are still checking
carefully to be sure that we do not remove
anything vital. We will also add other references
that were not included in 8.2.2, and pages not
selected in references of 8.2.2 from the sources
therein.)

384. 8.2.4 Relevant Standards

385. FIPS 140-1, 1994, Security Requirements for
Cryptographic Modules

386. IEC 61508 Functional Safety - Safety -related
Systems Parts 1,2

387. IEEE 610.12-1990, Standard Glossary of
Software Engineering Terminology

388. IEEE 730-1998 Software Quality Assurance
Plans

389. IEEE 829 -1998 Software Test Documentation

390. IEEE Std 982.1 and 982.2 Standard Dictionary
of Measures to Produce Reliable Software

391. IEEE 1008-1987 Software Unit Test

392. IEEE 1012-1998 Software Verification and
Validation

393. IEEE 1028 -1997 Software Reviews

394. IEEE 1044 -1993 Standard Classification for
Software Anomalies

395. IEEE Std 1061-1992 Standard for A Software
Quality Metrics Methodology

396. IEEE Std 1228-1994 Software Safety Plans

397. ISO 8402-1986 Quality - Vocabulary

398. ISO 9000-1994 Quality Management and
Quality Assurance Standards

399. ISO 9001-1994 Quality Systems

400. ISOIEC 9126-1999: Software Product Quality

401. ISO 12207 Software Life Cycle Processes 1995

402. ISO/IEC 14598-1998: Software Product
Evaluation

403. ISO/IEC 15026:1998, Information technology --
System and software integrity levels.

404. The Common Criteria for Information
Technology Security Evaluation (CC) VERSION
2.0 / ISO FDIS 15408

© IEEE – Stoneman (Version 0.7) – April 2000 A–1

APPENDIX A

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS
FOR THE STONE MAN VERSION

OF THE GUIDE TO THE SOFTWARE ENGINEERING
BODY OF KNOWLEDGE

Pierre Bourque, Robert
Dupuis and Alain Abran
Université du Québec à

Montréal

James W. Moore
The MITRE Corporation

Leonard Tripp
1999 President IEEE

Computer Society

1. INTRODUCTION1

2. This document presents a third interim version
(version 0.7) of the specifications provided by
the Editorial Team to the Knowledge Area
Specialist regarding the Knowledge Area
Descriptions of the Guide to the Software
Engineering Body of Knowledge (Stone Man
Version). The Editorial Team definitely views
the development of these specifications as an
iterative process and strongly encourages
comments, suggested improvements and
feedback on these specifications from all
involved.

3. This set of specifications may of course be
improved through feedback obtained from the
next review cycle of the Guide scheduled for
this spring.

4. This document begins by presenting
specifications on the contents of the Knowledge
Area Description. Criteria and requirements are
defined for proposed breakdowns of topics, for
the rationale underlying these breakdowns and
the succinct description of topics, for the rating
of these topics according to Bloom’s taxonomy,
for selecting reference materials, and for
identifying relevant Knowledge Areas of Related
Disciplines. Important input documents are also
identified and their role within the project is

1 Text in bold indicates changes between version 0.25
of this document and version 0.7.

explained. Non-content issues such as
submission format and style guidelines are also
discussed in the document.

5. CONTENT GUIDELINES

6. The following guidelines are presented in a
schematic form in the figure found below.
While all components are part of the Knowledge
Area Description, it must be made very clear
that some components are essential, while other
are not. The breakdown(s) of topics, the selected
reference material and the matrix of reference
material versus topics are essential. Without
them there is no Knowledge Area Description.
The other components could be produced by
other means if, for whatever reason, the
Specialist cannot provide them within the given
timeframe and should not be viewed as major
stumbling blocks.

7. Criteria and requirements for
proposing the breakdown(s) of topics
within a Knowledge Area

8. The following requirements and criteria should
be used when proposing a breakdown of topics
within a given Knowledge Area:

9. a) Knowledge Area Specialists are expected
to propose one or possibly two
complementary breakdowns that are
specific to their Knowledge Area. The
topics found in all breakdowns within a
given Knowledge Area must be identical.

A–2 © IEEE – Stoneman (Version 0.7) – April 2000

10. b) These breakdowns of topics are expected
to be “reasonable”, not “perfect”. The
Guide to the Software Engineering Body of
Knowledge is definitely viewed as a multi-
phase effort and many iterations within
each phase as well as multiple phases will
be necessary to continuously improve
these breakdowns. At least for the Stone
Man version, “soundness and
reasonableness” are being sought after, not
“perfection”.

11. c) The proposed breakdown of topics within a
Knowledge Area must decompose the
subset of the Software Engineering Body
of Knowledge that is “generally accepted”.
See section found below for a more
detailed discussion on this.

12. d) The proposed breakdown of topics within a
Knowledge Area must not presume
specific application domains, business
needs, sizes of organizations,
organizational structures, management
philosophies, software life cycle models,
software technologies or software
development methods.

13. e) The proposed breakdown of topics must, as
much as possible, be compatible with the
various schools of thought within software
engineering.

14. f) The proposed breakdown of topics within
Knowledge Areas must be compatible with
the breakdown of software engineering
generally found in industry and in the
software engineering literature and
standards.

15. g) The proposed breakdown of topics is
expected to be as inclusive as possible. It is
deemed better to suggest too many topics
and have them be abandoned later than the
reverse.

16. h) The Knowledge Area Specialist are
expected to adopt the position that even
though the following “themes” are
common across all Knowledge Areas, they
are also an integral part of all Knowledge
Areas and therefore must be incorporated
into the proposed breakdown of topics of
each Knowledge Area. These common
themes are quality (in general) and
measurement.

17. Please note that the issue of how to
properly handle these “cross-running” or
“orthogonal topics” and whether or not
they should be handled in a different
manner has not been completely resolved
yet.

18. i) The proposed breakdowns should be at
most two or three levels deep. Even though
no upper or lower limit is imposed on the
number of topics within each Knowledge
Area, Knowledge Area Specialists are
expected to propose a reasonable and
manageable number of topics per
Knowledge Area. Emphasis should also be
put on the selection of the topics
themselves rather than on their
organization in an appropriate hierarchy.

19. j) Proposed topic names must be significant
enough to be meaningful even when cited
outside the Guide to the Software
Engineering Body of Knowledge.

20. k) Knowledge Area Specialists are also
expected to propose a breakdown of topics
based on the categories of engineering
design knowledge defined in Chapter 7 of
Vincenti’s book. This exercise should be
regarded by the Knowledge Area
specialists as a tool for viewing the
proposed topics in an alternate manner and
for linking software engineering itself to
engineering in general. Please note that
effort should not be spent on this
classification at the expense of the three
essential components of the Knowledge
Area Description. (Please note that the
classification of the topics as per the
categories of engineering design
knowledge has been produced but will
be published at a latter date in a
separate working document. Please
contact the editorial team for more
information).

21. Criteria and requirements for
describing topics and for describing the
rationale underlying the proposed
breakdown(s) within the Knowledge
Area

22. a) Topics need only to be sufficiently
described so the reader can select the

© IEEE – Stoneman (Version 0.7) – April 2000 A–3

appropriate reference material according
to his/her needs.

23. b) Knowledge Area Specialists are expected
to provide a text describing the rationale
underlying the proposed breakdown(s).

24. Criteria and requirements for rating
topics according to Bloom’s taxonomy

25. a) Knowledge Area Specialists are expected
to provide an Appendix that states for each
topic at which level of Bloom’s taxonomy
a “graduate plus four years experience”
should “master” this topic. This is seen by
the Editorial Team as a tool for the
Knowledge Area Specialists to ensure that
the proposed material meets the criteria of
being “generally accepted”. Additionally,
the Editorial Team views this as a means of
ensuring that the Guide to the Software
Engineering Body of Knowledge is
properly suited for the educators that will
design curricula and/or teaching material
based on the Guide and
licensing/certification officials defining
exam contents and criteria.

26. Please note that these appendices will all
be combined together and published as an
Appendix to the Guide to the Software
Engineering Body of Knowledge.

27. Criteria and Requirements for
selecting Reference Material

28. a) Specific reference material must be
identified for each topic. Each reference
material can of course cover multiple
topics.

29. b) Proposed Reference Material can be book
chapters, refereed journal papers, refereed
conference papers or refereed technical or
industrial reports or any other type of
recognized artifact such as web documents.
They must be generally available and must
not be confidential in nature. Please be as
precise as possible by identifying what
specific chapter or section is relevant.

30. c) Proposed Reference Material must be in
English.

31. d) A reasonable amount of reference material
must be selected for each Knowledge Area.

The following guidelines should be used in
determining how much is reasonable:

32. w If the reference material were written in
a coherent manner that followed the
proposed breakdown of topics and in a
uniform style (for example in a new
book based on the proposed Knowledge
Area description), an average target for
the number of pages would be 500.
However, this target may not be
attainable when selecting existing
reference material due to differences in
style, and overlap and redundancy
between the selected reference
material.

33. w The amount of reference material
would be reasonable if it consisted of
the study material on this Knowledge
Area of a software engineering
licensing exam that a graduate would
pass after completing four years of
work experience.

34. w The Guide to the Software Engineering
Body of Knowledge is intended by
definition to be selective in its choice
of topics and associated reference
material The list of reference material
for each Knowledge Area should be
viewed and will be presented as an
"informed and reasonable selection"
rather than as a definitive list.

35. w The classification of topics according
to Bloom’s taxonomy should be used to
allot the appropriate amount and level
of depth of the reference material
selected for each topic.

36. w Additional reference material can be
included in a "Further Readings" list.
These further readings still must be
related to the topics in the breakdown.
They must also discuss generally
accepted knowledge. However, the
further readings material will not be
made available on the web nor should
there be a matrix between the reference
material listed in Further Readings and
the individual topics.

37. e) If deemed feasible and cost-effective by
the IEEE Computer Society, selected
reference material will be published on the
Guide to the Software Engineering Body of

A–4 © IEEE – Stoneman (Version 0.7) – April 2000

Knowledge web site. To facilitate this task,
preference should be given to reference
material for which the copyrights already
belong to the IEEE Computer Society or
the ACM. This should however not be seen
as a constraint or an obligation.

38. f) A matrix of reference material versus
topics must be provided.

39. Criteria and Requirements for
identifying Knowledge Areas of the
Related Disciplines

40. a) Knowledge Area Specialists are expected
to identify in a separate section which
Knowledge Areas of the Related
Disciplines that are sufficiently relevant to
the Software Engineering Knowledge Area
that has been assigned to them be expected
knowledge by a graduate plus four years of
experience.

41. This information will be particularly useful
to and will engage much dialogue between
the Guide to the Software Engineering
Body of Knowledge initiative and our
sister initiatives responsible for defining a
common software engineering curricula
and standard performance norms for
software engineers.

42. The list of Knowledge Areas of Related
Disciplines can be found in the Proposed
Baseline List of Related Disciplines. If
deemed necessary and if accompanied by a
justification, Knowledge Area Specialists
can also propose additional Related
Disciplines not already included or
identified in the Proposed Baseline List of
Related Disciplines.

43. Common Table of Contents

44. a) Knowledge Area descriptions should use
the following table of contents:

45. w Table of contents

46. w Introduction

47. w Definition of the Knowledge Area

48. w Breakdown of topics of the Knowledge
Area (for clarity purposes, we believe
this section should be placed in front
and not in an appendix at the end of the
document. Also, it should be

accompanied by a figure describing the
breakdown)

49. w Breakdown rationale

50. w Matrix of topics vs. Reference material

51. w Recommended references for the
Knowledge Area being described
(please do not mix them with
references used to write the Knowledge
Area description)

52. w List of Further Readings

53. w References used to write and justify the
Knowledge Area description.

54. What do we mean by “generally
accepted knowledge”?

55. The software engineering body of knowledge is
an all-inclusive term that describes the sum of
knowledge within the profession of software
engineering. However, the Guide to the Software
Engineering Body of Knowledge seeks to
identify and describe that subset of the body of
knowledge that is generally accepted or, in other
words, the core body of knowledge. To better
illustrate what “generally accepted knowledge”
is relative to other types of knowledge, Figure 1
proposes a draft three-category schema for
classifying knowledge.

56. The Project Management Institute in its Guide
to the Project Management Body of Knowledge2
defines “generally accepted” knowledge for
project management in the following manner:

57. ‘“Generally accepted” means that the
knowledge and practices described are
applicable to most projects most of the time,
and that there is widespread consensus about
their value and usefulness. “Generally
accepted” does not mean that the knowledge
and practices described are or should be
applied uniformly on all projects; the project
management team is always responsible for
determining what is appropriate for any given
project.’

2 See [1] W. R. Duncan, “A Guide to the Project

Management Body of Knowledge,” Project
Management Institute, Upper Darby, PA 1996. Can
be downloaded from www.pmi.org

© IEEE – Stoneman (Version 0.7) – April 2000 A–5

58. The Guide to the Project Management Body of
Knowledge is now an IEEE Standard.

59. At the Mont-Tremblant kick off meeting, the
Industrial Advisory Board better defined
“generally accepted” as knowledge to be
included in the study material of a software
engineering licensing exam that a graduate
would pass after completing four years of work
experience. These two definitions should be
seen as complementary.

60. Knowledge Area Specialists are also expected to
be somewhat forward looking in their
interpretation by taking into consideration not
only what is “generally accepted” today and but
what they expect will be “generally accepted” in
a 3 to 5 years timeframe.

Generally Accepted

Established traditional practices
recommended by many

organizations

Sp
ec

ia
liz

ed

Pr
ac

tic
es

 u
se

d
on

ly
 fo

r c
er

ta
in

 ty
pe

s
of

 s
of

tw
ar

e

Advanced and Research

Innovative practices tested and used
only by some organizations and

concepts still being developed and
tested in research organizations

61. Figure 1 Categories of knowledge

62. Length of Knowledge Area Description

1. 63. Knowledge Area Descriptions are
currently expected to be roughly in the 10
pages range using the format of the
International Conference on Software
Engineering format as defined below. This
includes text, references, appendices and
tables etc. This, of course, does not include
the reference materials themselves. This
limit should, however, not be seen as a
constraint or an obligation.

64. Role of Editorial Team

65. Alain Abran and James W. Moore are the
Executive Editors and are responsible for
maintaining good relations with the IEEE CS, the

ACM, the Industrial Advisory Board and the
Panel of Experts as well as for the overall
strategy, approach, organization and funding of
the project.

66. Pierre Bourque and Robert Dupuis are the
Editors and are responsible for the coordination,
operation and logistics of this project. More
specifically, the Editors are responsible for
developing the project plan, the Knowledge Area
description specification and for coordinating
Knowledge Area Specialists and their
contribution, for recruiting the reviewers and the
review captains as well as coordinating the
various review cycles.

67. The Editors are therefore responsible for the
coherence of the entire Guide and for
identifying and establishing links between the
Knowledge Areas. The resolution of gaps and
overlaps between Knowledge Areas will be
negotiated by the Editors and the Knowledge
Area Specialists themselves.

68. Summary

2. The following figure presents in a
schematic form the Knowledge Area
Description Specifications

A–6 © IEEE – Stoneman (Version 0.7) – April 2000

Knowledge Area
Jumpstart Document

(9)

Baseline List of
Knowledge Area

(2)

Categories of
Engineering Design

Knowledge by
Vincenti (11)

Bloom's Taxonomy
(1)

Baseline List of
Related Disciplines

(3)

Straw Man
Version of Guide
to the SWEBOK

(5)

Plan for
Developing the

Stone Man
Version (4)

Standards
Road Map

(6)

IEEE 610.12
Terminology
Standard (7)

12207 Software
Life Cycle
Processes

Standard (8)

Breakdown of Topics
(a-j)

Rational of
Breakdown and

Succinct
Description of
Topics (l-m)

Classification of
Topics Based on

Vincenti's
Categories (k)

Rating of Topics
Based on
Bloom's

Taxonomy (n)

Relevant
Knowledge

Areas of Related
Disciplines (u)

Selected
Reference

Material (o-s)

Matrix of
Reference

Material Versus
Topics (t)

Context Documents Standards Documents

Input Documents

Stone Man Version
Deliverable

Reference to Criteria
and Requirements
letter or Document
number

()

Contents of Knowledge
Area Description

© IEEE – Stoneman (Version 0.7) – April 2000 A–7

70. IMPORTANT RELATED DOCUMENTS

(IN ALPHABETICAL ORDER OF FIRST

AUTHOR)

71. 1. Bloom et al., Bloom's Taxonomy of the
Cognitive Domain

72. Please refer to
http://www.valdosta.peachnet
.edu/~whuitt/psy702/cogsys/bloom.html
for a description of this hierarchy of
educational objectives.

68. 2. P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, D. Frailey, A Baseline List
of Knowledge Areas for the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge,
Université du Québec à Montréal, Montréal,
February 1999.

69. Based on the Straw Man version, on the
discussions held and the expectations stated
at the kick off meeting of the Industrial
Advisory Board, on other body of
knowledge proposals, and on criteria
defined in this document, this document
proposes a baseline list of ten Knowledge
Areas for the Stone Man Version of the
Guide to the Software Engineering Body of
Knowledge. This baseline may of course
evolve as work progresses and issues are
identified during the course of the project.

70. This document is available at
www.swebok.org.

71. 3. P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp. A Proposed Baseline List
of Related Disciplines for the Stone Man
Version of the Guide to the Software
Engineering Body of Knowledge,
Université du Québec à Montréal, Montréal,
February 1999.

72. Based on the Straw Man version, on the
discussions held and the expectations stated
at the kick off meeting of the Industrial
Advisory Board and on subsequent work,
this document proposes a baseline list of
Related Disciplines and Knowledge Areas
within these Related Disciplines. This
document has been submitted to and
discussed with the Industrial Advisory
Board and a recognized list of Knowledge
Areas still has to be identified for certain

Related Disciplines. Knowledge Area
Specialists will be informed of the
evolution of this document.

73. The current version is available at
www.swebok.org

74. 4. P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, D. Frailey, Approved
Plan, Stone Man Version of the Guide to
the Software Engineering Body of
Knowledge, Université du Québec à
Montréal, Montréal, February 1999.

75. This report describes the project
objectives, deliverables and underlying
principles. The intended audience of the
Guide is identified. The responsibilities
of the various contributors are defined
and an outline of the schedule is traced.
This documents defines notably the
review process that will be used to
develop the Stone Man version. This plan
has been approved by the Industrial
Advisory Board.

76. This document is available at
www.swebok.org

77. 5. P. Bourque, R. Dupuis, A. Abran, J. W.
Moore, L. Tripp, K. Shyne , B. Pflug, M.
Maya, and G. Tremblay, Guide to the
Software Engineering Body of Knowledge
- A Straw Man Version, Université du
Québec à Montréal, Montréal, Technical
Report, September 1998.

78. This report is the basis for the entire
project. It defines general project
strategy, rationale and underlying
principles and proposes an initial list of
Knowledge Areas and Related
Disciplines.

79. This report is available at
www.swebok.org.

80. 6. J. W. Moore, Software Engineering
Standards, A User's Road Map. Los
Alamitos: IEEE Computer Society Press,
1998.

81. This book describes the scope, roles,
uses, and development trends of the most
widely used software engineering
standards. It concentrates on important
software engineering activities — quality
and project management, system
engineering, dependability, and safety.
The analysis and regrouping of the

A–8 © IEEE – Stoneman (Version 0.7) – April 2000

standard collections exposes you to key
relationships between standards.

82. Even though the Guide to the Software
Engineering Body of Knowledge is not a
software engineering standards
development project per se, special care
will be taken throughout the project
regarding the compatibility of the Guide
with the current IEEE and ISO Software
Engineering Standards Collection.

83. 7. IEEE Standard Glossary of Software
Engineering Terminology, IEEE,
Piscataway, NJ std 610.12-1990, 1990.

84. The hierarchy of references for
terminology is Merriam Webster's
Collegiate Dictionary (10th Edition),
IEEE Standard 610.12 and new proposed
definitions if required.

85. 8. Information Technology – Software Life
Cycle Processes, International Standard,
Technical ISO/IEC 12207:1995(E), 1995.

86. This standard is considered the key
standard regarding the definition of life
cycle process and has been adopted by the
two main standardization bodies in
software engineering: ISO/IEC JTC1 SC7
and the IEEE Computer Society Software
Engineering Standards Committee. It also
has been designated as the pivotal standard
around which the Software Engineering
Standards Committee (SESC) is currently
harmonizing its entire collection of
standards. This standard was a key input to
the Straw Man version.

87. Even though we do not intend that the
Guide to the Software Engineering Body
of Knowledge be fully 12207-compliant,
this standard remains a key input to the
Stone Man version and special care will
be taken throughout the project regarding
the compatibility of the Guide with the
12207 standard.

88. 9. Knowledge Area Jumpstart Documents

89. A “jumpstart document” has already been
provided to all Knowledge Area
Specialists. These “jumpstart documents”
propose a breakdown of topics for each
Knowledge Area based on the analysis of
the four most widely sold generic
software engineering textbooks. As
implied by their title, they have been

prepared as an enabler for the Knowledge
Area Specialist and the Knowledge Area
Specialist are not of course constrained
to the proposed list of topics nor to the
proposed breakdown in these “jumpstart
documents”.

90. 10. Merriam Webster's Collegiate Dictionary
(10th Edition).

91. See note for IEEE 610.12 Standard.

92. 11. W. G. Vincenti, What Engineers Know
and How They Know It - Analytical
Studies from Aeronautical History.
Baltimore and London: Johns Hopkins,
1990.

93. The categories of engineering design
knowledge defined in Chapter 7 (The
Anatomy of Engineering Design
Knowledge) of this book were used as a
framework for organizing topics in the
various Knowledge Area “jumpstart
documents “ and are imposed as
decomposition framework in the
Knowledge Area Descriptions because:

94. w they are based on a detailed historical
analysis of an established branch of
engineering: aeronautical engineering.
A breakdown of software engineering
topics based on these categories is
therefore seen as an important
mechanism for linking software
engineering with engineering at large
and the more established engineering
disciplines;

95. w they are viewed by Vincenti as
applicable to all branches of
engineering;

96. w gaps in the software engineering body
of knowledge within certain categories
as well as efforts to reduce these gaps
over time will be made apparent;

97. w due to generic nature of the
categories, knowledge within each
knowledge area could evolve and
progress significantly while the
framework itself would remain stable;

98. AUTHORSHIP OF KNOWLEDGE AREA

DESCRIPTION

99. The Editorial Team will submit a proposal to
the project’s Industrial Advisory Board to have

© IEEE – Stoneman (Version 0.7) – April 2000 A–9

Knowledge Area Specialists recognized as
authors of the Knowledge Area description.

100. STYLE AND TECHNICAL GUIDELINES

101. Knowledge Area Descriptions should conform
to the International Conference on Software
Engineering Proceedings format (templates are
available at http://sunset.usc.edu/icse99/cfp
/technical_papers.html).

102. Knowledge Area Descriptions are expected to
follow the IEEE Computer Society Style
Guide. See http://computer.org/author/style/cs-
style.htm

103. Microsoft Word 97 is the preferred
submission format. Please contact the Editorial
Team if this is not feasible for you.

104. Other Detailed Guidelines:

105. When referencing the guide, we recommend
that you use the full title “Guide to the
SWEBOK” instead of only “SWEBOK.”

106. For the purpose of simplicity, we recommend
that Knowledge Area Specialists avoid
footnotes. Instead, they should try to include
their content in the main text.

107. We recommend to use in the text explicit
references to standards, as opposed to simply
inserting numbers referencing items in the
bibliography. We believe it would allow to
better expose the reader to the source and
scope of a standard.

108. The text accompanying figures and tables
should be self-explanatory or have enough
related text. This would ensure that the reader
knows what the figures and tables mean.

109. Make sure you use current information about
references (versions, titles, etc.)

110. To make sure that some information contained
in the Guide to the SWEBOK does not become
rapidly obsolete, please avoid directly naming
tools and products. Instead, try to name their
functions. The list of tools and products can
always be put in an appendix.

111. You are expected to spell out all acronyms
used and to use all appropriate copyrights,
service marks, etc.

112. The Knowledge Area Descriptions should
always be written in third person.

113. EDITING (TO BE CONFIRMED)

114. Knowledge Area Descriptions will be edited
by IEEE Computer Society staff editors.
Editing includes copy editing (grammar,
punctuation, and cap italization), style editing
(conformance to the Computer Society
magazines' house style), and content editing
(flow, meaning, clarity, directness, and
organization). The final editing will be a
collaborative process in which IEEE
Computer Society staff editors and the
authors work together to achieve a concise,
well-worded, and useful a Knowledge Area
Description.

115. RELEASE OF COPYRIGHT

116. All intellectual properties associated with the
Guide to the Software Engineering Body of
Knowledge will remain with the IEEE
Computer Society. Knowledge Area Specialists
will be asked to sign a copyright release form.

117. It is also understood that the Guide to the
Software Engineering Body of Knowledge will
be put in the public domain by the IEEE
Computer Society, free of charge through web
technology, or other means.

118. For more information, See
http://computer.org/ copyright.htm

© IEEE – Stoneman (Version 0.7) – April 2000 B–1

APPENDIX B

A LIST OF RELATED DISCIPLINES FOR
THE STONE MAN VERSION OF THE GUIDE TO THE SWEBOK

1. In order to circumscribe software engineering, it is

necessary to identify the other disciplines with
which SE shares a common boundary. These
disciplines are called Related Disciplines. In this
regard, the mandate of the Guide to the SWEBOK
project is to Identify other disciplines that contain
knowledge areas that are important to a software
engineer. The list of such Knowledge areas would
be useful to attain the fifth objective of the project:
Provide a foundation for curriculum development
and individual certification and licensing material.

2. Therefore, this appendix identifies:

3. w a list of Related Disciplines, based on the
Strawman Guide, on the discussions of the
Industrial Advisory Board at the Industrial
Advisory Board kick-off meeting in Mont-
Tremblant (Canada) and on subsequent
work and discussions;

4. w a list of knowledge areas for these Related
Disciplines, based on as authoritative a
source as found.

5. These lists were to be as large as possible because
we considered it easier to eliminate topics than
adding them further on in the process.

6. The SWEBOK KA Specialists were asked to
identify from these lists the Knowledge Areas of
the Related Disciplines that are sufficiently
relevant to the Software Engineering KA that has
been assigned to them to be expected knowledge
from a graduate with four years of experience. If
deemed necessary and if accompanied by a
justification, Knowledge Area Specialists could
also propose additional Related Disciplines not
already. These choices are presented in Appendix
D. The level and extent of knowledge that a
software engineer should posses within these
knowledge areas is not specified at this point.
This will be done by other projects according to
their needs.

7. LIST OF RELATED DISCIPLINES

AND SOURCES OF KNOWLEDGE

AREAS.

8. Computer Science
9. w It was agreed in Mont-Tremblant that the

reference for this Related Discipline
would be obtained through an initiative
called the IEEE Computer Society and
ACM Joint Task Force on "Year 2001
Model Curricula for Computing: CC-
2001". To ensure proper coordination with
this initiative, Carl Chang, Joint Task
Force Co -Chair is a member of the
Industrial Advisory Board and was present
in Mont-Tremblant. Appendix B.1 lists the
preliminary Knowledge Areas of
Computer Science as determined by the
CC-2001 group.

10. Mathematics
11. w It was agreed in Mont-Tremblant that the

Computing Curricula 2001 initiative
would be the “conduit” to mathematics.
So far, we have not received such a list of
Knowledge Areas (Knowledge Units in
the CC-2001 vocabulary), for
Mathematics but it is expected that CC-
2001 will provide it. In the mean time, the
project refers to the list defined by the
Computing Curriculum 19911 initiative
and found in Appendix B.2.

12. Project Management

13. w The reference for this Related Discipline
is “A Guide to the Project Management
Body of Knowledge” 2 published by the
Project Management Institute. This
document is currently being adopted as an

1 See http://computer.org/educate/cc1991/
2 See www.pmi.org to download this report.

B–2 © IEEE – Stoneman (Version 0.7) – April 2000

IEEE software engineering standard. The
list of Knowledge Areas for project
management can be found in Appendix
B.3.

14. Computer Engineering

15. A list of Knowledge Areas for Computer
Engineering and found in Appendix B.4 was
compiled from the integration of:

16. w The syllabus for the British licensing
exam for the field of Computer Systems
Engineering3.

17. w The Principles and Practice of
Engineering Examination - Guide for
Writers and Reviewers in Electrical
Engineering of the National Council of
Examiners for Engineering and Surveying
(USA). An appendix listed Computer
Engineering Knowledge Areas for which
questions should be put to the candidates.

18. w The Computer Engineering undergraduate
program at the Milwaukee School of
Engineering4. This program is considered
to be a typical example of an American
accredited program by the director of the
Computer Engineering and Computer
Science Department at MSOE.

19. Systems Engineering

20. Appendix B.5 contains a proposed list of
Knowledge Areas for Systems Engineering. The
list was compiled from:

21. w The EIA 632 and IEEE 1220 (Trial-Use)
standards;

22. w the Andriole and Freeman paper5;

23. w the material available on the INCOSE
(International Council on Systems
Engineering) website6;

24. w a curriculum for a graduate degree in
Systems Engineering at the University of
Maryland7;

25. Three experts in the field were also
consulted, John Harauz, from Ontario Hydro,
John Kellogg from Lockheed Martin, and Claude

3 See http://www.engc.org.uk
4 See http://www.msoe.edu/eecs/ce/index.htm
5 Stephen J. Andriole and Peter A. Freeman, Software systems
engineering: the case for a new discipline , System Engineering
Journal, Vol. 8, No. 3, May 1993, pp. 165-179.
6 See www.incose.org
7 See http://www.isr.umd.edu/ISR/education/msse/

Laporte consultant, previously with the Armed
Forces of Canada and Oerlikon Aerospace.

26. Management and Management Science

27. No definitive source has been identified so far
for a list of Management and Management
Science Knowledge Areas relevant to software
engineering. A list was therefore compiled from

28. w the Technology Management Handbook8
which contains many relevant chapters;

29. w the Engineering Handbook9 which
contains a section on Engineering
Economics and Management covering
many of the relevant topics;

30. w an article by Henri Barki and Suzanne
“Rivard titled A Keyword Classification
Scheme for IS Research Literature: An
Update”10.

31. The proposed list of knowledge areas for
Management and Management Science can be
found in Appendix B.6.

32. Cognitive Sciences and Human Factors

33. Appendix B.7 contains a list of proposed
Knowledge Areas for Cognitive Sciences and
Human Factors. The was compiled from the list
of courses offered at the John Hopkins
University Department of Cognitive Sciences11
and from the ACM SIGCHI Curricula for
Human-Computer Interaction12.

34. The list was then refined by three experts in the
field: two from UQAM and W. W. McMillan,
from Eastern Michigan University. They were
asked to indicate which of these topics should be
known by a software engineer. The topics that
were rejected by two of the three respondents
were removed from the original list.

8 See CRC Press
9 See Crc Press
10 See MIS Quaterly, June 1993, pp. 209-226
11 See http://www.cogsci.jhu.edu/
12 See TABLE 1. Content of HCI
athttp://www.acm.org/sigchi/cdg/cdg2.html

© IEEE – Stoneman (Version 0.7) – April 2000 B–3

35. APPENDIX B.1. KNOWLEDGE AREAS

OF COMPUTER SCIENCE.

36. 0. [MP] Mathematics and Physical Sciences

37. 1. [FO] Foundations

38. Complexity analysis

39. Complexity classes

40. Computability and undecidability

41. Discrete mathematics (logic, combinatorics,
probability)

42. Proof techniques

43. Automata (regular expressions, context-free
grammars, FSMs/PDAs/TMs)

44. Formal specifications

45. Program semantics

46. 2. [AL] Algorithms and Data Structures

47. Basic data structures

48. Abstract data types

49. Sorting and searching

50. parallel and distributed algorithms

51. 3. [AR] Computer Architecture

52. Digital logic

53. Digital systems

54. Machine level representation of data

55. Number representations

56. Assembly level machine organization

57. Memory system organization and architecture

58. Interfacing and communication

59. Alternative architectures

60. Digital signal processing

61. Performance

62. 4. [IS] Intelligence Systems (IS)

63. Artificial intelligence

64. Robotics

65. Agents

66. Pattern Recognition

67. Soft computing (neural networks, genetic
algorithms, fuzzy logic)

68. 5. [IM] Information Management

69. Database models

70. Search Engines

71. Data mining/warehousing

72. Digital libraries

73. Transaction processing

74. Data compression

75. 6. [CI] Computing at the Interface

76. Human-computer interaction (usability design,
human factors)

77. Graphics

78. Vision

79. Visualization

80. Multimedia

81. PDAs and other new hardware

82. User-level application generators

83. 7. [OS] Operating Systems

84. Tasks, processes and threads

85. Process coordination and synchronization

86. Scheduling and dispatching

87. Physical and virtual memory organizations

88. File systems

89. Networking fundamentals (protocols, RPC,
sockets)

90. Security

91. Protection

92. Distributed systems

93. Real-time computing

94. Embedded systems

95. Mobile computing infrastructure

96. 8. [PF] Programming Fundamentals and Skills

97. Introduction to programming languages

98. Recursive algorithms/programming

99. Programming paradigms

100. Program-solving strategies

101. Compilers/translation

102. Code Generation

103. 9. [SE] Software Engineering

104. Software Engineering will not be a related
discipline to Software Engineering

105. This focus group will be coordinated with the
SWEBOK project in order to avoid double
definitions of the field.

106. 10. [NC] Net-centric Computing

107. Computer-supported cooperative work

108. Collaboration Technology

B–4 © IEEE – Stoneman (Version 0.7) – April 2000

109. Distributed objects computing
(DOC/CORBA/DCOM/JVM)

110. E-Commerce

111. Enterprise computing

112. Network-level security

113. 11. [CN] Computational Science

114. Numerical analysis

115. Scientific computing

116. Parallel algorithms

117. Supercomputing

118. Modeling and simulation

119. 12. [SP] Social, Ethical, Legal and Professional
Issues

120. Historical and social context of computing

121. Philosophical ethics

122. Intellectual property

123. Copyrights, patents, and trade secrets

124. Risks and liabilities

125. Responsibilities of computing professionals

126. Computer crime

127. APPENDIX B.2. KNOWLEDGE AREAS

OF MATHEMATICS

128. Discrete Mathematics: sets, functions,
elementary propositional and predicate logic,
Boolean algebra, elementary graph theory,
matrices, proof techniques (including induction
and contradiction), combinatorics, probability,
and random numbers.

129. Calculus: differential and integral calculus,
including sequences and series and an
introduction to differential equations.

130. Probability: discrete and continuous, including
combinatorics and elementary statistics.

131. Linear Algebra: elementary, including matrices,
vectors, and linear transformations.

132. Mathematical Logic: propositional and
functional calculi, completeness, validity, proof,
and decision

133. APPENDIX B.3. KNOWLEDGE AREAS

OF PROJECT MANAGEMENT

134. The list of Knowledge Areas defined by the
Project Management Institute for project
management is:

135. w Project Integration Management

136. w Project Scope Management

137. w Project Time Management

138. w Project Cost Management

139. w Project Quality Management

140. w Project Human Resource Management

141. w Project Communications Management

142. w Project Risk Management

143. w Project Procurement Management

144. APPENDIX B.4. KNOWLEDGE AREAS

OF COMPUTER ENGINEERING.

145. Digital Data Manipulation

146. Processor Design

147. Digital Systems Design

148. Computer Organization

149. Storage Devices and Systems

150. Peripherals and Communication

151. High Performance Systems

152. System Design

153. Measurement and Instrumentation

154. Codes and Standards

155. Circuit Theory

156. Electronics

157. Controls

158. Combinational and Sequential Logic

159. Embedded Systems Software

160. Engineering Systems Analysis with Numerical
Methods

161. Computer Modeling and Simulation

© IEEE – Stoneman (Version 0.7) – April 2000 B–5

162. APPENDIX B.5. KNOWLEDGE AREAS

OF SYSTEMS ENGINEERING

163. PROCESS

164. Need Analysis

165. Behavioral Analysis

166. Enterprise Analysis

167. Prototyping

168. Project Planning

169. Acquisition

170. Requirements Definition

171. System definition

172. Specification trees

173. System breakdown structure

174. Design

175. Effectiveness Analysis

176. Component specification

177. Integration

178. Maintenance & Operations

179. Configuration Management

180. Documentation

181. Systems Quality Analysis and Management

182. Systems V & V

183. System Evaluation

184. Systems Lifecycle Cost Estimation

185. Design of Human-Machine Systems

186. Fractals and self-similarities

187. ESSENTIAL FUNCTIONAL PROCESSES:
(IEEE 1220)

188. Development

189. Manufacturing

190. Test

191. Distribution

192. Operations

193. Support

194. Training

195. Disposal

196. TECHNIQUES & TOOLS (IEEE 1220)

197. Metrics

198. Privacy

199. Process Improvement

200. Reliability

201. Safety

202. Security

203. Vocabulary

204. Effectiveness Assessment

205. APPENDIX B.6. KNOWLEDGE AREAS

OF MANAGEMENT AND

MANAGEMENT SCIENCE

206. BUSINESS STRATEGY

207. FINANCE

208. EXTERNAL ENVIRONMENT

209. Economic Environment

210. Legal Environment

211. Regulation processes

212. ORGANIZATIONAL ENVIRONMENT

213. Organizational Characteristics

214. Organizational Functions

215. Organizational Dynamics

216. INFORMATION SYSTEMS MANAGEMENT

217. Data Resource Management

218. Information Resource Management

219. Personnel Resource Management

220. IS Staffing

221. INNOVATION AND CHANGE

222. ACCOUNTING

223. TRAINING

224. MANAGEMENT SCIENCE

225. Models

226. Financial Models

227. Planning Models

228. Optimization

229. Optimization methods

230. Heuristics

231. Linear Programming

232. Goal Programming

233. Mathematical Programming

234. Statistics

235. Simulation

B–6 © IEEE – Stoneman (Version 0.7) – April 2000

236. APPENDIX B.7. KNOWLEDGE AREAS

OF COGNITIVE SCIENCES AND

HUMAN FACTORS

237. Cognition
238. Cognitive AI I: Reasoning

239. Machine Learning and Grammar Induction

240. Formal Methods in Cognitive Science: Language

241. Formal Methods in Cognitive Science:
Reasoning

242. Formal Methods in Cognitive Science: Cognitive
Architecture

243. Cognitive AI II: Learning

244. Foundations of Cognitive Science

245. Information Extraction from Speech and Text

246. Lexical Processing

247. Computational Language Acquisition

248. The Nature of HCI

249. (Meta-)Models of HCI

250. Use and Context of Computers

251. Human Social Organization and Work

252. Application Areas

253. Human-Machine Fit and Adaptation

254. Human Characteristics

255. Human Information Processing

256. Language, Communication, Interaction

257. Ergonomics

258. Computer System and Interface Architecture

259. Input and Output Devices

260. Dialogue Techniques

261. Dialogue Genre

262. Computer Graphics

263. Dialogue Architecture

264. Development Process

265. Design Approaches

266. Implementation Techniques

267. Evaluation Techniques

268. Example Systems and Case Studies

© IEEE – Stoneman (Version 0.7) – April 2000 C–1

APPENDIX C

CLASSIFICATION OF TOPICS ACCORDING
TO BLOOM’S TAXONOMY

1. INTRODUCTION

2. Bloom’s taxonomy is the best known and
most widely used classification of cognitive
educational goals. In order to help all
audiences in that field who wish to use the
Guide as a tool in designing course material,
programs or accreditation criteria, the
project was mandated to provide a first draft
evaluation of the topics included in the
Knowledge Areas breakdowns according
Bloom’s Taxonomy. This should only be
seen as a jump-start document to be further
developed by other steps in other, related
projects.

3. Knowledge Area Specialists were asked to
provide an Appendix that states for each
topic at which level of Bloom’s taxonomy a
“graduate plus four years experience”
should “master” this topic. The resulting
table could also be used by the specialists
themselves as a guide to choose the amount
and level of reference material appropriate
for each topic.

4. This appendix contains, for each Knowledge
Area1, a table identifying the topics and the
associated Bloom’s taxonomy level of
understanding on each topic for a graduate
with four years experience. The levels of
understanding from lower to higher are:
knowledge, comprehension, application,
analysis, synthesis, and evaluation. The
version used can be found at
http://www.valdosta.peachnet.edu/~whuitt/p
sy702/cogsys/bloom.html

1 Please note that the rating for the

Software Construction Knowledge Area
is still missing.

5. SOFTWARE REQUIREMENTS
 TOPIC Bloom Level

6. Requirements engineering process

7. Process models Knowledge

8. Process actors Knowledge

9. Process support Knowledge

10. Process quality and improvement Knowledge

11. Requirements elicitation

12. Requirements sources Comprehension

13. Elicitation techniques Application

14. Requirements analysis

15. Requirements classification Comprehension

16. Conceptual modeling Comprehension

17. Architectural design and requirements
allocation

Analysis

18. Requirements negotiation Analysis

19. Requirement specification

20. The requirements definition document Application

21. The software requirements
specification (SRS)

Application

22. Document structure Application

23. Document quality Analysis

24. Requirements validation

25. The conduct of requirements reviews Analysis

26. Prototyping Application

27. Model validation Analysis

28. Acceptance tests Application

29. Requirements management

30. Change management Analysis

31. Requirement attributes Comprehension

32. Requirements tracing Comprehension

C–2 © IEEE – Stoneman (Version 0.7) – April 2000

33. SOFTWARE DESIGN

Software Design Topic Know-

ledge
Compre
hension

Appli-
cation

Analy
-sis

Syn-
thesis

Eva-
luation

34. I. Software Design Basic Concepts
35. General design concepts X
36. The context of software design X
37. The software design process X X
38. Basic software design concepts X
39. Key issues in software design X X
40. II. Software Architecture
41. Architectural structures and viewpoints X
42. Architectural styles and patterns (macro-architecture) X X
43. Design patterns (micro-architecture) X X
44. Design of families of programs and frameworks X
45. III. Software Design Quality Analysis and Evaluation
46. Quality attributes X
47. Quality analysis and evaluation tools X X
48. Metrics X X
49. IV. Software Design Notations
50. Structural descriptions (static view) X X
51. Behavioral descriptions (dynamic view) X X
52. V. Software Design Strategies and Methods
53. General strategies X
54. Function-oriented design X
55. Object-oriented design X X
56. Data-structure centered design X
57. Other methods X X

58. Note: As mentioned in the URL used as reference for “Bloom’s et al.’s Taxonomy of the Cognitive Domain”,
Evaluation has been considered to be at the same level as Synthesis, but using different cognitive processes.

© IEEE – Stoneman (Version 0.7) – April 2000 C–3

59. SOFTWARE TESTING
 Topic Bloom’s level

60. A. Testing Basic Concepts and definitions
61. Definitions of testing and related terminology Analysis

62. Faults vs. failures Analysis

63. Test selection criteria/Test adequacy criteria
(or stopping rules)

Application

64. Testing effectiveness/Objectives for testing Comprehension

65. Testing for defect identification Comprehension

66. The oracle problem Comprehension

67. Theoretical and practical limitations of
testing

Application

68. The problem of infeasible paths Comprehension

69. Testability Comprehension

70. Testing vs. Static Analysis Techniques Application

71. Testing vs. Correctness Proofs Knowledge

72. Testing vs. Debugging Comprehension

73. Testing vs. Programming Application

74. Testing within SQA Application

75. Testing within CMM Knowledge

76. Testing within Cleanroom Knowledge

77. Testing and Certification Comprehension

78. B. Test Levels

79. Unit testing Application

80. Integration testing Application

81. System testing Application

82. Acceptance/qualification testing Application

83. Installation testing Application

84. Alpha and Beta testing Application

85. Conformance testing/Functional
testing/Correctness testing

Application

86. Reliability achievement and evaluation by
testing

Comprehension

87. Regression testing Application

88. Performance testing Comprehension

89. Stress testing Comprehension

90. Back-to-back testing Knowledge

91. Recovery testing Comprehension

92. Configuration testing Comprehension

93. Usability testing Comprehension

94. C. Test Techniques
95. Ad hoc Synthesis

96. Equivalence partitioning Application

97. Boundary-value analysis Application

98. Decision table Knowledge

99. Finite-state machine-based Knowledge

100. Testing from formal specifications Knowledge

101. Random testing Application

102. Reference models for code-based testing
(flow graph, call graph)

Application

103. Control flow-based criteria Application

104. Data flow-based criteria Comprehension

C–4 © IEEE – Stoneman (Version 0.7) – April 2000

 Topic Bloom’s level
105. Error guessing Application

106. Mutation testing Knowledge

107. Operational profile Comprehension

108. SRET Knowledge

109. Object-oriented testing Application

110. Component-based testing Comprehension

111. GUI testing Knowledge

112. Testing of concurrent programs Knowledge

113. Protocol conformance testing Knowledge

114. Testing of distributed systems Knowledge

115. Testing of real-time systems Knowledge

116. Testing of scientific software Knowledge

117. Functional and structural Synthesis

118. Coverage and operational/Saturation effect Knowledge

119. D. Test related measures

120. Program measurements to aid in planning and
designing testing.

Synthesis

121. Types, classification and statistics of faults Application

122. Remaining number of defects/Fault density Application

123. Life test, reliability evaluation Comprehension

124. Reliability growth models Knowledge

125. Coverage/thoroughness measures Application

126. Fault seeding Knowledge

127. Mutation score Knowledge

128 Comparison and relative effectiveness of
different techniques

Comprehension

129. E. Managing the Test Process
130. Attitudes/Egoless programming Application

131. Test process Synthesis

132. Test documentation and workproducts Synthesis

133. Internal vs. independent test team Comprehension

134. Cost/effort estimation and other process
metrics

Application

135. Test reuse Application

136. Planning Application

137. Test case generation Application

138. Test environment development Application

139. Execution Application

140. Test results evaluation Application

141. Trouble reporting/Test log Application

142. Defect tracking Application

© IEEE – Stoneman (Version 0.7) – April 2000 C–5

143. SOFTWARE MAINTENANCE

 TOPIC BLOOM
LEVEL

144. Introduction to Software
Maintenance

Comprehension

145. Need for Maintenance Comprehension

146. Categories of Maintenance Comprehension

147. Maintenance Activities Comprehension

148. Unique Activities Comprehension

149. Supporting Activities Comprehension

150. Configuration Management Comprehension

151. Quality Comprehension

152. Maintenance Planning Activity Comprehension

153. Maintenance Process Synthesis

154. Maintenance Process Models Synthesis

155. Organization Aspect of Maintenance Comprehension

156. The Maintainer Comprehension

157. Outsourcing Comprehension

158. Organizational Structure Comprehension

159. Problems of Software Maintenance Comprehension

160. Technical Comprehension

161. Limited Understanding Comprehension

162. Testing Comprehension

163. Impact Analysis Comprehension

164. Maintainability Comprehension

165. Management Comprehension

166. Alignment with
organizational issues

Comprehension

167. Staffing Comprehension

168. Process issues Synthesis

169. Maintenance cost and Maintenance
Cost Estimation

Comprehension

170. Cost Comprehension

171. Cost estimation Comprehension

172. Parametric models Comprehension

173. Experience Comprehension

174. Software Maintenance Measurements Synthesis

175. Establishing a Metrics Program Comprehension

176. Specific Measures Synthesis

177. Techniques for Maintenance- Synthesis

178. Program Comprehension Synthesis

179. Re-engineering Synthesis

180. Reverse Engineering Synthesis

181. Impact Analysis Synthesis

182. Resources Comprehension

C–6 © IEEE – Stoneman (Version 0.7) – April 2000

183. SOFTWARE CONFIGURATION MANAGEMENT

 SCM TOPIC Bloom Level

184. I. Management of the SCM Process Knowledge
185. A. Organizational Context for SCM Knowledge
186. B. Constraints and Guidance for

SCM
Knowledge

187. C. Planning for SCM Knowledge
188. 1. SCM Organization and

Responsibilities
Knowledge

189. 2. SCM Resources and
Schedules

Comprehension
190. 3. Tool Selection and

Implementation
Knowledge

191. 4. Vendor/Subcontractor
Control

Knowledge

192. 5. Interface Control Comprehension
193. D. Software Configuration

Management Plan
Knowledge

194. E. Surveillance of SCM Comprehension
195. 1. SCM Metrics and

Measurement
Comprehension

196. 2. In-Process Audits of
SCM

Knowledge
197. II. Software Configuration Identification Comprehension

198. A. Identifying Items to be
controlled

Comprehension
199. 1. Software

Configuration
Comprehension

200. 2. Software
Configuration Item

Comprehension

201. 3. Software configuration
item relationships

Comprehension
202. 4. Software Versions Comprehension
203. 5. Baselines Comprehension
204. 6. Acquiring Software

Configuration Items
Knowledge

205. B. SCM Library Comprehension
206. III. Software Configuration Control Application

207. A. Requesting, Evaluating, and
Approving Software Changes

Application
208. 1. Software

Configuration Control
Application

209. 2. Software Change
Request Process

Application
210. B. Implementing Software Changes Application
211. C. Deviations & Waivers Comprehension
212. IV. Software Configuration Status Accounting Comprehension

213. A. Software Configuration Status
Information

Comprehension
214. B. Software Configur ation Status

Reporting
Comprehension

215. V. Software Configuration Auditing Knowledge

216. A. Software Functional
Configuration Audit

Knowledge
217. B. Software Physical Configuration

Audit
Knowledge

218. C. In-process Audits of a Software
Baseline

Knowledge
219. VI. Software Release Management & Delivery Comprehension
220. A. Software Building Comprehension
221. B. Software Release Management Comprehension

© IEEE – Stoneman (Version 0.7) – April 2000 C–7

222. SOFTWARE ENGINEERING MANAGEMENT
Topic Level

Determining the goals of a measurement program Synthesis
Size measurement Analysis
Complexity measurement Analysis
Performance measurement Analysis
Resource measurement Analysis
Goal/Question/Metric Application
Measurement validity (scales) Comprehension
Survey techniques and questionnaire design Knowledge
Data collection Knowledge
Model building and calibration Evaluation
Model evaluation Synthesis
Implementation of models Analysis
Interpretation of models Analysis
Function Point Analysis Application
COCOMO Application
Portfolio management Comprehension
Vendor management Application
Subcontract management Knowledge
Policy management Comprehension
Personnel management Analysis
Communication Analysis
Requirements analysis Comprehension
Use cases Comprehension
Proposal construction Application
Feasibility analysis Application
Revision of requirements Comprehension
Prototyping Comprehension
Risk management Synthesis
Process planning Analysis
Determining deliverables Comprehension
Quality management Synthesis
Schedule and cost estimation Analysis
Resource allocation Application
Task and responsibility allocation Application
Implementing a metrics program Analysis
Implementing plans Application
Process monitoring Application
Change control Comprehension
Configuration management Comprehension
Scenario analysis Comprehension
Feedback and reporting Application
Determining satisfaction of requirements Comprehension
Reviewing and evaluating performance Application
Determining closure Application
Archival activities Comprehension
Maintenance Comprehension
System retirement Comprehension

C–8 © IEEE – Stoneman (Version 0.7) – April 2000

223. SOFTWARE ENGINEERING PROCESS

Topic Bloom Level
Basic Concepts and Definitions
 Themes Comprehension
 Terminology Knowledge
Process Infrastructure
 The Experience Factory Comprehension
 The Software Engineering Process Group Comprehension
Process Measurement
 Methodology in Process Measurement Comprehension
 Process Measurement Paradigms Comprehension
 Analytic Paradigm Comprehension
 Benchmarking Paradigm Comprehension
Process Definition
 Types of Process Definitions Application
 Life Cycle Models Application
 Software Life Cycle Models Application
 Notations for Process Definitions Application
 Process Definition Methods Application
 Automation Knowledge
Qualitative Process Analysis
 Process Definition Review Comprehension
 Root Cause Analysis Comprehension
Process Implementation and Change
 Paradigms for Process Implementation and Change Comprehension
 Guidelines for Process Implementation and Change Comprehension
 Evaluating the Outcome of Process Implementation and Change Comprehension

© IEEE – Stoneman (Version 0.7) – April 2000 C–9

224. SOFTWARE ENGINEERING TOOLS AND METHODS

Topics Bloom level

I. Software Tools

 A. Software Requirements Tools application

 B. Software Design Tools application

 C. Software Construction Tools

 1. program editors application
 2. compilers application
 3. debuggers application

 D. Software Testing Tools

 1. test generators comprehension
 2. test execution frameworks application
 3. test evaluation tools application
 4. test management comprehension

 E. Software Maintenance Tools

 1. comprehension tools application
 2. Reverse engineering tools knowledge
 3. Re-engineering tools knowledge
 4. traceability tools knowledge

 F. Software Engineering Process
Tools

 1. integrated CASE environments application
 2. Process-centered software

engineering environments
comprehension

 3. Process modeling tools knowledge

 G. Software Quality Analysis Tools

 1. inspection tools comprehension
 2. static analysis tools application
 3. performance analysis tools comprehension

 H. Software Configuration
Management Tools

 1. version management tools application
 2. release and build tools application

 I. Software Engineering Management
Tools

 1. project planning and tracking
tools

application

 2. risk analysis and management
tools

comprehension

 3. measurement tools application
 4. defect, enhancement, issue and

problem tracking tools
application

 J. Infrastructure Support Tools

 1. interpersonal communication
tools

application

 2. information retrieval tools application
 3. system administration and

support tools
comprehension

 K. Miscellaneous

C–10 © IEEE – Stoneman (Version 0.7) – April 2000

 1. tool integration techniques knowledge
 2. meta tools comprehension
 3. tool evaluation application

II. Development Methods

 A. Heuristic Methods

 1. ad-hoc methods application
 2. structured methods application
 3. data-oriented methods application
 4. object-oriented methods application
 5. domain-specific methods knowledge

 B. Formal Methods

 1. specification languages comprehension
 2. refinement knowledge
 3. verification/proving properties comprehension

 C. Prototyping Methods

 1. styles comprehension
 2. prototyping targets application
 3. evaluation techniques comprehension

 D. Miscellaneous

 1. Method evaluation application

225. SOFTWARE QUALITY

226. All software engineers are responsible for the quality of the products they build. We consider that the knowledge
requirements for topics in Software Quality Analysis vary depending on the role of the software engineer. We use
the roles of programmer, SQA/VV specialist, and project manager. The programmer will design and build the
system, possibly be involved in inspections and reviews, analyze his work products statically, and possibly perform
unit test. This person may turn over the products to others who will conduct integration and higher levels of testing,
and may be asked to submit data on development tasks, but will not conduct analyses on faults or on measurements.
The SQA/VV specialist will plan and implement the processes for software quality analysis, verification, and
validation. The project manager of the development project will use the information from the software quality
analysis processes to make decisions. Of course, in a small project, the software engineer may have to assume all of
these roles, in which case, the highest of the three is appropriate.

© IEEE – Stoneman (Version 0.7) – April 2000 C–11

 Bloom Level*, By Job Responsibility Software Quality Topic
(Numbered as to Section in this
KA) Programmer SQA/VV Spec. Project Manager

227. 3. Software Quality Concepts
228. 3.1 Measuring the Value of

Quality
Comprehension Comprehension Analysis

229. 3.2 ISO 9126 Quality Description Comprehension Comprehension Comprehension
230. 3.3 Dependability Comprehension Comprehension Comprehension
231. 3.4 Special Types of Systems and

Quality Needs
Comprehension Comprehension Comprehension

232. 3.5 Quality Attributes for
Engineering Process

Comprehension Comprehension Comprehension

233. 4. Defining SQA and V&V Comprehension Comprehension Comprehension
234. 5. Planning for SQA and V&V
235. 5.1 The SQA Plan Application Synthesis Evaluation
236. 5.2 The V&V Plan Application Synthesis Evaluation
237. 6. Activities and Techniques for

SQA and V&V

238. 6.1 Static Techniques
239. 6.1.1 Audits, Reviews, and

Inspections
Application Evaluation Analysis

240. 6.1.2 Analytic Techniques Application Evaluation Analysis
241. 6.2 Dynamic Techniques Application Evaluation Analysis
242. 7. Measurement Applied to SQA

and V&V

243. 7.1 Fundamentals of
Measurement

Application Evaluation Analysis

244. 7.2 Metrics Application Evaluation Analysis
245. 7.3 Measurement Techniques Application Evaluation Analysis
246. 7.4 Defect Characterization Application Evaluation Analysis
247. 7.5 Additional uses of SQA and

V&V data
Application Evaluation Analysis

248. *The levels, in ascending order: Knowledge, Comprehension, Application, Analysis, Synthesis, Evaluation.

© IEEE – Stoneman (Version 0.7) – April 2000 D–1

APPENDIX D

IDENTIFICATION OF RELEVANT KNOWLEDGE AREAS
OF RELATED DISCIPLINES

1. INTRODUCTION

2. Each SWEBOK KA description identified relevant KAs from Related Disciplines. Although these KAs are merely
identified without additional description or references, they should aid curriculum developers. This Appendix must
be viewed as a jumpstart document and as aid to curriculum developers rather than as a definitive list of relevant
Knowledge Areas of Related Disciplines.

3. Relevant Knowledge Areas of Computer Science

 SR1 SD SC2 ST SM SCM SEM SEP SETM SQ
4. Mathematics and Physical Sciences
5. Foundations X X X X
6. Algorithms and Data Structures X X X X
7. Computer Architecture X X X
8. Intelligence Systems (IS) X X
9. Information Management X X X X
10. Computing at the Interface X X X X
11. Operating Systems X X X X
12. Programming Fundamentals and

Skills
 X X X X X X

13. Net-centric Computing X X X X X
14. Computational Science X X
15. Social, Ethical, Legal and

Professional Issues
 X X X X

16. Relevant Knowledge Areas of Mathematics
 SR SD SC ST SM SCM SEM SEP SETM SQ
17. Discrete Mathematics X X X X X
18. Calculus
19. Probability X X X X X X
20. Linear Algebra X
21. Mathematical Logic X X X X

22. SR : Software Requirements

23. SD: Software Design

24. SC: Software Construction

25. ST: Software Testing

26. SM: Software Maintenance

27. SCM: Software Configuration Management

28. SEM: Software Engineering Management

1 Relevant Knowledge Areas of Related Disciplines will be identified in version 0.9 of the Guide.
2 Relevant Knowledge Areas of Related Disciplines will be identified in version 0.9 of the Guide.

D–2 © IEEE – Stoneman (Version 0.7) – April 2000

29. SEP: Software Engineering Process

30. SETM: Software Engineering Tools and Methods

31. SQ: Software Quality

32. Relevant Knowledge Areas of Project Management
 SR SD SC ST SM SCM SEM SEP SETM SQ
33. Project Integration Management X X X X X X
34. Project Scope Management X X X X
35. Project Time Management X X X X x
36. Project Cost Management X X X X X
37. Project Quality Management X X X X X X
38. Project Human Resource Management X X X X
39. Project Communications Management X X X X
40. Project Risk Management X X X X X X
41. Project Procurement Management X X X

42. Relevant Knowledge Areas of Computer Engineering
 SR SD SC ST SM SCM SEM SEP SETM SQ
43. Digital Data Manipulation
44. Processor Design
45. Digital Systems Design
46. Computer Organization X
47. Storage Devices and Systems
48. Peripherals and Communication X
49. High Performance Systems
50. System Design X X
51. Measurement and Instrumentation X
52. Codes and Standards X
53. Circuit Theory
54. Electronics
55. Controls
56. Combinational and Sequential Logic
57. Embedded Systems Software X
58. Engineering Systems Analysis with

Numerical Methods

59. Computer Modeling and Simulation X

© IEEE – Stoneman (Version 0.7) – April 2000 D–3

60. Relevant Knowledge Areas of Systems Engineering
 SR SD SC ST SM SCM SEM SEP SETM SQ
61. Process X X X X X X X
62. Need Analysis X
63. Behavioral Analysis X X
64. Enterprise Analysis X
65. Prototyping X X X
66. Project Planning X X X
67. Acquisition X X
68. Requirements Definition X X X
69. System definition X X X
70. Specification trees X
71. System breakdown structure X X
72. Design X X X
73. Effectiveness Analysis X X
74. Component specification X X X
75. Integration X X X
76. Maintenance & Operations X X X X
77. Configuration Management X X X X
78. Documentation X X X X
79. Systems Quality Analysis and

Management
 X X X

80. Systems V & V X X X
81. System Evaluation X X X
82. Systems Lifecycle Cost Estimation X X
83. Design of Human-Machine Systems X X
84. Fractals and self-similarities
85. Essential Functional Processes:

(IEEE 1220)
 X X X X X

86. Development X X X X
87. Manufacturing
88. Test X X X X
89. Distribution X X X X
90. Operations X X X X
91. Support X X X X
92. Training X X X
93. Disposal X X X
94. Techniques & Tools (IEEE 1220) X X X X X X
95. Metrics X X X X
96. Privacy X X X
97. Process Improvement X X X
98. Reliability X X X X
99. Safety X X X
100. Security X X X X
101. Vocabulary X X X
102. Effectiveness Assessment X

D–4 © IEEE – Stoneman (Version 0.7) – April 2000

103. Relevant Knowledge Areas of Management and Management Science

104. MANAGEMENT
 SR SD SC ST SM SCM SEM SEP SETM SQ
105. Business Strategy X X
106. Finance
107. External Environment X X X
108. Economic Environment X X
109. Legal Environment X X
110. Regulation processes X X
111. Organizational environment X X X X
112. Organizational Characteristics X X X X
113. Organizational Functions X X X X
114. Organizational Dynamics X X X X
115. Information Systems Management X X X X
116. Data Resource Management X X X X
117. Information Resource

Management
 X X

118. Personnel Resource Management X X
119. IS Staffing X X X
120. Innovation and change X X X
121. Accounting X
122. Training X X X X

123.. MANAGEMENT SCIENCE

 SR SD SC ST SM SCM SEM SEP SETM SQ
124. Models X
125. Financial Models X
126. Planning Models X
127. Optimization X X
128. Optimization methods X
129. Heuristics X
130. Linear Programming X X
131. Goal Programming X
132. Mathematical Programming X X
133. Statistics X X X
134. Simulation X X x

© IEEE – Stoneman (Version 0.7) – April 2000 D–5

135. Relevant Knowledge Areas of Cognitive Sciences and Human Factors
 SR SD SC ST SM SCM SEM SEP SETM SQ
136. Cognition X
137. Cognitive AI I: Reasoning
138. Machine Learning and Grammar

Induction

139. Formal Methods in Cognitive Science:
Language

140. Formal Methods in Cognitive Science:
Reasoning

141. Formal Methods in Cognitive Science:
Cognitive Architecture

142. Cognitive AI II: Learning
143. Foundations of Cognitive Science
144. Information Extraction from Speech

and Text

145. Lexical Processing
146. Computational Language Acquisition
147. The Nature of HCI X X
148. (Meta-)Models of HCI X X
149. Use and Context of Computers X X X
150. Human Social Organization and

Work
 X X

151. Application Areas X X
152. Human-Machine Fit and

Adaptation
 X X

153. Human Characteristics X X
154. Human Information Processing X X
155. Language, Communication,

Interaction
 X X

156. Ergonomics X X
157. Computer System and Interface

Architecture
 X X X

158. Input and Output Devices X
159. Dialogue Techniques
160. Dialogue Genre
161. Computer Graphics X
162. Dialogue Architecture X
163. Development Process x X X X
164. Design Approaches X X X
165. Implementation Techniques X X
166. Evaluation Techniques X X X
167. Example Systems and Case

Studies
 X X

Stoneman (Version 0,7) – April 2000 E–1

APPENDIX E

CHANGES BETWEEN
VERSION 0.5 AND VERSION 0.7 OF THE GUIDE

1. This document lists the high-level or major changes that were incorporated in version 0.7 of the Stoneman Guide to

the Software Engineering Body of Knowledge from version 0.5. These changes are based on the detailed analysis by
the editorial team of reviewer feedback gathered on version 0.5 of the Guide. Feedback from the Knowledge Area
Specialist updating the Knowledge Area Descriptions was also considered when making these changes.

2. Additionally to what is listed below, a total of about five thousand different comments were received, compiled,
disposed of by the Knowledge Area Specialists in the Knowledge Area Descriptions, and included in a database -
which can be accessed at www.swebok.org.

3. The major changes listed below were all approved by the project’s Industry Advisory Board.

 Major Change Reason for Change
4. Impose a page limit on the cited reference material for

each Knowledge Area.

(Criteria R in Appendix A presents the details of how
this page limit is stated)

The amount of reference material currently cited was
too large to be manageable, published on the Web and
eventually taught in a reasonable timeframe. This is
notably due to the fact that many of these references
are entire books.

5. Modify the Criteria R of KA Descriptions Specifications (see
Appendix A).

This criteria was initially stated as :

“The Knowledge Area Specialist are expected to adopt the
position that even though the following “themes” are
common across all Knowledge Areas, they are also an
integral part of all Knowledge Areas and therefore must be
incorporated into the proposed breakdown of topics of
each Knowledge Area.

These common themes are:

• quality (in general),

• measurement

• tools

• standards.”

So that:

w all topics related to tools are included in the Software
Engineering Methods and Tools Knowledge Area.

w Standards are included in the cited reference material
not in the breakdowns of topics.

w Software Quality Analysis has appropriate links to
other Knowledge Areas

Reviewer feedback indicated that these four common
themes were unevenly discussed in the Knowledge
Area descriptions.

Stoneman (Version 0,7) – April 2000 E–2

 Major Change Reason for Change
6. Remove “Component Integration” from the current version

of the Guide. It was previously included in “Software
Engineering Infrastructure”

The Knowledge Area Specialist indicates that the request by
the Industrial Advisory Board to include component
integration (standard designs, integration and reuse) in this
Knowledge Area is difficult to achieve. Few links were
identified between these topics and the other two major
components of this Knowledge Area (Methods and Tools).
Reviewers generally agreed with the weak fit of “component
integration” in this Knowledge Area.

The editorial team concluded that though there is a strong
industry need for this type of knowledge, there is not yet
sufficient consensus on what portion of it is generally
accepted.

7. Rename the Knowledge Area “Software Engineering
Infrastructure” as “Software Engineering Methods and
Tools.”

The editorial team recommended this change due to the
change proposed above and to the fact that reviewer
feedback indicates varying interpretations of what
“software engineering infrastructure” means.

8. The taxonomy of tools in Software Engineering Methods
and Tools should be broken down as per the list of
Knowledge Areas o the Stoneman Guide.

As stated above, the editorial team recommended that “tools”
be dropped from the “common themes” discussed in all
Knowledge Areas and that all topics related to tools be
concentrated in this Knowledge Area.
However, the editorial team also recommended that the
distribution of topics related to tools in the various
Knowledge Area breakdowns be reconsidered for the Iron
Man version. Breaking down the topics related to tools as
per the list of Knowledge Areas facilitates this redistribution.
The editorial team also considers that the decision of
whether or not « software engineering methods and
tools » should remain as a distinct Knowledge Area
should be reevaluated in the Iron Man phase.

9. Rename the “Software Evolution and Maintenance”
Knowledge Area to “Software Maintenance”

Current standards adopt the term “software
maintenance”: IEEE 1219, ISO/IEC 14764 and ISO/IEC
12207

The Knowledge Area Specialist states himself that it is
“common practice” to refer to this as “software
maintenance”.

10. Rename the “Software Requirements Analysis”
Knowledge Area to “Software Requirements”

This recommendation is based on the statement found
below by the Knowledge Area Specialist and on the fact
that reviewer feedback did not oppose this statement.

The Knowledge Area Specialists write that:

“The knowledge area was originally proposed as 'Software
Requirements Analysis'. However, as a term to denote the
whole process of acquiring and handling of software
requirements, 'Requirements Analysis' has been largely
superceded by 'Requirements Engineering'. We therefore
use 'Requirements

Engineering' to denote the knowledge area and
'Requirements Analysis' as one of the activities that
comprise 'Software Requirements Engineering.”

11. Rename the “Software Quality Analysis” Knowledge
Area to “Software Quality”

To remove the duplication of having SQA listed at the
first and second levels of the breakdown.

	PREFACE TO THE SWEBOK GUIDE
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION TO THE GUIDE
	CHAPTER 2 SOFTWARE REQUIREMENTS
	CHAPTER 3 SOFTWARE DESIGN
	CHAPTER 4 SOFTWARE CONSTRUCTION
	CHAPTER 5 SOFTWARE TESTING
	CHAPTER 6 SOFTWARE MAINTENANCE
	CHAPTER 7 SOFTWARE CONFIGURATION MANAGEMENT
	CHAPTER 8 SOFTWARE ENGINEERING MANAGEMENT
	CHAPTER 9 SOFTWARE ENGINEERING PROCESS
	CHAPTER 10 SOFTWARE ENGINEERING TOOLS AND METHODS
	CHAPTER 11 SOFTWARE QUALITY
	APPENDIX A KA Description Specifications for the Stone Man Version
	APPENDIX B A List of Related Disciplines
	APPENDIX C Classification of Topics According to Bloom's Taxonomy
	APPENDIX D Identification of Relevant KA of Related Disciplines
	APPENDIX E Changes Between Version0.5 and Version0.7 of the Guide

