

SMCMM Model to Evaluate and Improve the Quality

of Software Maintenance Process: Overview of the model

(Alain April1, Alain Abran1, Reiner R. Dumke 2)

1École de Technologie Supérieure, Montréal, Canada, aapril@ele.etsmtl.ca , aabran@ele.etsmtl.ca
2Otto von Guericke University of Magdeburg, Germany, dumke@ivs.cs.uni-magdeburg.de

Abstract

The software maintenance function suffers from a
scarcity of management models that would facilitate
its evaluation, management and continuous
improvement. This paper presents a revised version of
a maintenance-specific evaluation model: Software
Maintenance Capability Maturity Model (SMCMM).
This model adopts a similar structure and should be
used as a complement to the CMMi©1 (Capability
Maturity Model Integration of the Software
Engineering Institute) developed by Carnegie Mellon
University.

This SMCMM is based on practitioners’ experience,
international standards and the seminal literature on
software maintenance.

1. Introduction

While multiple solutions to problems of software
development have been proposed (such as
development methodologies, management models and
software tools) the function of software maintenance
has not attracted such attention despite its significant
share of the software budget in organizations (between
50% and 70%). Maintenance still suffers from a
scarcity of best practice proposals that could readily
be applied in the industry. Aside from Kajko-Mattsson
[Kaj01a] recent proposal of an evaluation model
specific to corrective maintenance, there is still a large
number of software maintenance best practices that
need to be recognized and better described for

1 CMMi is a trademark of the SEI.

technology transfer to the industry at large. The
inadequate share of management attention that

software maintenance receives, and the fact that it
suffers from lack of planning, are illustrated by the
crisis management style typically adopted in this
domain, coupled with the fact that software
maintenance is still perceived as being expensive and
ineffective.

For the software development function, there
already exist many management models to evaluate the
quality of the development process and to propose
improvements. However, for the software maintenance
function, there is a lack of published comprehensive
models, which takes into account the characteristics
specific to the maintenance process.

Recognizing the importance of software maintenance
and the limitations of the process assessment models
that emphasize development over maintenance, an
initial draft of a comprehensive maintenance evaluation
model was published in 1996 [Zit96]. This paper
presents an update of the 1996 version of the Software
Maintenance Capability Maturity Model – (SMCMM)
and documents and traces to it from other models.

Section 2 presents the findings and contributions
from the literature, including a discussion of what is
missing in the CMMi© to reflect a maintainer’s point of
view. Section 3 presents a comprehensive model of the
software maintenance interfaces, followed by the base
design of the proposed SMCMM. Section 4 presents the
high-level process model resulting from literature
review. Section 5 describes the model and architecture
of version 2 of SMCMM as well as the generic criteria for
each level of maturity. This is followed in section 6 by
an example of the content of a specific process area
(Management of Service Requests and Events).

Finally, current work in progress is presented in section 7.
2. Prior Contributions

2.1 Researchers contributions

A literature search has not resulted with any
comprehensive diagnostic techniques to evaluate the
quality of the maintenance process of a given
organization, nor to identify an improvement path.
Table 1 presents an inventory of recent software
engineering process evaluation and assessment
models. Each of these models was analyzed to identify
contributions that could help maintainers. Of the
thirty-four proposed models in this inventory, only a
handful (shown in bold in table 1) include documented
maintenance practices, sometimes accompanied by a
rationale and references. However, none of these
models covers the entire set of topics and concepts of
the body of knowledge specific to software
maintenance. This body of knowledge has recently
been documented in the chapter 6 of the Guide to the
Software Engineering Body of Knowledge [Abr04].

Year Software Engineering CMM
proposals

1991 Boo91
1992 Tri92
1993 Sei93
1994 Cam94, Kra94
1996 Bur96 & 96a, Zit96, Dov96
1997 Som97
1998 Esi98, Top98, Baj98
1999 Wit99, Vet99, Sch99
2000 Cob00, Str00, Bev00, Lud00
2001 Kaj01a & 01b, Ray01, Sch01, Luf01,

Tob01, Sri01
2002 Sei02, Nie02, Mul02, Vee02, Pom02,

Raf02, Sch02, Ker02, Cra02
Table 1: Software Engineering CMM

proposals, sorted by year of
publication

[Apr04] presents the mapping of a much larger

number of software maintenance references: a)
standards; b) relevant software engineering CMM
proposals; and c) recognized software maintenance
references. From these mappings, a large number of

software maintenance best practices have been
identified and listed. The key references presented are:

• The software maintenance standards ISO12207
[Iso95], ISO14764 [Iso98] and of IEEE1219
[Iee98];

• The most widely recognized quality models
ISO9000-3: 2000 [Iso00] and the CMMi© [Sei02];

• Process evaluation model standard ISO/IEC TR
15504 (SPICE) [Iso98a];

The revised SMCMM model has also taken inputs
from, and makes references to, other maturity models
and best practices publications that consider a variety
of software maintenance-related topics:
• Cm3-Corrective Maintenance Model [Kaj01a];
• Cm3-Maintainer’s Education Model [Kaj01b];
• ITIL Service Support [Iti01a];
• ITIL Service Delivery [Iti01b];
• IT Service CMM [Nie02];
• CobIT [Cob00];
• Malcolm-Baldrige [Mal03];
• Camélia Maturity Model [Cam94];
• SMCMM version 1 [Zit96].

Some of the SMCMM model improvements had been
documented in [Apr01, Apr02], and experimented in a
Middle East phone comp any. Another refinement is
derived from the CMMi© [Sei02] adoption of the
continuous representation, while the continuous
representation itself can be traced back to its
successful use in the past by other models such as:
Bootstrap [Boo91] and Camélia [Cam94] just to name
a few. These improvements to SMCMM have provided
the following benefits: a) inclusion of Spice
recommendations; b) a more granular rating for each
roadmap and domain; and c) identification of specific
practices across maturity levels, together with a path
from level zero (absent) to a higher level of maturity.
Furthermore, SMCMM has been aligned to the CMMi©
model and to many of best practices documented in
the software maintenance literature.

2.2 CMM© and CMMi© Models

The initial version of the model [Zit96] included only,
in its literature review, two references (a) [Swa89]; and
b) [Ball90]). Version 2 of the SMCMM has benefited
from a much larger number of references, each carefully
reviewed to ensure a wider and more representative

coverage of the maintenance processes. This review
has also confirmed that some maintenance key process

areas (KPAs) are unique to maintainers and not part of
the software development function (see Table 2).

Table 2: Software management key process areas (P = present, A = absent)

When the KPAs of table 2 are compared to CMMi©
model content, it can be observed that the CMMi©
model, being highly centered on the software
development, does not explicitly address these topics,
nor, with its primary focus on project management,
does it explicitly address the issues specific to the
software maintenance function [Zit96, Apr03]. For
example, in the CMMi©:
• The concept of maintenance maturity is not

recognized or addressed;
• There is no sufficient inclusion of maintenance

specific practices as process improvement
mechanisms;

• Maintenance-specific issues are not adequately
addressed;

• Rejuvenating-related plans such as need for re-
documentation, re-engineering, reverse
engineering, software migration or retirement are
not satisfactorily addressed.

The absence in the CMM of some of the specific
processes used by the maintainers in everyday
situations had also been documented earlier in [Zit96]
and they are still absent from the new CMMi© version,
since it maintains a developer’s view of the software
production process.

3. Software Maintenance Interfaces

The revised SMCMM model provides a more

comprehensive and more detailed maintainer’s context,
key interfaces and generic processes of the
maintenance environment, as illustrated in the context
diagram of Figure 1. There are indeed multiple

interfaces in a typical software maintenance
organizational context: "A maintenance manager must
keep his applications running smoothly, he must react
quickly to restore order when there are production
problems, he must provide the agreed-upon level of
service and keep the user-community confidence that
they have a dedicated and competent support team at
their disposal, which is acting within the agreed-upon
budget" [Abr93].

The interface with the user is a key function and
relates to the daily communications which require: a)
rapid operational responses to problem reports; b)
responsiveness to inquiries about a specific business
rule, screen or report; and c) progress reports on a
large number of mo dification requests.

Such user interfaces are either direct, or accessible
via a Help Desk, and, in best practices, are supported
by a ticket-handling system which documents,
controls and expedites the workload.

Other user interface activities, less intense and less
frequent, consist of negotiations and discussions
about individual request priorities, service level
agreements (SLAs), planning, budgeting/pricing and
user satisfaction-related activities.

A second maintenance interface deals with a: the
Help Desk; and b: the operations and infrastructure
organization [Iti01a, Iti01b]. The user is rarely aware
of, or involved in, internal information technology (IT)
processes. Internally IT must have an effective
problem resolution process and efficient
communications.

A specific request, sometimes called a "ticket" when
this process is automated, will typically circulate
among IT support groups in order to isolate a problem
[Apr01].

Some Maintenance Key Process Areas Software
management
(maintenance)

Software development
(creation)

Management of problems (Problem resolution interfacing with a help
desk)

P A

Acceptance of the software P A
Managing transition from development to maintenance P A
Establishment of Service Level Agreements (SLA) P A
Planning of maintenance activities (versions, SLA, impact analysis) P A
Managing events and service requests P A
Supporting daily operations P A
Rejuvenating software P A

The user interface also includes less frequent
activities such as coordination of service recovery

after failures or disasters in order to help restore

access to services, within agreed-upon SLA terms and
conditions.

Figure 1: Software Maintainers Context Diagram

The third key interface exists between the software
developers and the software maintainers, and is
initiated during the development of new software. The
root cause of several maintenance problems can be
traced to development, and it is recognized that the
maintainers need to be involved and exercise some
form of control during this transition [Dek92, Wal94,
Pig97, Ben00]. This development-maintenance
interface also illustrates the contributions made by
maintainers to help in and support, and sometimes be
involved in, a number of large development projects
concurrently. The maintainer’s knowledge of the
software and data portfolios is of great value to the
developers, who need to replace or interface with
legacy software. Some of the key activities would be,
for example: a) development of transition strategies to
replace existing software; b) help in the design of
temporary or new interfaces; c) verification of business
rules or help in understand the data of existing
software; and d) help in data migration and cutover of
new software or interface.

The fourth interface (figure 1) addresses
relationships with a growing number of suppliers,
outsourcers, and ERP vendors [Car94, Apr01,
McC02]. The maintainers interface with them in all
kinds of relationships, for example: a) with suppliers
that develop new software or configuring ERP
software; b) with sub-contractors who are part of the
maintenance team, to help with specific expertise and
additional manpower during peak periods; c) with

suppliers of maintenance contracts providing specific
support services for their already licensed software;
and d) with outsourcers who might replace, partially or
completely, a function of the IT organization
(development, maintenance or operations &
infrastructure). To ensure good service to its user,
software maintainers must develop some
understanding of the many contract types, and manage
them efficiently, to ensure supplier performance, which
often impact the SLAs results.

4. SMCMM high level process model

To address the concerns specific to each

maintenance request source, distinct maintenance
process areas are required. For good alignment of the
SMCMM with the ISO 12207 [Iso95] standard, the
software maintenance key processes have been
grouped into three classes (figure 2) [Apr04a]: a)
primary processes (operational); b) the support
processes (to the primary processes) and c)
organisational processes that are offered by the IT unit
or other departments of the organization (e.g. human
resources, purchasing, etc.). Depending on the source
of the maintenance requests, maintenance activities are
handled through distinct processes; this is illustrated
in Table 3 with a few examples. For each request
source, a key maintenance service/process, together
with due registration of the related maintenance
categories of work, is initiated. For example, if users are

Application
Software

Maintenance

Help
Desk

Customers

Software Development

Infrastructure
and Operations

Suppliers

Initial
Transition

Problem
Resolution
communications

problem
tickets

Service Level Agreement,
Maintenance services

Support
Development projects

failure
callsRequest

Status

1

2

3
4Application

Software
Maintenance

Help
Desk

Customers

Software Development

Infrastructure
and Operations

Suppliers

Initial
Transition

Problem
Resolution
communications

problem
tickets

Service Level Agreement,
Maintenance services

Support
Development projects

failure
callsRequest

Status

1

2

3
4

the source of the requests, then a change request
related to operational use of the software and the work
to be carried out can be classified within one of three

maintenance services: correction, evolution or

operational support. In some instances, a supporting
process will be needed. A typical one is the need for
service level agreement information as part of the

operational support activities.

Figure 2: A classification of the Software Maintainer Key Processes – SMCMM design

Table 3: Activities and Categories of maintenance work

5. SMCMM: Model and architecture

This section presents the model and the architecture
of version 2 of SMCMM..

Source of Requests Example of a Key Maintenance
Service/Process

Assignment to a Maintenance Category of service for effort
collection

Project Managers Management of transition from
development to maintenance

Operational Support for project

Project Managers Provide knowledge of existing
legacy systems

Operational Support to project

Users Ask for a new report or complex
query

Operational Support to users

Users Ask for new functionality Adaptive
Users Report an operational problem Corrective
Users Quarterly account management

meeting with the users
Operational Support to users + Service Level Agreement

Software Operations Change to a systems utility Perfective
Rejuvenating Studies Software impact analysis Often leads to a project or re-development, all of which are

outside the scope of daily maintenance

O
pe

ra
tio

na
l P

ro
ce

ss
es

O
ps

. S
up

po
rt

P
ro

ce
ss

es

Review
Process

SLA and
Supplier

Management
Maintenance

Training

Measurement

Transition
Issue and
Request

Management

Management
and document

control
And Quality
Assurance

Process
Improvement

Maintenance
Planning

Version
Restartand
Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

P
ro

ce
ss

es

Software
Rejuvenation

and
Retirement

Verification
- Validation

Production
Surveillance

O
pe

ra
tio

na
l P

ro
ce

ss
es

O
ps

. S
up

po
rt

P
ro

ce
ss

es

Review
Process

SLA and
Supplier

Management

SLA and
Supplier

Agreements
Maintenance

Training
Maintenance

Training

Measurement

Software
Transition

Issue and
Request

Management

Event and
Service
Request

Management

Management
and document

controlManagement Assurance

Process
Improvement

Process

Improvement

Maintenance
Planning

Maintenance
Planning

Versions
and

Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Operational
Support

Corrections

Evolutions

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

P
ro

ce
ss

es

Software
Rejuvenation

and
Retirement

Software
Rejuvenation

Migration
Retirement

Verification
- Validation
Verification
- Validation

Monitoring

Control

Configuration
Software Process and

Product
Quality

Definition and

Software Evolution
Engineering

and

and Analysis

Maintenance
of

Innovation
And

Deployment

O
pe

ra
tio

na
l P

ro
ce

ss
es

O
ps

. S
up

po
rt

P
ro

ce
ss

es

Review
Process

SLA and
Supplier

Management
Maintenance

Training

Measurement

Transition
Issue and
Request

Management

Management
and document

control
And Quality
Assurance

Process
Improvement

Maintenance
Planning

Version
Restartand
Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

P
ro

ce
ss

es

Software
Rejuvenation

and
Retirement

Verification
- Validation

Production
Surveillance

O
pe

ra
tio

na
l P

ro
ce

ss
es

O
ps

. S
up

po
rt

P
ro

ce
ss

es

Review
Process

SLA and
Supplier

Management

SLA and
Supplier

Agreements
Maintenance

Training
Maintenance

Training

Measurement

Software
Transition

Issue and
Request

Management

Event and
Service
Request

Management

Management
and document

controlManagement Assurance

Process
Improvement

Process

Improvement

Maintenance
Planning

Maintenance
Planning

Versions
and

Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Operational
Support

Corrections

Evolutions

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

P
ro

ce
ss

es

Software
Rejuvenation

and
Retirement

Software
Rejuvenation

Migration
Retirement

Verification
- Validation
Verification
- Validation

Monitoring

Control

Configuration
Software Process and

Product
Quality

Definition and

Software Evolution
Engineering

and

and Analysis

Maintenance
of

Innovation
And

Deployment

5.1 Model

Version 2 of the SMCMM is presented Table 6 (a and
b) in more detail in and includes 4 Process Domains, 18
KPAs, 74 Roadmaps and 443 Practices. While some
KPAs are unique to maintenance, some other were
derived from the CMMi© and other models and
modified slightly to map mo re closely to daily

maintenance characteristics. The capability level
definitions and the corresponding generic process
attributes are described for each maturity level of the
SMCMM and presented in Table 4.

[Apr04] describes how, over a two-year period,
participating organizations contributed to the mapping
of each relevant practice to a capability level in the
SMCMM model.

Level–
Level Name

Capability Level Definition Process Generic Attributes

0-Inexistent The process is not being executed by
the organization, or there is no
evidence that the process exists.
Level 0 implies that the activity is
not being performed by the
organization

a) There is no evidence that the process exists;
b) Upper management is not aware of the impact of not having this

activity or process in the organization;
c) The activity or process does not meet the goals stated by the model;
d) There is no knowledge or understanding of the activity or process;
e) Discussions concerning the activity or process take place, but no

evidence can be found that the activity or process exists;
f) Historical records show that the activity has been performed, but it is

not being done at this time.
1- Initial Improvised: Recognition that the

practice is done informally. Level 1
implies that something is being done
or that the activity is close to the
intention of the practice presented in
the model. The execution of the
practice depends on the knowledge,
and presence, of key individuals. The
practice is typically ad-hoc and not
documented. It is local and would not
appear in another software
maintenance section. There is no
evidence that the attributes of the
processes are systematically
executed and that the activities are
repeatable.

a) The organization is aware of the need to do this activity or process;
b) An individual conducts the activity or process and the procedures are

not documented (note: typically, staff must wait until this individual
arrives on-site to learn more about the process. When this individual is
not on-site, the activity or process cannot be executed fully);

c) A few of the software maintainers execute this activity or process;
d) We cannot recognize precisely the inputs and outputs of the activity

or process are;
e) The is no measure of the activity or process;
f) The deliverables (outputs) are not used, not easily usable and not kept

up to date. Their impact is minimal;
g) Who performs the activity or the qualifications/training required

cannot be identified.

2-
Repeatable
but intuitive

Awareness of the practice, which is
either deployed or a similar practice
is performed. Level 2 implies that
the practices suggested by the model
are deployed through some of the
software maintenance sections. What
characterize this level is the local and
intuitive aspects of the activities or
processes, which makes it difficult
to harmonize them across all the
software maintenance sections.

a) The process is documented and followed locally;
b) Training or support is provided locally;
c) The goals of the process and activities are known;
d) Inputs to the process are defined;
e) Deliverables supporting the goals of the activity or process are

produced;
f) Qualitative measures of some attributes are performed;
g) Individuals’ names and qualifications are often described.

3- Defined
Process

The practice or process is understood
and executed according to an
organizationally deployed and
documented procedure. Level 3
implies that the practice or process
is defined, communicated and that
the employees have received proper
training. We expect the qualitative
characteristics of the practice or
process be predictable.

a) The practice or process suggested by the model is executed;
b) The same practice is used across software maintenance sections;
c) Basic measures have been defined and are collected, validated and

reported;
d) Employees have the knowledge to execute the practice or process (i.e.

Implying that the roles and responsibilities of individuals are defined);
e) The required resources have been assigned and managed to achieve the

identified goals of the process;
f) Techniques, templates, data repository and infrastructures are

available and used to support the process;
g) The practice or process is always used by the employees;
h) Key activities of the process are measured and controlled.

4-Managed
and
Measurable

The practice is formally executed
and quantitatively managed
according to specified goals within
established boundaries. Level 4 has
an important distinction in the
predictability of the results of a
practice or process. The expression
‘quantitatively managed’ is used
when a process or practice is
controlled using a statistical control
technique, or a similar technique,
that is well suited to control the
execution of the process and its most
important activities. We are trying to
predict the performance and control
the process.

a) Intermediate products of a process are formally reviewed;
b) Conformance of the process has been assessed based on a documented

procedure;
c) Records of reviews and audits are kept and available;
d) Open action items from reviews and audits are monitored until closure;
e) Resources and infrastructures used by the process are planned,

qualified, assigned, controlled and managed;
f) The process is independently reviewed or certified;
g) Key activities of the process have historical data and an outcome that

is measurable and controlled;
h) Key activities have a numerical goal that is set and is attainable;
i) Key activities have quantitative measures that are controlled in order

to attain the goals;
j) Deviations are analyzed to take decisions to adjust or correct the

causes of the deviation.

5–
Optimized

 The practice or process has
quantified improvement goals and
is continually improved Level 5
implies continuous improvement.
Quantitative improvement targets
are established and reviewed to
adapt to changes in the business
objectives. These objectives are used
as key criteria for improvements.
Impacts of improvements are
measured and assessed against the
quantified improvement goals. Each
key process of software maintenance
has measurable improvement targets.

a) Major improvements to process and practices can be reviewed;
b) Innovations to technologies and processes are planned and have

measurable targets;
c) The organization is aware of and deploys the best practices of the

industry;
d) There are proactive activities for the identification activities of process

weaknesses;
e) A key objective of the organization is defect prevention;
f) Advanced techniques and technologies are deployed and in use;
g) Costs and benefits studies are carried out for all innovations and major

improvements;
h) Activities of reuse of human resource knowledge are done;
i) Causes of failure and defects (on overall activities/processes and

technologies) are studied and eliminated.

Table 4: Process characteristics by process level

6. Example of a key process area –
Management of Service Requests and
Events

At the detailed level for each KPA, maintenance goals
and key practices have been identified based on the

literature on software maintenance. This section
presents, as an example, a detailed description of one
of the 18 KPA of the SMCMM: 'Management of Service
Requests and Events'. The corresponding labels for
this KPA are listed in Table 5, on the basis of SPICE
requirements for labeling identification.

Table 5: Example of a KPA header

6.1 Overview

The management of service requests and events for
a software maintainer combines a number of important
service-related processes.

These processes ensure that events, reported
failures or modification requests and operational
support requests are identified, classified, prioritised
and routed to ensure that the SLA is fully met.

An event, if not identified and managed quickly,
could prevent service level targets from being met and
lead to user complaints about: a) the slowness in
processing of a specific request; or b) unmet quality
targets for an operational software (ex: availability or
response time).

6.2 Objectives and goals

To ensure that the agreed-upon service levels are
met, the objectives of this KPA are: a) to ensure that
events and service requests are identified and
registered daily; b) to determine the relative
importance, within the current workload, of new events
and service requests; and c) to ensure that the
workload is focused on approved priorities. The
maintainer must also communicate proactively about
failures, and unavailability of software (including its
planned preventive maintenance activities). This KPA
covers the requirement that users are made aware of
the maintenance workload and authorize and agree on
maintenance priorities. Maintainers must also oversee
software and operational infrastructures as well as
production software behavior (availability,
performance, reliability, stability as well as the status
of the software and its infrastructure). When priorities
change, maintainers must ensure that the maintenance
workload will be reassigned quickly, if necessary. The
goals of this KPA are as follows:

Goal_1 To proactively collect, and register all requests
for services (customer-related, or internally generated);

Goal_2 To oversee the behavior of the software and
its infrastructures during the last 24 hours, to identify
events that could lead to missing SLA targets;

Goal_3 To develop a consensus on the priorities of
service requests (in the queue or being processed);

Goal_4 To ensure that maintainers are working on the
right (and agreed-upon) user priorities;

Goal_5 To be flexible and have the ability to interrupt
the work in progress based on new events or changed
priorities;

Goal_6 To proactively communicate the status of the
service, planned resolution times, and current
workload.

For complete operability, this KPA requires practices
from other KPAs of the SMCMM model. As an example,
linkages are required to: Impact Analysis, Service level
Agreement, Operational Support and Causal Analysis
& Problem Resolution.

Once this KPA has been successfully implemented,
it will be observed that:

• Maintenance work is centered on user priorities
and SLAs;

• Interruptions of maintenance work are justified,
and are authorized by users and SLAs;

• The maintenance organization meets its agreed-
upon levels of services;

• Proactive operational software surveillance
ensures rapid preventive action;

• Status reports, on failures and unavailability, are
broadcast quickly and as often as required until
service restoration.

6.3 Detailed practices

The individual practices are assigned to one of five
levels of maturity. Examples of detailed practices are
presented next, by maturity levels, from 0 to 3.

6.3.1 Level 0 and 1 practices

At level 0, there is only one practice:
Req1.0.1 The software maintenance organization does
not manage user requests or software events.

Maintenance organizations operating at this maturity
level perform the daily work of software maintenance
without being formally accountable for their activities
and priorities to the user community.

At level 1, two practices are documented in the
model:
Req1.1.1 Request and event management is managed
informally.

Identifier Key Process Area Spice Type
 Req1 Management of

Service Requests
and Events

2 (ORG.2)

Req1.1.2 An individual approach to managing user
requests and events is based mainly on personal
relationships between a maintainer and a user.

The software maintenance organizations, which
operate at this maturity level, have typically have
informal contacts with some users and none with
others. Records of requests or events are not
standardized. Service is given unevenly, reactively and
based on individual initiatives, knowledge and
contacts. The maintenance service and workload are:
a) not measured and, b) not based on user priorities;
and c) seldom publicized or shared with user
organizations.

6.3.2 Level 2 practices

At level 2, the service requests are processed
through a single point of contact. Requests are
registered, categorized and prioritised. Approved
software modifications are scheduled to a future
release (or version). Some local effort of data collection
emerges and can be used to document maintenance
costs and activities through a simple internal
accounting procedure.
Req1.2.1: There is a unique point of contact to provide
direct assistance to users.

At this maturity level, the software maintenance
organization should have identified a point of contact
for each software service request, software and user.
Req1.2.2 A Problem Report (PR) or Modification
request (MR) is registered and used as a work order
(also sometimes called a ticket) by the maintainer.

At level 2, the software maintenance organization
maintains records of each request, and uses them to
manage the incoming workload.
Req1.2.3: Every request and event is analyzed,
categorized, prioritized, and assigned an initial effort
estimate.

Maintainers classify the service requests and events
according to standardized categories. Each request is
assessed to determine the effort required. Pfleeger
[Pfl01] adds that an impact analysis is carried out, and,
in each case, a decision is as to how much of the
standard maintenance process will be followed based
on the urgency and costs that can be billed to the
customer of the request.
Req1.2.4: Approved modifications are assigned,
tentatively, to a planned release (version) of a software
application.

Maintainers are starting to regroup changes and
plan for releases and versions. Each request is
allocated to a planned release.

Req1.2.5: The service level measurement reports are
used for invoicing maintenance services.

At level 2, the maintainer uses the same processes
and service-level reports for invoicing maintenance
services and budget justification.
Req1.2.6: A summary of maintenance cost data is
presented. The invoice i s based on a limited number of
key cost elements, those most important to the
maintainer.

The maintainer must be in a position to report on all
the service requests worked on during a reporting
period (e.g. monthly). ISO/IEC 14764, states that
analyzing completed maintenance work, by
maintenance categories, helps in gaining a better
understanding of maintenance costs.

6.3.3 Level 3 practices

For the sake of brevity, only the level 3 list of
practices is presented here:
Req1.3.1: Various alternatives are available to users to
obtain help concerning their software applications and
related services.
Req1.3.2: Users are kept up to date on the status of
requests and events.
Req1.3.3: Proactive communications are established
for reporting failures, as well as for planned preventive
maintenance activities which impact the user
community.
Req1.3.4: A decision-making process is implemented
to take action on a maintenance service request (e.g.
acceptance, further analysis required, discard it).
Req1.3.5: Failures and user requests, including
modification requests, are registered (tickets) and
tracked in a repository of maintenance requests, in
conformity with written and published procedures.
Req1.3.6: Procedures on the registration, routing, and
the closing of requests (tickets) in the repository of
maintenance requests, are published and updated.
Req1.3.7: The mandatory and optional data fields on
the user request form are standardized.
Req1.3.8: Problem Reports (PR) document includes
detailed data related to reported failures.
Req1.3.9: The request and event management process
is linked to the maintenance improvement process.
Req1.3.10: Standardized management reports
documenting requests and events are developed and
made available to all IT support groups and to users.
Req1.3.11: A process is implemented to decrease the
waiting time of requests in the service queue.
Req1.3.12: Data on actual versus planned maintenance
costs are documented, as well as details on the usage

and the costs for all maintenance services (e.g.
corrective, perfective, adaptive …);
Req1.3.13: The invoice includes the detailed costs of
all services, by software application.

7. Summary and next steps

This paper has presented version 2 of a software
maintenance model (SMCMM) developed to assess and
improve the quality of the software maintenance
function. This SMCMM model is based on the model
developed by the SEI of the Carnegie Mellon
University of Pittsburgh to evaluate and improve the
process of software development. The identific ation of
key differences between the development and the
maintenance function was based on industry
experience, international standards and the literature
on software maintenance.

While the initial version of the model was based on
only two seminal references ([Swa89] and [Ball90]),
version 2 of SMCMM is much more broadly based and
has been field-tested in two software maintenance
organizations. In addition, the information provided
by the SMCMM has been instrumental in the review and
improvement of the Maintenance knowledge area for
the 2004 edition of the SWEBOK Guide [Apr03].

Further field study is required to fine tune this
maintenance model. This will ensure that the key
practices suggested by maintenance experts or
described in the literature are positioned at the correct
level of maturity within this maintenance assessment
model.

The motivation for version 2 of this SMCMM model
was to contribute to addressing the quality issues of
the maintenance function and to suggest further
directions for improvements. Empirical studies on the
use of the SMCMM as a tool for continuous
improvements in maintenance management could
contribute to developing a better understanding of the
problems of the software maintenance function.

Acknowledgments

We thank industry members who have worked on
this project over the years, including special thanks to
Mr. Dhiya Al-Shurougi for his most valuable field
study conducted in the Middle East. This research
project is being carried out at the Software Engineering
Research Laboratory at the École de Technologie
Supérieure–University of Québec, headed by Dr. Alain
Abran. The opinions expressed in this paper are solely
those of the authors.

8. References

[Abr93] A. Abran, H. Nguyenkim, (1993),
"Measurement of the Maintenance Process from a
Demand-based Perspective", Journal of Software
Maintenance: Research and Practice, 5 (2), 63-90.

[Abr04] A. Abran, J.W. Moore (Exec. Eds), P. Bourque,
R. Dupuis (Eds), Guide to the Software Engineering
Body of Knowledge – 2004 Version , IEEE Computer
Society, Los Alamos, 2004. Can be downloaded free of
charge from www.swebok.org

[Apr01] A.April, J.Bouman, A.Abran, D. Al-Shurougi,
(2001), "Software Maintenance in a Service Level
Agreement: Controlling the Customer Expectations",
Fourth European Software Measurement Conference,
FESMA, Heidleberg, Germany, May.

[Apr02] A.April, D.Al-Shurougi, (2002), "Software
Maintenance Productivity", ICB/ASAY “The Role of
Quality Maintenance in Cost Minimisation Conference,
Bahrain, May 27-28.

[Apr03] A. April, A. Abran, P. Bourque, "Analysis of
the knowledge content and classification in the
SWEBOK chapter: Software Maintenance", position
paper accepted at the 11th International Workshop on
Software Technology and Engineering Practice - STEP
2003, Amsterdam, Sept. 2003.

[Apr04] A.April, A.Abran, R.Dumke, "Assessment of
Software Maintenance Capability: A model and its
Design Process", IASTED 2004 Conference on
Software Engineering, Innsbruck (Austria), Feb. 16-19,
2004.

[Apr04a] A.April, A.Abran, R.Dumke, "Assessment of
Software Maintenance Capability: A model and its
Architecture", CSMR 2004, 8th European conference on
Software Maintenance and Reengineering, Tampere
(Finland), Mar. 24-26, 2004.

[Baj98] Bajers, F. (1998), "How to introduce maturity in
software change management", Technical Report R98-
5012, Department of Computer Science, Aalborg
University, Denmark.

[Ben00] K.H.Bennett, (2000)c "Software Maintenance:
A Tutorial", Software Engineering edited by Dorfman
and Thayer, IEEE Computer Society Press, Los
Alamitos.

[Bev00] Bevans N. (2000)c Introduction to Usability
Maturity Assessment, Serco Ltd. [On line].

www.usability.serco.com (link tested on 11 November
2002).

[Boo91] Bootstrap, (1991). Esprit project #5441,
European Commission, Brussels, Belgium.

[Bur96] Burnstein, I., Suwannasart, T., Carlson, C.
(1996), "Developing a Testing Maturity Model: Part I",
Crosstalk Journal, August, 21-24 [On line].
http://www.stsc.hill.af.mil/crosstalk/. (link tested on 11
November 2002).

[Bur96a] Burnstein, I., Suwannasart, T., Carlson, C.,
(1996), Developing a Testing Maturity Model: Part II",
Crosstalk Journal, September, [On line].
http://www.improveqs.nl/pdf/Crosstalk%20TMM%20p
art%202.pdf (link tested on 11 October 2003).

[Cam94] Camélia. (1994), "Modèle d’évolution des
processus de développement, maintenance et
d’exploitation de produits informatiques", Projet
France-Quebec, Version 0.5, Montréal (Canada).
[Car94] D.Carey, (1994), "Executive round-table on
business issues in outsourcing - Making the
decision", CIO Canada, June/July.

[Cob00] IT Govenance Institute, (2000), "CobiT,
Governance, Control and Audit for Information and
Related Technology", 3rd Edition, July issue.

[Cra02] Crawford, J.K. (2002), "Project management
Maturity Model, Providing a proven path to project
management excellence", Marcel Dekker/Center for
business practices.

[Dek92] S.M. Dekleva. (1992), "Delphi Study of
Software Maintenance Problems", ICSM - International
Conference on Software Maintenance, IEEE Computer
Society Press, 10-17.

[Dov96] Dove, R., Hartman, S., Benson, S., (1996), "A
Change Proficiency Maturity Model, An Agile
Enterprise Reference Model with a Case Study of
Remmele Engineering", Agility Forum, AR96-04,
December.

[Esi98] European Software Institute (ESI), "TeleSpice
& R-Spice", [On line]. www.esi.es (Link tested on 15
November 2002).

[Iee98] IEEE Std 1219, (1998). Standard for Software
Maintenance, IEEE Computer Society Press.

[ISO95] ISO/IEC 12207, (1995). Information Technology
– Software Life Cycle Processes, International
Organization for Standardization, Geneva.

[ISO98] ISO/IEC FIS 14764, (1998). Software
Engineering-Software Maintenance, International
Organization for Standardization, Geneva.

[ISO98a] ISO/IEC TR 15504-2, (1998). Information
Technology – Software Process Assessment – Part 2
A reference model for process and processes
capability, International Organization for
Standardization, Geneva.

[Iso00] ISO9001:2000, (2000). Quality Management
Systems – Requirements, International Organization
for Standardization, Third edition December 15,
International Organization for Standardization, Geneva,
Switzerland.

[Iti01a] Information technology Infrastructure Library,
(2001), Central Computer and telecommunications
Agency, Service Support, 09/2000, HSMO Books,
London, UK.

[Iti01b] Information technology Infrastructure Library,
(2001), Central Computer and telecommunications
Agency, Service Delivery 04/2001, HSMO Books,
London, UK.

[Kaj01a] M. Kajko-Mattsson, (2001), "Corrective
Maintenance Maturity Model", partial fulfillment of the
requirements for P.H.D, report 01-015, Stockholm
University (Sweden).

[Kaj01b] M. Kajko-Mattsson, S. Forssander, U.
Olsson, (2001)c "Corrective Maintenance Maturity
Model: Maintainer’s Education and Training", ICSE -
International Conference on Software Engineering,
IEEE Computer Society Press: Los Alamitos, CA.

[Ker02] Kerzner, H. (2002)c "Strategic Planning for
Project Management Using a Project Management
Maturity Model", John Wiley & Sons.

[Kra94] Krause, M.H. (1994),. "Software - A Maturity
Model for Automated Software Testing", Medical
Devices & Diagnostic Industry Magazine, December
issue.

[Lud00] Ludescher, G., Usrey, M.W. (2000)c "e-
commerce Maturity Model", 1st international Research
Conference on Organizational Excellence in the Third
Millennium, R.Edgeman editor, Estes Park, CO, August
2000, 168-173.

[Luf01] Luftman, J. (2001), "Assessing Business-IT
Alignment Maturity", Communications of AIS, 4(2).

[Mal03] Malcolm Baldrige National Quality Program.
(2003), "Criteria for Performance Excellence", [On line]
http://www.quality.nist.gov/ (Link tested on January
8th 2003).

[McC02] B.McCracken, (2002), "Taking Control of IT
Performance", InfoServer LLC, Dallas, Texas, October.

[Mul02] Mullins, C. (2002),."The Capability Model –
from a data perspective", The Data Administration
Newsletter, [On line]. www.tdan.com/i003fe04.htm,
(Link tested on 30 October 2003).

[Nie02] F. Niessink, V. Clerk, H van Vliet, (2002)c "The
IT Service Capability maturity Model", release L2+3-
0.3 draft, [On line].
http://www.itservicecmm.org/doc/itscmm-l23-0.3.pdf
(Link tested on November 15th 2003).

[Pig97] T.M. Pigoski. (1997), "Practical Software
Maintenance: Best Practice for Managing your
Software Investment", John Wiley & Sons.

[Pom02] Projxsoft, "Project Organization Maturity
Model (POM2)", [On line].
http://www.projxsoft.com/default.asp?nc=2053&id=4
(Link tested on 11 October 2003).

[Raf02] Raffoul, W. (2002), "The Outsourcing Maturity
Model", Meta Group, [On line].
http://techupdate.zdnet.com/techupdate/stories/main/0
%2C14179%2C2851971-2%2C00.html#level1 (Link
tested on 09 October 2003).

[Ray01] Rayner, P., Reiss, G. (2001), "The Programme
Management Maturity Model" , The Programme
Management Group, 15th February, [On line].
http://www.e-programme.com/events/pmmm.htm (Link
tested on 15 October 2003).
[Sch01] Scheuing, A.Q., Fruhauf, K. (2000), "Maturity
Model for IT Oprations (MITO)", [On line].
www.software.saq.ch , (Link tested on 16 December
2002).

[Sch02] Schlichter, J. (2002), "An Introduction to the
emerging PMI Organizational Project Management
Maturity Model", [On line].
http://www.pmi.org/prod/groups/public/documents/inf
o/pp_opm3.asp (Link tested on 11 October 2003).

[Sch99] Schmietendorf, A., Scholz, A. (1999), "The
Performance Engineering Maturity Model at a glance",

Metrics News, 4(2), December issue, Magdeburg
(Germany).

[Sei93] SEI (1993), "Software CMM, Version 1.1",
CMU/SEI-93-TR-24, ESC-TR-93-177, Software
Engineering Institute, Carnegie Mellon University,
Pittsburg.

[Sei02] SEI (2002), "Capability Maturity Model
Integration for Software Engineering (CMMi), Version
1.1", CMU/SEI -2002-TR-028, ESC-TR-2002-028,
Software Engineering Institute, Carnegie Mellon
University, Pittsburg.

[Som97] Sommerville, I. Sawyer, P. (1997).
"Requirements Engineering : A Good Practice Guide",
John Wiley & Sons.

[Sri01] Sribar, V., Vogel, D. (2001), "The Capability
Maturity Model for Operations", Metagroup, [On line]
http://www.metagroup.de/cgi-
bin/inetcgi/jsp/displayArticle.do?oid=15213 (Link tested
on 10 October 2003).

[Str00] Stratton, R.W. (2000), 2The Earned Value
Management Maturity Model2, [On line].
http://www.mgmt-technologies.com/evmtech.html (Link
tested on 8 October 2003).

[Swa89] Swanson, E.B., and Beath, C.M. (1989).,
"Maintaining Information Systems in Organizations",
John Wiley & Sons.

[Tob01] Tobia, E., Glynn, M. (2001), "e-business, can we
control it? , e-business Maturity Model", 14th Utility
Coal Conference, PricewaterhouseCoopers, [On line].
www.utilitycoalconference.com (Link tested on 10
November 2002).

[Top98] Topaloglu, N.Y. (1998), "Assessment of Reuse
Maturity", 5th International Conference on Software
Reuse, Victoria (Casnada) June 2-5.

[Tri92] Trillium, (1992), "Model for the Telecom
Product Development & Support Process Capability",
Bell Canada, version 2.2, Montréal (Canada).
[Vee02] Veenendaal, V., Swinkels, R. (2002), "Guideline
for testing maturity: Part 1: The TMM model",
Professional Tester, Vol. three, Issue 1, [On line].
http://www.improveqs.nl/tmmart.htm (Link tested on 8
October 2003).

[Vet99] Vetter, R. (1999), "The network maturity model
for Internet Development", IEEE Computer, 132(10), 117-
118.

[Wal94] D.S.Walton(1994), “Maintainability Metrics”,
Centre for Software Reliability Conference, Dublin, City
University, London UK.

[Wit99] Wichita State University, (1999), "Enterprise
Engineering Presentation, Capability Model of BPR",
course IE80I, Whichita

[Zit96] M.Zitouni, A. Abran. (1996)c "A Model to
Evaluate and Improve the Quality of the Software
Maintenance Process", 6th International Conference
on Software Quality Conference. Ottawa: ASQ-
Software Division.

Process Domain Key Process Area Facet

Responsibility and Communications
Information gathering
Findings

Maintenance Process Focus

Action plan
Documentation and Standardization of
processes/services
Process/Service adaptation
Communication processes /services

Maintenance Process/Service
Definition

Repository of processes/services
Requirements, plans and resources
Personal training
Initial training of newcomers
Projects training on transition

Maintenance Training

User training
Definition of maintenance measures
Identification of baselines
Quantitative management

Maintenance Process
Performance

Prediction models
Research of innovations
Analysis of improvement proposals
Piloting selected improvement proposals
Deployment of improvements

Process
Management

Maintenance Innovation and
Deployment

Benefit measurement of improvements
Communications and contact structure Event and Service Request

Management Management of events and service
requests
Maintenance Planning (1 to 3 yrs)
Project transition planning
Disaster Recovery planning
Capacity planning
Versions and upgrade planning

Maintenance Planning

Impact analysis (PR’s and MR’s plans)
Follow-up on planned and approved
activities
Review and analyze progress

Monitoring and Control of
Service Requests and Events

Urgent changes and corrective measures
Account Management of users
Establish SLA’s and contracts
Execute services in SLA’s and contracts

Maintenance
Request
Management

Service Level Agreements and
Supplier Agreements

Report, explain and bill services

Table 6a: SMCMM Model content (Version 2)

Process Domain Key Process Area Facet

Developer and Owner involvement and
communications
Transition process surveillance and
management
Training and knowledge transfer
surveillance
Transition preparation (documents, software
and problem log)

Software Transition

Participation in system and acceptance tests
Production software monitoring
Outside normal hours support
Business rules and functionality support

Operational Support

Ad-hoc requests/reports/services
Detailed design
Construction (programming)
Testing (unit, integration, regression..)

Software Evolution and
Correction

Documentation
Reviews
Acceptance tests

Software Verification and
Validation

Move to production
Change Management
Baseline configuration

Software Configuration
Management

Reservation, follow-up and control of
components and documents
Objective evaluation
Identify and document non-conformances
Communicate non-conformances

Process and Product Quality
Assurance

Follow-up on corrections/adjustments
Define measurement programme
Collect and analyze measurement data
Repository of maintenance measures

Measurement and Analysis of
Maintenance

Communicate measurement analysis
Investigate defects and defaults
Identify causes
Analyze causes

Causal Analysis and Problem
Resolution

Propose solutions
Re-documentation of software
Restructuration of software
Reverse engineering of software
Re-engineering of software
Software migration

Software
Evolution
Engineering

Software Rejuvenation,
Migration and Retirement

Software retirement

Table 6b: SMCMM Model content (Version 2)

