
Software Engineering from an Engineering Perspective: 
SWEBOK as a Study Object 

 Alain Abrana,b, Kenza Meridjib, Javier Doladoa 
a Universidad del País Vasco/Euskal Herriko Unibertsitatea 

b Ecole de technologie supérieure - Université du Québec 

 

 

 

 

Abstract 

 

Software engineering, as a discipline, is not 

yet as mature as other engineering disciplines and 

it lacks criteria to assess, from an engineering 

perspective, the current content of its body of 

knowledge as embedded in the SWEBOK Guide. 

What is then the engineering knowledge that 

should be embedded within software engineering? 

Vincenti, in his book ‘What engineers know and 

how they know it’ has proposed a taxonomy of 

engineering knowledge types. To investigate 

software engineering from an engineering 

perspective, these Vincenti’s categories of 

engineering knowledge are used to identify 

relevant engineering criteria and their presence in 

SWEBOK. 

Keywords – Software Engineering, 
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1. Introducción 

"Engineering is a problem-solving 

activity…dealing mainly with practical 

problems" (Vincenti [6]). 

1.1. Overview 

Software engineering (SE) is defined by the IEEE 

as: “The application of a systematic, disciplined, 

quantitative approach to the development, 

operation and maintenance of software, the 

application of engineering to software’ (IEEE 

610.12) [3]. Of course, software engineering when 

compared to mechanical and electrical 

engineering is still an emerging engineering 

discipline not as mature as other classical 

engineering disciplines.  

Much of the research work in software 

engineering has focused to date on developing 

methods, techniques and tools; much less research 

work has been carried out on: 

exploring the engineering foundations of software 

engineering, including identifying the software 

engineering fundamental principles (FP), and next 

investigating on to apply them in research and 

practice. 

Developing an international consensus on the 

software engineering body of knowledge and next 

ensuring a comprehensive coverage from an 

engineering perspective. 

1.2. SE body of knowledge 

   Achieving consensus by the profession on a core 

body of knowledge is a key milestone in all 

disciplines, and has been identified by the IEEE 

Computer Society as crucial for the evolution of 

software engineering towards professional status. 

The Guide to the Software Engineering Body of 

Knowledge (SWEBOK Guide) [2,4]. The content 

of each knowledge area in the 2004 version of 

SWEBOK Guide was developed by domain 

experts and extensively reviewed by an 

international community of peers. This Delphi-

type approach, while very extensive and paralleled 

by national reviews at the ISO level, did not 

specifically address the engineering perspective, 

nor did it provide a structured technique to ensure 

the completeness and full coverage of 

fundamental engineering topics. Therefore, it did 

not provide sufficient evidence that it had 

adequately tackled the identification and 

documentation of the knowledge expected to be 

present in an engineering discipline. 

  For the next update of the SWEBOK Guide 

research work has been initiated to analyze the 

content of the SWEBOK Guide in a structured 



  

 

way in order to understand to which extent it does 

indeed include knowledge types typical of 

engineering disciplines, and to identify 

engineering knowledge could be missing. A 

challenge of course consists in figure out the 

criteria to be verified from an engineering 

perspective since, in the traditional engineering 

disciplines, such criteria have not been explicitly 

described in the generic engineering literature.  

   This paper presents an approach to identify 

engineering criteria to support such research 

needs. This paper is organized as follows: Section 

2 introduces Vincenti’s engineering viewpoint, 

and section 3 presents a set of models developed 

to facilitate the use of Vincenti’s concepts for the 

analysis of an engineering discipline. Section 4 

comments on a mapping of Vincenti’s engineering 

design concept to the SWEBOK Guide software 

engineering design concept and on the Quality 

knowledge area. Section 5 presents a summary 

and future research directions.  

2. Vincenti’s Engineering Viewpoint 

2.1. Overview and context 

Vincenti, in his book [6], What engineers know 

and how they know it, proposed a taxonomy of 

engineering knowledge based on the historical 

analysis of five case studies in aeronautical 

engineering covering a roughly fifty-year period. 

He identified different types of engineering 

knowledge and classified them in six categories:  

1 - Fundamental design concepts,  

2 - Criteria and specifications,  

3 - Theoretical tools,  

4 - Quantitative data,  

5 - Practical considerations, and  

6 - Design instrumentalities.  

   Furthermore, Vincenti stated that this 

classification is not specific to the aeronautical 

engineering domain, but can be transferred to 

other engineering domains. However, he did not 

provide documented evidence of this applicability 

and generalization to other engineering 

disciplines, and no author could be identified as 

having attempted to do so either.  
Vincenti provides a categorization of engineering 

design knowledge and the activities that generate 

it. However, the divisions are not entirely 

exclusive; some items of knowledge can contain 

the knowledge of more than one category. From 

Vincenti’s definitions of each engineering 

knowledge-type category, a number of 

characteristics were identified; the goals of each 

category have also been identified, and these are 

listed in Table 1. 

2.2. Related work 

Maiebaum [5] was one of the first to identify the 

potential usefulness of Vincenti work for software 

engineering. However, since this classification of 

engineering knowledge had not been used to 

analyze other engineering disciplines, Abran & 

Meridji [1] modeled the embedded knowledge 

types descriptions for a partial analysis of the 

SWEBOK Guide. In particular, they investigated 

the engineering design concepts since at first 

glance there seemed to be a disconnect between 

the SWEBOK Guide design concept and 

Vincenti’s description of engineering design. This 

is discussed in the next section. 

3. Modeling of engineering knowledge 

3.1. Overview 

   In [1] it was observed that Vincenti’s categories 

are not mutually exclusive: it is therefore 

important to understand the relationships between 

them. Their initial modeling of Vincenti’s 

categories of engineering knowledge is presented 

in Figure 1. This figure illustrates that, in seeking 

a design solution, designers move up and down 

within categories, as well as back and forth from 

one category to another.   

 



Table 1. Vincenti: Engineering knowledge categories and goals 

 

Figure 1. Vincenti’s classification of engineering knowledge 

 

Engineering 

Knowledge Category 

Goals 

Fundamental design 

concepts 

Designers embarking on any normal design bring with them fundamental 

concepts about the device in question.  

Criteria and 
specification 

 

To design a device embodying a given operational principle and normal 

configuration, the designer must have, at some point, specific requirements in 

terms of hardware. 

Theoretical tools To carry out their design function, engineers use a wide range of theoretical 

tools. These include intellectual concepts as well as mathematical methods. 

Quantitative data  Even with fundamental concepts and technical specifications at hand, 

mathematical tools are of little use without data for the physical properties or 

other quantities required in the formulas. Other kinds of data may also be needed 

to lay out details of the device or to specify manufacturing processes for 

production. 

Practical 

considerations 

To complement the theoretical tools and quantitative data, which are not 

sufficient. Designers also need less sharply defined considerations derived from 

experience. 

Design 

instrumentalities 

Besides the analytical tools, quantitative data and practical considerations 

required for their tasks, designers need to know how to carry out those tasks. 

How to employ procedures productively constitutes an essential part of design 

knowledge.  



  

 

 Figure 2: Relationships between theoretical tools & quantitative data 
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Figure 3: Relationships between normal configuration, operational principles & normal design 
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Figure 4. Design according to Vincenti vs. design in the software engineering life cycle 

 



It was also noted that three categories (theoretical 

tools, quantitative data and design 

instrumentalities) are related in the following 

manner: theoretical tools guide and structure the 

data, while quantitative data suggest and push the 

development of tools for their presentation and 

application – see Figure 2. Furthermore, both 

theoretical tools and quantitative data serve as 

input for design instrumentalities, while 

appropriate theoretical tools and quantitative data 

are needed for technical specifications. This 

section presents some of their models to illustrate 

the relationships across these engineering 

concepts.  

3.2. Fundamental design concepts 

   The goal of ‘fundamental design concepts’, 

according to Vincenti, is as follows: “Designers 

setting out on any normal design bring with them 

fundamental concepts about the device in 

question,” which means the definition of 

fundamental concepts related to the device by the 

designer. Fundamental design elements are 

composed of four elements; operational 

principles, normal configuration, normal 

technology and concepts in people’s minds. At 

first, these concepts exist only in the designer’s 

mind: 

– Operational principles define the essential 

fundamental concept of a device. “How its 

characteristic parts… fulfill their special functions 

in combination to [sic] an overall operation which 

archives the purpose.” The operational principles 

must be known by the designers first and 

constitute the basic components for the design, 

whereas operational principles are abstract, and 

the design moves from abstract concepts to 

precise concepts.  

– Normal configuration is “the general shape and 

arrangement that are commonly agreed to best 

embody the operational principle.”  

– Normal technology is “the improvement of the 

accepted tradition or its application under new or 

more stringent conditions.” Design, in Vincenti, 

“denotes both the content of a set of plans (as in 

the design for a new airplane) and the process by 

which those plans are produced.” There are two 

types of design: normal design and radical 

design. The latter is a kind of design that is 

unknown to the designer, and where the designer 

is not familiar with the device itself. The designer 

does not know how the device should be arranged, 

or even how it works. The former is a traditional 

design, where the designer knows how the device 

works. The designer also knows the traditional 

features of the device. This type of design is also 

the design involved in normal technology, which 

was mentioned earlier. In conclusion, “normal 

design is evolutionary rather than revolutionary.” 

Finally, a normal configuration and operational 

principles together provide a framework for 

normal design – Figure 3. In Vincenti, a normal 

technology, or design, is part of a normal 

configuration and of a related operational 

principle. 

3.3. Criteria and specifications 

   The goal for ‘criteria and specifications’ can be 

expressed as follows: “To design a device 

embodying a given operational principle and 

normal configuration, the designer must have, at 

some point, specific requirements in terms of 

hardware.” The designer designs a device meeting 

specific requirements which include a given 

operational principle as well as a normal 

configuration. At first, the design problem must be 

well defined. Then, the designer translates general 

quantitative goals into specific quantitative goals: 

the designer assigns values or limits to the 

characteristics of the device which are crucial for 

engineering design. This allows the designer to 

provide the details and dimensions of the device 

that will be given to the builder. Furthermore, the 

output at the problem definition level is used, in 

turn, as input to the remaining design activities 

that follow. These specifications are more 

important where safety is involved, as in the case 

of aeronautical devices. The criteria on which the 

specifications are based become part of the 

accumulating body of knowledge about how 

things are done in engineering.  

3.4. Theoretical tools  

   Theoretical tools are used by engineers to carry 

out their design. The goal of the ‘theoretical tools’ 

category is expressed by Vincenti as follows: “To 

carry out their design function, engineers use a 

wide range of theoretical tools. These include 

intellectual concepts as well as mathematical 



  

 

methods”. Intellectual concepts (such as design 

concepts, mathematical methods and theories) are 

tools for making design calculations. Both design 

concepts and methods are part of science. 

   In the first class of theoretical tools are 

mathematical methods and theories composed of 

formulas, either simple or complex, which are 

useful for quantitative analysis and design. This 

scientific knowledge must be reformulated to 

make it applicable to engineering. The 

engineering activity requires that thoughts be 

conceived in people’s minds.  

   In the second class of theoretical tools are 

intellectual concepts, which represent the 

language expressing those thoughts in people’s 

minds. They are employed first in the quantitative 

conceptualization and reasoning that engineers 

have to perform before they carry out the 

quantitative analysis and design calculations, and 

then again while they are carrying them out. 

3.5. Quantitative data  

   The goal of ‘quantitative data’ is to lay down 

“the physical properties or other quantities 

required in the formulas. Other kinds of data may 

also be needed to lay out details of the device or 

to specify manufacturing processes for 

production.” Besides fundamental concepts and 

technical specifications, the designers also need 

quantitative data to lay out details of the device. 

These data can be obtained empirically, or in 

some cases they can be obtained theoretically. 

They can be represented in tables or graphs.   

   These data are divided into two types of 

knowledge: prescriptive and descriptive.  

� Descriptive knowledge is “knowledge of how 

things are.” It includes physical constants, 

properties of substances and physical 

processes. In some situations, it refers to 

operational conditions in the physical world. 

Descriptive data can also include 

measurement of performance. 

� Prescriptive knowledge is “knowledge of how 

things should be to attain a desired end.”  

An example might be: “In order to 

accomplish this or organize this, arrange 

things this way.”   

   Operational principles, normal configuration 

and technical specifications are prescriptive 

knowledge, because they prescribe how a device 

should satisfy its objective. 

3.6. Practical considerations 

   According to Vincenti, the goal of ‘practical 

considerations’ is “to complement the role of 

theoretical tools and quantitative data which are 

not sufficient. Designers also need for their work 

less sharply defined considerations derived from 

experience.” This kind of knowledge is 

prescriptive in the way that it shows the designers 

how to proceed with the design to achieve it. 

Vincenti refers to practical considerations as 

constituting non codifiable knowledge derived 

from experience, unlike theoretical tools and 

quantitative data which are very precise and 

codifiable because these are derived from 

intentional research. This category of engineering 

knowledge is needed by designers as a 

complement to theoretical tools and quantitative 

data.  These practical considerations are learned 

on the job, rather than at school or from books. 

They are not to be formalized or programmed. 

They are derived from design, as well as from 

production and operation. The practical 

consideration derived from production is not easy 

to define and cannot be codified, and a prototype 

is highly recommended to check the designer’s 

work. An example of a practical consideration 

from operation is the judgment that comes from 

the feedback resulting from use.  

3.7. Design instrumentalities 

The goal of ‘design instrumentalities’ in the 

engineering design process required for the 

engineer’s tasks is “to know how to carry out 

those tasks. How to employ procedure 

productively constitutes an essential part of 

design knowledge.” Having the analytical tools, 

quantitative data and practical considerations at 

hand, designers also need procedural knowledge 

to carry out their tasks, as well as to know how to 

employ these procedures. 

Design instrumentalities contain instrumentalities 

of the process, the procedures, judgment and ways 

of thinking. The latter are less tangible than 

procedures and more tangible than judgment; an 

example of ways of thinking is ‘thinking by 



  

 
analogy’. Judgment is needed to seek out design 

solutions and make design decisions. 

4. Analysis of the SWEBOK using 

engineering knowledge types concepts 

4.1. The engineering design process in Vincenti 

According to Vincenti, the engineering “design” 

concept “denotes both the content of a set of plans 

(as in the design for a new airplane) and the 

process by which those plans are produced.”  In 

Vincenti’s view, design is an iterative and 

complex process which consists of plans for the 

production of a single entity, such as an airplane 

(device), how these plans are produced, and, 

finally, the release of these plans for production.  

   Vincenti mentions that there are two types of 

design in engineering, normal and radical. In the 

former, the designer knows how the device works, 

how it should be arranged and what its features 

are. In the latter, the device is new to the engineer 

who is encountering it for the first time. 

Therefore, the engineer does not know how it 

works or how it should be organized.  

   He also mentions that design is a multilevel and 

hierarchical process. The designer starts by taking 

the problem as input. The design hierarchies start 

from the project definition level, located at the 

upper level of the hierarchy where problems are 

abstracted and unstructured. At the overall design 

level, the layout and the proportions of the device 

are set to meet the project definition. At level 3, 

the project is divided into its major components. 

At level 4, each component is subdivided. At level 

5, the subcomponents from level 4 are further 

divided into specific problems. At the lower 

levels, problems are well defined and structured. 

The design process is iterative, both up and down 

and horizontally throughout the hierarchy. 

4.2. The engineering process and the Design 

concept in the SWEBOK Guide 

The SWEBOK Guide is composed of ten 

knowledge areas, each represented by one chapter 

in the SWEBOK Guide. The Software 

Requirements KA (KA) is composed of four 

phases of software requirements: elicitation, 

analysis, specification and validation. The 

elicitation phase is the process of deriving 

requirements through observation of existing 

systems. Requirements specification is the activity 

of transforming the requirements gathered during 

the analysis activity into a precise set of 

requirements. Software Requirements 

Specifications describe the software system to be 

delivered. In the requirements validation phase, 

the requirements are checked for realism, 

consistency and completeness.  

   Software design is defined in [2,4] as both “the 

process of defining the architecture, components, 

interfaces, and other characteristics of a system or 

component” and “the result of [that] process.” 

Software design in the software engineering life 

cycle is an activity in which software 

requirements are taken as input to the software 

design phase for analysis. “Software requirements 

express the needs and constraints placed on a 

software product that contribute to the solution of 

some real-world problem.”  

   The result will be the description of the software 

architecture, its decomposition into different 

components and the description of the interfaces 

between those components. Also described will be 

the internal structure of each component and the 

related program. 

4.3. Design KA:  mapping between Vincenti 

and the SWEBOK Guide 

The analysis of the term ‘design’ in both Vincenti 

and the SWEBOK Guide is presented in Table 4:  

it can be observed that it is defined significantly 

differently in the two documents, that is, design in 

engineering according to Vincenti is not limited to 

design as described in the SWEBOK Guide: in 

Vincenti, it goes far beyond the scope of the 

SWEBOK, that is: it is composed of the whole of 

the software engineering life cycle, as illustrated 

in Figure 8, whereas all the activities of software 

life cycle, like the requirements phase, the design 

phase, the construction phase and the testing 

phase) map to a single phase in the engineering 

cycle, that is, design. These activities do not 

necessarily take place in the same order: for 

instance, testing in engineering starts right at the 

beginning, at the problem definition level, and 

goes on until the final release of the plans for 

production, while in the software engineering life 



  

 

cycle, as defined generically in the SWEBOK 

Guide, testing starts after the construction phase; 

on the other hand, the set of V&V concepts are 

spread out throughout the lifecycle in SWEBOK.  

   The detailed mapping between the different 

design levels in engineering and in the software 

engineering life cycle is presented in Table 2. 

4.4. Identification of engineering concepts in 

the SWEBOK Software Quality KA 

An analysis of the engineering content within the 

SWEBOK Guide using one of its ten KAs as a 

case study, that is, Software Quality is presented 

[1]. This analysis is based on the models of 

engineering knowledge described earlier. These 

models give us a very descriptive analysis of the 

various key elements contained in each of the 

corresponding engineering knowledge areas. This 

allows to make an appropriate mapping between 

the different categories of the engineering 

knowledge area and software quality. It helps in 

identifying the engineering elements contained in 

this topic, as well as the missing ones. As a result, 

it looks into the software quality area from an 

engineering perspective. Table 3 describes the 

mapping between the corresponding 

characteristics for the classification of engineering 

knowledge and the related software quality topics. 

This analysis can provide useful insights into 

possible strengths and weaknesses of the software 

quality topic:  it helps categorize the knowledge 

contained in the Software Quality KA of the 

SWEBOK Guide: for instance, it covers all 

categories of engineering knowledge from an 

engineering viewpoint, but this does not mean that 

it is complete and inclusive. 

5. Summary 

Software engineering, as a discipline, is certainly 

not yet as mature as other engineering disciplines 

and it lacks well recognized fundamental 

principles, as well as criteria to assess, from an 

engineering perspective, the proposals put forward 

as statement of fundamental principles as well as 

the current content of its body of knowledge as 

embedded in the SWEBOK Guide. In this paper 

we have looked into an approach to identified 

engineering criteria that should be embedded 

within software engineering. In particular, we 

have looked at Vincenti at the taxonomy of 

engineering knowledge types proposed by 

Vincenti.  

  In particular, various models of the 

characteristics of the Vincenti’s knowledge type 

have been illustrated. Next these concepts have 

been used to gain some insights into the some of 

the engineering concepts currently present and 

documented in the quality knowledge area of the 

SWEBOK Guide, but however labeled differently. 

The work presented here has involved 

investigating this engineering perspective, first by 

analyzing the Vincenti classification of 

engineering knowledge, and second by comparing 

the design concept in Vincenti vs. the design 

concept in the SWEBOK Guide.  

   The result of this analysis was to show that the 

design issue in Vincenti is not limited to the 

design issue in the SWEBOK Guide:  Design in 

engineering according to Vincenti is not limited to 

design as described in the SWEBOK Guide: it 

goes beyond that, in that it is composed of the 

whole of the software engineering life cycle.  

   Finally, the SWEBOK Software Quality KA 

was selected as a case study and analyzed using 

the Vincenti classification as a tool to analyze this 

KA from an engineering perspective. This 

analysis was carried out to identify some of the 

strengths and weaknesses of the breakdown of 

topics for the Software Quality KA. It has shown 

that all the categories of engineering knowledge 

described by Vincenti are present in this KA of 

the SWEBOK; that is, it addresses the full 

coverage of all related engineering-type 

knowledge. This does not mean, however, that it 

is all-inclusive and complete, but only that the 

coverage extends to all categories of engineering 

knowledge from an engineering viewpoint.  

The next stage of this R&D project will focus on 

investigating the application of Vincenti’s 

engineering knowledge to the analysis of 

proposed software engineering principles. 
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Table 2. Mapping of the design process in engineering vs. the software engineering life cycle 

 

 

Table 3: Quality concepts in the SWEBOK Guide using Vincenti’s classification 

 

Engineering 

Knowledge 

Category 

Corresponding Characteristics SWEBOK – quality related concepts 

Fundamental  

design 

concepts 

 

• About the design 

• Designers must know the operational principle of the 

device 

• How the device works 

• Normal configuration 

• Normal design 

• Other features may be (opened?)  

 

• Planning the software quality process 

• Quality characteristics of the software (QI), 

(QE), (QIU) 

• Software quality models 

• Quality assurance process 

• Verification process 

• Validation process 

• Review process 

• Audit process 

Criteria and  

specification 

 

• Specific requirement of an operational principle 

• General qualitative goals 

• Specific quantitative goals laid out in concrete technical 

terms 

• The design problem must be “well defined”. 

• Unknown or partially understood criteria 

• Assignment of values to appropriate criteria 

• This task takes place at the project definition level. 

• Quality objective to be specified 

• Characteristics of quality tools 

• Software characteristics 

• Criteria for assessing the characteristics 
 

Theoretical  

Tools 

• Mathematical methods and theories for making design 

calculation 

• Intellectual concepts for thinking about design 

• Precise and codifiable 

• Verification process model 

• Formal methods 

• Testing 

• Theory measurement 

• Verification/proving properties 

• TQM (Total Quality Management) 

Levels Description of the design process in Vincenti  

engineering perspective 

Corresponding set of concepts in 

SWEBOK 

1 Project Definition Requirements 

2 Overall design – component layout of the airplane 

to meet the project definition. 

Specification 

3 Major component design – division of project into 

wing design, fuselage design, landing gear design, 

electrical system design, etc. 

Architecture of the system 

4 Subdivision of areas of component design from 

level 3 according to the engineering discipline 

required (e.g. aerodynamic wing design, structural 

wing design, mechanical wing design) 

Detailed design 

5 Further division of the level 4 categories into 

highly specific problems 

Construction 



  

 

Quantitative 

 data  

• Specify manufacturing process for production 

• Display the detail for the device 

• Data essential for design  

• Obtained empirically 

• Calculated theoretically 

• Represented in tables or graphs 

• Descriptive knowledge  

• Prescriptive knowledge 

• Precise and codifiable 

• Quality measurement  

• Experimental data 

• Empirical study 

• E.g. the process of requirement inspection 

• Value and cost of quality 

Practical  
Considera-

tions 

• Theoretical tools and quantitative data are not sufficient. 
Designers also need considerations derived from 

experience. 

• It is are difficult to find them documented. 

• They are also derived from production & operation. 

• This knowledge is difficult to define. 

• Its defies codification 

• The practical consideration derived from operation is 

judgment. 

• Rules of thumb. 

• Application quality 
        requirements 

• Defect characterization 

 

Design  

Instrumenta-

lities 

• Knowing how 

• Procedural knowledge 

• Ways of thinking 

• Judgment skills  
 

• Quality assurance procedures 

• Quality verification procedures 

• Quality validation procedures 

• SQM process tasks & techniques 

• Management techniques 

• Measurement techniques 

• Project planning and tracking 

• Quality assurance process 

• Verification process 

• Validation process 

• Review process 

• Audit process 
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