
Wold Computer Congress – Beijing, China – August 21-25, 2000

Developing Consensus on the Software Engineering
Body of Knowledge

Pierre Bourque, Robert Dupuis, and Alain Abran
Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada H3C 3P8

Email: {bourque.pierre, dupuis.robert, abran.alain}@uqam.ca

James W. Moore
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, Virginia 22102-3481 USA
Email: James.W.Moore@ieee.org

Leonard Tripp
The Boeing Company

MS 19-MM
7701, 14 Avenue South
Seattle, WA 98108 USA

Email: l.tripp@computer.org

Abstract

The IEEE Computer Society and the Association for
Computing Machinery are working on a joint project
to develop a guide to the Software Engineering Body
of Knowledge (SWEBOK). Articulating a body of
knowledge is an essential step toward developing a
profession because it represents a broad consensus
regarding the contents of the discipline. Without such
a consensus, there is no way to validate a licensing
examination, set a curriculum to prepare individuals
for the examination, or formulate criteria for
accrediting the curriculum.

At the time of writing this paper in February 2000, the
SWEBOK project (http://www.swebok.org) is nearing
the end of the second of its three phases. Here we
summarize the results to date and provide an overview
of the project.

Keywords
Software engineering, software engineering
profession, body of knowledge.

Objectives and Audience

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) project team established the
project with five objectives:

1. Characterize the contents of the software
engineering discipline.

2. Provide a topical access to the Software
Engineering Body of Knowledge.

3. Promote a consistent view of software
engineering worldwide.

4. Clarify the place—and set the boundary—of
software engineering with respect to other
disciplines such as computer science, project
management, computer engineering, and
mathematics.

5. Provide a foundation for curriculum development
and individual certification and licensing
material.

The product of the SWEBOK project will not be the
Body of Knowledge itself, but rather a guide to it. The
knowledge already exists; the goal is to gain
consensus on the core subset of knowledge
characterizing the software engineering discipline.

To achieve these goals, the project is oriented toward
a variety of audiences. It aims to serve public and
private organizations in need of a consistent view of
software engineering for defining education and
training requirements, classifying jobs, and
developing performance evaluation policies. It also
addresses practicing software engineers and the
officials responsible for making public policy
regarding licensing and professional guidelines. In
addition, professional societies and educators defining
the certification rules, accreditation policies for
university curricula, and guidelines for professional
practice will benefit from SWEBOK, as well as the
students learning the software engineering profession.

The Guide
The project comprises three phases: Strawman,
Stoneman, and Ironman. The Strawman guide,
completed within nine months of project initiation,
served as a model for organizing the SWEBOK guide
[1]. Spring 2000 will see the completion of the
Stoneman version, after which we’ll commence the

Wold Computer Congress – Beijing, China – August 21-25, 2000

Table 1. The SWEBOK Knowledge Areas and their corresponding specialists.

Knowledge Area Specialists
Software configuration management John A. Scott and David Nisse, Lawrence Livermore Laboratory, US
Software construction Terry Bollinger, The MITRE Corporation, US, Philippe Gabrini and Louis

Martin, Université du Québec à Montréal, Canada
Software design Guy Tremblay, Université du Québec à Montréal, Canada
Software engineering infrastructure David Carrington, The University of Queensland, Australia
Software engineering management Stephen G. MacDonell and Andrew R. Gray, University of Otago, New

Zealand
Software engineering process Khaled El Emam, National Research Council, Canada
Software maintenance Thomas M. Pigoski, TECHSOFT, US
Software quality Dolores Wallace and Larry Reeker, National Institute of Standards and

Technology, US
Software requirements Pete Sawyer and Gerald Kotonya, Lancaster University, UK
Software testing Antionia Bertolino, Consiglio Nazionale delle Ricerche, Italy

Ironman phase, which will continue for two or three
years. Following the principles of the Stoneman
phase, Ironman will benefit from more in-depth
analyses, a broader review process, and the experience
gained from trial usage. The SWEBOK Guide has
organized the body of knowledge into several
Knowledge Areas. The Stoneman version of the
Guide identifies 10 KAs (see Table 1). In addition,
we’re considering seven related disciplines (see Table
2).

Table 2. Related disciplines.

Cognitive sciences and human factors
Computer engineering
Computer science
Management and management science
Mathematics
Project management
Systems engineering

The distinction between KAs and related disciplines is
important to the Guide’s purpose. The project
specifies KAs—and topics within these KAs—that are
regarded as core knowledge for software engineers.
Software engineers should also know material from
the related disciplines, but the SWEBOK project does
not attempt to specify that material. Instead, we’re
leaving that to other efforts such as those being
coordinated by the Joint IEEE Computer Society and
ACM Software Engineering Coordinating
Committee1, or the Working Group on Software
Engineering Education [2]. As the following sections
explain, each KA description—which is around 15
pages—contains several important components.

Hierarchical organization

1 See http://www.computer.org/tab/swecc/

The Guide uses a hierarchical organization to
decompose each KA into a set of topics with
recognizable labels. A two- or three-level breakdown
will provide a reasonable way for readers to find
topics of interest. The Guide treats the selected topics
in a manner compatible with major schools of thought
and with breakdowns generally found in industry and
in software engineering literature and standards. The
breakdowns of topics should not presume particular
application domains, business uses, management
philosophies, development methods, and so forth. The
extent of each topic’s description is only that needed
for the reader to successfully find reference material.
After all, the Body of Knowledge is found in the
reference materials, not in the Guide itself.

From the outset, the question arose as to the depth of
treatment the Guide should provide. After substantial
discussion, the project adopted a concept of generally
accepted knowledge, which we distinguish from
advanced and research knowledge (on the grounds of
maturity) and from specialized knowledge (on the
grounds of generality of application). The generally
accepted knowledge applies to most projects most of
the time, and widespread consensus validates its value
and effectiveness. However, generally accepted
knowledge does not imply that you should apply the
designated knowledge uniformly to all software
engineering endeavors—each project’s needs
determine that—but it does imply that competent,
capable software engineers should be equipped with
this knowledge for potential application. More
precisely, generally accepted knowledge should be
included in the study material for a software
engineering licensing examination that graduates
would take after gaining four years of work
experience. Although this criterion is specific to the
US style of education and does not necessarily apply
to other countries, we deem it useful. However, the

Wold Computer Congress – Beijing, China – August 21-25, 2000

definitions of generally accepted knowledge should be
seen as complementary.

Additionally, the proposed breakdown must be
somewhat forward-looking—we’re considering not
only what is generally accepted today but also what
will be generally accepted in three to five years.

Reference materials and a matrix

The Guide identifies reference materials for each KA.
They might be book chapters, refereed papers, or any
other well-recognized source of authoritative
information—but the reference should be written in
English and generally available. The Guide also
includes a matrix that relates the reference materials
to the listed topics. Of course, a particular reference
might apply to more than one topic.

Ratings

As an aid, notably to curriculum developers, the
Guide also rates each topic with one of a set of
pedagogical categories commonly attributed to
Benjamin Bloom [3]. The concept is that educational
objectives can be classified into six categories
representing increasing depth: knowledge,
comprehension, application, analysis, synthesis, and
evaluation.

KAs from related disciplines

Each SWEBOK KA description also identifies
relevant KAs from related disciplines. Although these
KAs are merely identified without additional
description or references, they should aid curriculum
developers.

The Knowledge Areas
The selection, titling, and descriptions of each
Knowledge Area remains the subject of comment,
review, and amendment. These decisions will all be
reviewed in subsequent versions of the Guide. Here,
we describe the KAs as currently drafted at the time
of writing this paper in February 2000, therefore prior
to the final review of the Stoneman version. Table 1
identifies the KA specialists responsible for preparing
the full KA descriptions, and Figure 1 maps out the 10
KAs and the important topics incorporated within
them. Please note that Knowledge Areas are presented
in alphabetical order.

Software configuration management

We can define a system as a collection of components
organized to accomplish a specific function and/or set
of functions. A system’s configuration is the function

or physical characteristics of hardware, firmware,
software, or a combination thereof as set forth in
technical documentation and achieved in a product.
Configuration management, then, is the discipline of
identifying the configuration at distinct points in time
to systematically control its changes and to maintain
its integrity and traceability throughout the system life
cycle.

The concepts of configuration management apply to
all items requiring control, though there are
differences in implementation between hardware
configuration management and software configuration
management. The primary activities of software
configuration management are used as the framework
for organizing and describing the topics of this KA.
These primary activities are the management of the
software configuration management process; software
configuration identification, control, status
accounting, and auditing; and software release
management and delivery (see Figure 1a).

Software construction

Software construction is a fundamental act of software
engineering; programmers must construct working,
meaningful software through coding, self-validation,
and self-testing (unit testing). Far from being a simple
mechanistic translation of good design in working
software, software construction burrows deeply into
some of the most difficult issues of software
engineering.

The breakdown of topics for this KA adopts two
complementary views of software construction. The
first view comprises three major styles of software
construction interfaces: linguistic, formal, and visual
(see Figure 1b). For each style, topics are listed
according to four basic principles of organization that
strongly affect the way software construction is
performed: reducing complexity, anticipating
diversity, structuring for validation, and using external
standards.

For example, the topics listed under anticipation of
diversity for linguistic software construction
interfaces are information hiding, embedded
documentation (commenting), complete and sufficient
method sets, object-oriented class inheritance,
creation of “glue” languages for linking legacy
components, table-driven software, configuration
files, and self-describing software and hardware (e.g.,
plug and play).

Wold Computer Congress – Beijing, China – August 21-25, 2000

Software design

Design transforms (software) requirements—typically
stated in terms relevant to the problem domain—into
a description explaining how to solve the software-
related aspects of the problem. It describes how the
system is decomposed and organized into
components, and it describes the interfaces between
these components. Design also refines the description
of these components into a level of detail suitable for
allowing their construction.

Basic concepts of software design constitute the first
subarea of this KA (see Figure 1c). Software
architecture is the next subarea and includes topics on
structures and viewpoints, architectural styles and
patterns, design patterns and families of programs and
frameworks. Design quality analysis and evaluation
constitute the next subarea and is divided into quality
attributes, quality analysis and evaluation tools, and
metrics.

The design notations subarea discusses notations for
structural and behavioral descriptions. Design
strategies and methods constitute the last subarea, and
it contains four main topics: general strategies,
function-oriented design, object-oriented design, data-
structure-centered design and other methods.

Software engineering infrastructure

This KA covers three themes that cut across the other
KAs: development methods and software engineering
tools, and component integration(see Figure 1d).

Development methods impose structure on software
development and maintenance activity with the goal
of making the activity systematic and ultimately more
successful. Methods usually provide a notation and
vocabulary, procedures for performing identifiable
tasks, and guidelines for checking both the process
and product. Development methods vary widely in
scope, from a single life-cycle phase to the complete
life cycle. The Guide divides this subarea into three
non disjointed main topics: heuristic methods dealing
with informal approaches, formal methods dealing
with mathematically based approaches, and
prototyping methods dealing with approaches based
on various forms of prototyping.

Software tools are the computer-based tools intended
to assist the software engineering process. Tools are
often designed to support particular methods, reducing
the administrative load associated with applying the
method manually. Like methods, they are intended to
make development more systematic, and they vary in
scope from supporting individual tasks to
encompassing the complete life cycle. The top-level

partitioning of the software tools subarea
distinguishes between development and maintenance,
management tools and infrastructure tools. The
emergence of software components as a viable
approach to software development represents a
maturing of the discipline to overcome the not-
invented-here syndrome. The component integration
subarea is partitioned into topics dealing with
individual components, reference models that describe
how components can be combined, and the more
general topic of reuse.

Software engineering management

The software engineering management KA addresses
the management of software development projects
and the measurement and modeling of such projects
(see Figure 1e). It consists of eight subareas, from
measurement, to organizational management and
coordination and then to six additional subareas
organized by lifecycle phases. The measurement
subarea addresses four main topics: measurement
program goals, measuring software and its
development, measurement selection, data collection,
and model development.

The organizational management and coordination
subarea considers the notion of portfolio management,
acquisition decisions and management, policy
management, personnel management and
communications. The remaining subareas are
organized according to stages in the project
development life cycle: initiation and scope definition,
planning, enactment, review and evaluation, project
close out and post-closure activities.

An alternative classification of these topics is also
proposed in the KA description based on common
themes.

Software engineering process

This KA covers the basic concepts and definitions,
infrastructure, measurement, process definition,
qualitative process analysis and process
implementation and change (see Figure 1f). The first
subarea—basic concepts and definitions—establishes
the KA themes and terminology. The next subarea
deals with process infrastructure including staffing,
funding and responsibility assignment.

The process measurement subarea describes the
methodologies in process measurement and process
measurement paradigms.

The purpose and methods for defining software
processes, as well as existing software process
definitions and automated support, are described in

Wold Computer Congress – Beijing, China – August 21-25, 2000

the process definition subarea. The topics of this
subarea are types of process definitions, life-cycle
models, life-cycle process models, notations for
process definitions, process definition methods, and
automation.

The qualitative process analysis subarea discusses
qualitative techniques to analyze software processes,
to identify strengths and weaknesses.

The topics of the process implementation and change
subarea are paradigms for process implementation and
change, guidelines for process implementation and
change, and evaluating the outcome of process
implementation and change.

Software maintenance

Software maintenance (see Figure 1g) is defined by
IEEE Standard 1219-1998, IEEE Standard for
Software Maintenance as modifying a software
product after delivery to correct faults or improve
performance or other attributes, or to adapt the
product to a modified environment. However,
software systems are rarely completed and constantly
evolve over time. Therefore, this KA also includes
topics relevant to software evolution.

The introduction to software maintenance subarea
discusses the need for software maintenance and the
categories of maintenance. The maintenance activities
subarea addresses the unique and supporting activities
of maintenance as well as maintenance planning. As
with software development, process is critical to the
success and understanding of software maintenance.
The next subarea discusses standard maintenance
processes. Organizing the maintenance area might
differ from development; the subarea on
organizational aspects discusses the differences.

Software maintenance present unique and different
technical and managerial problems for software
engineering, as addressed in the problems of software
maintenance subarea. Cost is always a critical topic
when discussing software maintenance. The subarea
on maintenance cost and maintenance cost estimation
concerns life-cycle costs as well as costs for
individual evolution and maintenance tasks. The
maintenance measurements subarea addresses the
topics of quality and metrics. The final subarea,
techniques for maintenance, aggregates many
subtopics that the KA description otherwise fails to
address.

Software quality

Production of quality products is key to customer
satisfaction. Software without the requisite features

and degree of quality is an indicator of failed (or at
least flawed) software engineering. However, even
with the best of software engineering processes,
requirement specifications can miss customer needs,
code can fail to fulfill requirements, and subtle errors
can lie undetected until they cause minor or major
problems—even catastrophic failures. This KA
therefore discusses the knowledge related to software
quality assurance and software verification and
validation activities.

The goal of software engineering is a quality product,
but quality itself can mean different things. The first
subarea, software quality concepts, discusses
measuring the value of quality, and other
characteristics such as the quality attributes for the
engineering process (see Figure 1h).

The software quality assurance process provides
assurance that the software products and processes in
the project life cycle conform to their specified
requirements and adhere to their established plans.
The software verification and validation process
determines whether products of a given development
or maintenance activity conform to the requirements
of that activity and those imposed by previous
activities, and whether the final software product
(through its evolution) satisfies its intended use and
user needs. These form three additional subareas.

The last subarea discusses measurement as applied to
software quality assurance and verification and
validation.

Software requirements

The software requirements KA is concerned with the
acquisition, analysis specification and management of
software requirements. It is broken down into six
subareas that correspond approximately to process
tasks that are often enacted concurrently and
iteratively rather than sequentially (see Figure 1i).

The requirements engineering process subarea
introduces the requirements engineering process,
orients the remaining five subareas, and shows how
requirements engineering dovetails with the overall
software engineering process. This section also deals
with contractual and project organization issues.

The requirements elicitation subarea covers what is
sometimes termed requirements capture, discovery, or
acquisition. It is concerned with where requirements
come from and how they can be collected by the
requirements engineer. Requirements elicitation is the
first stage in building an understanding of the problem
the software must solve. It is fundamentally a human
activity, and it identifies the stakeholders and

Wold Computer Congress – Beijing, China – August 21-25, 2000

establishes relationships between the development
team and customer.

The requirements analysis subarea is concerned with
the process of analyzing requirements to detect and
resolve conflicts between them, to discover the
boundaries of the system and how it must interact
with its environment; the requirements analysis
subarea also discusses the elaboration from system
requirements to software requirements. The software
requirements specification subarea is concerned with
the structure, quality and verification of the
requirements document.

The requirements validation subarea is concerned
with checking for omissions, conflicts, and
ambiguities and with ensuring that the requirements
follow prescribed quality standards. The requirements
should be necessary, sufficient, and described in a
way that leaves as little room as possible for
misinterpretation.

The requirements management subarea spans the
whole software life cycle. It is fundamentally about
change management and maintaining the requirements
in a state that accurately mirrors the software to be—
or that has been—built.

Software testing

Software testing consists of dynamically verifying a
program’s behavior on a finite set of test cases—
suitably selected from the usually infinite domain of
executions—against the specified expected behavior.
These and other basic concepts and definitions
constitute the first subarea of this KA(see Figure 1j).

This KA divides the test levels subarea into two
orthogonal breakdowns; the first of which is
organized according to the traditional phases for
testing large software systems. The second breakdown
concerns testing for specific conditions or properties.

The next subarea describes the knowledge relevant to
several generally accepted test techniques. It classifies
these techniques as being intuition-based,
specification-based, code-based, fault-based, usage-
based, or based on the nature of the application. An
alternative breakdown of test techniques as being
white-box or black-box is also presented. Test-related
measures are dealt with in their own subarea.

The next subarea expands on issues relative to the
management of the test process, including
management concerns and test activities.

The Project

Since 1993, the IEEE Computer Society and the ACM
have cooperated in promoting the professionalization
of software engineering through their joint Software
Engineering Coordinating Committee (SWECC).

The SWEBOK project’s scope, the variety of
communities involved, and the need for broad
participation require full-time rather than volunteer
management. For this purpose, the SWECC
contracted the Software Engineering Management
Research Laboratory at the Université du Québec à
Montréal to manage the effort. It operates under
SWECC supervision.

The project team developed two important principles
for guiding the project: transparency and consensus.
By transparency, we mean that the development
process is itself documented, published, and
publicized so that important decisions and status are
visible to all concerned parties. By consensus, we
mean that the only practical method for legitimizing a
statement of this kind is through broad participation
and agreement by all significant sectors of the
relevant community. By the time the Stoneman
version of the Guide is completed, literally hundreds
of contributors and reviewers will have touched the
product in some manner.

Project contributors

Like any software project, the SWEBOK project has
many stakeholders—some of which are formally
represented. An Industrial Advisory Board, composed
of representatives from industry (Boeing, National
Institute of Standards and Technology, National
Research Council of Canada, Rational Software
Corp., Raytheon Systems, and SAP Labs-Canada) and
professional societies (IEEE Computer Society and
ACM), provides financial support for the project. The
IAB’s generous support permits us to make the
products of the SWEBOK project publicly available
without any charge (visit http://www.swebok.org).
IAB membership is supplemented with related
standards bodies (IEEE Software Engineering
Standards Committee and ISO/IEC JTC1/SC7) and
related projects (the Computing Curricula 2001
initiative). The IAB reviews and approves the project
plans, oversees consensus building and review
processes, promotes the project, and lends credibility
to the effort. In general, it ensures the relevance of the
effort to real-world needs.

We realize, however, that an implicit body of
knowledge already exists in textbooks on software
engineering. Thus, to ensure we correctly characterize

Wold Computer Congress – Beijing, China – August 21-25, 2000

the discipline, Steve McConnell, Roger Pressman, and
Ian Sommerville—the authors of the three best-selling
textbooks on software engineering—have agreed to
serve on a Panel of Experts, acting as a voice of
experience. In addition, the extensive review process
(described later) involves feedback from relevant
communities. In all cases, we seek international
participation to maintain a broad scope of relevance.

Normative literature

The project differs from previous efforts in its
relationship to normative literature. Most of the
software engineering literature provides information
useful to software engineers, but a relatively small
portion is normative. A normative document
prescribes what an engineer should do rather than
describing the variety of things that the engineer
might or can do. The normative literature is validated
by consensus formed among practitioners and is
concentrated in standards and related documents.

From the beginning, the SWEBOK project was
conceived as having a strong relationship to the
normative literature of software engineering. The two
major standards bodies for software engineering are
represented in the project. In fact, a preliminary
outline of KAs was based directly on the 17 processes
described in ISO/IEC 12207, Software Life Cycle
Processes. Ultimately, we hope that software
engineering practice standards will contain principles
traceable to the SWEBOK Guide.

Reviews

We organized the development of the Stoneman
version into three public review cycles. The first
review cycle focused on the soundness of the
proposed breakdown of topics within each KA.
Thirty-four domain experts completed this review
cycle in April 1999. The reviewer comments, as well
as the identities of the reviewers, are available on the
project’s Web site.

In the second review cycle a considerably larger
group of professionals, organized into review
viewpoints, answered a detailed questionnaire for
each KA description. The viewpoints (for example,
individual practitioners, educators, and makers of
public policy) were formulated to ensure relevance to
the Guide’s various intended audiences. The results of
this review cycle, completed in October 1999, are also
available on the project’s Web site. The focus of the
third review cycle will be on the correctness and
utility of the Guide. The third review cycle takes place
in the Spring of 2000 by individuals and organizations

representing a cross-section of potential interest
groups.

Throughout the project, the SWEBOK team has
ensured that there was always material available to
tangibly capture the project’s progress. Most of this
material is available publicly on the project's Web
site.

Prior to developing the Ironman version of the Guide,
we will use the Stoneman guide in experimental
application to provide feedback on its usability. Those
interested in performing experimental applications of
the Guide are invited to contact the project team.

Acknowledgments
The SWEBOK project team gratefully acknowledges
the support provided by the members of the Industrial
Advisory Board. Funding for this project is provided
by the Association for Computing Machinery, Boeing,
the IEEE Computer Society, the National Institute of
Standards and Technology, the National Research
Council of Canada, Rational Software Corp.,
Raytheon, and SAP Labs (Canada). The team also
appreciates the important work performed by the KA
specialists named in the article. Finally, the team
acknowledges the indispensable contribution of the
hundreds of reviewers who have participated so far.

References
1. P. Bourque et al., Guide to the Software

Engineering Body of Knowledge: A Strawman
Version, Université du Québec à Montréal, 1998
(Available from www.swebok.org).

2. Bagert, D.J., Hilburn, T.B., Hislop, G., Lutz,
McCracken, M., and Mengel, S., Guidelines for
Software Engineering Education, Version 1.0
(CMU/SEI-99-TR-032, ESC-TR-99-002).
Pittsburgh, Pa: Software Engineering Institute,
Carnegie Mellon University, November 1999;
http://www.sei.cum.edu/collaborating/ed/workgro
up-ed-html.

3. Bloom et al., Taxonomy of the Cognitive
Domain. See http://www.valdosta.peachnet.edu/
~whuitt/psy702/cogsys/bloom.html

Wold Computer Congress – Beijing, China – August 21-25, 2000

Figure 1. A mapping of the Guide to the Software Engineering Body of Knowledge.

Process
Measurement

Automation

Management Tools

Guide to the Software Engineering Body of Knowledge

Software
Configuration

Management v 0.7*

Software
Construction v 0.5

Software Design
v 0.7

Software
Engineering

Infrastructure v 0.6

Software
Engineering

Management v 0.7

Software
Engineering

Process v 0.6

Software
Maintenance v 0.7

Software Quality
v 0.6

Software
Requirements v 0.7

Software Testing
v 0.7

 Management of
the SCM Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status Accounting

Software
Configuration

Auditing

Software Release
Management and

Delivery

Linguistic
Construction

Methods

Formal
Construction

Methods

Visual Construction
Methods

Software Design
Basic Concepts

Software
Architecture

Software Design
Quality Analysis
and Evaluation

Software Design
Notations

Software Design
Strategies and

Methods

Development
Methods

Software Tools

Component
Integration

Measurement Basic Concepts
and Definitions

Process Definition

Process
Implementation

and Change

Maintenance
Activities

Maintenance
Process

Organization
Aspect of

Maintenance

Problems of
Software

Maintenance

Maintenance Cost
and Maintenance
Cost Estimation

Maintenance
Measurements

Techniques for
Maintenance

Software Quality
Concepts

Defining SQA and
V&V

Requirements
Engineering

Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Management

Basic Concepts
and Definitions

Test Levels

Test Techniques

Test Related
Measures

Management the
Test Process

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Reduction in Complexity

Anticipation of Diversity

Structuring for Validation

Use of External
Standards

Heuristic Methods

Formal Methods

Prototyping Methods

Development and
Maintenance Tools

Component Definition

Reference Models

Reuse

Themes

Life Cycle Models

Process Definition
Methods

Types of Process
Definitions

Life Cycle Process
Models

Notations for Process
Definitions

Methodology in Process
Measurement

Process Measurement
Paradigms

Paradigms for Process
Implementation and

Change
Guidelines for Process

Implementation and
Change

Evaluating Process
Implementation and

Change

Organizational
Management and

Coordination

Initiation and
Scope Definition

Planning

Enactment

Review and
Evaluation

Project Close Out

Post-Closure
Activities

Process
infrastructure

Terminology

Qualitative Process
Analysis

Planning for SQA
and V&V

Activities and
Techniques for
SQA and V&V

Measurement
Applied to SQA

and V&V

Software
Requirements
specifications

Infrastructure Support
Tools

* This refers to the interim draft version number.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

