
International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

LIME: A THREE-DIMENSIONAL MEASUREMENT MODEL

FOR LIFE CYCLE PROJECT MANAGEMENT

LUIGI BUGLIONE

European Software Institute
SPI Measurement Product Line

Parque Tecnológico de Zamudio #204
E-48170 Vizcaya, Spain

E-mail: luigi.buglione@esi.es
Tel: (34) 94.420.9519
Fax: (34) 94.420.9420

ALAIN ABRAN

Software Engineering Management Research
Laboratory

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada

E-mail: abran.alain@uqam.ca
Tel: +1 (514) 987-3000 (8900)

Fax: +1 (514) 987-8477

INDEX – 1. Introduction – 2. Software Life Cycle
Models – 3. Management of Quality during SLC
– 4. The QEST model – 5. The LIME model – 6.
Conclusions & Prospects – References

ABSTRACT

Organizational performance models are
usually based on accounting systems, and
therefore take into account mostly the
economic-financial viewpoint, or the tangible
asset part, of it using performance
management terminology. In the IT field, the
Earned Value model has been promoted to be
present project performance during the project
life cycle. However, these types of models
oversimplify performance representation with a
single performance index, while in reality
multiple viewpoints must be managed
simultaneously for proper performance
management.

This work shows how an open three-
dimensional measurement model of software
project performance functions. Called LIME
(LIfecycle MEasurement), it extends the
structure of a previous model to a dynamic
context I applies to software production during
all SLC phases, which are classified following
a generic 6-step and scheme waterfall
standard.

A quantitative and qualitative analysis of the
project is effected considering the three
distinctive but connected areas of interest,
each of them represent has a dimension of
performance:

• economic dimension, from the managers’
viewpoint, with a particular attention to cost
and schedule drivers;

• social dimension, from the users'
viewpoint, with particular attention to the
quality-in-use drivers;

• technical dimension, from the developers'
viewpoint, with particular attention to
technical quality, which has a different
impact during each SLC phase.

KEYWORDS: Performance Measurement,
Software Product Quality, Metrics, Function
Point Analysis, ISO/IEC 9126, GQM approach,
SLC, QEST model.

1 INTRODUCTION

Over the past few years, the Software
Engineering field has developed an increased
awareness of the need to measure of both
process and product, in other words to improve
the management of the software development
life cycle. For example, there already exist a
significant number of one-dimensional models
of performance which integrate individual
measurements into a single performance
index. The usual performance model of an
organization is derived from information within
its accounting system, thereby taking into
account the economic-financial viewpoint (the
tangible asset measurement issue in
Performance Management frameworks like the
Balanced Scorecard, Intangible Asset Monitor
and Skandia Navigator). In the technical field,
one of the most valuable and proven
approaches is Earned Value (EV), a method
for monitoring project expenditures versus
expected progress at each project phase1.

1 [40] is the reference document; see also the website

http://www.acq.osd.mil/pm/. Furthermore, see [29] for an
application of an Earned Value Tracking System in the

109

However, these types of models are too
oversimplified to adequately reflect the reality
of the multidimensional nature of performance
and of the analytical requirements of
management when various “viewpoints” must
be taken into account simultaneously.

In addition to multidimensional analysis (here
dimension is referred to as “viewpoint” or
“perspective”2), many other issues have been
identified by researchers, such as a mix of
quantitative and qualitative aspects, as well as
integration of product and process analyses [1,
3, 31].

In multidimensional analysis, distinct but related
areas of interest can be taken into account
simultaneously, each representing a distinct
dimension of performance; for example:

• economic dimension - the perspective of the
managers3;

• social dimension - the perspective of the
users;

• technical dimension - the perspective of the
developers.

An open model called QEST (Quality factor +
Economic, Social & Technical dimensions) has
been developed to handle, simultaneously and
concurrently, the three-dimensional perspectives
of performance [7 to 12]. This model had been
developed initially to represent multiple views of
performance of completed projects. It originally
represented a static view of projects, once
completed.

This paper presents an extension to this QEST
model, which allows the analysis of
measurement results throughout the various
phases of software development, and considers
both process activities and intermediate software
product deliverables. Such ongoing analysis
during a project life cycle is useful for the
continuous monitoring of project progress and for
making adjustments to forecasts and schedules
of subsequent phases of projects. This

software field and [13] for an overview of costs and benefits
of an Earned Value Management Process.

2 Opdhal [32] distinguishes between the two concepts,
asserting that the first “emphasizes the physical, logical,
mental etc. point from which something is perceived”, while
the second “emphasizes what is perceived from that point”.

3 The viewpoints listed reflect the perspectives of three
possible groups of stakeholders, the same ones who were
listed in the ISO/IEC JTC1/WG6 work.

extension to the QEST model thereby allows the
model to be used dynamically throughout a
project’s life with the flexibility to represent, for
example, distinct views of quality depending on
the phase of the life cycle.

This paper is subdivided into five parts:

• a review of topologies of the software life
cycle (SLC) models, from a process
viewpoint;

• management of quality during a software
life cycle

• a description of basic concepts from the
QEST model, which constitute the starting
reference point considered for extending it
to a dynamic SLC context;

• a description of the LIME (LIfecycle
MEasurement) model, the newly derived
SLC performance measurement model,
illustrating its peculiarities and the
applicability of the PMAI Cycle over time.

• observations and conclusions

2 SOFTWARE LIFE CYCLE MODELS

A Software Life Cycle (SLC) is defined as “the
period of time that starts when a software
product is conceived and ends when the
product is no longer available for use. The
software life cycle typically includes a
requirements phase, design phase,
implementation phase, test phase, installation
and check-out phase, operation and
maintenance phase, and sometimes,
retirement phase” [17] or as “a typical
sequence of phased activities that represent
the various stages of engineering through
which software systems pass” [36]. It can be
considered as an instance derived from the
Product Life Cycle (PLC), an object of a study
in marketing sciences4 in business schools.

The descriptive and/or prescriptive
characterizations of software evolution
constitute what is labeled the Software Life

4 PLC “provides insights into a product’s competitive

dynamics. […]. Product Life Cycle portrays distinct stages
in the sales history of a product. Corresponding to these
stages are distinct opportunities and problems with respect
to marketing strategy and profit potential. By identifying the
stage that a product is in, or may be headed toward,
companies can formulate better marketing plans.” [28, pp.
354-380].

110

Cycle Model5, which can be used in several
ways [36, p.4]:

• to organize, plan, staff, budget, schedule
and manage software project work over
organizational time, space and computing
environments;

• as prescriptive outlines of documents to be
produced for clients;

• as a basis for determining what software
engineering tools and methodologies will be
most appropriate to support different life
cycle activities;

• as a framework for analyzing or estimating
patterns of resource allocation and
consumption during the SLC;

• as comparative descriptive or prescriptive
accounts on how software systems come to
be the way they are;

• as a basis for conducting empirical studies
to determine what the impact will have on
software productivity, cost and overall
product quality.

SLC models can be classified according to
different criteria, such as, for example, number
of phases or their topology. Concerning the
former, it is possible to find in the literature
SLC models with four to eight phases,
depending on the level of detail and the
definitions given to the term phase by different
authors.

Concerning the latter, it is possible to identify
at least five SLC topologies which can
themselves be classified as either traditional or
alternative SLC models:

TRADITIONAL TOPOLOGIES OF SLC MODELS

• Waterfall [6, 36]: This model is
characterized by a set of phases executed
in sequential order, where each phase must
be completed before the project progresses
to the next phase. At the end of each
phase, the deliverables are frozen and
serve as the baseline for subsequent
phases. The software product does not

5 The standardization effort has produced some de facto and

de jure norms on SLC. For the first category it is possible to
cite the ESA PSS-05-0 [15], one of the sources for the
BOOTSTRAP Improvement model. For the second
category, it is possible to mention the ISO effort with the IS
12207 [23] and the omologous series from IEEE [18, 19,
20].

usually become visible to its users until the
end of the project, that is, after completion
of the last phase. This topology is most
adequate when the software product is
simple, the requirements stable, the
technology used for development is well
mastered, and project resources tested. It
is necessary for the requirements to be
frozen so that only limited change is
allowed, which minimizes the risk of cost
increases;

• V-shape model [16]: Similar to the
waterfall model, the V-shape model
emphasizes the importance of considering
the testing activities up front rather than
later in the life cycle. Each test phase is
considered as mapping a corresponding
development phase. The V-shape model is
used in the same context as the waterfall
model. This topology, in which the test
phases enter in the life cycle earlier has a
number of advantages, such as:

ü Earlier receipt user feedback
ü Earlier review and evaluation of

requirements
ü Help in developing additional

requirements
ü Upfront monitoring of quality

• Incremental [39]: The incremental model
allows a project to develop software in
incremental stages, adding additional
functionality at each stage, each stage
including design, code and unit test,
integration test and delivery phases. This
model allows customers to access
functional software much earlier than the
two previous models, but of course with
less functionality in the early stages.

ALTERNATIVE TOPOLOGIES OF SLC MODELS

• Prototyping [2]: Prototyping is a technique
used to develop an implementation of the
software quickly during the software
requirements phase; this allows the
customer to use the prototype and to
provide feedback to the software
developers on the strengths and
weaknesses of the prototype. This
feedback is the used to improve the
prototype. This topology is most adequate
when there is limited understanding of user
requirements and when requirement
volatility is high.

111

• Spiral [4]: This topology represents a risk-
driven approach to software process
analysis and structuring, incorporating
elements from both the waterfall and
prototype models. Each spiral addresses
major risks that have been identified; the
last spiral ends as an ordinary waterfall
software life cycle. A spiral model makes it
possible to start small, to identify related
risks, to adjust the plan to deal with the risk,
and then to commit to a specific approach
for the next iteration. A spiral model is
used for complex projects or when the
project issues are poorly identified and
understood. The mitigation of risk can
become a requirement for the next iteration.

• Boehm et al. have refined the Spiral model
to arrive at the Win-Win Spiral Model [5],
characterized by the presence of different
categories of stakeholders and win
conditions (for the system or subsystems) to
be negotiated at each iteration. The
possible alternatives must be evaluated
with respect to objectives and constraints.

For the purposes of this paper, the simpler but
also better known, waterfall model is used; the
spiral model similarly uses an SLC with six
generic phases:

• Requirements
• Specification
• Design
• Coding
• Testing

• Maintenance

This generic 6-phase SLC model is used in this
paper for illustrative purposes only and
organizations can easily adapt the LIME model
according to their own models needs. This
flexibility of the proposed performance
measurement model is referred to here as an
open multi-dimensional model of SLC
performance.

3 MANAGEMENT OF QUALITY DURING THE
SLC

The propose of Project Management is to
ensure that project objectives are met, such as
delivering the software functionality on time,
on budget and within the specified levels of
quality, while optimizing the available
resources.

However, in software projects, management
must rely on experience due to a lack of
measurement techniques and models
sophisticated enough to meet simultaneous
multidimensional constraints.

An example of quality management during an
SLC based on quantitative measurements and
quality models is shown in the following figure:
typical defect distributions during different
phases of the SLC illustrate how later project
phases are burdened with a certain amount of
inherited (or injected) defects . For process
improvement, a relationship must be identified
during software development between SLC
phases in which defects are found and the
quality of the process/product.

112

Figure 1 - Defect Distribution in the SLC with Rayleigh curves

Table 1 from [27, pp. 159-166] shows a Defect
Removal Effectiveness (DRE) statistic. The
Rayleigh model used in Figure 1 is based on
two fundamental assumptions [27, pp. 182-
186]:

• the defect rate observed during the
development process is positively correlated
with the defect rate in the field6;

• if more defects are discovered and removed
earlier, fewer remain in later steps.

LIFE CYCLE PHASE

INHERITED
DEFECTS
/KSLOC

(A)

INJECTED
DEFECTS
/KSLOC

(B)

SUBTOTAL

(C=A+B)

DEFECT REMOVAL
EFFECTIVENESS

(DRE)
(D)

DEFECTS
REMOVED PER

KSLOC
(E=C*D)

RESIDUAL
DEFECTS PER

KSLOC
(F=C-E)

Analysis N/a 1.2 1.2 N/a N/a 1.2
Preliminary Design (I0) 1.2 8.6 9.8 74% 7.3 2.5

Detailed Design (I1) 2.5 9.4 11.9 61% 7.3 4.6
Code (I2) 4.6 15.4 20.0 55% 11.0 9.0

Unit Test (UT) 9.0 N/a 9.0 36% 3.2 5.8
Component Test (CT) 5.8 N/a 5.8 67% 3.9 1.9

System Test (ST) 1.9 N/a 1.9 58% 1.1 0.8
Field Operation 0.8 N/a N/a N/a N/a N/a

Table 1 - Example of Phase-based Defect Removal Model [27, pp. 166]

6 Kan demonstrates the significant correlation (using

Spearman’s ranking order coefficient) observed for I2, CT,
ST and all phases combined (I0, I1, I2, CT and ST) with the
field defect rate, while for I0 and I1 the correlations are not
significant, since the two are the earliest development
phases and the Rayleigh curve peaks just after I1.

Since the costs of finding and fixing the defects
in later phases are much higher that in earlier
phases, both assumptions suggest that injected
defects must be removed as early as possible,
preferably before the testing phases, in order to
improve quality and reduce these costs.

However, it must be observed that the
quantitative ratios used in this example are
based on a measure which does not become
available until fairly late in a project SLC, that is,
a number of lines of code for which only an
approximation with an unknown accuracy level is
unavailable until fairly late in the SLC. Similarly,
this typical quality model takes into account only
a single perspective of quality, that is, the
number of defects in the software. However,
software quality has many additional dimensions,
such as usability, quality of documentation,
associated operational costs, etc.

Restricting quality measurement, analysis and
management to only a single view of quality

throughout an SLC, as illustrated with a typical
example of a reliability analysis, seems to be
reductive: it does not allow the various outputs
from the successive SLC phases that contribute
to the final product release to be gathered and
analyzed for managing quality on an ongoing
basis for continuous monitoring of the multiple
views of quality.

An integrated multidimensional view of software
Quality is presented in [7 to 12], where as quality
can be viewed as the concurrent integration of
the three different viewpoints:

• Economical: viewpoint of management, who
are “interested in overall quality rather than in
a specific quality characteristic [...] and the
need to balance quality improvement with
management criteria” [34]

• Social: viewpoint of the user, for whom
software quality is achieved by all the
properties required to satisfy correctly and

113

efficiently, the present and future real needs
of whoever buys it and uses it;

• Technical: viewpoint of the developer, for
whom software quality is achieved by
“conformity to functional and performance
requirements explicitly stated, to development
standards explicitly documented and to
implied characteristics supposed for every
software product developed in a professional
way” [25].

Therefore, an extension is needed with respect
not only to quality as the object of measurement,
analysis and management, but performance,
defined as “the degree to which a system or a
component accomplishes its designated
functions within given constraints” [17], moving
up from reliability analysis to performance
analysis.

So, in a competitive market period such as the
current one, where the capability of a company
to react on time to customers’ requests and to
minimize the cost of goods and services offered
is a fundamental and absolute necessity, where
measuring performance levels becomes a key
component in improving the planning and
monitoring the delivery of goods and services, as
well as for the design of improvement programs.

A model is proposed in the next section to
measure software project performance, which
is referred to as the QEST (Quality factor +
Economic, Social and Technical dimensions)
model.

4 THE QEST MODEL

In the QEST model, the measurement of
performance (p) is given by the integration of
an instrument-based measurement process
(expressed in the model by the component RP
- Rough Productivity) with a perception-based
measurement process based on the subjective
perception of quality (expressed in the model
by the component QF - Quality Factor). The
QEST model7 provides a multidimensional
structured shell, which can then be filled

7 Several publications cover the different aspects of the

QEST Model:
• Theoretical aspects [10, 11, 12]
• Geometrical and statistical foundations [9]
• Implementation of the model [8]
• Quality Factor [7]

according to management objectives for any
specific project: it is therefore referred to as
an open model. This topology of performance
models makes it possible to handle the
multiple and distinct viewpoints already
discussed, all of which can exist concurrently
in any software project. This section presents
the design of this open model for the
measurement of software project performance.

The basic purpose of the structured shell of the
open model is, as stated above, to express
performance as the combination of the specific
measures (or sets of measures) selected for
each of the three dimensions, these values
being derived from both an instrument-based
measurement of productivity and a perception-
based measurement of quality.

A three-dimensional geometrical
representation of a regular tetrahedron was
selected as the basis for the model, and is
illustrated in Figure 2. Furthermore:

• the three dimensions (E, S, T) in the space
correspond to the corners of the pyramid’s
base, and the convergence of the edges to
the P vertex, which describes the top
performance level;

• when the three sides are of equal length,
the solid shape that represents this three-
dimensional concept is therefore a pyramid
with its triangular base and sides of equal
length (tetrahedron).

This pyramid-type representation imposes the
following constraint: the sides must be equal,
and this is achieved through giving equal
weights to each of the three different
dimensions chosen – and with sides of length
exactly equal to 1 (regular tetrahedron); in this
way, the dimensions are represented through a
normalized value between 0 and 1 for each of
them on a ratio scale, for ease of
understanding.

114

Figure 2 - QEST model and its hyperplane
sections

With this 3D representation it is possible to
determine and represent performance
considering distinct geometrical concepts
(distance, area and volume); in this 3D
representation, the ratio between the volume
of the lower part of the truncated tetrahedron
and the total volume of the tetrahedron
represents the normalized performance level
of a project being assessed8.

Key features of the QEST model:

• Integrated quantitative and qualitative
evaluation from three concurrent
organizational viewpoints: management
(economic viewpoint), users (social
viewpoint) and technical personnel
(technical viewpoint). Performance is not a
single one-dimensional concept. It is not
enough to meet a single specific target in
an unconstrained environment. It is a
multidimensional concept that must
integrate multiple viewpoints, most of which
are present simultaneously in the software
development process. The other
fundamental point is the integration of
qualitative and quantitative evaluations,
intended as a 2-sided face of the same
problem. Only if these dimensions are
managed concurrently in an integrated
model for performance measurement can
they be adequately assessed;

8 Refer to [9] for the geometrical and statistical foundations

and demonstrations.

• Use of de facto and de jure standards,
such as the ISO/IEC 9126 standard on
Software Quality Characteristics and Sub-
characteristics and Function Point related
measures [21] for the functional size of
software. The use of standards is strongly
recommended because they give the
international software engineering
community the opportunity to share and use
the same definitions of objects and
concepts in their work, reducing the
potential for misinterpretation when
communicating. For this reason, two
important de jure (ISO/IEC 9126) and de
facto9 standards are recommended when
implementing the model;

• A 3D geometrical construction to gather
a single SLC phase value for each
project – The geometrical approach
permits representation of the measurement
of performance in a simple and visual way
for immediate impact and optimal
understanding. The original selection of the
regular tetrahedron was also suggested by
the idea that the vertex of the 3D shape
represents, from a conceptual viewpoint,
the convergence of different viewpoint
evaluations into a final, single one. Another
important factor to take into account is the
use of normalized values in order to give
Management greater value readability for
taking decisions;

5 THE LIME MODEL

We are proposing to use QEST model
concepts, and extend them to a dynamic
context, such that the model will be applicable
to each step of any topology of SLC selected.
For illustrative purposes here only, this new
model, called LIME (LIfecycle MEasurement),
considers a generic 6-phase waterfall SLC
structure.

The intrinsic SLC dynamicity and sequentiality
necessarily implies the adoption of a notation
to describe the process and its flows. From the
various possible notations found in the

9 While ISO 14143 [24] and the IEEE standardization work

on the Functional System Method (FSM) are going on, the
COSMIC initiative (http://www.cosmicom.com) is
developing and promoting the next generation of functional
size measurement methods.

115

technical literature10, the ETVX (Entry-Task-
Validation-eXit) notation [35] in this paper11.

Figure 3 expresses the relationship between
activities and results, referred to was selected
for used OO the nth phase of a project. along a
certain time-flow t.

In this notation system, the output of the (n-1)th

phase represents the input for the nth one;
processing produces the nth output, which will
be the input for the (n+1)th phase, and so on.

It must be noted that the measurement results
(I1, ..., I6, O1, ..., O6) can be added since they

have been normalized within the QEST model
to facilitate an understanding of them and a
representation of them in a 3D space:

10 See

http://source.asset.com/stars/loral/process/guide/notation.ht
m for a review of the main ones.

11 See [30] for an ETVX application.

International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

Figure 3 - Input and output overlapping per phase

The key features added in the LIME model are:

1. Flexibility of distinct relative
contributions from the three dimensions
(E, S, T) in each phase: Each project
phase is characterized by a more or less
marked presence of every group of interest;
therefore selected ratios values must be
weighted according to this criterion. For
instance, during the Coding phase, user
presence is not so relevant; similarly for
managers in the Testing or Requirement
phases; by contrast, technical staff
presence is predominant during the Coding
and Testing phases. So, in each phase the
relative contribution of the three groups
must be determined quantitatively in a
proper way;

2. Flexibility of distinct relative
contributions between quantitative and
qualitative evaluations in each phase:
Similarly, the characteristics of the relative
distribution of quantitative and qualitative
evaluations constitute one of the basic the
QEST model. The extension of the QEST
model to the whole SLC requires variable
tuples of relative distribution values for
each step;

3. Different sources for QF calculation: A
key difference in the structure of the LIME
model is the treatment of the Quality Factor
(QF). As defined in [7], it arises from a
sample analysis the measurement object of

which is given by the released software
product. The referenced procedure can be
put in to action just in the SLC technical
phases (Testing and Maintenance). In the
other phases, it will be sufficient to consider
a list of ratios that measure qualitative
aspects of the project (i.e. in the
Requirement phase, the number of verbs or
shalls) always in the balance chosen by the
organization between quantity and quality
evaluations;

4. Flexibility in selecting suitable measures
and ratios for each SLC phase: The
treatment of each single SLC phase, unlike
the original QEST model, makes it possible
to select for each company dimension
suitable measures and ratios for each step.
A partial listing of measurable inputs and
outputs is provided in [26, pp. 148-153]; the
open structure of the QEST and LIME
models gives the flexibility to use the
preferred and most suitable measures as
recommended for each different project by
the organizational measurement group in
co-operation with the various teams for
each dimension.

The framework for the LIME model is the
following:

Figure 4 - The LIME model

The iterative definition, collection and analysis
of multidimensional measures at each life

cycle phase offers, therefore, the feedback
required to make adjustments to the project
processes in a timely fashion, both for the next

117

phase and for designing future improvements
to the process of the preceding phase.

This is illustrated in Figure 5 with the 12
process improvement steps (Plan – Measure –

Analyze – Improve) for each of the 6 phases of
the waterfall model considered, based, in
every phase, on a complete QEST
assessment:

Figure 5 - LIME model and PMAI Cycle

6 CONCLUSIONS & PROSPECTS

Improving software project management is a
must for project managers. The starting point
of the analysis is necessarily the Software Life
Cycle approach chosen, so that its strengths
and weaknesses can be identified and a better
solution designed.

After the main traditional and alternative SLC
models had been reviewed, a quality
management approach for the whole SLC was
presented, extending the Earned Value model
and the generic technical vision of quality
(defectiveness) to multiple simultaneous
distinct perspectives, moving from one-
dimensional analysis (earned value or reliability
analysis) to multidimensional performance
analysis.

A dynamic multidimensional model, called
LIME (LIfecycle MEasurement) is proposed,
based on basic concepts of a previous static
model (QEST - Quality factor + Economical,
Social & Technical dimensions).

This model exist addresses the need to obtain
a richer multidimensional, combined-view
software performance measurement tool, and
includes the various aspects - technical,
economic and social - that concurrently in
every organization. These simultaneous views
are usually analyzed in isolation in one-
dimensional models. The framework of the

LIME model is presented and the key concept
is illustrated through a generic 6-phase
waterfall SLC model, where each output of the
(n-1)th phase represents the input for the nth

one, and, so on thereby improving the overall
quality of deliverables for subsequent
processes.

This approach will make measurement results
more comprehensive and useful by providing a
multidimensional representation of
performance, with the possibility of analyzing
each single dimension and any SLC phase of a
project.

ACKNOWLEDGMENTS

We wish to thank the Bell Canada and the
Natural Sciences and Engineering Research
Council of Canada for research funding. The
opinions expressed in this paper are solely those
of the authors.

REFERENCES

[1] ABRAN A., Quality – The Intersection of
Product and Process, The 6th IEEE
International Software Engineering
Standards Symposium, ISESS’95,
Montréal, Québec, Canada, August 21-25,
1995, IEEE Computer Society Press.

[2] BALZER R., GOLDMAN N. & WILE D.,
Operational Specifications as the Basis for
Rapid Prototyping, ACM Software

118

Engineering Notes, Vol. 7, no 5, pp. 3-16,
1982.

[3] BIRK A., DERKS P., HAMANN D.,
HIRVENSALO J., OIVO M., RODENBACH E.,
VAN SOLINGEN R. & TARAMAA J.,
Applications of Measurement in Product-
Focused Process Improvement: A
Comparative Industrial Case Study,
ISERN, Techical Report ISERN-98-25,
August 1998.

[4] BOEHM B., A Spiral Model of Software
Development and Enhancement, ACM
Software Engineering Notes, Vol. 11, no
4, 1986, pp. 22-42.

[5] BOEHM B., EGYED A., KWAN J., PORT D.,
SHAH A & MADACHY R., Using the Win-Win
Spiral Model: A Case Study, IEEE
Computer, July 1998, pp. 33-44.

[6] BOEHM B., Software Engineering, IEEE
Transactions on Computers, C-25, Vol.
12, December 1976, pp. 1226-1241.

[7] BUGLIONE L & ABRAN A., A Quality Factor
for Software, Proceedings of QUALITA99,
3rd International Conference on Quality
and Reliability, Paris, France, 25-26
March 1999, pp- 335-344.

[8] BUGLIONE L. & ABRAN A, Implementation of
a Three-Dimensional Software
Performance Measurement Model,
Technical Report, Université du Québec à
Montréal, to be published, 1999.

[9] BUGLIONE L. & ABRAN A., Geometrical and
Statistical Foundations of a Three-
dimensional Model of Performance,
accepted for publication in the
“International Journal of Advances in
Engineering Software”, Elsevier Publisher,
1999.

[10] BUGLIONE L. & ABRAN A., Multidimensional
Software Performance Measurement
Models: A Tetrahedron-based Design, in
"Software Measurement: Current Trends
in Research and Practice", R. Dumke/A.
Abran (eds.), Deutscher Universitats
Verlag GmbH, pp. 93-107, 1999

[11] BUGLIONE L. & ABRAN A., Multidimensional
Software Performance Measurement
Models: A Tetrahedron-based Design,
Rapport de Recherche No, 99/01,

Départment d'informatique, UQAM,
Université du Québec à Montréal, 14 Mai
1999.

[12] BUGLIONE L., Software Process
Assessment & Improvement: un nuovo
starting-point per il Management
aziendale, Tesi di Dottorato, XI Ciclo,
Dottorato di Ricerca in "Sistemi
Informativi Aziendali", Università di Roma
"La Sapienza", Roma, Italia, 21 Dicembre
1998.

[13] CHRISTENSEN D., The Costs and Benefits
of the Earned Value Management
Process, Acquisition Review Quarterly,
Fall 1998, pp. 373-386.

[14] DEMING, W.E., Out of the Crisis, MIT
Press, 1986.

[15] EUROPEAN SPACE AGENCY, ESA Software
Engineering Standards ESA PSS-05-0,
Issue 2, Paris, February 1991.

[16] GOLDBERG R., Software Engineering: An
Emerging Discipline, IBM Systems
Journal, Vol. 25, no 3-4, 1987.

[17] IEEE, Standard Glossary of Software
Engineering Terminology, IEEE Std
610.12, 1990.

[18] IEEE/EIA, Guide for ISO/IEC 12207 –
Standard for Information Technology –
Software Cycle Processes – Life Cycle
Data, Std 12207.1, 1997.

[19] IEEE/EIA, Guide for ISO/IEC 12207 –
Standard for Information Technology –
Software Cycle Processes –
Implementation Considerations, Std
12207.2, 1997.

[20] IEEE/EIA, Standard for Industry
Implementation of International Standard
ISO/IEC 12207:1995 – Standard for
Information Technology – Software Cycle
Processes, Std 12207.0, 1996.

[21] IFPUG, Function Points as Assets:
Reporting to Management, 1992.

[22] ISO, International Standard 8402: Quality
- Vocabulary, 1986.

[23] ISO/IEC JTC1/SC7/WG7, International
Standard 12207 – Information

119

Technology: Software Life Cycle
Processes, 22/02/95.

[24] ISO/IEC, International Standard 14143-1 –
Information Technology – Software
Measurement – Functional Size
Measurement – Part 1: definition of
concepts, December 1996.

[25] ISO/IEC, International Standard 9126:
Information Technology – Software
product evaluation – Quality
characteristics and guidelines for their
use, 1991.

[26] JOINT LOGISTIC COMMANDER, Practical
Software Measurement – A Foundation
for Objective Project Management,
Version 3.1, Joint Group on Systems
Engineering, April 17, 1998.

[27] KAN S.H., Metrics and Models in Software
Quality Engineering, Addison-Wesley,
1995.

[28] KOTLER P., Marketing Management:
Analysis, Planning, Implementation and
Control, Prentice Hall, 8 /e, 1994.

[29] LETT S.H., Earned Value Tracking System
for Self-Directed Software Teams, SEPG
1998 Conference, March 9-12 1998,
Chicago, USA.

[30] MC ANDREWS D.R., Establishing a
Software Measuring Process, SEI
Technical Report, CMU/SEI-93-TR-16,
July 1993.

[31] MCGARRY F., Product-Driven Process
Improvement, Software Process
Newsletter, IEEE Technical Council on
Software Engineering, no 2, Spring 1995,
pp. 1-3.

[32] OPDHAL A.L., A Comparison of Four
Families of Multi-Perspective Problem
Analysis Method, IRIS 20 Conference,
Hanko, Norway, August 9-12, 1997.

[33] PARK R.E., Software Size Measurement:
A Framework for Counting Source
Statements, SEI Technical Report,
CMU/SEI-92-TR-20, September 1992.

[34] PRESSMAN R., Software Engineering: a
beginner’s guide, McGraw-Hill, 1988.

[35] RADICE, R. A. & PHILLIPS, R.W., Software
Engineering: An Industrial Approach,
Prentice-Hall, 1988.

[36] ROYCE W.W., Managing the Development
of Large Software Systems, Proceedings
of the 9th International Conference on
Software Engineering (ICSE), IEEE
Computer Society, 1987.

[37] SCACCHI W., Models of Software
Evolution: Life Cycle and Process, SEI
Curriculum Module, SEI-CM-10-1.0,
October 1987.

[38] SHEWHART W.A., Statistical Method from
the Viewpoint of Quality Control, 2/e,
Dover Publication, 1986.

[39] TULLY C., Software Development Models,
Proceedings of IEEE Software Process
Workshop, IEEE Computer Society, pp.
37-44, 1984.

[40] US AIR FORCE, Cost/Schedule Status
Report (C/SSR) Joint Guide, May 1, 1996.

