IWSM2000- 10th International Workshop on Software Measurement

Berlin, October 4-6, 2000

GERMANY

QF²D: A different way to measure **Software Quality**

Luigi BUGLIONE

Alain ABRAN

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Laboratoire de Recherche en Gestion des Logiciels Montréal, Québec - CANADA

E-mail: luigi.buglione@computer.org E-mail: abran.alain@uqam.ca

Agenda

Introduction
 Quality Function Deployment (QFD)
 Quality Models and the Quality Factor (QF)
 QF²D: description and advantages
 the procedure flow
 the new calculation
 Conclusions and Prospects

Introduction

Product Quality is definable as "the totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs" (ISO 8402)

Introduction

Trend:

Growing attention towards project measurement (both of process and product) in the Software Engineering community in order to reach optimal qualitative levels

Practice: many companies consider only the Economic and /or Technical viewpoints in evaluations and in a quantitative manner Reasons: cultural and economic motivations Results: an incomplete product evaluation

IWSM2000 - October 4-6,2000

Introduction

A comprehensive Software Quality Assessment should take into account multiple and distinct viewpoints:

Actors	Viewpoint	Objectives
Managers	Economic (E)	Overall quality
Users	Social (S)	Usability
Developers	Technical (T)	Conformance to requirements

Agenda

Introduction

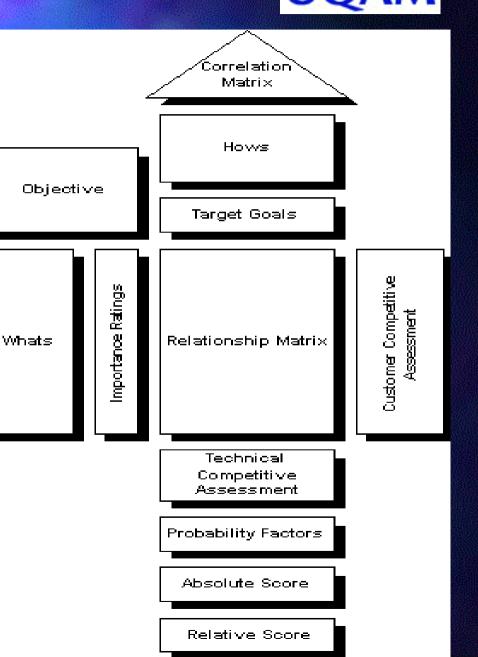
- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)
- QF²D: description and advantages
 - ✤ the procedure flow
 - the new calculation
- Conclusions and Prospects

Quality Function Deployment (QFD)

Tow (total Quality Management) studies in Japan have focused on the customers: a widely applied technique is, for instance, QFD (Quality Function Deployment).

QFD is a method for translating customer requirements (ref. "*Voice of the Customer*") into appropriate technical requirements throughout the development and production of a product.

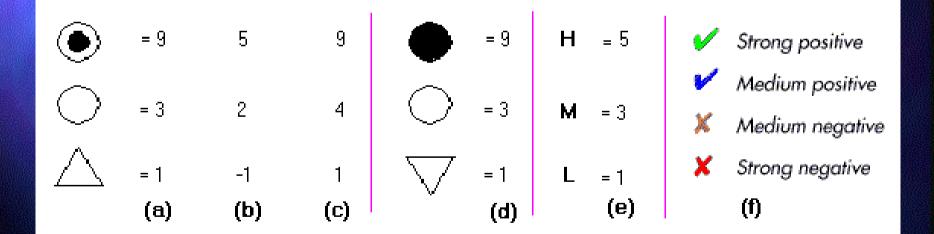
IWSM2000 - October 4-6,2000 L.Buglione & A.Abran ©2000


House of Quality (HoQ)

OFD includes a series of matrixes, as tools to represent data.

Most commonly used matrix: the "House of Quality" (HoQ)

IWSM2000 - October 4-6,2000


L.Buglione

HoQ symbols

Every point discussed in the HoQ must be rated. In the figure, some of the most common rating and weights used in QFD studies and applications:

IWSM2000 - October 4-6,2000

QFD in Software Engineering

- Distributed QFD (DQFD) by DEC
- Project QFD by Richard Zultner

• Study by Eriksson, McFadden and Tittanen : focus on the need to join process and product analysis to check whether the user requirements concerning both the product and the project issues were correctly determined and to get the customers' acceptance of these points;

• **SPI/HoQ model by** *Ita Richardson*: a tool to help the implementation of SPI action plan for SMEs (using Bootstrap as the reference SPI model).

• Matrix of Change (MoC) project by the *Massachusetts Institute of Technology*: as useful guidelines for Change Management.

QFD and Software Engineering

Conclusion: QFD could be a useful tool for other Software Engineering applications

To be investigated: can QFD be applied to improve the software Quality Models (QM) actually in use, and our QF technique?

IWSM2000 - October 4-6,2000 L.Buglione & A.Abran ©2000

Agenda

Introduction

- Quality Function Deployment (QFD)
- Quality Models and the Quality Factor (QF)
- QF²D: description and advantages
 - the procedure flow
 - the new calculation
- Conclusions and Prospects

IWSM2000 - October 4-6,2000

A Quality Model (QM) is defined as:

 the set of characteristics and relationships between them which provide the basis for specifying quality requirements and evaluating quality

 a structured set of properties required for an object of a class to meet the defined purposes

So a QM is given by the decomposition of a valuable object (process / product / organisation) in a list of:

characteristics

- sub-characteristics
- ♦ measures

Scope: predict / assure / verify the achievement of a defined goal about the object before (+ during + after) producing it.

IWSM2000 - October 4-6,2000 L.Buglione & A.Abran ©2000

The best known QMs for software are those by:
McCall et al. (1977) [called FCM - Factor/Criteria Model]
Boehm et al. (1978)
ISO/IEC 9126 (1991 and 2000 updates)
IEEE 1061 (1992)
Dromey (1995)

It is possible to classify them depending on the:

number of layers (2, 3)

LAYER	Военм	MCCALL	ISO	IEEE	DROMEY
1	H-Level Charact.	Factor	Characteristic	Factor	H-Level Attribute
2	Primitive Charact.	Criteria	Subcharacteristic	Subfactor	Subordinate Attribute
3	(Metric)	(Metric)	(Metric)	Metric	

 number of relationships between first two layers (1:n, n:m)

p.e. McCall's model (**FCM**) -> every sub-characteristic is linked to one or more characteristics while in **ISO/IEC 9126** every characteristic has its own set of sub-characteristics

General Problems in QMs:

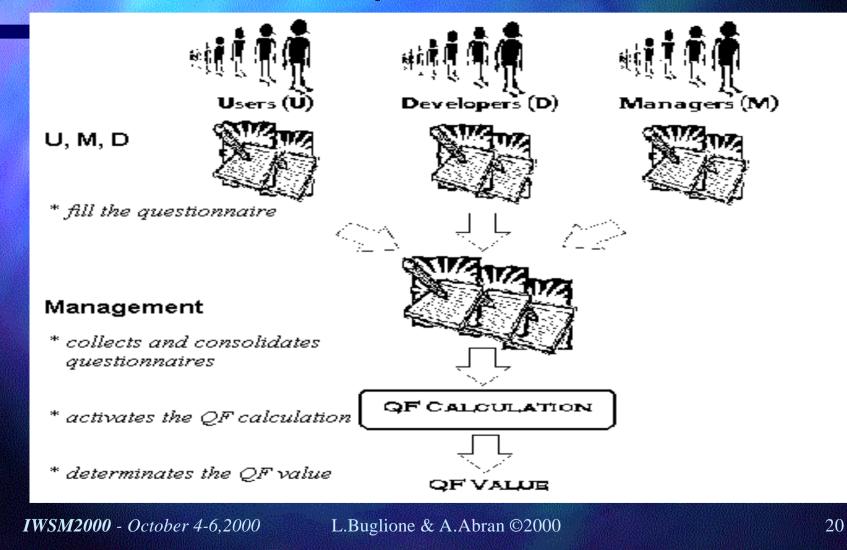
- insufficient list mapping with an everyday reality more and more complex
- Ittle assistance in building quality into software
- individual interpretations of models and of its variables

But: there is strength and usefulness in shared common interpretations, rather than individual interpretations of quality

Solution: use of ISO standard because they represents the largest international consensus on a software quality model

IWSM2000 - October 4-6,2000

Quality Factor (QF) - Buglione & Abran (1999)


The Quality Factor (QF) technique consolidates into a single numerical value (based on ISO/IEC 9126 standard) integrating Users' (U), Developers' (D) and Managers' (M) opinions about the quality of the software being measured.

QF uses an *open* weight scale methodology (*does not force a single set of weights*).

IWSM2000 - October 4-6,2000

QF - the procedure flow

QF: Improvements required

◇ QF applied for ex-post evaluation purposes
◇ QF with ISO 9126:1991 version only
◇ QF has a specific approach to match stakeholders' viewpoints: any other one?
◇ QF calculation use several tables: is it possible to simplify the procedure?

Agenda

Introduction
 Quality Function Deployment (QFD)
 Quality Models and the Quality Factor (QF)
 QF²D: description and advantages
 the procedure flow
 the new calculation
 Conclusions and Prospects

IWSM2000 - October 4-6,2000 L.Bug

QF²D: a new approach

Challenge: merging the QF technique into the QFD approach

Result: an improved technique to be referred to as: Quality Factor through QFD (QF²D)

IWSM2000 - October 4-6,2000

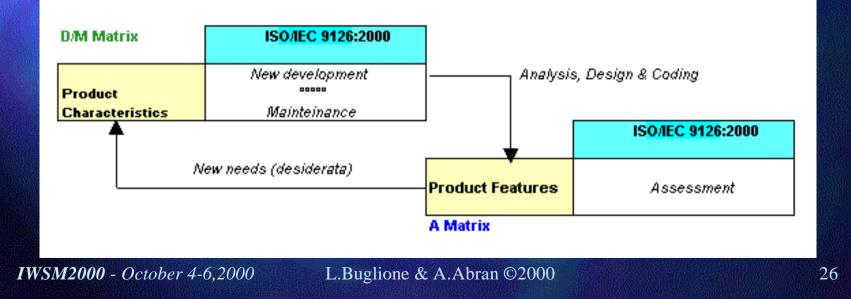
Basic improvements to QF

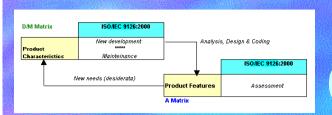
Multi-perspective evaluation (E, S, T) of software quality in the development / maintenance phases

(not only in the assessment phase)

- Evaluation of QF on a percentage scale (to obtain an easier intuitive understanding of results)
- Use of ISO 9126 and 14598 series (for software quality attributes and evaluation)

Advantages from HoQ usage


- Simplification and rationalisation of the QF method;
- Summarisation of all data in one table;
- Use of histograms to prioritise in a visual way the most relevant sub-characteristics and *target goals* of products to be evaluated



QF²D lifecycle

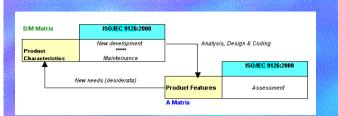
2 Matrices:

- D/M (Development / Mainteinance)
- A (Assessment)

QF²D lifecycle - D/M matrix

WHAT (rows):

- expresses the targets by the three interest groups (E, S, T)
- priority fixed on a Likert scale (from 1 to 5)


 considers the three groups of stakeholders (well-known quality models like EFQM and Malcolm Baldrige also use their distinct viewpoints)

HOW (columns):

 represents the list of the new upcoming ISO/IEC 9126 standard subcharacteristics (parts 2, 3 and 4)

In the Matrix:

 relationship between user requirements to be translated into product features and quality sub-characteristics expressed on the ISO/IEC 14598-1 scale (from 0 to 3), in place of the common QFD graphic symbols used in the HoQ

QF²D lifecycle - A matrix

WHAT (rows):

 represents the list of the new upcoming ISO/IEC 9126 standard subcharacteristics (parts 2, 3 and 4)

priority fixed on a Likert scale (from 1 to 5)

HOW (columns):

expresses the product features of the assessed product

 consider the three groups of stakeholders, as in well-known quality models like EFQM and Malcolm Baldrige

In the Matrix:

 relationship between product features and quality sub-characteristics expressed on the ISO/IEC 14598-1 scale (from 0 to 3), in place of the common QFD graphic symbols used in the HoQ

IWSM2000 - October 4-6,2000

QF²D symbols

- Foundation: use of the ISO standards for SwEng
- Application: ISO/IEC 14598-1 rating scale applied to QFDlike symbols

Mark	QF ² D Symbol	Rating	Global Rating
3	•	Excellent	
2	0	Good	Satisfactory
1	0	Fair	
0	Blank	Poor / Absent	Unsatisfactory

IWSM2000 - October 4-6,2000

QF²D matrices structure - D/M matrix example

			PRIORITY			<u>/126-x SU</u>	BCHARA(CTERISTI	CS			
			(1-5)		Char 1			Charn				
				SubChar	1				SubChar n			
	M1	DES1										
												0.0000.000.000.00
				•			0		•			
E					0							
							0					
						L						
	Mn											
	U1	DESx				L						
				•		<u> </u>	0		•			1
					0	L						
						L				INTERNAL / EXTERNAL COMPARISONS	XALUES	···· ·
S						L	8					
						 						···· ·
						L						1
						 						
	Un					Ļ						
	D1	DESy				 						
						 						
						 	•			-		
_				<u> </u>		<u> </u>	-	<u> </u>				
Т				8		•	+					NEWSBOR
						┣────						
				0		┣────						
						 						
	Dn	DESn		 	1	┝────				<u> </u>	<u> </u>	
			Sum			┣────				TCY	J	
			Ma			L						
			-	h i		1						
			I									
	00.022303000000000000000000000000000000			No. of the original states				0000	Sector Inclusion		Constantine Constant	20

IWSM2000 - October 4-6,2000

QF²D - the calculation

The instrument needed for the QF²D calculation is:

 HoQ-like table: D/M (Development / Mainteinance) or A (assessment) matrix

Template Excel available at: http://www.geocities.com/lbu_measure/qf/qf2d.htm

IWSM2000 - October 4-6,2000

QF²D - the calculation (D/M matrix)

6 Steps:

D Listing of the most relevant desiderata on the matrix

- **2** Determination for each desiderata of:
 - 🔅 level of priority (1-5)
 - which sub-characteristic(s) is (are) correlated it to the target
 - ↔ which rating (0-3) of the sub-char is linked to the target (circle symbols)
- **③** Calculation of the sub-characteristics values (SSV)
- ④ Calculation of the whole characteristics values (CV)
- **S** Calculation of the Total Characteristics Value (TCV)
- Output Determination of the final OF2D value (TCV / TCVmax)

Note: using a spreadsheet solution, you can automatically calculate priorities (*histograms*)and delta values in the "Internal-external comparisons" zone of the matrixIWSM2000 - October 4-6,2000L.Buglione & A.Abran ©200032

QF²D: main advantages

- Use of new ISO 9126:2000 standard series;
- Not only an assessment of product but also of development/maintenance (with feedback loop);
- Use of ISO 14589-1 evaluation scale to express relationships in the HoQ table;
- Greater granularity in the whole product evaluation (at the sub-characteristic level);
- Use of a single table to collect data and visualise results (for all participants from the three interest groups: E, S, T)

Assumptions:

- 5 respondents to the questionnaire (1 manager, 2 users, 2 developers)
- 31 quality sub-characteristics used

Whore

Example

Thus, it derives the following formulas for:

•SCV

•CV

TCV (value, min, max)
•QF²D

SCV	$\sum_{j=1}^{x} PR_j * SCV_{j,z}$	Where $X=$ no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix) $Z=$ the sub-characteristic to evaluate
CV	$\sum_{i=f}^{l} \sum_{j=1}^{x} PR_{j} * SCV_{j,i}$	 Where X= no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix) F= ordinal number of the first subchar for that characteristic L= ordinal number of the last subchar for that characteristic
TCV	$\sum_{i=1}^{31} \sum_{j=1}^{x} PR_j * SCV_{j,i}$	Where X= no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)
TCVmin	X*0	Where X= no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix)
TCVmax	X*465	Where X= no. Of desired features (D/M matrix) or the no. Of people choosing certain product features (A matrix) 465 = 31 (no of sub-char) * 3 (max rating) * 5 (max priority)
Final Quality Value	$QF^2D = \frac{TCV}{TCV_{\text{max}}}$	

IWSM2000 - October 4-6,2000

After filling the QF²D table, this is the result:

			PRIORITY (1-5)	SubChar 1	SubChar 30	SubChar 31		
E	M1	REQ1	1	3	3	2		
S	U1	REQ2	5	2	3	2		
	U2	REQ3	4	1	 3	2		
Т	D1	REQ4	3	2		2		
	D2	REQ5	2	0	1	2		
		Sum	Interesteresterester	23	32	30	TCV =	787
		Mx		4,600	6,400	6,000	TCVmax =	2325

QF2D = 0,3385

SymbilSO Rating							
•	3						
Θ	2						
0	1						
	0						

And this is the analytic result, in order to evaluate it with more attention:

		Tot value	%	and the second second	%	Tot %
CV1	Functionality	117	14,87	1 Suitability	2,92	14,87
				2 Accuracy	-3,56	
				3 Interoperability	2,92	
				4 Compliance	2,16	
			Section of the	5 Security	3,30	and the second second
CV2	Reliability	122	15,50	6 Maturity	4,07	15,50
				7 Fault tolerance	1,52	
				8 Recoverability	4,83	
			Called Street	9 Compliance	5,08	
CV3	Usability	112	14,23	10 Understandability	2,29	14,23
				11 Learnability	2,41	
				12 Operability	2,29	
				13 Attractiveness	4,45	
				14 Compliance	2,80	Carl State of the
CV4	Efficiency	78	9,91		2,92	9,91
				16 Resource utilization	1,91	
			2012-01-02-01-02-02-02-02-02-02-02-02-02-02-02-02-02-	17 Compliance	5,08	Section of the
CV5	Maintainability	123	15,63	18 Analyzability	3,56	15,63
and the second				19 Changeability	3,18	
				20 Stability	3,56	
				21 Testability	2,80	
				22 Compliance	2,54	State of the state
CV6	Portability	116	14,74	23 Adaptability	3,05	14,74
				24 Installability	4,45	
				25 Replaceability	1,02	
				26 Co-existence	3,30	
			88 - SA	27 Compliance	2,92	and the state
CV7	Quality in Use	119	15,12		3,05	15,12
					4,19	
					4,07	
			1.0		3,81	
	TCV	787	100,00			
			10.000			

IWSM2000 - October 4-6,

Two levels of comparison are possible after filling the A matrix:

higher level: between the 2 QF²D values

 lower level: among the sub-char evaluation from the D/M to the A matrix

The results from this analysis will represent the input for the next D/M step.

IWSM2000 - October 4-6,2000 L.Buglione & A.Abran ©2000

Conclusions & Prospects

- QF²D calculation: for a more objective software quality measurement including a multi-perspective viewpoint (E, S, T) and it leverages the QFD (Quality Function Deployment) technique
- QF²D procedural flow is much simpler
- This technique is aligned with the upcoming version of ISO/IEC 9126:2000

Conclusions & Prospects

OF²D can be used separately or jointly with the QEST/LIME models

focussing either on a qualitative assessment only or as the qualitative assessment within a full multidimensional performance assessment

IWSM2000 - October 4-6,2000

Question Time

IWSM2000 - October 4-6,2000

IWSM2000- 10th International Workshop on Software Measurement

Berlin, October 4-6, 2000

GERMANY

QF²D: A different way to measure **Software Quality**

Luigi BUGLIONE

Alain ABRAN

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Laboratoire de Recherche en Gestion de Logiciel Montréal, Québec - CANADA

E-mail: luigi.buglione@computer.org E-mail: abran.alain@uqam.ca

42