
Teaching Software Quality Assurance in an Undergraduate Software Engineering Program

* École de technologie supérieure

Department of Software and It Engineering
1100, Notre-Dame Street West, Montréal, Québec, Canada, H3C 1K3.

** Ericsson Algeria S.A.R.L

71 Rue Mohamed Belkacemi, El Madania,
16075 Algiers, Algeria

Abstract
Automation or industrial automation is the use of computers to control industrial machinery and processes, replacing
human operators. It is a step beyond mechanization, where human operators are provided with machinery to help
them in their jobs. The most visible part of automation can be said to be industrial robotics. Industrial automation
relies heavily on software quality. Software quality assurance is taught within the Software Engineering
undergraduate curriculum at the École de technologie supérieure in Montréal, Canada. Throughout the course we
stress the concept of the cost of quality to convince students of the importance of putting in place adequate
prevention and appraisal practices in order to reduce software project costs and failures. The lectures cover a wide
spectrum of quality assurance techniques and tools. In addition to weekly 3-hour lectures, the course includes a
project in which students have an opportunity to work with industrial software quality assurance techniques and
tools.

Keywords: software quality assurance, software quality measurement, software quality improvement, software
quality fundamentals, cost of quality, software quality and ethics.

Introduction
Automation or industrial automation is the use of
computers to control industrial machinery and
processes, replacing human operators. It is a step
beyond mechanization, where human operators are
provided with machinery to help them in their jobs.
The most visible part of automation can be said to be
industrial robotics. Industrial automation relies
heavily on software quality. Software quality
assurance is taught in the lecture format within the
Software Engineering undergraduate and graduate
curriculum at the École de technologie supérieure
(ÉTS) in Montréal, Canada. This curriculum, based
on the Guide to the Software Engineering Body of
Knowledge (SWEBOK), stresses in the concept of
the cost of quality to convince students of the
importance of putting in place adequate prevention
and appraisal practices in order to reduce software
project costs and failures. The lectures cover a wide
spectrum of quality assurance techniques and tools. In
addition to a weekly 3-hour lecture, the course also
includes practical sessions in which students have an
opportunity to work with industrial automation
software quality assurance techniques and tools.

Quality is increasingly seen as critical to industrial
automation success, customer satisfaction and
acceptance. Its absence may result in financial loss,
dissatisfied customers and damage to the

environment, and may even endanger lives [1].
Software quality assurance (SQA) becomes even
more important when we consider all the software
development projects that have failed, and the
financial losses generated by those failures [2].

ÉTS began offering its software engineering
undergraduate program in 2001. The aim of the SQA
course, which is mandatory in this software
engineering curriculum, is to ensure that software
engineering students are aware of the importance of
SQA, and that they understand and are able to
manage its theoretical and practical aspects. This
includes knowledge of key standards from the
International Organization for Standardization (ISO)
and IEEE, as well as how to use SQA tools in
practice. The course allows students to apply SQA
practices across the whole software life cycle.

The professors who designed the SQA course and are
now teaching it have over 25 years of industrial
experience, mainly in the telecommunications and
defense sectors. The course is made up of lectures,
practical exercises and group projects. A continuous
process of student evaluation is carried out to ensure
that the concepts are well understood. Assessments
are performed using exams, laboratory sessions and
mini-tests. Commercial tools and open-source
software tools provide the necessary support to

Claude Y. Laporte*
Claude.Y.Laporte@etsmtl.ca

Alain April*
Alain.April@etsmtl.ca

Khaled Bencherif**
khaled.bencherif@ericsson.com

+1 514 396-8956 +1 514 396-8682 +213 21 77 11 84

students to enable them to work with SQA as it is
performed in industry.

This paper is divided into four sections: In section 1,
we present an overview of the undergraduate program
in software engineering as it applies to industrial
automation. In section 2, we briefly introduce the
SWEBOK Guide and the SQA knowledge area. In
section 3, we present a detailed description of the
SQA course. The current difficulties and future
improvements are discussed in section 4. Finally, we
conclude this paper by raising issues related to the
SQA course and its impact on the students in their
professional lives.

Section 1. Overview of the Software Engineering
Curriculum

The software engineering curriculum is a ten-term
program, and includes three four-month mandatory
paid internships in industry. Courses are offered
during all three four-month terms of the year.
Students may opt to complete their internships during
the fall, winter or summer terms. Every course
includes a weekly three-hour lecture and a weekly
two- or three-hour laboratory session where students
must complete practical assignments. Laboratories
are equipped with modern equipment as well as
software. Table 1 lists the software engineering
courses in the curriculum. Optional software
engineering courses are not shown in the table.

The program has been designed to meet the criteria of
the Canadian Engineering Accreditation Board. The
program was accredited for the first time in 2001 and
for a second time in 2006. Graduates of the ÉTS are
automatically admitted to Quebec’s professional
engineering body (OIQ: Ordre des ingénieurs du
Québec, Professional Association of Engineers of the
Province of Québec).

Section 2. The Guide to the Software Engineering
Body of Knowledge
The objectives of the Guide to the Software
Engineering Body of Knowledge (SWEBOK) [3] are
to characterize the content of the software
engineering discipline, to promote a consistent view
of software engineering worldwide, to clarify the
place, and set the boundary, of software engineering
with respect to other disciplines, and to provide a
foundation for curriculum development and
individual licensing material. The SWEBOK Guide is
a project of the IEEE Computer Society. It is a
consensually validated document available free of
charge1. The SWEBOK has also been published as
ISO Technical Report 19759 [4].

1 www.swebok.org

Course
Label

Course Title

LOG120 Software Design
LOG220 Advanced Object-Oriented Programming
LOG230 Management of Software Development

Process
LOG310 Formal and Semi-Formal Languages

(optional)
LOG320 Data Structures and Algorithms
LOG330 Software quality assurance
LOG340 User Interface Analysis and Design
LOG410 Requirements Analysis and Specification
LOG420 Software Architecture and Design
LOG510 Quality Control and Measurement
LOG520 Systems Security
LOG540 Analysis and Design of

Telecommunications Software
LOG550 Design of Real-Time Computer Systems
LOG610 Telecommunication Networks
LOG620 Algorithm Analysis
LOG630 Introduction to Databases
LOG640 Introduction to Parallel Processing
LOG650 Compilation Techniques
LOG660 High-Performance Databases
LOG710 Principles of Operating Systems and

Systems Programming
LOG720 Distributed Object-Oriented Architecture
LOG730 Introduction to Distributed Systems
LOG740 Interactive Multimodal Systems
LOG790 Capstone Project

Table 1 List of Software Engineering Courses

The SWEBOK Guide is oriented toward a variety of
audiences. It is aimed at serving public and private
organizations in need of a consistent view of software
engineering for defining education and training
requirements, classifying jobs, and developing
performance evaluation policies and career paths. It
also addresses the needs of practicing software
engineers and software engineering managers, and the
officials responsible for making public policy
regarding licensing and professional guidelines. In
addition, professional societies defining their
certification rules and educators drawing up
accreditation policies for university curricula will
benefit from consulting the SWEBOK Guide, as will
software engineering educators and trainers engaged
in defining curricula and course content. The
SWEBOK Guide seeks to identify and describe the
subset of software engineering knowledge that is
generally accepted. Generally accepted knowledge
applies to most projects most of the time, and
widespread consensus validates its value and
effectiveness.

The SWEBOK Guide is subdivided into ten

knowledge areas (KAs), the descriptions of which are
designed to discriminate among the various important
concepts, permitting readers to find their way quickly
to subjects of interest. Upon finding such a subject,
readers are referred to key papers or book chapters
selected because they present the knowledge
succinctly. The ten KAs are: Software Requirements,
Software Design, Software Construction, Software
Testing, Software Maintenance, Software
Configuration Management, Software Engineering
Management, Software Engineering Process,
Software Engineering Tools and Methods, and
Software Quality. In the SQA course, we cover the
Software Quality KA in depth, and also some
elements of Software Configuration Management.

Figure 2 illustrates the breakdown of the SQA KA
into topics [5]. This KA covers static techniques,
those which do not require the execution of the
software being evaluated, while dynamic techniques
are covered in the Software Testing KA. One of the
authors was the editor of the quality chapter of the
SWEBOK and ensured the alignment of the SQA
course content with the SWEBOK. As an example,
the ethics topic is covered by a class presentation of
the IEEE/ACM Code of Ethics [6], followed by a
two-hour practical session where students have to
identify clauses of the Code that were violated in a
Case Study entitled “The Case of the Killing Robot”
[7].

Figure 2. Breakdown of software quality topics [4].

Section 3. Software Quality Assurance Course

In this section, the lecture material of the SQA course
is presented.

3.1 Lectures

The SQA course is composed of thirteen 3-hour
lectures. It is designed to follow, as closely as

possible, the SQA topic sequence presented in the
SWEBOK. Each lecture topic is supported by
industrial examples, international standards clauses
and process improvement model practices. To ensure
that students grasp the importance of SQA activities,
the concept of the cost of quality is stressed
throughout the course. When performing SQA
activities as part of their term projects, students must
make tradeoffs between prevention, appraisal,
conformance and rework costs (see Figure 3). They
must experience, first-hand, that an investment in
prevention and appraisal will result in a significant
reduction in failure costs (e.g. rework effort).

0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 to

ta
l p

ro
je

ct
 c

os
t

Year

CMM level 3
Start of intiative
 CMM level 1

TCoSQ

Prevention
Rework

Appraisal

Cost of
Conformance

Rework

87 88 89 90 91 92 93 94 95 96

Figure 3. Improvement data [8]

Since data published in papers are sometimes very
remote from an undergraduate student’s experience,
and to ensure that the principles associated with the
cost of quality are well understood, students are
required to measure that cost at many points in their
term projects. They are also required to analyze their
data and draw conclusions on the benefits of SQA
activities. Students are often amazed that their own
project data may show a cost of failure of 50 and
sometimes 70% of total project effort. This helps to
make them much more receptive to SQA activities
presented in lectures (see Table 2 for details of course
lectures).

3.2 Use of Standards

ÉTS has signed an agreement with the IEEE to the
effect that, for a nominal fee, all software engineering
students and professors have access to the full content
of the IEEE electronic library. This includes all IEEE
standards. These standards are used in class, both as
reading assignments and in the laboratory sessions.
Until recently, we were not able to use the ISO
standards, as they were too expensive for students.
One of the authors has recently finalized an
agreement with the Canadian ISO standards
providers: the Standards Council of Canada (SCC).
The agreement allows all registered SQA students to

download standards selected by the professor from
the SCC Web site.

3.3 Laboratory Sessions

The laboratory sessions have been designed in such a
way that teams of students will apply the SQA theory
presented in the lectures to their SQA term projects.
Also, to simulate an industrial context where an

employee does not usually select his teammates, we
create teams by randomly assigning 3 or 4 students to
a team. The software engineering department at the
ÉTS has installed commercial suites of tools like
IBM’s Rational Software® and Parasoft Logiscope®,
which were obtained, at no cost, through an
educational agreement with the suppliers.

Table 2. List of SQA course topics.

Lecture Description

1 Introduction: Introduction to software quality, definitions and the cost of quality.
2 Code of Ethics: IEEE/ACM and OIQ Code of Ethics for software engineers. Concrete examples of

violations of the Code of Ethics are presented, in order to show the importance of ethical behavior in
the engineering profession.

3 Standards and Models: Key standards, such as IEEE 12207[9], and ISO/IEC 90003 [10]. Models
such as the Capability Maturity Model®2 Integration SM3 (CMMI®) [11] are also used to describe
SQA process content. Lectures illustrate how those standards are used to develop processes such as
the IBM-Rational Unified Process® (RUP).

4 Quality Model: Software product quality requirements are developed using the ISO/IEC 9126
quality model [12]. Criticality levels, according to the IEEE 1012 standard, are also presented. This
lecture sets the stage for defining quality requirements and how to assess them during a software
project.

5 Software Life Cycle Process: The following are presented: the software engineer’s obligations
with respect to quality, the structure and content of IEEE 12207, the SQA process and activities
using IEEE12207, and the Process and Product Quality Assurance Process Area of the CMMI.

6 Software Reviews: The five types of review, as defined by the IEEE 1028 standard [13], are
presented.

7 Software Inspection: The inspection process of the IEEE 1028 standard and peer review practices
of the CMMI are presented. The cost and benefit data associated with the use of inspections are
discussed.

8 Software Quality Assurance Plan (SQAP): The software quality assurance plan content,
according to standard IEEE 730, is presented [14].

9 Verification and Validation (V&V): V&V practices according to the IEEE 1012 standard are
described. Students are asked to choose from a list of techniques which one they would like us to
explain in detail.

10 Software Configuration Management (SCM): SCM practices and SCM roles are presented,
according to the CMMI and the IEEE 828 standard.

11 Measurement: The measurement program and specific measurements, their objectives in SQA and
the implementation of a measurement program are covered.

12 Supplier SQA: The activities relating to the management of the subcontractors according to the
CMMI are discussed with regard to the contribution of suppliers in providing a quality product.
Detailed contract clauses are presented.

13 Risk and Quality: The identification of the risks related to SQA and the content of risk
management standard IEEE 1540 and ISO/IEC 16085 are covered.

2 Capability Maturity Model Integration is a service mark of Carnegie Mellon University.
3 CMMI is registered with the US Patents and Trademarks Office by Carnegie Mellon University.

Laboratories were modified, in the summer of 2005,
to add open-source software tools such as CVS for
configuration management and Bugzilla for defect-
tracking. Since 80% of our graduates will work in
small and medium-sized enterprises (SMEs), we
thought that exposing them to low-cost tools might
help in the deployment of SQA practices in
organizations with scarce resources. Also, many
students are members of student clubs. These clubs
have problems similar to those of very small
enterprises (VSEs): limited budget, scarce resources

and high turnover. We were pleased to learn that
clubs like the remote-controlled submarine and the
unmanned piloted helicopter clubs had implemented a
few of the SQA practices and open-source tools
presented in the SQA course.

Students attend twelve 2-hour laboratory sessions
during a semester. They also undertake a 10-week
project, where they have to apply the SQA concepts
presented in the lectures. Table 3 briefly describes the
laboratories that are part of the SQA course.

Table 3. Topics of the SQA laboratories

Topic Description

1 Code of Ethics: 1) Study the IEEE/ACM Code of Ethics and the robot killer case study; 2) Find the
violated clauses of the Code; and 3) Determine the responsibilities.

2 Team project – Draft a project plan and a software requirement specifications document (SRS).
1) Software quality plan (IEEE standard 730); 2) Take into consideration the customer’s local Java
programming rules; 3) Develop project plan and estimates by Cost of Quality items; 4) Use the IBM
Rational SRS template (functional and nonfunctional requirements (use ISO/IEC 9126 for the
nonfunctional requirements); 5) Carry out a walkthrough of the documents produced; and 6) Carry
out a traceability analysis with the IBM Rational RequisitePro tool or Excel.

3 Team project - Software Configuration Management (SCM) and Traceability. 1) Implement the
SCM plan using IEEE 730 and IEEE 828; 2) Document the SCM procedure using the Entry-Task-
Verification-Exit notation (ETVX) (Rad85); 3) Update the project effort estimation; 4) Read
documentation, and configure and test CVS tool for the following roles: system administrator, the
individual responsible for configuration management and users; and 5) Carry out a walkthrough of
the document produced.

4 Team project - Programming and test. 1) Program additional features into existing software; 2)
Test the software produced; 3) Update information on the IBM RequisitePro/Excel, Bugzilla and
CVS tools; and 4) Update the project effort.

5 Team project - Problem/change and defect management and inspection. 1) Complete section 4.8
of the IEEE 730 standard; 2) Document the change/problem and defect management procedure using
the ETVX notation; 3) Read the documentation, configure and test the Bugzilla tool; 4) Print the
statistics and management reports from Bugzilla; 5) Carry out a walkthrough; and 6) Update the
project effort.

6 Team project - Product Quality Assessment. 1) Assess source code conformance to customer
standards using CheckStyle and software complexity/quality using Logiscope.

7 Team project - Finalize/update quality assurance plan. 1) Finalize the plan according to IEEE
standard 730; 2) Inspect the plan; 3) Carry out an evaluation of team members (peer evaluation); 4)
Carry out a project postmortem; and 5) Use the effort estimation and project tracking data to:
Analyze the variations and the costs of quality, explain the variations, explain how, in similar
projects, the tasks could be carried out to minimize the variations and the costs of an absence of
quality (rework).

3.4 SQA Course Web site

The Web site is an important repository for most of
the teaching materials, and is also used to post
messages to students. It contains general information
about the course, such as syllabus, professors’ contact
information, and the content of the lectures and labs.
It is composed of 13 sections, one matching each of
the 13 topics presented in the lectures.

For each lesson, the professor recommends
mandatory and optional readings. Most reading

assignments are chapters from the required textbook
[15]. This textbook, which has recently been adopted
by the professors, is the first to adequately cover the
SQA KA of the SWEBOK. In most other quality
assurance textbooks, if not all, only a few aspects of
SQA are covered, and the focus of attention is largely
on testing. Testing is covered in another software
engineering course (LOG510) of the ETS curriculum.

In addition, templates, spreadsheets and forms are
available on another Web page. For example, this
page contains a template for the team contract, and

spreadsheets for the walkthrough and inspection, as
well as the spreadsheet for capturing the estimation
and the cost of quality. Finally, this page contains an
frequently asked questions (FAQ) section on
problems typically encountered during lab sessions.
This list also helps the student in charge to assist
other students during laboratory sessions. There is a
similar page for the reading assignments and
laboratories.

3.5 Conferences and Guest Speakers

The SQA course students are invited to attend
conferences, held at the ETS, organized by the
Montréal SPIN (Software Process Improvement
Network). Also, occasionally, a guest speaker is
invited to present an industrial application of SQA.

3.6 Student evaluation and course evaluation by
students
The students are evaluated using mini-tests,
laboratories and a final exam. The distribution of the
marks is as follows:

• 25% for mini-tests
• 35% for laboratories
• 40% for the final exam

The aim of the mini-tests is to ensure continuous
learning by the students. In addition, the students
evaluate, anonymously, both the course and the
professor towards the end of the semester. This
information is transmitted to the professor as input for
continuous improvements.

Section 4 Conclusion

Many changes have been made to the SQA course.
The challenge was to ensure that all these
improvements met the objectives of the course. We
think that the current SQA course lectures and
laboratory sessions provide a solid foundation for
future software engineers, even though SQA is still
perceived as a low priority by most SMEs and VSEs
[16]. However, the profession of software
engineering is still very young, and we know that
Rome was not built in a day.

References

[1] Levenson, N, Turner, C, An Investigation of the
Therac-25 Accidents, IEEE Computer, 1993;Vol.
26, Issue 7; p18-41

[2] Charette, R., Why Software Fails, IEEE
Spectrum, September 2005, p42-49.

[3] Abran, A., Moore, J.W., Bourque, P. and Dupuis,
R. (eds.). Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society
Press, 2004.

[4] International Organization for Standardization.
Software Engineering Body of Knowledge,
Technical Report ISO/IEC PRF TR 19759, 2005.

[5] April, A., Reeker, L., & Wallace, D. Software
quality. Guide to the software engineering
body of knowledge (Ironman version) (pp 157-
170). IEEE-Computer Society Press. Los
Alamitos, California, USA, 2004.

[6] Gotterbarn, D., Miller, K., Rogerson, S.,
Computer Society and ACM Approve Software
Engineering Code of Ethics, IEEE Computer,
October 1999.

[7] Epstein, R.G., The Case of the Killing Robot,
West Chester University,
epstein@golden.wcupa.edu.

[8] Haley, T.J., Software process improvement at
Raytheon. IEEE Software, 13(6), 33–41. Figure
abstracted from IEEE Software, 1996.

[9] IEEE 12207, IEEE/EIA 12207.0-1996. Industry
Implementation of Int. Std. ISO/IEC 12207:95,
Standard for Information Technology-Software
Life Cycle Processes, 1996.

[10] ISO/IEC 90003, International Organization for
Standardization. Software Engineering:
Guidelines for the application of ISO9001:2000
to computer software, ISO/IEC Standard
90003:2004. International Organization for
Standardization/International Electrotechnical
Commission: Geneva Switzerland, 2004.

[11] Software Engineering Institute. Capability
maturity model integration for software
engineering (CMMi) (pp. 94–528). Pittsburgh,
PA: Carnegie Mellon University. Version 1.2,
CMU/SEI-2006-TR-008, 2006.

[12] ISO9126, International Organization for
Standardization, Software Engineering-Product
Quality Part 1: Quality Model, ISO/IEC
Standard 9126-1. International Organization for
Standardization/International Electrotechnical
Commission: Geneva Switzerland, 2001.

[13] IEEE 1028, IEEE Std 1028-2002, IEEE
Standard for Software Reviews: IEEE, 2002.

[14] IEEE 730, IEEE Std 730-2002. IEEE Standard
for Software Quality Assurance Plans: IEEE,
2002.

[15] Galin, D., Software Quality Assurance – From
Theory to Implementation, Pearson Education
Limited, 2004.

[16] Laporte, C.Y., Renault, A., Desharnais, J. M.,
Habra, N., Abou El Fattah, M., Bamba, J. C.,
Initiating Software Process Improvement in
Small Enterprises: Experiment with Micro-
Evaluation Framework, SWDC-REK,
International Conference on Software
Development, University of Iceland, Reykjavik,
Iceland May 27 - June 1, 2005. pp 153-163.

