

SUSTAINABILITY OF HADOOP CLUSTERS

Luis Bautista, Alain April
ETS, University of Quebec, Software Engineering Department, 1100 Notre-Dame, Montreal, Canada

lebautis@correo.uaa.mx, alain.april@etsmtl.ca

Keywords: Cloud Computing, High Availability Cluster, Hadoop Distributed File System, ZooKeeper

Abstract: Hadoop is a set of utilities and frameworks for the development and storage of distributed applications in
cloud computing, the core component of which is the Hadoop Distributed File System (HDFS). NameNode
is a key element of its architecture, and also its “single point of failure”. To address this issue, we propose a
replication mechanism that will protect the NameNode data in case of failure. The proposed solution
involves two distinct components: the creation of a BackupNode cluster that will use a leader election
function to replace the NameNode, and a mechanism to replicate and synchronize the file system namespace
that is used as a recovery point.

1 INTRODUCTION

Cloud computing is a new technology aimed at
processing and storing very large amounts of data. It
is an Internet-based technology, in which several
distributed computers work together to process
information in a more efficient way and deliver
results more quickly to the users who require them.
In general, cloud computing users don’t own the
physical infrastructure. Instead, they rent usage of
infrastructure, platform or software from a third-
party provider. The delivery of computer
infrastructure, platform of software or applications,
typically is known as Cloud Services (Jin, Ibrahim et
al. 2010).

There are several Cloud Service Providers (CSP)
for the different type of services, for example
Amazon EC2, SalesForce.com, 3tera Inc, and
Eucalyptus, among many others, making use of
distributed computing technologies. One of these
technologies is called the distributed file system
(DFS), which allows access to files from multiple
computers accessible via the Internet. The Google

File System (GFS) and the Hadoop Distributed File
System (HDFS) are two examples of DFS
implementations.

DFS, like the open source project HDFS, are
designed to store very large files, across multiple
computers, where exceptional reliability is provided
by its replication mechanisms. Replication across
multiple computers can replace the need for RAID
(redundant array of independent disk) storage
technology. Also, HDFS is designed to run on a
large number of commodity computers concurrently.
Commodity computers are computer systems
manufactured by multiple vendors, incorporating
components based on open standards. A governing
principle of commodity computing is that it is better
to have more lower performance and lower cost
hardware working in parallel than it is to have fewer,
but more expensive computers. The key to using
commodity computers in large numbers is a
replication mechanism that provides high fault
tolerance on low-cost hardware.

However, DFS must provide guaranteed high
availability. HDFS has been designed with a
master/slave architecture of clusters, which consists

of a single NameNode (NN), the master server that
manages the file system namespace and regulates
access to files by clients. In addition, a number of
DataNodes (DN) manage large amounts of storage
(Borthakur, 2008). The existence of a unique
NameNode in an HDFS greatly simplifies the
architecture of this technology, however it is also its
weakness. We call this weakness a single point of
failure (SPoF). When an HDFS NameNode fails,
fixing it currently requires a manual recovery.

2 SINGLE POINT OF FAILURE

IN HDFS

We have stated that an HDFS cluster has two
types of nodes (computers): a master node called a
NameNode (NN) and a number of slaves nodes
called DataNodes (DN). The NN manages the file
system namespace, which is where we maintain the
file system tree and the metadata for all the files and
directories. This information is persistently stored on
the local disks in two files: the namespace image
and the edit log. The NN also keeps track of the DN
on which all the blocks for a given file are located.
However, it does not store block locations
persistently, since this information is reconstructed
from NNs when the system starts (White, 2009).
 The single point of failure (SPoF) in an
HDFS cluster is the NN, while the loss of any other
node (intermittently or permanently) does not result
in a data loss. So, NN loss results in HDFS cluster
unavailability. The permanent loss of NN data
would render the HDFS cluster inoperable (Yahoo,
2010). For this reason, it is important to make the
NN resilient to failure, and HDFS provides a manual
mechanism for achieving this.
 The steps of the mechanism are as follows.
First, a backup up is made of the files that make up
the persistent state of the file system metadata,
where the usual configuration choice is to write to
the local disk as well as to a remote NFS mount.
Then, a secondary NameNode (SNN) must be run,
which will periodically merge the namespace image
with the edit log. This is necessary to prevent the
edit log from becoming too large. In HDFS, it is
recommended that the SNN run on a separate
physical computer, since this merge requires as
much CPU and memory as the NN (Apache, 2010).
However, when a failure occurs, a manual

intervention is necessary to copy the NN metadata
files, which are on the NFS, to the SNN that will
become the new NN.
 There are currently some efforts planned to
convert the SNN to a standby node, which, besides
handling merging, could also maintain the up-to-date
state of the namespace, by processing constant edits
from the NN, and of the checkpoint node (which
creates the checkpoints of the namespace). This
standby node approach has been named a Backup
Node (BN) (Apache, 2008).
 To resolve the SPoF, the BN would provide
real-time streaming of edits from an NN to a BN.
This would allow constant updating of the
namespace state. The BN would also conduct a
checkpointing function, ensuring the availability of
the HDFS namespace in memory and getting rid of
the current need to store the namespace on disk.
Finally, the BN proposal would offer the availability
of a standby node. This node, coupled with an
automatic switching (failover) function, would
eliminate potential data loss, unavailability, and
manual interventions into HDFS NN failures.
 However, if the BN fails, what will take its
place?

3 PROPOSED SOLUTION

In this paper, we propose a distributed solution to
the problem of NN and BN failures, which makes
use of a coordination scheme and leader election
function within BN replicas. This can be achieved
using a service, such as ZooKeeper, for maintaining
configuration information, for naming, and for
distributed synchronization and group coordination.

3.1 Distributed Applications with
ZooKeeper

ZooKeeper is a service that allows distributed
processes to coordinate with each other through a
shared hierarchal namespace of data registers. It has
proven that it can be useful for large distributed
systems applications (Apache, 2008).

One of the main failure recovery problems with
distributed applications is partial failure. For
example, when a message is sent across the network
and it fails, the message will not be received, or
when the receiver’s process dies, the sender does not

know the reason for the failure. ZooKeeper provides
a set of tools to protect distributed applications when
this type of failure occurs.

Also of interest is that Zookeeper runs on a
cluster of computers called an ensemble, and is
designed to be highly available due to its replicated
mode. It has great potential to help solve the SPoF
problem of HDFS. We propose to use it to design
and manage a high availability BN cluster. With this
approach, if the Primary Backup Node (PBN) fails,
then an election mechanism for choosing a new PBN
is initiated. There could be a number of Replicated
Backup Nodes (RBN), as shown in Figure 1.

Figure 1: ZooKeeper Service for PBN Election.

3.2 Primary Backup Node Election

How would the PBN election mechanism work?
It would be based on the use of a protocol called Zab
(Red Junqueira, 2008). This protocol is already
implanted in ZooKeeper and runs in two phases,
(which may be repeated indefinitely):

Phase 1: Leader Election. The computers in an
ensemble (group of RBNs) go through a process of
electing a distinguished member, called a leader
(PBN). The other machines are termed followers.
This phase is finished once a majority (or quorum)
of followers has synchronized their state with that of
the leader.

Phase 2: Atomic Broadcast. All write requests
are forwarded to the leader (PBN), which broadcasts
the update to the followers (RBNs). When a majority
has processed the change, the leader commits to the
update, and the client receives a response to the

effect that the update has succeeded. The protocol
for achieving consensus is designed to be atomic, so
a change either succeeds or fails. It resembles a two-
phase commit.

Thus, if the NN fails, the PBN will take its place
and begin a leader election process within the group
of RBNs. This will result in the selection of a new
PBN that will take the place of the old PBN.

There are two important issues related to this
HDFS high availability proposal: replication and
synchronization of data. Replication is at the core of
our proposal, and would use an efficient and flexible
synchronization mechanism that must support
different workloads and offer optimal performance.
In our proposal, the file system namespace, which
must be replicated and which is included in the
fsimage file, is merged with the edit log to obtain a
persistent checkpoint of the file system.

Therefore, we must design a mechanism that
would create a reliable replication service for those
files. At the same time, this mechanism must
provide a recovery service during failures. There are
different ways to achieve this goal. We have
investigated ZooKeeper and BooKeeper as potential
solutions.

3.3 Log Stream of Records with
BooKeeper

The initial motivation for investigating
BooKeeper was that the NN of HDFS uses logs (edit
logs) for recovery in case of failure. BooKeeper was
designed as a replication service to reliably log
streams of records, where a BooKeeper Client (BC)
receives ledgers, which are entries of log streams
from a client application, and stores them to sets of
BooKeeper servers called bookies (Apache, 2010).
Besides providing high-availability services,
BooKeeper provides good performance by using
striping and scalability during quorums.

In our proposed solution, we intend to create
ledgers, which will contain the namespace image of
HDFS, and write them into bookies. This process
could be performed by the BooKeeper Client (BK),
which would run concurrently with a BooKeeper
Application (BA), as demonstrated in Figure 2. The

bookies would store the content of the ledgers in an
ensemble of bookies, storing into it the content of
different ledgers. To ensure good performance,
BooKeeper would store each bookie of an ensemble
as a fragment of a ledger. That is, each entry would
be written to sub-groups of bookies of the ensemble.

Figure 2: Log Stream of Records with BooKeeper.

With this proposal, the BN would maintain an in-
memory data structure. This data structure would
add entries from the NN, and, at the same time, the
BN can process one asyncAddEntry to queue up
changes. This would ensure a high change
throughput. Thus, our proposed solution to the
HDFS SPoF has the potential to create a reliable
mechanism of replicas and synchronization.

4 FUTURE WORK

In the next step of this research, we will conduct
a detailed design, based on the solution proposal
described here, of an amended HDFS. This will
allow us to assess the many possibilities of
embedding this solution within the distributed file
system (HFDS). Potential detailed solutions and
tradeoffs, will be investigated, and suitable families
of protocols to resolve this problem will be
identified. Once the selected design has been
implemented, we will carry out a case study
assessing the feasibility of using a highly available
and reliable coordination system imbedded in HDFS
to address the SPoF problem.

5 CONCLUSION

This paper has presented a potential solution to
the problem of the “single point of failure” of HDFS
aimed at implementing a mechanism in HDFS
similar to BooKeeper. The proposed solution has
two distinct components: 1) a BackupNode cluster
which uses a leader election function and which can
replace the NameNode in case of failure; and 2) a
mechanism to replicate and synchronize the file
system namespace that is used as a recovery point.

REFERENCES

Apache Hadoop, 2010. http://hadoop.apache.org/
Apache Software Foundation, 2008. Streaming Edits to a

Backup Node,
https://issues.apache.org/jira/browse/HADOOP-4539 .

Apache Software Foundation, 2008. ZooKeeper Overview
http://hadoop.apache.org/zookeeper/docs/current/zook
eeperOver.html

Apache Software Foundation, 2010. BooKeeper
Overview.
http://hadoop.apache.org/zookeeper/docs/r3.3.0/bookk
eeperOverview.html

Carolan, G., 2009. Introduction to Cloud Computing
Architecture. Sun Microsystems.

Dhruba, B., 2008. Hadooop Distributed File System
Architecture.

Jin, H., Ibrahim, S., Bell, T., Qi,L., Cao, H., Wu, S., and
Shi, X. (2010) Tools and Technologies for Building
Clouds, Cloud Computing: Principles, Systems and
Applications, Computer Communications and
Networks, Springer-Verlag.

Red, B., Junqueira, F.P., 2008. A Simple Totally Ordered
Broadcast Protocol. In proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and
Middleware (LADIS), Yorktown Heights, New
York, September 15 - 17, vol. 341:2008).	

White, T., 2009. Hadoop: The Definitive Guide, O´Reilly
Media, Inc.

Yahoo! Inc, 2010. Managing a Hadoop Cluster,
http://developer.yahoo.com/hadoop/tutorial/module7.h
tml#configs .

