

Software Engineering from an Engineering Perspective

SWEBOK as a Study Object

ALAIN ABRAN & KENZA MERIDJI	JAVIER DOLADO
Ecole de technologie supérieure – Université du Québec	Universidad del Pais Vasco

Agenda

- Introduction
- Vincenti Engineering Viewpoint
- Modeling of Engineering Knowledge
- Fundamental Design Concepts
- Analysis of SWEBOK using Engineering Concepts
- Discussion

Software Engineering:

The application of a systematic, disciplined, quantitative approach to the development operation and maintenance of software the application of engineering to software' IEEE 6120.12

- SWEBOK: Software Engineering Body of Knowledge
- The SWEBOK Guide 2004 version:
- Developed by domain experts
- Sumerous review cycles
- Transparent process
- ISO technical reviews ISO TR19759

Software Engineering

- Much R&D on developing tools & techniques
- But....
- What are its foundations as an engineering discipline?

Research questions:

Is the engineering perspective reasonably described in the SWEBOK Guide?

How can we improve the SWEBOK Guide from an engineering perspective?

2- Vincenti

- 'What engineers know and how they know about it'
- ☞ By W.G. Vincenti. J Hopkins University Press 1980
- Based on the analysis of 5 case studies in the aeronautical industry over a period of 50 years

Vincenti: Engineering Knowledge Types

Engineering	Goals	
Knowledge Category		
Fundamental design	Designers embarking on any <i>normal design</i> bring with them <i>fundamental concepts</i> about	
concepts	the device in question.	
Criteria and	To design a device embodying a given operational principle and normal configuration, the	
specification	designer must have, at some point, <i>specific requirements</i> in terms of hardware.	
Theoretical tools	To carry out their design function, engineers use a wide range of <i>theoretical tools</i> . These	
	include intellectual concepts as well as mathematical methods.	
Quantitative data	Even with fundamental concepts and technical specifications at hand, mathematical tools	
	are of little use without <i>data</i> for the <i>physical properties</i> or other <i>quantities</i> required in the	
	formulas. Other kinds of data may also be needed to lay out details of the device or to	
	specify manufacturing processes for production.	
Practical	To complement the theoretical tools and quantitative data, which are not sufficient.	
considerations	Designers also need <i>less sharply defined considerations</i> derived from experience.	
Design	Besides the analytical tools, quantitative data and practical considerations required for their	
instrumentalities	tasks, designers need to know how to carry out those tasks.	
	How to <i>employ procedures</i> productively constitutes an essential part of design knowledge.	

Vincenti Classification of Engineering Knowledge

Relationships

The Design Process in Engineering

Levels	Description of the design process in Vincenti	Corresponding set of concepts
	engineering perspective	in SWEBOK
1	Project Definition	Requirements
2	Overall design – component layout of the airplane to meet the project definition.	Specification
3	Major component design – division of project into wing design, fuselage design, landing gear design, electrical system design, etc.	Architecture of the system
4	Subdivision of areas of component design from level 3 according to the engineering discipline required (e.g. aerodynamic wing design, structural wing design, mechanical wing design)	Detailed design
5	Further division of the level 4 categories into highly specific problems	Construction

Design: Vincenti vs Software Eng.

Sofware development life cycle

Engineering cycle

Relationships – Normal Configuration & Design

SWEBOK: QUALITY Knowlege Area & Vincenti Knowledge Types

Engineering	Corresponding Characteristics	SWEBOK – quality related concepts
Knowledge		
Category		
Fundamental design concepts	 About the design Designers must know the operational principle of the device How the device works Normal configuration Normal design Other features may be (opened?) 	 Planning the software quality process Quality characteristics of the software (QI), (QE), (QIU) Software quality models Quality assurance process Verification process Validation process Review process
		• Audit process

SWEBOK: QUALITY Knowlege Area & Vincenti Knowledge Types

Criteria and	• Specific requirement of an operational principle	• Quality objective to be specified
specification	• General qualitative goals	• Characteristics of quality tools
-	• Specific quantitative goals laid out in concrete technical	• Software characteristics
	terms	• Criteria for assessing the characteristics
	• The design problem must be "well defined".	
	• Unknown or partially understood criteria	
	• Assignment of values to appropriate criteria	
	• This task takes place at the project definition level.	

SWEBOK: QUALITY Knowlege Area & Vincenti Knowledge Types

Theoretical Tools	 Mathematical methods and theories for making design calculation Intellectual concepts for thinking about design Precise and codifiable 	 Verification process model Formal methods Testing Theory measurement Verification/proving properties TQM (Total Quality Management)
Quantitative data	 Specify manufacturing process for production Display the detail for the device Data essential for design Obtained empirically Calculated theoretically Represented in tables or graphs Descriptive knowledge Prescriptive knowledge Precise and codifiable 	 Quality measurement Experimental data Empirical study E.g. the process of requirement inspection Value and cost of quality

SWEBOK: QUALITY Knowlege Area & Vincenti Knowledge Types

Practical	• Theoretical tools and quantitative data are not sufficient.	Application quality
Considera-	Designers also need considerations derived from	requirements
tions	experience.	• Defect characterization
	• It is are difficult to find them documented.	
	• They are also derived from production & operation.	
	• This knowledge is difficult to define.	
	• Its defies codification	
	• The practical consideration derived from operation is	
	judgment.	
	• Rules of thumb.	

SWEBOK: QUALITY Knowlege Area & Vincenti Knowledge Types

Design	Knowing how	Quality assurance procedures
Instrumenta-	Procedural knowledge	• Quality verification procedures
lities	• Ways of thinking	• Quality validation procedures
	• Judgment skills	• SQM process tasks & techniques
		Management techniques
		• Measurement techniques
		• Project planning and tracking
		• Quality assurance process
		• Verification process
		Validation process
		• Review process
		• Audit process

Next Steps

Analysis of all SWEBOK Knowledge Areas

- Identification for gaps, from an engineering perspective:
 - should open up new research avenues
- + work in progress on the Fundamental Principles of Software Engineering

Thank You !

alain.abran@etsmtl.ca javier.dolado@ehu.es