
A Generalized Representation for selected
Functional Size Measurement Methods

Thomas Fetcke
Otto-von-Guericke-Universität Magdeburg

fetcke@acm.org

Abstract

The management of software cost, development effort
and project planning are key aspects of software develop-
ment. Functional size measurement (FSM) has been pro-
posed as a tool for these management requirements.

Function Point Analysis (FPA) can be considered as the
first FSM method published. Based on FPA, other methods
have been proposed as improvements and alternatives that
differ in their respective views on functional size.

FPA is an intuitive approach without theoretical founda-
tion, and without a measurement model. It is therefore un-
clear, what FPA actually measures and what the differences
between the FSM methods are.

We use an axiomatic approach based on measurement
theory to develop a model for existing FSM methods. In this
paper, we propose a model as a generalized representation
for a set of methods: IFPUG FPA, Mark II FPA, and FFP.
This view can be used as a basis for the analysis of FSM
methods and for a discussion of their differences.

1. Introduction

The management of software cost, development effort
and project planning are key aspects of software develop-
ment. Software size is a critical element in these measure-
ment requirements. Various approaches for the measure-
ment of software size have been formulated, among others
the number of lines of source code. Functional size mea-
surement (FSM) methods have been proposed to overcome
some of the deficiencies of approaches based on source
code. It is the goal of these methods to measure the func-
tionality of the software, independent of its implementation.

Function Point Analysis (FPA), published by Albrecht in
1979, can be considered as the first FSM method. Based on
FPA, several revisions and alternative FSM methods have
been formulated. These methods differ in their views and
definitions of functional size.

FPA is an intuitive approach without theoretical founda-
tion. With the lack of a measurement model for FPA, it
remains unclear, what the method actually measures. It is
therefore also difficult to analyze the differences between
the different FSM methods.

We propose here a model for existing FSM methods that
gives a new view on these methods and will help in under-
standing the methods. We use an axiomatic approach based
on measurement theory to formulate our characterization.
Based on the model, assumptions of reality can be formu-
lated as axioms, and the FSM methods can be tested against
the assumptions.

While FSM methods differ in their views on functional
size, a number of methods share a core view and certain
core concepts. We propose here a representation for a set of
FSM methods. The representation is generalized such that
it applies to each of these methods. The representation thus
allows a detailed analysis and discussion of differences and
common concepts of different FSM methods. Given such a
representation, the actual measurement step can be formal-
ized, as we have demonstrated in [6]. In this paper, we give
a detailed description of the generalized representation, and
we describe how it can be used for the discussion of FSM
methods.

The following paragraphs give a short overview of the
evolution of the FSM methods studied and on related work.
Section 2 describes the approach taken and our view on the
measurement process of FSM. The generalized representa-
tion is presented and discussed in Section 3. Section 4 de-
scribes the application of the generalization, and Section 5
gives some conclusions.

1.1. Evolution of FSM methods

Function Point Analysis (FPA) was developed by Al-
brecht in the 1970s, with its first presentation to the pub-
lic in 1979 [4]. The purpose of FPA was to measure the
amount of software produced. Albrecht wanted to measure
the functionality of software from the user viewpoint, inde-
pendently of the implementation. He therefore introduced

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

Albrecht 1979
�

IBM 1975

Function Point
Analysis 3.4

IFPUG 1990 IFPUG 1994

Mark II FPA

Symons 1988

Mark II FPA 1.3.1

UKSMA 1998

Function Point
Analysis

Albrecht 1984
�

Function Point
Analysis 4.0

St-Pierre et al. 1997

Full Function
Points 1.0

Full Function
Points 2.0

COSMIC
1999

IFPUG 1999

Function Point
Analysis 4.1

Function Point
Analysis

COSMIC
2001

Full Function
Points 2.1

1980 1990 20001975 1985 1995

Figure 1. The evolution of selected functional size measurement (FSM) methods.

Function Points as a measure of “functional size”.
In 1984, the International Function Point Users Group

(IFPUG) was formed to maintain Albrecht’s FPA. IFPUG
has since then published Counting Practices Manuals that
give standard rules for the application of FPA [7, 8]. IFPUG
has thus both clarified the rules and modified Albrecht’s
original method.

Several authors published extensions and alternatives to
the FPA versions of Albrecht and IFPUG. Symons [11] for-
mulated several “concerns and difficulties” with Albrecht’s
FPA. His critique led him to the proposal of a new variant
called Mark II Function Point Analysis. Today, the United
Kingdom Metrics Association (UKSMA) maintains Mark
II FPA [12].

In 1997, St-Pierre et al. [10] proposed the Full Function
Points (FFP) approach as an extension to IFPUG FPA 4.0.
The purpose of the extension was to capture the functional
size of real-time applications. The Common Software Met-
rics International Consortium (COSMIC) has been formed
in 1998 to develop an advanced FSM method. COSMIC
has taken the FFP approach as a basis and has published
revisions of this method as COSMIC-FFP 2.0 [1] and 2.1
[2].

For this study, we focus on the following FSM methods:

• IFPUG FPA release 4.0 and 4.1 [7, 8],

• Mark II FPA 1.3.1 [12], and

• FFP 1.0, COSMIC-FFP 2.0 and 2.1 [10, 1, 2].

We will see that these methods share a core view of the
items that determine functional size. Figure 1 presents a
view of the evolution of these FSM methods.

1.2. Related studies

Abran et al. [3] analyze the measurement process of IF-
PUG FPA. In their view, FPA constructs the Function Point
measure in a hierarchical process of measurements. The
counting of data elements, e.g., is considered as a measure
on the lowest level of the hierarchy. Based on the lowest
level measurements, higher levels are constructed, e.g., the
assignment of weights to transaction types. Abran et al. then
identify scale types for the measurements at each level.

We view FSM differently, as a single measurement that
assigns numbers to software applications. Based on mea-
surement theory, we can thus discuss conditions or axioms
that formulate assumptions of reality (cf. [13, Chapter 4]).
Hence, we attempt to get a better understanding of existing
FSM methods.

2. FSM measurement process

Measurement can be understood as an abstraction that
captures certain attributes of the measurement objects.
Measurement theory views this abstraction as a mapping
that assigns numerical objects to empirical objects. In the
context of FSM, the empirical objects are software applica-
tions. In terms of ISO 14143-1 [9], the software application
is characterized by functional user requirements. The FSM
methods each define measures that assign numbers to soft-
ware applications.

A goal in the definition of Function Point Analysis was
to define the method independent of the technology used
for implementation. FSM is therefore formulated without

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

Indentification step

Software
documentation

Measurement step

Functional
size

Data oriented abstraction

User

Transactions

Application

Stored data

F
S

M

Figure 2. Functional size measurement (FSM) requires two steps of abstraction.

reference to any particular development method. In conse-
quence, FSM requires two steps of abstraction.

2.1. Abstraction steps in FSM

Instead of using the concepts and models of a particular
development method, FSM methods define their own con-
cepts for the representation of a software application. The
FSM methods thus define an abstraction of software that
represents the items deemed relevant for functional size.
The abstraction used in the methods covered in this paper
can be characterized asdata oriented. The FSM methods
studied thus define the following two steps of abstraction:

1. The software documentation is represented in a data
oriented abstraction.

2. The items in the data oriented representation are
mapped into numbers.

The first step of abstraction is applied to the software
documentation, regardless of its form. In terms of ISO
14143-1 [9], the source of the first step is the documentation
of functional user requirements. The standard does, how-
ever, not prescribe a format for this documentation. Any
FSM method must define how the abstraction has to be ob-
tained, independently of the development method used.

Thus, FSM achieves independence of the technology
used for implementation. The result is a representation in
the data oriented abstraction of the particular method, that
contains the items deemed relevant for functional size. Be-
cause of the independence of any formal documentation,
this step requires interpretation of rules by humans.

The second step is the actual measurement, the mapping
into numbers. Because the source in this step must be in
the form of the data oriented abstraction, this step can in
general be automated.

Our view on the two steps of abstraction is illustrated
in Figure 2. Both steps are defined by the rules in the re-
spective documents that define the FSM methods. In these
documents, the two steps of abstraction are typically not
separated clearly. The abstractions underlying the meth-
ods are not presented explicitly in most method definitions.
However, COSMIC FFP defines two phases—mapping and
measurement—that correspond closely to the two steps of
abstraction. In the following section, we give a description
of the data oriented abstraction. The detailed generalized
representation is presented in Section 3.

2.2. The data oriented abstraction

Although not described explicitly, Albrecht’s original
approach introduces the basic concepts of the data oriented
abstraction. The FSM methods discussed here have been
proposed as improvements over the original FPA. These
methods differ in both steps of abstraction, i.e., they differ
both in their representation of software functionality and
in the measure functions. However, IFPUG FPA, Mark II
FPA and the FFP approach rely on the same core concepts
(cf. Fig. 3):

• User concept. The users interact with an application.
Users are not necessarily restricted to human users, but
may include software and hardware “users”.

• Application concept. The application is the object of
the measurement. Applications provide functions to
the users. These functions are the attribute of interest.

• Transaction concept. Transactions are processes of
interaction of the user with the application from a “log-
ical” or “functional” perspective.

• Data concept. Data is stored by the application.Data
elementsrepresent the smallest data items meaningful

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

to the user. Data elements are structured in logically
related groups similar to tables in a database.

• Type concept. Multiple instances of elements identi-
fied by the above concepts are considered as a single
type.

User

Transactions

Application

Stored data

Figure 3. The data oriented abstraction.

All FSM methods studied represent an application by a
set of transaction types and a set of groups of stored data.
The methods differ, however, in the detailed views of these
concepts. For example, IFPUG FPA classifies transactions
into three classes, while the other methods do not define
classes of transactions. Furthermore, the attributes used to
characterize transactions differ in detail, e.g., an error mes-
sage that is displayed to the user may be considered as an
input in IFPUG FPA 4.0, while it is considered as an output
in other methods. The methods also use different names for
the core concepts.

As a consequence, it is difficult to analyze and discuss
the differences and similarities between the methods. We
therefore propose a generalized view of the data oriented
abstraction that allows us to represent each of the meth-
ods in a uniform way. The generalized representation is
described in the following section.

3. Generalized representation

The functionality of an application is represented by a set
of transaction types and a set of data group types in the FSM
methods studied. We therefore present generalizations for
these two core concepts in the following two paragraphs.
In the remainder of this section, we demonstrate how the
generalization relates to the FSM methods.

3.1. Generalized representation of data groups

The data concept recognizes data elements as elementary
items. A data group type is a set of data elements stored by
the application. Sub-groups may be defined on the data ele-
ments of a data group type. This characterization applies di-
rectly to IFPUG FPA and FFP 1.0. In Mark II FPA, the data
elements in a data group may be ignored. In COSMIC-FFP,
sub-groups are not considered. Hence, the generalization
introduces additional information only for Mark II FPA and

COSMIC-FFP. The generalized view of a data group type
is illustrated in Figure 4.

Data group
Sub-group

Data element

Data element

Data element

Sub-group

Data element

Data element

Data element

Figure 4. A data group type is a set of data
elements, with optional sub-groups.

3.2. Generalized representation of transactions

Transaction types are represented very differently in the
methods. IFPUG FPA defines three classes of transaction
types with up to four attributes, Mark II FPA uses a single
representation with three attributes, and the FFP approach
defines a transaction type as a collection of sub-processes.
The spectrum of logical activities associated with transac-
tion types, however, is nearly the same in the three variants.
Similarly to the sub-process concept in the FFP approach,
we represent transaction types here with seven classes of
logical activities that manipulate data elements:

1. Entry activity . The user enters data elements into the
application.

2. Exit activity . Data elements are output to the user.

3. Control activity . Control information data elements
are entered by the user.

4. Confirm activity . Confirmation data elements are out-
put to the user.

5. Read activity. Data elements are read from a stored
data group type.

6. Write activity . Data elements are written to a stored
data group type.

7. Calculate activity. New data elements are calculated
from some data elements.

The definitions of the logical activity classes are rather
brief, because we do not intend to propose a new method
for the identification of items here. Nevertheless, these ac-
tivities can be found in the identification rules of the meth-
ods, and we use logical activities to represent the elements
identified with those rules.

Given the concept of logical activities, a transaction type
can be characterized as a collection of logical activities.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

Calculate

Write Read

Control Confirm

Exit

Stored data

Transaction

Entry

UserUser

Figure 5. Transaction types are represented with logical activities.

The logical activities thus represent the transaction types in
more detail than the methods originally do. As a result, the
identification rules of each method have to be augmented
with rules to map the transactions identified with the orig-
inal rules onto the generalized transaction types. We de-
scribe these mappings in Section 3.3 to 3.7 below.

Figure 5 illustrates the generalized view on transaction
types. Input from the user is indicated by straight arrows
that enter the transaction, and lead to Entry and Control ac-
tivities. Output, on the other hand, is sent to the user by
Exit and Confirm activities. Dotted arrows depict access to
stored data with Read and Write activities. The data flow
internal to the transaction is depicted with dashed arrows.

As mentioned before, the concept of logical activities
is very similar to the notion of sub-processes in the FFP
approach, and Entry, Exit, Read, and Write sub-process
classes are used in that FSM method. The generalized rep-
resentation introduces three additional classes mainly re-
quired for the representation of IFPUG FPA.

IFPUG FPA and FFP 1.0 distinguish between data and
control information in regard to input and output. In our
generalized view, an input of data is represented by En-
try activities, while control information input is represented
by Control activities. On the output side, control infor-
mation, e.g., error and confirmation messages, are distin-
guished from data output as well. Therefore, Exit activities
represent data output and Confirm activities represent con-
trol information output. Neither Mark II FPA nor COSMIC-
FFP 2.x make this distinction between data and control in-
formation. In general, these latter methods recognize both
types of information as input or output, respectively.

Calculate activities are relevant as a criterion for classifi-
cation in IFPUG FPA. Neither Mark II FPA nor the FFP ap-
proach classify transactions, and Calculate activities are not
(yet) recognized in their respective measure functions. The
internal data flow depicted by dashed arrows in Figure 5 and
in the examples below illustrates the interpretation that can
be associated with a transaction. It is, however, not taken

into account by any of the methods discussed here.

3.3. Mapping for IFPUG FPA 4.0

3.3.1 Data groups in IFPUG FPA 4.0

As mentioned above in Section 3.1, mapping the IFPUG
FPA 4.0 data group type to the generalized representation of
a data group is straight forward: data element types corre-
spond to data elements and record element types correspond
to sub-groups of data elements.

The class of a data group is not represented as an attribute
of the data group, i.e., we do not consider the classification
of data groups into Internal Logical Files (ILF) and External
Interface Files (EIF) as a part of the first step of abstraction.
In fact, this classification can only be made in the context of
an application, because IFPUG FPA determines the class of
a data group type with the following identification rules [7,
p. 5-6]:

ILF Identification Rules
(. . .)
The group of datais maintained within the ap-
plication boundary.
(. . .)

EIF Identification Rules
(. . .)
The group of datais not maintained by the ap-
plication being counted.
(. . .)

Hence, the class of a data group type in the context of
a particular application is ILF, if and only if at least one
transaction of that application does write to this particular
data group. Otherwise, it must be classified as an EIF.

Therefore, the classification is a part of the second step
of abstraction, i.e., the classification can be calculated with
the measure function from the application context.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

3.3.2 Transactions in IFPUG FPA 4.0

In IFPUG FPA, transactions are classified as either External
Inputs (EI), External Outputs (EO), or External Inquiries
(EQ). The identification rules are used to classify the trans-
actions. The rules are also used to identify the attributes that
characterize each transaction, i.e., the data element types
(DET) and file types referenced (FTR). Each class of trans-
actions and the relevant items are identified with a different
set of rules. The following paragraphs map these rules to
the generalized representation with logical activities. The
items relevant for each class are represented by the logical
activities.

Note that the class of a transaction is not a part of the
generalized representation, but the classification in IFPUG
FPA 4.0 can be derived from the logical activities that play
a role in a particular transaction. The classification with
logical activities is explained in the last paragraph of this
section.

External Inputs in IFPUG FPA 4.0 The identification
rules for External Inputs (EI), including the rules for the
identification of FTR and DET, relate to logical activities as
follows:

• Data is received from the outside. This is represented
with an Entry of data elements from the user.

• Data in an ILF is maintained. This presents a Write
activity to a data group. The data elements written are
identified. More than one data group may be updated,
represented by a Write activity for each data group.

• Data groups may be read, represented by Read activi-
ties.

• Error and confirmation messages may be output, these
data elements are identified. We represent this with
Confirm activities.

• The user may specify information that controls the be-
havior of the application. This information is repre-
sented separately from data Entry by Control activities.
The data elements are identified.

• Data elements additional to the data entered may be
written to an ILF. The determination of these data ele-
ments may be represented with Calculate activities.

Output of data elements other than error and confirma-
tion messages are not considered as a part of transactions in
IFPUG FPA 4.0. Therefore, Exit activities do not appear in
the representation of EI in IFPUG FPA, although a transac-
tion might include these activities in its requirements.

As an example for a transaction that would be classified
as an EI, consider the Deposit item transaction depicted in

Monitors 17"Description

2Pallets

Error message

Deposit item

$3000Value

ABC Computers

A 21Storage place

Owner

Deposit Cancel

Figure 6. User interface of the Deposit item
transaction.

Figure 6. A customer deposits an item in a warehouse and
the transaction registers attributes of the item, its owner, and
storage place (see [5] for a full description of the examples).
The following logical activities represent the transaction:

• An Entry of the data elements that describe the item:
Description, Pallets, Value, Owner and Storage place.

• A Read of the Name from the Customer data group to
verify that the Owner is registered.

• A Read of the Location and Space from the Place data
group to verify that the required amount of space is
available.

• A Read of the Description from the Item data group to
prevent storage of an item under an existing name.

• A Calculate activity that determines the current date,
which is stored as the Storage date.

• A Write of Description, Pallets, Value, Owner, Storage
date and Storage place data elements to the Item data
group.

• A Confirm to output any error messages.

Figure 7 presents an illustration of the representation of
this transaction with the logical activities described above.
IFPUG FPA does not require all the details of these logical
activities. Nevertheless, these activities do represent infor-
mation important for the view in IFPUG FPA:

• The data Entry is required by the rules of an EI.

• The Read activities must be considered to correctly de-
termine the file types referenced (FTR).

• The Write activity and the data elements (DET) are
written to the data group are essential for the EI.

• The Confirm activity must be considered to correctly
determine the data element types (DET).

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

Calculate

Write Read

Entry Confirm

Item

Deposit item

Read Read

Customer Place

Figure 7. Logical activities in the Deposit item
transaction.

External Outputs in IFPUG FPA 4.0 As with EI, we
relate the identification rules for External Outputs (EO), in-
cluding the rules for FTR and DET, to logical activities:

• Data is sent to the outside, represented as an Exit of
data elements. These data elements are identified.

• Data elements may be read from data groups, repre-
sented as Read activities.

User input of data elements is not considered in the rules,
although it might be relevant, e.g., as selection criteria for
a report EO. Hence, Entry or Control activities do not ap-
pear in this view. Neither do the rules consider confirmation
and error messages as output, excluding Confirm activities
from the representation. Write activities are not permissible
for EO. Data elements output may be the result of Calcu-
late activities. Derived data is, in fact, the criterion used to
distinguish between EO and EQ.

October House Partnership

Toronto

1

$ 6,500Storage fees

Items currently stored

October House PartnershipName

Error message

Print bill

Print Cancel

Figure 8. User interface of and report pro-
duced by the Print bill transaction.

The Print bill transaction depicted in Figure 8 is an ex-
ample for an EO. The bill for a customer identified by name
is printed. The following logical activities are required for
this transaction, illustrated in Fig. 9:

• The name of the customer is specified with an Entry
activity by the user.

• A Read of Name, Address, and Amount due from the
Customer data group retrieves data elements for the
bill.

• A Read of Owner names from the Item data group is
required to obtain the number of items owned by the
customer.

• A Calculate activity determines the total number of
items from the Owner data.

• Error messages are output by Confirm activities, if nec-
essary.

• An Exit activity outputs the data elements Name, Ad-
dress, Amount due, and Total items.

Calculate

Read

Entry

Confirm

Item

Print bill

Read

Customer

Exit

Figure 9. Logical activities in the Print bill
transaction.

Here, the Total items data element is not retrieved by a
Read activity, but it is calculated from other data elements.
Total items is thus “derived data”, and therefore, Print bill
cannot be classified as an EQ and must be classified as an
EO. Hence, the Calculate activity in the generalized repre-
sentation is relevant for classification in IFPUG FPA 4.0.

While IFPUG FPA 4.0 ignores the Entry of selection cri-
teria, the Read activities are necessary to correctly deter-
mine the file types referenced by this transaction. Although
the error message may be output to the user, it is not con-
sidered by the rules for EO. Hence, the distinction of Exit
and Confirm activities is also relevant for the accurate rep-
resentation of an EO.

External Inquiries in IFPUG FPA 4.0 The External In-
quiry (EQ) transaction class is more complex than the two
previously discussed classes as it comprises both an input
and an output side. However, the rules allow a distinction to
which side of an EQ a logical activity contributes. Hence,
in the generalized data oriented abstraction, the representa-
tion of EQ is not different from the representation of EI or

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

EO. The input and output sides appear in the formulation of
the measure function in the formalized representation. The
identification rules are represented as follows:

• Input data elements enter from the outside. This is
represented by an Entry activity. The data elements
entered are identified.

• Output results exit the application, which is repre-
sented with an Exit activity. The data elements are
identified.

• Data is retrieved from data groups. This presents Read
activities.

• The retrieved data does not contain derived data.
Hence, the data elements output are obtained by Read
activities, but not with Calculate activities.

• Error and confirmation messages may be output. This
is represented by Confirm activities. Data elements are
identified.

• The user may specify information that controls the be-
havior of the application. This information is repre-
sented separately from data Entry by Control activities.
Data elements are identified.

Paperclip IncCustomer

Item Value Storage date

Letter Paper

Paperclips

$100

$20

1999-06-16

1999-08-04

Pallets

2

1

Paperclip IncName

Error message

Query customer’s items

Display Cancel

Figure 10. User interface of the Query cus-
tomer’s items transaction.

Consider the following example shown in Figure 10: the
Query customer’s items transaction. With this transaction,
the Items owned by a Customer are displayed. The logical
activities required are the following, see Fig. 11:

• An Entry of the customer name by the user.

• A Read from the Customer data group to verify that
the customer exists.

• An error message is output with a Confirm activity if
the customer does not exist.

• A Read activity retrieves the Description, Pallets,
Value, Storage date, and Owner from the Item data
group for the items owned by the customer.

• An Exit activity displays the customer Name and a list
of the items with their

• A Read activity retrieves the Description, Pallets,
Value, and Storage date.

Read

Entry

Confirm

Item

Query customer’s items

Read

Customer

Exit

Figure 11. Logical activities in the Query cus-
tomer’s items transaction.

For the input side, the Entry and Confirm activities de-
termine the data element types. On the input side, the Cus-
tomer data group is referenced (Read) to verify the name
entered. On the output side, the Exit activity represents the
data element types. To generate the output, the Item data
group is an additional file type referenced, represented by
the second Read activity.

Classification with logical activities As we have seen in
the preceding paragraphs, the three classes of transactions
can be represented with the seven logical activities of the
generalized data-oriented abstraction. However, in a par-
ticular transaction class, certain activity classes may be re-
quired or may be prohibited. We observe:

• Write activities may only appear in EI.

• An EI may also receive Control input that does not re-
sult in data Exit.

• Both an EO and an EQ output data via Exit activities.

• The data sent by Exit activities of an EQ must not con-
tain data elements that are derived by Calculate activi-
ties. Otherwise, the transaction is classified as an EO.

Hence, we can determine the class of a particular trans-
action from the classes of activities that are used to represent
the transaction. This does actually not come as a surprise,
because the identification rules used in the classification of
transactions are in part represented by logical activities, as
we described in the preceding paragraphs. Nevertheless,
transactions identified with IFPUG FPA 4.0 can therefore
be represented in generalized representation that does not
include transaction classes.

As with data groups, classification of transactions is
therefore a part of the second step of abstraction, i.e., it is
part of the measure function.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

3.4. Mapping for IFPUG FPA 4.1

The changes in release 4.1 of IFPUG FPA are not funda-
mental in relation to release 4.0. However, both the identi-
fication rules and the measure function have been changed.
In respect to transactions, these modifications have a signif-
icant impact on the representation in the generalized data
oriented abstraction. We will discuss these changes here.

3.4.1 Data groups in IFPUG FPA 4.1

The concept of a data group type has not been changed in
IFPUG FPA 4.1. The formulation of the identification rules
has been simplified without change to the notions of an ILF
or an EIF. In IFPUG FPA 4.1, the classification of data
group types depends on the application context, as it does
with IFPUG FPA 4.0. The generalized abstraction therefore
applies directly to IFPUG FPA 4.1, as it did apply to IFPUG
FPA 4.0 (cf. Sec. 3.3.1).

3.4.2 Transactions in IFPUG FPA 4.1

The overall concept of transaction types has not been
changed in release 4.1. IFPUG FPA 4.1 still classifies trans-
actions into the three classes EI, EO, and EQ. The detailed
identification rules, however, have been modified. A new
concept ofprimary intenthas been introduced. The items
that contribute to the weights have also been changed in sev-
eral details.

The representation of transactions with logical activities
is principally the same with IFPUG FPA 4.1 as with release
4.0. The changes in the rules have to be reflected mainly in
the measure function.

The classification of transactions, however, cannot en-
tirely be derived from the logical activities that represent
a transaction, because the logical activities permissible in
transaction classes have been extended and classification re-
quires the new concept of primary intent in IFPUG FPA 4.1.
The primary intent of a transaction can only be determined
as an additional element by the analyst in the first step of
abstraction, as either one of:

• alter the behavior of the system,

• write to stored data groups, or

• output information to the user.

Hence, the data oriented abstraction of IFPUG FPA 4.1 is
extended by this element for each transaction.

Nevertheless, the generalized representation can still be
used to represent the relevant information needed in IFPUG
FPA 4.1, provided we add the primary intent for each trans-
action. We have, however, not included this element in the
representation presented in Section 3.2, because it is not

relevant for any of the other methods, and because it is a
concept external to the view of transactions shared by all
methods studied here.

The examples presented in Section 3.3.2 are represented
with the same logical activities in IFPUG FPA 4.1. The
primary intent of the Deposit item transaction is the Write
to the Item data group type. Deposit item would therefore
be classified as an EI.

The primary intent of the Print bill and Query customer’s
items transactions is output to the user. For these two trans-
actions, classification into EO and EQ has to be derived
from the logical activities. The result of the classification
is here the same as with IFPUG FPA 4.0.

3.5. Mapping for Mark II FPA

3.5.1 Data groups in Mark II FPA

In Mark II FPA, data groups appear as entity types that do
not contribute to functional size. Therefore, it is not nec-
essary to identify data elements and sub-groups of data el-
ements in Mark II FPA. On the other hand, data elements
are used to characterize transactions and thus data elements
are an item of the data oriented abstraction of Mark II FPA.
Hence, data elements are not foreign to Mark II FPA and
the representation of entity types can be extended with data
elements and sub-groups of data elements. The measure
function of Mark II FPA simply assigns a zero value to data
groups.

3.5.2 Transactions in Mark II FPA

Transactions are called Logical Transactions in Mark II
FPA. A Logical Transaction is regarded as a unit of input,
processing and output. The input part corresponds to Entry
and Control activities, and output corresponds to Exit and
Confirm activities. The processing part actually represents
access to entity types and therefore corresponds to Read and
Write activities. Mark II FPA does not recognize aspects

A 21Location

6Space

Error message

Add place

Add Cancel

Figure 12. User interface of the Add place
transaction.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

Write

Entry Confirm

Place

Add place

Read

Figure 13. Logical activities in the Add place
transaction.

in Logical Transactions that would correspond to Calculate
activities.

As an example, let us consider the Add place transac-
tion shown in Figure 12. The input part of the transaction
consists of an Entry from the user, comprising the data el-
ements Location and Space. The processing part includes
a Read activity that tests whether the Place already exists,
and a Write activity to store the new record. The output part,
finally, consists of a Confirm activity that outputs an error
message to the user if the Place already existed. Figure 13
illustrates the representation of the Add place transaction
with logical activities.

3.6. Mapping for FFP 1.0

The FFP approach version 1.0 has been formulated as an
extension to IFPUG FPA 4.0, where part of an application—
designated in FFP 1.0 as “management function types”—is
covered by IFPUG FPA, and the remaining part of “control
function types” is covered by the FFP approach. Neverthe-
less, the FFP approach can be regarded as an FSM method
in its own right. In this section, we only discuss the FFP
concepts. Given an indication which method is to apply to a
particular element, it is also possible to represent a mixture
of IFPUG FPA and FFP in the generalized representation
following the original proposal of FFP 1.0.

3.6.1 Data groups in FFP 1.0

Data group types in FFP 1.0 are defined analogously to IF-
PUG FPA 4.0. The identification rules are practically iden-
tical with IFPUG data group types, in respect to the iden-
tification of data elements, and sub-groups, and in respect
to classification. Therefore, the mapping of data groups de-
scribed in Section 3.3.1 applies to FFP 1.0 as well.

However, FFP 1.0 introduces a new class of data groups:
single occurrence groups. These data groups comprise all

data elements which only have a single instance in the ap-
plication. Still, the single occurrence group can be repre-
sented by a generalized data group, as it consists of a set of
data elements where no sub-groups are defined.

The classification of single occurrence data groups into
read-only and read/write is given by the application context,
as with the conventional “multiple occurrence” data groups.
Hence, there is only one single occurrence data group in the
generalized representation of an application. Of course, the
measure function of FFP 1.0 assigns different values to sin-
gle occurrence groups than to multiple occurrence groups.

3.6.2 Transactions in FFP 1.0

FFP represents transactions as collections of sub-processes.
Four classes of sub-processes are defined for entry and exit
of data elements from and to the user, and for read and write
from and to stored data groups. The representation of sub-
processes with logical activities is quite obvious. However,
FFP 1.0 does not have different sub-process classes for data
and control information. Even when applied independently
from IFPUG FPA, any input would be handled by entry sub-
processes, and any output by exits.

The generalized representation with its Control and Con-
firm activities thus provides for more detail that is simply ig-
nored in the FFP measure function, where Control is equiva-
lent to entries and Confirm equivalent to exits. In this sense,
the logical activities of the examples presented in the previ-
ous sections represent FFP sub-processes.

3.7. Mapping for COSMIC-FFP 2.x

COSMIC-FFP 2.0, as opposed to FFP 1.0, has been pub-
lished as a FSM method that is applied to all parts of an ap-
plication, i.e., without reference to IFPUG FPA. In respect
to the generalized representation of functional size, there is
no difference between versions 2.0 and 2.1 of COSMIC-
FFP. We therefore present the mapping for both versions
here.

3.7.1 Data groups in COSMIC-FFP 2.x

In COSMIC-FFP, Data groups do not contribute to func-
tional size, in contrast to FFP 1.0. Nevertheless, data groups
are essential in the identification of sub-processes, because
a sub-process may handle only one data group. COSMIC-
FFP even extends the notion of data groups from stored
data that is the subject of Read and Write activities to “tran-
sient” data groups that are used to identify Entry and Exit
sub-processes. However, these transient data groups are not
represented in the generalized representation as data group
types, because these transient data groups are an attribute in
the corresponding input and output activities.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

As with Mark II FPA, the measure function of COSMIC-
FFP assigns a zero value to data groups in the generalized
representation.

3.7.2 Transactions in COSMIC-FFP 2.x

The view on transactions in COSMIC-FFP is essentially the
same as in FFP 1.0: Transactions are represented by sub-
processes that are classified as either Entry, Exit, Read or
Write. Apart from the naming conventions, the differences
lie in the details of the identification rules of the FFP ver-
sions. Therefore, sub-processes of COSMIC-FFP 2.x can
be represented in the generalized representation in the same
manner as with FFP 1.0 (cf. Sec. 3.6.2).

Note that COSMIC-FFP provides a mechanism for cus-
tom extensions that allows among others the definition of
an equivalent to Calculate activities, described as “manipu-
lation sub-processes”. Calculate activities are, however, not
(yet) a part of the official COSMIC-FFP method.

3.7.3 Layers in COSMIC-FFP 2.x

A concept not present in the other FSM methods dis-
cussed has been introduced in COSMIC-FFP: software lay-
ers. With this concept, the application functionality can
be partitioned into layers at different levels of abstraction,
e.g., device drivers, graphical user interfaces, and applica-
tion data management.

According to COSMIC-FFP, one layer acts as a “client”
of another layer. In terms of the user and application con-
cepts of the data oriented abstraction (cf. Fig. 3), a “client
layer” is a user from the point of view of another layer. As
a consequence, interfaces that would otherwise be internal
to the application can be included in the abstraction of the
software. Sub-processes that move data between the lay-
ers are included in the abstraction. Hence, the data oriented
abstraction is applied with a higher level of granularity, yet
the concepts used to represent the layer functionality are the
same used to represent application functionality. Therefore,
the generalized abstraction applies to COSMIC-FFP 2.x, in-
cluding the layer concept.

4. Applications of the generalization

In Section 3, we have proposed a generalized represen-
tation for the first step of abstraction of a number of FSM
methods. In our approach, this representation is the basis
of a model for the FSM measurement process. Hence, the
immediate result of this proposed representation is that we
have formulated the basis of a model that allows to analyze
and discuss FSM methods. As the generalization represents
the first step of abstraction, we can discuss in detail whether
this abstraction is adequate for FSM. With a formalization

of the generalized representation, we can also discuss the
measure functions. The generalized representation is then
necessary to give an interpretation to observations obtained
with the formalization.

Furthermore, the representation proposed is generalized,
i.e., it applies to the abstraction of each of the FSM methods
studied. Note that we do not assume that in all cases each
method will represent a given application with the same
transactions and data groups (although we believe that this
is not unusual, cf. [5] for examples). With the layer con-
cept introduced in COSMIC-FFP, e.g., transactions can be
identified that would not be relevant in other methods. How-
ever, we believe that the generalized representation can be
used to identify cases where the methods do or do not ar-
rive at the same abstraction, and that this knowledge is rel-
evant for understanding FSM methods. Nevertheless, the
generalized representation allows direct comparisons of the
methods and analysis of their differences. Obviously, the
concepts underlying the different methods are not so differ-
ent and one might assume that the effort required for the
identification step does not vary dramatically between the
methods.

As mentioned above, based on the generalized represen-
tation, a formalization can be given such that the measure-
ment step has the form of mathematical functions. This ap-
proach has two benefits: on the one hand, we can study the
measures, on the other hand, we can use the representation
for automation and the representation of experience data.
We discuss these aspects in the following two paragraphs.

4.1. Generalized Function Point Structure

We call the formalization of the generalized representa-
tion a generalized Function Point Structure. In the general-
ized Function Point Structure, an applicationa is a vector
of transaction typesti and stored data group typesfj:

a = (t1, . . . , tτ , f1, . . . , fσ).

Here, theti are each a vector of logical activities and the
fj are sets of data elements with sub-groups. In the case
of IFPUG FPA 4.1, theti also comprise the primary intent
of the transactions. Each FSM method defines a measure
function FPM such thatFPM(a) is the functional size of
applicationa.

With the generalized Function Point Structure, we can
formulate assumptions about functional size and test those
assumptions with the FSM measures. For example, let us
assume that we have two applicationsa anda′, and we have
a view of functional size that implies thata is larger than
a′. A measure then assumes our view of functional size
if FPM(a) > FPM(a′). With the generalized Function
Point Structure, we can formulate such properties of FSM
methods axiomatically, i.e., we describe properties of FSM

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

measures in general, instead of by example. In [6], we have
demonstrated two such properties that are significant for the
use of FSM methods for prediction of other variables.

4.2. Experience data and automation

A practical difficulty with the different FSM methods is
that results obtained with one method cannot be compared
directly with the results of another method. The practical
use of functional size measurement data generally requires
experience data from other, previous projects, and such data
is coupled with the FSM method used. It is not possi-
ble to truly convert measurement values obtained with one
method into values that would have been measured with an-
other method. This observation can easily be derived from
the measure definitions in the generalized Function Point
Structure. Hence, the experience data cannot be used with
another method in a meaningful way.

However, the generalized representation defines a set of
elements that are sufficient to obtain the measurement with
any of the FSM methods covered. Experience data stored
in a form equivalent to the generalized representation can
therefore be used to obtain measurement results for any of
the methods studied here.

Furthermore, the formalized measure functions can be
calculated automatically. Under the assumption that for a
given application each FSM method arrives at the same ab-
straction regarding transactions and data groups, all FSM
measures can be calculated automatically from a single
source.

5. Conclusions

In this paper, we have proposed a model for a number of
existing FSM methods that gives a new view on these meth-
ods. We use an axiomatic approach based on measurement
theory, that allows us to formulate assumptions of reality
based on the model.

The basis of our model is a representation of the data ori-
ented abstraction of the FSM methods. This representation
is generalized such that it applies to each of the methods
studied. The generalized representation allows direct com-
parisons of the methods and analysis of their differences.

A formalization of the generalized representation in a
generalized Function Point Structure allows the formulation
of FSM measures as functions. Axioms can be formulated
in the generalized Function Point Structure as assumptions
of reality. The generalized representation relates these ax-
ioms to the elements defined by the FSM methods.

The formalization may also be used as a basis for the
representation of experience data from previous projects.
Furthermore, the mathematical formulation of the measure
functions allows automation of the measurement step.

The detailed definitions of the generalized Function
Point Structure and of the formalized measure functions
have to be presented separately.

References

[1] A. Abran, J.-M. Desharnais, S. Oligny, D. St-Pierre, and
C. Symons. COSMIC-FFP Measurement Manual. Com-
mon Software Measurement International Consortium, Oct.
1999. Version 2.0.

[2] A. Abran, J.-M. Desharnais, S. Oligny, D. St-Pierre, and
C. Symons.COSMIC-FFP Measurement Manual. Common
Software Measurement International Consortium, May 3,
2001. Version 2.1.

[3] A. Abran and P. N. Robillard. Function points: A study
of their measurement processes and scale transformations.
Journal of Systems and Software, 25(2):171–184, May 1994.

[4] A. J. Albrecht. Measuring application developement produc-
tivity. In IBM Applications Development Symposium, pages
83–92, Oct. 14–17, 1979.

[5] T. Fetcke. The warehouse software portfolio: A case study
in functional size measurement. Report 1999-20, Technis-
che Universiẗat Berlin, Fachbereich Informatik, 1999.

[6] T. Fetcke. Two properties of Function Point Analysis. In
R. Dumke and F. Lehner, editors,Software-Metriken: En-
twicklungen, Werkzeuge und Anwendungsverfahren, pages
17–34. Deutscher Universitäts Verlag, 2000.

[7] Function Point Counting Practices Manual. International
Function Point Users Group, Westerville, Ohio, 1994. Re-
lease 4.0.

[8] Function Point Counting Practices Manual. International
Function Point Users Group, Westerville, Ohio, 1999. Re-
lease 4.1.

[9] ISO/IEC 14143-1:1998(e) – information technology – soft-
ware measurement – functional size measurement – defini-
tion of concepts. International standard, 1998.

[10] D. St-Pierre, M. Maya, A. Abran, J.-M. Desharnais, and
P. Bourque. Full function points: Counting practices man-
ual. Technical Report 1997-04, Software Engineering Man-
agement Research Laboratory and Software Engineering
Laboratory in Applied Metrics, Sept. 1997.

[11] C. R. Symons. Function point analysis: Difficulties and im-
provements.IEEE Transactions on Software Engineering,
14(1):2–11, 1988.

[12] Mk II Function Point Analysis Counting Practices Manual.
United Kingdom Software Metrics Association, Sept. 1998.
Version 1.3.1.

[13] H. Zuse. A Framework of Software Measurement. de
Gruyter, 1998.

International Workshop on Software Measurement (IWSM’01)
August 28-29, 2001 - Montréal, Qúebec, Canada

