
1

SOFTWARE LAYERS AND MEASUREMENT

Jean-Marc Desharnais, Software Engineering Laboratory in Applied Metrics
Denis St-Pierre, DSA Consulting Inc.

Serge Oligny, Laboratoire de recherche en gestion des logiciels
Alain Abran, Laboratoire de recherche en gestion des logiciels

ABSTRACT

Systems rarely run alone. They are usually part
of a complex system of software layers (e.g.
database managers, network drivers, operation
systems and device drivers). Software layers
constitute a specific way of grouping
functionalities on a level of abstraction.

When measuring the functionality of a system,
practitioners usually consider one type of layer:
user application, or the highest-level layer. They
consider the other layers as technical. This
approach might work with Management
Information Systems, where there is often no
business need to consider layers other than the
highest-level one. This is because the other
layers are usually already developed (e.g.
Windows, UNIX, printer drivers). However, this
is often not the case for real-time and embedded
systems. Embedded system development
projects involve developing or modifying
operating systems, drivers and user applications
as well. Not considering software layers can
result in misleading measurements, as
measuring only the highest-level layer may lead

to misrepresentation of the size of a project or
application.

This paper covers the definition of software
layers and how to identify them, and by
extension the identification of peer systems:
systems residing on the same layer.

1. INTRODUCTION

A key aspect of software functional size
measurement is the establishment of what is
considered part of the software and what is
considered part of the operating environment of
the software. The reality is that software is
bounded by I/O and storage hardware.
Examples of I/O are: mouse, keyboard, printer,
screen and sensor. Examples of storage are:
hard disk, diskette and RAM memory. The front
end is related to I/O and the back end to storage.

Figure 1 illustrates the generic flow of data from
a functional perspective.

Figure 1 - Generic flow of data through software from a functional perspective

OR
Engineered

Devices

I/
O

 H
ar

dw
ar

e

St
or

ag
e

H
ar

dw
ar

e

SOFTWARE

« A »

« B »

« C»

« D»

« Front end » « Back end »USERS

OR
Engineered

Devices

OR
Engineered

Devices

I/
O

 H
ar

dw
ar

e

St
or

ag
e

H
ar

dw
ar

e

SOFTWARE

« A »

« B »

« C»

« D»

« Front end » « Back end »USERS

2

From a functional perspective, it can be
observed that:

• The generic flow of data passes across
many distinct pieces of software from its
origin (users) to its destination (storage
device or back to the users).

• There is a hierarchical relationship among
many of the pieces depicted. This
relationship is controlled from the centre.

From there it is possible to make a distinction
between the physical and functional aspects of
the software. The reality becomes more
complex when we realize that there is more than
one category of software.

Software usually included within the scope of an
organization can be categorized based on the
type of services provided, as illustrated in Figure
2 below.

Business

Infra-
structure

Business Software
Embedded or
Control Software

Utility
Software

User’s Tools
Software

Developer’s
Tools Software

System Software

Figure 2 Categories of software according to the
service provided (Morris, 1998)

More detailed descriptions of these types of
services are provided in Appendix A.

This descriptive approach is convenient for
distinguishing different types of functionality, but
there are some gray zones when it is used to
measure software functional size. For this
reason, it is necessary to propose formalized
types of functionality for the purpose of
measuring the functional size of software. This
will be considered later in the article.

2. THE LAYER DESCRIPTION APPROACH

Considering the flow of the data and the
categories of software, software can be
described as shown graphically in Figure 3.

Software

I / O
Hardware

Storage
Hardware

Mouse

Keyboard

Screen

Alarm

Relay

Controller

Display

Valve

Camera

Printer

Engineered
Devices

Hard
disk

RAM
memory

ROM
memory

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Operating
System

Graphical
User

Interface

DBMS

Network
access

Middleware

Operating
System

Driver

Application “A”

Application “B”

Application Back EndFront End

Software

I / O
Hardware

Storage
Hardware

MouseMouse

KeyboardKeyboard

ScreenScreen

AlarmAlarm

RelayRelay

ControllerController

DisplayDisplay

ValveValve

CameraCamera

PrinterPrinter

Engineered
Devices

Hard
disk

RAM
memory

ROM
memory

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Operating
System

Graphical
User

Interface

DBMS

Network
access

Middleware

Operating
System

Driver

Application “A”

Application “B”

Application Back EndFront End

Figure 3 - Software in its environment

While all the pieces exchange data, they will not necessarily operate at the same “level”. For the

3

first time in Functional Size Measurement, the
Full Function Points software context model has
recognized this general configuration by
providing rules to identify different layers of
software. Each piece of software on each layer
is defined by an enclosing boundary, and users
are identified in relation to this boundary.

A layer is a functional partition of the software
environment where all the functional processes
included perform at the same level of abstraction
and usually exhibit a high degree of cohesion.

In other words, software layers are a specific way
of grouping functionalities at the same level of
abstraction. Each layer is a world unto itself
(Rules, 1998).

From the perspective of a given layer, software
delivers functionality to a specific category of
users1. When information is exchanged between
a pair of layers, one of them is considered a
client of the services provided and the other the
subordinate. Each layer is thus the 'user' of
another layer in the hierarchy. Software layers in
fact represent different levels of abstraction.

In Figure 3, the "client" or "application" layer is
the one delivering functionality to the software
end-users. Software within any layer may deliver
functionality to peer systems within the same
layer (Application "A" to Application "B" in Figure
3), however their primary users are pieces of
software lying in the layer directly linked to them
in the hierarchy:

• Applications "A" and "B" deliver functionality
to end-users. End-users are either humans
(often the case for business applications) or
equipment (often the case for embedded or
real-time software).

• Subordinate layers deliver functionality
directly to support their users: Graphical
User Interface with Application "A", for
instance. Also, a part of the Operating
System is subordinate to Applications "A"
and "B". DBMS, Network ACCESS and
Middleware, for example are subordinate to
Applications "A" and "B".

• Parts of the Operating System are
subordinate to DBMS, Network ACCESS
and the Middleware. Drivers are subordinate
to the Operating System.

1 Users: Human beings, other software systems or

engineered devices which interact with the measured
software

A software layer is usually perceived as a
collection of interacting pieces, as shown
previously. Users may have little knowledge of the
software layers, which is not a reason to avoid
measuring them. In fact, in many cases
considering layers is necessary in order to measure
a set of functionalities adequately. Using software
layers, it is possible to adequately measure at any
layer provided the functionality is interpreted on its
own terms, with the layer above or at the same
level being its users. Keep in mind that a user can
be any person and/or thing communicating or
interacting with the software at any time.

From the strict functional measurement point of
view, not considering software layers can lead to
misleading measurement because systems at
different layers delivers different types of
functionality. For example a word processor and
the operating system on which it runs, deliver
very different types of functionality (Figure 4
below). Word processors deal with words, and
operating systems deal with records of data (to
make a long story short). When an operating
system executes a command coming from a
word processor (e.g.: save a file), it does not
know that the records of data contain words. For
the operating system, it is just a long string of
characters. These characters may come from
many types of systems including word
processors.

4

Figure 4 – Examples of software with different types of functionality

Using Figure 3, it is possible to construct Figure
4 and see application "A" as MS Word2 and
application "B" as MS EXCEL3. They are both
considered as client software. The Operating
System could be MS Windows 984 (using OS on
the left side of Figure 4), which is considered as
software subordinate that is to the previous
software. Network access could be the Novell
Network Server5, which is a client system when
passing through MS Windows 98 (right side of
Figure 4). MS Windows 98 is then the client
software of the Seagate Drivers6 (subordinate),
which permit the access to the hard disk.

Table 2 summarizes these relationships.

2 Microsoft Corporation ®
3 Microsoft Corporation ®
4 Microsoft Corporation ®
5 © 1998 Novell, Inc. All Rights Reserved
6 Seagate Corporation ®

Software

I / O
Hardware

Storage
Hardware

MouseMouse

KeyboardKeyboard

ScreenScreen

AlarmAlarm

RelayRelay

ControllerController

DisplayDisplay

ValveValve

CameraCamera

PrinterPrinter

Engineered
Devices

Hard
disk

RAM
memory

ROM
memory

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Windows 98

Graphical
User

Interface

File
Manger

Novell
Network
Server

Middleware

Windows 98

Drivers

MSWord

Peer Application X»

Layer Layer Layer Layer Layer Layer Layer

Application Back EndFront End

Software

I / O
Hardware

Storage
Hardware

MouseMouse

KeyboardKeyboard

ScreenScreen

AlarmAlarm

RelayRelay

ControllerController

DisplayDisplay

ValveValve

CameraCamera

PrinterPrinter

Engineered
Devices

Hard
disk

RAM
memory

ROM
memory

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Windows 98

Graphical
User

Interface

File
Manger

Novell
Network
Server

Middleware

Windows 98

Drivers

MSWord

Peer Application X»

Layer Layer Layer Layer Layer Layer Layer

Application Back EndFront End

5

Software Layers System Examples User Examples
System MS Word and MS EXCEL Users of MS Word and MS EXCEL

(human users)
Operating System MS Windows 98 MS Word and MS EXCEL
Network Novell Network Server MS Windows 98
Drivers Seagate Hard Disk Drivers Novell Network Server

Table 2: Layers and Examples

As mentioned previously, each layer is a world
unto itself. The way the inputs are generated is
irrelevant from the layer perspective. The only
requirement is that the input be dealt with
appropriately when it is received.

A layer perceives the layer below it as a set of
primitives. Each layer "sees" the layers below,
but cannot see the layers above. Similarly, what
happens to data output from a layer is irrelevant
to the producer once that output has been
dispatched.

The internal operation of one layer does not
need to be “known” by any other layer. Indeed, it

is preferable that internal details be protected
from outside alteration. Making one layer
dependent on the internal organization of
another is highly undesirable. Such dependency
restricts the ability to maintain (i.e. change or
enhance) the layer on which the other of
depends. This is the basic principle of
information hiding. Ideally, organizations should
to be able to entirely re-construct a server layer
without affecting the clients that use its
primitives, so long as the software retains the
same interface. For this reason, organizations
should prevent a client layer from directly using
the services of any subordinate layer except the
one immediately below it.

3. MEASUREMENT BASIS

3.1. Identification Principles
Definition of a Layer
A layer is a functional partition of the software environment where all included
functional processes should ideally exhibit a high degree of cohesion and perform at
the same level of abstraction.

Layer identification is an iterative process. Once identified, each candidate layer must comply with the
following principle based on the fact that there are two categories of layers: client layers and subordinate
layers. The client layer uses the functionalities of a (or many) subordinate layer(s) to perform its own
functionalities. The subordinate layer provides functionalities to one (or many) client layer(s).

Principles for the identification of a Layer7

a) A subordinate layer is perceived as a technical implementation from the
perspective of the client layer.

b) A subordinate layer could perform without assistance from a client layer. If the
client layer is not performing properly, the subordinate layer is not affected.

c) A subordinate layer is independent of the technology used by a client layer.
d) A subordinate layer provides services to client layers.
e) A client layer may not perform fully if a subordinate layer is not performing

properly.
f) A client layer does not necessarily use all the functionality supplied by a

subordinate layer.
g) A subordinate layer can be perceived as a client layer from the perspective of a

third subordinate layer.
h) All layers deliver functionality.
Data might be perceived differently from one layer to another.

7 The term “principle” corresponds to “rules” in the IFPUG context.

Because, in practice specific software could be either client or subordinate, depending on its

6

relationship with the other software, it might not
easy to make a clear distinction between
different layers.

3.2. Identifying Layer Boundaries
If, as in some circumstances, it proves difficult to
distinguish between two interacting layers, it
might be helpful to conceive of the two layers as

two sets of functional processes exhibiting a low
degree of coupling between them and a high
degree of cohesion within each set, as illustrated
by Figure 6.

Figure 6 – Cohesion and coupling between two interacting software layers

For this purpose, we took the concepts of coupling and cohesion from Pressman8 and Sommerville9, and
adapted them to distinguish between two interacting layers:

DEFINITION – Coupling
Coupling is a measure of the interconnection among functional processes between
two sets of functional processes. Coupling depends on the interface complexity
between functional processes, the point at which entry or reference is made to a
functional process, and what data pass across the interface. Coupling is measured on
an ordinal scale (from low to high coupling):

• no direct coupling
• data coupling
• stamp coupling
• control coupling
• external coupling
• common coupling
• content coupling

8 Adapted from Sommerville I., 1995.
9 Adapted from Pressman R.S., 1995.

FUNCTIONAL
PROCESS « A »

FUNCTIONAL
PROCESS «B »

FUNCTIONAL
PROCESS «D »

FUNCTIONAL
PROCESS « C »

LAYER BOUNDARY

High cohesion

High cohesion

Low coupling

FUNCTIONAL
PROCESS « A »
FUNCTIONAL

PROCESS « A »
FUNCTIONAL

PROCESS «B »
FUNCTIONAL

PROCESS «B »

FUNCTIONAL
PROCESS «D »
FUNCTIONAL

PROCESS «D »
FUNCTIONAL

PROCESS « C »
FUNCTIONAL

PROCESS « C »

LAYER BOUNDARY

High cohesion

High cohesion

Low coupling

7

 DEFINITION – Cohesion
 Cohesion is a measure of the interdependence among functional processes belonging to the
same set. A cohesive set of functional processes performs a single task and requires little
interaction with other sets of functional processes. Cohesion is measured on an ordinal scale
(from low to high cohesion):

• Coincidental: the functional processes in the set are not related, but simply

bundled into a single set.
• Logical: functional processes in the set perform similar tasks, such as input, error

handling, and so on.
• Temporal: all functional processes in the set are activated at one time, such as at

start-up or when shutting down.
• Procedural: the functional processes in the set make up a single control sequence.
• Communicational: all functional processes in the set operate on the same input

data or produce the same output data.
• Sequential: the output from one functional process in the set serves as input for

some other functional process in the same set.
• Functional: each functional process in the set is necessary for the execution of a

single function.

The exact degree of cohesion and coupling
required to distinguish between two layers is
currently being investigated through field tests.

4. CLOSING REMARKS

Software layers below the highest-level layer
provide the infrastructure. Although the users
below the first layer are not the end-users, end-
users are still able to take advantage of the
infrastructure software because, without it, their
systems would be inoperable. The infrastructure
software delivers functionality indirectly to the
end-users via other systems.

The functionality delivered by software within
one layer is not the same type of functionality
delivered by software within a lower layer.
Therefore, functionality delivered by software at
different layers should only be combined, or
compared, with great care.

When reporting the functional size of software
measured on different levels, it is important that
systems on different layers be identified and
measured separately. They should also be
analyzed independently to some extent. For
example, if only the cumulative size of all ‘layers’
is reported, this can give the impression that all
the functionality is delivered to the end-user.
Therefore, size should be presented with respect
to its corresponding layers and classes of users

so that people can associate size with the
functionality delivered. Once this is done the
cumulative size of all ‘layers’ may be presented
with less risk of misinterpretation.

Considering layers is as essential as considering
the software boundary. Without this
consideration, the measurement results could be
misleading and the wrong message sent to
managers, technical staff and users.

REFERENCES

COSMIC, Full Function Points Measurement
Manual, version 2.0, field-test version, July 31st

1999 editor S. Oligny, UQAM. The public
release of this version is due in October 1999.

Morris P., Desharnais J.-M., Measuring ALL the
software, not just what the Business uses,
Proceedings of the IFPUG Conference, Orlando,
1998.

Rules G., Comments on ISO 14143 Part 5,
Release V1b, 1998.

Sommerville I., “Software Engineering”, 5th ed.,
Addison Wesley, 1995, pp. 218-219.

Pressman R.S., “Software Engineering – A
practitioner’s approach”, 4th ed., McGraw Hill,
1997, pp. 359-361.

8

APPENDIX A

EXAMPLE – Functionality provided by different types of software

Business Software
This type of software delivers functionality which supports the organization’s core
business.
The users are primarily human business users, however a small proportion of the
functionality may also be delivered to, or triggered by, other Business Applications.
This type of software is typically business or commercial (MIS) software and would
include Payroll applications, Accounts Receivable or Fleet Management systems.

Embedded or Control Software
This type of software also delivers functionality which supports the organization’s core
business or products. The users are primarily other software applications embedded in
equipment. This type of software typically operates under strict timing conditions and is
often referred to as real-time software. Examples would include Equipment Monitoring
Systems, Telephone Switching Systems.

Utility Software
This type of software delivers functionality providing the infrastructure to support
Business Software. The users are primarily the Business Software itself, which
initiates the operation of the utilities, but may include the developers or business
administration people as the administrative users. Examples would include backup
utilities (to ensure the data reliability of the Business Application) or archiving utilities
(to optimize the performance of the Business Application). Other examples are
installation and conversion software.

User’s Tool Software
This type of software delivers the tooling functionality used by administrative users to
create the functionality delivered by Business Software. The users are primarily the
Business Software itself, which uses the functionality delivered by the tools to enable
them to deliver functionality to the business. Administrative human users of these
tools may be either from the Business or from IT. Examples would include Report
Generators, Spreadsheets and Word Processors.

Developer’s Tool Software
This type of software delivers the tooling functionality used by developers to create the
functionality delivered by Business Software. The users are primarily other
applications, which are either generated by, or used as input to, tool operation. Human
users may also include IT developers as administrative users. Examples would include
Code Generators, Testing Software, New Product Generators, etc.

System Software
This type of software enables all the other types of software to operate and deliver
their own functionality. The users are primarily other applications with a limited
interface to human IT operational staff. Examples would include operating systems,
printer drivers, protocol converters and presentation software.

