GERMANY

How Functional Size Measurement supports the Balanced Scorecard framework for ICT

Luigi BUGLI ONE
Alain ABRAN
UNI VERSITÉ DU QUÉBEC À MONTRÉAL
Laboratoire de Recherche en Gestion de Logiciel Montréal, Québec - CANADA
luigi.buglione@computer.org
abran.alain@uqam.ca

Roberto MELI
D.P.O. Sr

Data Processing Organization
Rome, Italy roberto.meli@dpo.it

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM

Introduction

Performance Measurement Models (PM):

such as the Balanced Scorecard (BSC) are well evaluated by Top Management, also in tailoring versions for software (the so-called "ICT BSCs")

Missing elements: the I (indicator) element from the socalled GDI triad (Goal-Driver-Indicator)

UQÃM

Introduction

Possible path to follow: it is currently hard to operationalize Software Intensive Organisations (SIOs) with measures, and a choice of measures has to be done. This has not been achieved well to date, and in such a multi-dimensional model as BSC.

Objective of the presentation: to show which measures can be recommended to SIOs wishing to implement an ICT BSC.

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM

BSc framework

BSC is a multidimensional framework for "translating (organisational) strategy into action" at all levels of an enterprise, by linking objectives, initiatives and measures to an organisation's strategy
Authors: Kaplan \& Norton (HBS) in the early '90s, originating from a French method called Tableau du Bord (turn of 20th century)
Main measurement object: whole organisation / a SBU
Application: BSc is one of the most relevant management practices of last 75 years, according Harvard Business Review journal

UQÀM

BSc framework

BSc in the ICT field

Two interesting tailored versions of the BSc for the ICT field were developed in the last few years:

- Balanced IT Scorecard (BITS) by the European Software Institute (ESI)
- Al S BSc by the Advanced Information Services Inc. (AIS)

Commonalities: both frameworks support 5 perspectives, adding the "People/Employee" one

UQĀM

ESI BITS

The perspectives, derived from the original framework and properly redesigned, are:

- Financial: how do our software processes and SPI add value to the company?
- Customer: how do we know that our customer (int/ext) are delighted?
- People: is the people issues (competence, sarisfaction and retention) properly managed to implement a sustainable improvement program?
- Process: are our software development processes performing at levels sufficient enough to meet customer expectations?
- Infrastructure \& Innovation: are the technology and organisational infrastructure issues being addressed to implement a sustainable improvement program?

UQÃM

ESI BITS

The framework includes a set of goals, drivers, lead and lag indicators properly designed to cover a wide range of situations and organisation realities in the ICT field.

The figure shows the internal structure for each BITS perspective.

UQÃM

ICT BSC: operational challenge

Main BSC elements: the so-called GDI elements. Actually GD are considered structural elements and a lot of attention has been paid to them, while few attention has been reserved to the I element, considered simply a content element.

Use of Measures in General Business Performance Analysis: measures need to be normalised based on the number of functional outputs of a production process (or of a business unit: i.e. how many hours by car, what is the asset cost by unit of production,...).

Why normalise?: it allows to use numbers for comparison purposes, that is they are necessary to produce reference numbers.

UQÃM

ICT BSC: operational challenge

How can reference numbers can be derived in evaluating software processes? By figuring out how to measure the number of production units in software; since such a type of measure already exist in software, that is the Functional Size Measure (FSM), they are the type of measure to be used in ICT BSC since they measure the appropriate concepts and have the appropriate properties.

Solution Proposed: to use Functional Size Measures (FSM) such as Function Points (FPs) and the others techniques examined in the upcoming ISO/IEC 14143-x standard as the base for ICT BSCs.

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM

Functional Size Measurement

ISO/IEC 14143: is the 5 -part upcoming standard for FSM

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM
 FSM and Technical Size Measurement (TSM)

The Software Measurement arena includes two kinds of supporters:

- Functional Size Measurement (FSM) methods, such as FPA
- Technical Size Measurement (TSM) methods, such as LOCs, \# of programs, modules, reports, screens, widgets...

Basic Difference: the perspective FSM and TSM face off in measuring software.

- FSM attains to the "logical size" of a software (the what)
- TSM attains to the "technical size" of the software (the how)

UQÃM

FSM and Technical Size Measurement (TSM)

Question:

a contract for a software service can focus on software size from a

- logical viewpoint (FSM) -> the producer will release the minimum amount of software technical items at the expected quality level
- technical viewpoint (TSM) -> the producer will release an unjustified increase of those measures, the functionalities required being equal. This will generate un-maintainable, incomprehensible, inefficient systems and the paradox that the customer could pay more for suppliers who are less efficient than others (for example, implementing the same functionality using more code).

Which viewpoint is preferreable?

UQÃM

FSM and Technical Size Measurement (TSM)

And in the ICT BSC?:

A BSC strategy should usually use more FSM than TSM!

But...

TSM could be useful in the case of a strongly reuse-oriented environment. Two possible viewpoints:

- Functional Reuse: reuse of user of user recognisable and existing logical data structures and functionalities to build up new logical features
- Technical Reuse: reuse of existing physical data structures and software items (modules, objects, programs etc.) in order to build up new technical items to be used in the construction of new logical features

UQÃM

FSM and Technical Size Measurement (TSM)

So...

Functional and Technical Reuse can be combined in several ways.
Best Savings: measuring both reuse type levels in the project in order to build the proper reuse strategy

ICT BSC perspectives "touched" by reuse:

- Process (Pr) -> with reference to the "Application Dev. And Maintenance" Goal, "Reuse" Driver

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM

How FSM can strengthen ICT BSCs

4 main points can be stressed in supporting the title of this slide:

(1) a measurement plan is more than a plan of measure
(2) measurement plans: strengths and weaknesses
© how to use FSM-based measures into organisations
(4) FSM-based measures fit into the ICT BSC measurement framework

In particular, points No. 3 and 4 must be detailed...

UQÃM
 (3 How use FSM-based measures into organisations

- Extension of FPA usage: from the '80s FPA has been used more and more not only for sizing software, but also for other usages, from Benchmarking to BPR
- I FPUG Studies: in previous works IFPUG started to split a series of FP-based ratios by intended Audience and Usage areas
- Mapping GQM vs I FPUG 1992 document on measurement:

Element	Correspondent Section Title
G - Goal	Development / Maintenance
Q - Question	Scenario
M - Measure	Measures

- weaknesses: IFPUG missed the "strategy" issue (a BSC is more than GQM!). In such a case, they would not have been a properly "value chain" from the Project up to the Corporate level

UQÃM

(4) FSM-based measures fit into the ICT BSC

CONVERGENCE POINTS	COMMENTS
Alignment with business objectives	prioritisation of effort and resources
Balanced Set of Measures	provides a global and complete perspective
Integration of Measurement into development and support processes	(improved project and process control

UQÃM

FSM-based measures and ICT BSC perspectives

	Goal/ObJective	D RIVER	IndICATOR	Comments / Effects
	FinANCIAL (F)			
	$\begin{aligned} & \text { Asset } \\ & \text { Management } \end{aligned}$	Existing asset utilisation	- Total Assets (FPAV) / \# employees (\$)	
			- FPAV - FP Asset Value	
			- PS - Portfolio Size	
	Revenue \& Profitability	Revenue Growth	- Revenues / FPAV (\%)	
			- Revenues from new customers / Total Revenues (\%)	- New customers acquired using FSM as a contractual condition for measuring the project - Derived (Improve project governance)
		Profitability	- Profits / FPAV (\%)	
	Financial Management	Organisatio nal Investments	- Investments in IT	
		Project Investments	PCFP - Project Cost per FP Function points	
			- $\begin{array}{l}\text { ECFP } \\ \text { per FP }\end{array}$	
			$\begin{array}{ll}-\quad \text { AMCFP - } & \text { Application } \\ \text { Maintenance Cost per FP }\end{array}$	

UQÃM

FSM-based measures and ICT BSC perspectives

UQÀM

FSM-based measures and ICT BSC perspectives

UQÃM

FSM-based measures and ICT BSC perspectives

UQÃM

FSM-based measures and ICT BSC perspectives

	Goal/ObJective	Driver	IndICATOR	Comments / Effects
	INNOVATION \& INFRASTRUCTURE (I\&I)			
U	Workforce Improvements	Workforce Competency and development	- IT expended on Training / IT expenses (\%)	- Leverage on the increased forecasting ability of Project Managers (Process perspective) and on their increased satisfaction (People perspective)
¢			- \% of staff trained in relevant standards or new technologies	- Training in functional measurement for planning and governance
$\frac{\text { E }}{x}$			- \% employees skilled in advanced application measurement methods	
$\stackrel{\infty}{\circ}$		Tools \& Products	- Investment in new product support and training (\$)	- For FSM-based tools or for courses about FSMbased techniques
-	SPI Improvements	Methodology currency	- \quad\% projects measured using recognised methods	
		Support	- PDR - Project Delivery Rate	
¢			- ASR - Application Support Rate	
들			- DDR - Duration Delivery Rate	
(1)			- \quad AMPL - Application Maintenance Load per Person	
			- RCR - Repair Cost Ratio	

UQÃM

Agenda

- Introduction
- Balanced Scorecard (BSC) framework
- Functional Size Measurement (FSM)
- Evolution of FSM
- FSM and Technical Size Measurement (TSM)
- Joining FSM and BSC
- Concluding Remarks

UQÃM

Concluding Remarks

- Functional measures are among the most important types in SwEng
- PM frameworks has paid strong attention only to the GD elements and not to the I one from the BSC GDI triad
- FSM-based measures (ISO/IEC 14143 std) can properly fit the multidimensional nature of an ICT BSC, providing ratios for all the ICT BSC perspectives, but pay carefull attention to the Reuse aspects also from the Technical Size Measurement (TSM) area
- Most impacted perspectives: Process (Pr) and Financial (F)
- Less impacted perspectives: Customer (C) and People (Pe)
- Linkages between perspectives: $\mathrm{C}<-\mathrm{Pr}$ and $\mathrm{Pe}<-|\&|$
- Evolve the usage of FSM-based measures in ICT BSC for a more objective value in measuring software-related topics, if possible

UQÀM

Question Time

Thank you for your attention!

GERMANY

How Functional Size Measurement supports the Balanced Scorecard framework for ICT

Luigi BUGLI ONE
Alain ABRAN
UNI VERSITÉ DU QUÉBEC À MONTRÉAL
Laboratoire de Recherche en Gestion de Logiciel Montréal, Québec - CANADA
luigi.buglione@computer.org

Rome, Italy roberto.meli@dpo.it

