
Integrating Tools and Frameworks in Undergraduate Software Engineering
Curriculum

Christopher Fuhrman, Roger Champagne, Alain April
Department of Software and IT Engineering

ÉTS, University of Quebec
Montréal, Canada

{christopher.fuhrman,roger.champagne,alain.april}@etsmtl.ca

Abstract—We share our experience over the last 10 years
for finding, deploying and evaluating software engineering
(SE) technologies in an undergraduate program at the ÉTS
in Montreal, Canada. We identify challenges and propose
strategies to integrate technologies into an SE curriculum. We
demonstrate how technologies are integrated throughout our
program, and provide details of the integration in two specific
courses.

Keywords-software engineering curricula; tools; frameworks;
technology; integration;

I. INTRODUCTION

Software engineers who have recently graduated are ex-
pected to be familiar with technology that is being used
in industry. The Software Engineering 2004 Curriculum
guidelines for undergraduate degree programs in software
engineering [1] states: “Engineers use tools to apply pro-
cesses systematically. Therefore, the choice and use of
appropriate tools is key to engineering.” Appropriate process
tools are part of the essential areas that a curriculum must
address. Development frameworks and application program-
ming interfaces (API) are also essential. In this paper, we
refer to all these elements as “technologies”.

The areas where such technologies apply include (but are
not limited to) project management and planning, require-
ments engineering, architecture and design modeling, cod-
ing, and testing. Universities that educate and train software
engineers therefore have a responsibility to prepare students
to be familiar with the technologies that are appropriate in
these areas.

Several challenges exist which make fulfilling this re-
sponsibility difficult for educators. As mentioned above,
these technologies span a wide spectrum of areas, but
they are also constantly evolving. How does an educator
decide which technologies are appropriate to use in the
curriculum? Choosing the technologies is only part of the
problem. Educators must also acquire, teach, deploy and
maintain these technologies, despite the constraints present
in academic environments.

For example, some technologies have costly licenses
which make them difficult to acquire. Even if an academic or
open-source license exists, there may be little documentation

about using the technology in an academic environment.
On the other hand, many technologies are open-source and
popular, and provide educators with excellent resources that
facilitate integration into the curriculum.

At many universities, faculty are under pressure to per-
form research. The costly investment of time to integrate
the newest technologies into undergraduate courses is not
always seen as the best return for their academic career.
At the same time, some of the technologies that are useful
in research can also be useful in industry and therefore in
the curriculum. The expertise with the technologies is often
present with the research faculty and their graduate students.
An important question is how to leverage that expertise in
an undergraduate setting.

Deploying the technologies in a learning environment is
complicated by several factors. A particular laboratory space
can be used by several courses; one physical workstation is
time-shared and must run different technologies and maybe
even operating systems. Technologies are complex with
peculiar environmental requirements. Installations should
be tested properly in the learning environment before the
students have access. A given lab space has a multiplicity
of workstations, whose environments should be identical.
Finally, to keep these environments free of malware, in-
formation technology (IT) staff must apply patches to the
software regularly (ideally more often than once a semester).

In this paper, we present an experience report of more than
10 years of teaching an undergraduate SE program at the
ÉTS in Montreal, Canada. After explaining the background
of our undergraduate SE program, we present our strategies
for selecting and integrating technologies into the curriculum
of this program. With respect to specific challenges we share
the strategies that have proven successful to us and hopefully
useful to administrators and faculty in SE programs at
other universities. Finally, we give concrete examples of
technologies that are integrated into courses, before we end
the paper with discussion and recommendations.

II. CONTEXT

The education system in Quebec is slightly different from
the rest of North America. Students attend secondary school



for only five years, followed by a General and Vocational
College (CEGEP), offering college-level programs for entry
into university (with two-year pre-university programs) or to
train students for technology-oriented careers, the latter be-
ing roughly the equivalent of community colleges elsewhere
in North America. Therefore a student attending university
would attend two years in pre-university CEGEP, followed
by three or four years of university for an undergraduate
level program. However, ÉTS is exceptional because its
programs are for students who have gone through the three-
year CEGEP programs (career/technology). A consequence
of this specificity is that all students accepted at ÉTS
are technicians in a discipline related to their engineering
program. In the case of SE, this means the students have
three years of programming education and experience prior
to their arrival at ÉTS. We are therefore able to teach
concepts such as OOD, OOA and design patterns during
the first year, and software architecture during the second
year, to name a few examples.

ÉTS is exclusively an engineering school, and is part
of the University of Quebec network of universities. The
school is relatively young, having been created in 1974. As
of October 2011, the total number of active students was
approximately 6,300, including close to 5,000 undergraduate
students, and a little over 1,300 graduate students. It is
the fourth largest engineering faculty in Canada, in terms
of the total number of undergraduate students. The school
offers undergraduate engineering programs in six disciplines,
including SE, which is the focus of this paper.

All engineering programs at ÉTS integrate cooperative
(co-op) education. Students must take three co-op terms,
which last four months each. The school places 2,400
students in 1,100 companies each year for these co-op terms.
The students are paid during their co-op terms, which are
important revenue sources for them during their studies,
but also makes the relationship one of employee/employer.
Because of incoming students’ technical background and
the co-op nature of our programs, ÉTS is considered a
very “hands-on” school, which it is by design and mission.
It is also worth noting that according to 2004 statistics,
96% of enterprises in Quebec are Small and Medium-Sized
Enterprises (SMEs), and 83% of those employ four people
or less [2]. This reality must be taken into account in the
design of our programs and courses, especially given the fact
the Quebec’s economy includes 25% of Canada’s IT firms
[2].

All engineering programs in Canada are subject to accred-
itation by the Canadian Engineering Accreditation Board
(CEAB), a federal organization. Moreover, all the students
graduating from our engineering programs are directly eligi-
ble to become members of the Quebec Order of Engineers.
We mention these points because they have direct impacts
on how we design our programs, which are audited every
three to six years by the CEAB, and are also audited by a

provincial government agency at roughly the same frequency
(but not necessarily in sync).

The undergraduate program targeted by this paper is man-
aged by the Software and IT Engineering Department,which
currently has 20 full-time faculty (averaging each 10 years
industrial experience), and roughly half that number in
support staff, all categories considered. There are currently
430 active students in the SE program, and 240 active
students in the IT Engineering program, for a grand total of
670 undergraduate students. We mention the IT Engineering
program here because the same faculty are responsible for
both programs’ curricula.

Finally, all undergraduate courses at ÉTS have exercise or
lab periods. Each course has 13 weekly three-hour lecture
periods, and 12 weekly two-to-three hour practical work
periods (typically in a computer lab).

III. CHALLENGES

A. Selecting appropriate technologies

When the undergraduate programs were put in place in
2001, it was the faculty and Teaching Assistants (TAs) who
chose the technologies to use in the practical part of the
courses they were responsible to create. Often, these tech-
nologies were the same ones used in the research activities
of the professors, and so they and their graduate students
(who often are available to teach courses or laboratories)
were also familiar with the same technologies.

Once courses are being taught, however, there is op-
portunity for improvement via feedback from students and
industry. Figure 1 illustrates how this flow of expertise
and feedback cycles through the various stakeholders in the
education process. Through course evaluations (formal and
informal), round-table discussions with students and indus-
try, program accreditation, surveys (formal and informal),
the department gathers feedback about the appropriateness
of the technologies that are integrated into courses.

Perhaps the most important link with industry comes from
feedback via the co-op courses. During each of the three
co-op courses at ÉTS, students spend one semester in a
company, and that experience allows bi-directional sharing

Figure 1. Flow of expertise and feedback for choice of technologies



of information about technologies. In their co-op work,
students can suggest or use the technologies they learned
about in their courses. In the other direction, students will
recommend to faculty (formally or informally) integrating
technologies that they used in co-op work. This feedback
allows for evolution of courses in an iterative and agile
fashion.

As an example, the first-year object-oriented analysis
and design (OOAD) course was set-up in 2001 as a C++
programming course using CORBA. By 2003 a group of
students had signed a collective petition stating that the
technologies and practical exercises in that course were not
useful for their work in industry. They used examples from
their co-op work to make their point. A departmental deci-
sion was made to re-design the practical part of the course, to
use Java and Eclipse, as well as the Unified Process. These
changes influenced the methodology taught in the course
and even resulted in a change of textbook [3]. The project
was transformed into a semester-long development of a web-
based application, which is submitted in three iterations for
evaluation.

Over the years, this OOAD course has continued to adapt
to changing trends in technologies. The latest version of
the project integrates Google Maps and Hibernate. The
suggestions for changes often come from proactive students
or Lab Assistants (LAs,) who are eager to prepare tutorials
or “Hello World” examples using these technologies. The
changes are approved by faculty in charge of the courses. In-
formal surveys of first semester students showed a relatively
equal proportion of students with backgrounds in .NET and
Java. As a result, in the first-year OOAD course they are
permitted to code the semester-long project in either .NET
or Java, with an understanding that LAs are prepared to
support programming questions in Java.

When the SE program began, students were constantly
asking for a source-code version-control technology to use
in the context of their practical course work. It was difficult
to find a general solution to this problem, due to the large
number of laboratory exercises it could be applied to. Open-
source solutions such as CVS or academic-license solutions
such as IBM Rational ClearCase both provide adequate
features for use in an academic environment. However, they
both require a lot of administrative overhead to manage
the creation and sharing of repositories used in the context
of any course. There was no technology to easily allow
students to create their own repositories and manage sharing
permissions. This “problem” was turned into a business
opportunity for one of our early graduates, who produced
a technology called Academic Version Control (AVC) that
is still in use today by many students at ÉTS. AVC has a
web-based front end allowing any authenticated student or
faculty to create and manage sharing of CVS repositories.

There are other aspects we considered when choosing
technologies. A technology that’s only backed by a graduate

TA or LA is risky to integrate because these people will
generally move on after a year or two. Many commercial
technologies come with academic site licenses. However,
our experience is that SE students want to be able to use
technologies on their own computers (to work outside the
lab space), and academic licenses do not always permit
that. Open-source technologies are usually excellent choices,
especially when they are popular. They are likely to have
tutorials or sample programs to flatten the learning curve.
Commercial technologies with academic licenses do not
always come with good tutorials, in some cases because the
vendor charges for training of the technology. Sometimes
vendors allow instructors to sit-in for free on training ses-
sions with a local company, provided the company doesn’t
see a conflict or there’s no non-disclosure agreement be-
tween the trainer and the company.

B. Technical challenges

As mentioned above with respect to choosing a technol-
ogy, it takes technical expertise to successfully integrate
it into the curriculum. It’s not necessary to know all the
dimensions of a technology (as we discuss in the section
below on Learnability). Similarly, undergraduate courses can
benefit from some of the more rudimentary features of a
technology.

Because of the large variety of technologies and the
important number of courses that use them, our department
opted for configuring many of the labs with either multi-
boot hard drives or virtual machine capabilities. Several
of the workstations can boot Windows or Linux, or the
Mac workstations can run virtual machines with Windows.
Obviously these workstations are more complex to configure
and replicate, but the benefit is that a single seat can be used
for multiple courses. One disadvantage to this approach is
slightly less availability of lab spaces outside of reserved
lab periods. To facilitate configuring the machines, ghosting
of hard drive images is used as much as possible. IT staff
validate the image of a configuration, and then it can be
replicated to all the destination machines overnight. This
approach also helps when security updates need to be
applied, usually once a month.

Having IT support staff who are knowledgeable and
motivated despite the complexity and wide range of the
technologies is important. IT support in an academic envi-
ronment is already a challenge, let alone trying to integrate
these technologies into many undergraduate classes. IT staff
who are talented often enjoy challenges, and it’s been our
experience that these kinds of challenges are positive. We
discuss turnover of IT staff in the section on Political
challenges.

General IT support staff do not provide much integration
of the technologies into a course. For that, it’s back to the
expertise of the instructor or the LAs, which can mean a
lot of work. A strategy that works well at our university is



that the administration funds project proposals that seek to
integrate new technologies into courses (or provide updates
to existing ones). A typical project is to pay a LA who’s
familiar with the course to integrate/update some technology
into a set of laboratory exercises. If the scope of the work is
large enough (e.g., development of a software technology to
be used by students), it can even be considered a co-op work
term for the student. In this case, the professor in charge of
the course becomes an industrial supervisor.

C. Learnability challenges

Many technologies are complex and have voluminous (or
in some cases, poor) documentation. It is neither interesting
nor feasible to have students learn all the functions of a
given technology in the context of a lab exercise. Therefore,
technology learnability [4] is a challenge because it has an
impact on the amount of time needed to accomplish the
learning goals of the lab sessions.

To overcome this problem, instructors first decide which
functions are applicable, and then they can provide task-
focused tutorials that allow students to become familiar
with only the important functions of the technology in the
context of the lab exercises. A tutorial can be in the form
of a simple web page documenting the steps to follow to
perform a task with a specific technology, or it can be a
video created using a free video capture tool that can be
later annotated on Youtube. Sometimes such tutorials already
exist for popular open-source technologies. Students can be
asked to familiarize themselves with the tutorials before
the lab session, allowing instructors to focus more on the
exercise. This strategy is analogous to a student preparing for
discussions in a course by having already done the readings.

Apart from streamlining the laboratory exercises, tutorials
serve as a simple functional test of the installation of the
technologies. IT staff can follow the steps in the tutorials (as
if they were students) to verify that a technology has been
properly installed in the lab environment. This is useful to
avoid unpleasant surprises on the first day of the lab sessions.

D. Political challenges

At many universities with tenure-track positions, a pro-
fessor is implicitly (or sometimes explicitly) encouraged
to invest most energy in research activities. Strategies that
help reduce the risk of research faculty spending too much
time on integrating technology into undergraduate programs
include organizing capstone projects that have pedagogical
and technical goals, having a budget to hire undergraduate
or graduate students who can perform the integration or
updates (clever LAs are great candidates), creating a positive
team environment for LAs among several courses where they
“own” the lab assignments, etc.

Another political challenge relates to evolutions in IT
support. Traditionally, computer science departments kept
their own IT support staff who were specialists in the areas

of technology needed in the department. However, with the
distillation of IT into everyday life, academic institutions
may push to have IT support resources spread across more
than one academic department. Our experience is that some
human resources can be shared, but it takes some who are
dedicated to the SE department if a level of quality is to be
expected when technology is diverse and integration is high.

This leads to the challenge of turnover in IT staff. Qual-
ified IT staff are always at risk of leaving, perhaps because
salaries or conditions are better elsewhere. The strategy we
propose is to accept that IT staff turnover is a reality. Much
like students, talented IT staff in academic environments will
not be there forever. So it’s an ongoing necessity to identify,
hire and train young talent to maintain the quality. Although
this is a difficult challenge, we found that by integrating
modern technologies into curriculum, the talented people are
motivated and interested by technological and environmental
challenges.

Finally, integrating cloud computing into academia raises
a political issue, at least in some universities where there are
rules or laws concerning the storage of student information
or intellectual property. Yale University decided to postpone
switching its mail services to Gmail [5], stating concerns
about the vagaries of laws and governments, given that every
piece of data is stored in three random data centers that
could be in many places throughout the world. We mention
this point because it extends to other features of Google,
such as Google Apps, which look promising to integrate
into curriculum. Many students already collaborate on team
projects in the cloud with these technologies, but they use
their own private Google accounts. It is not clear what
legal implications there are, if an institution would force
students to use these technologies by integrating them into
a curriculum.

E. Maintainability, reuse and deployment challenges

SE educators have limited resources. In an effort to
maximize efficiency when preparing “courseware” (exam-
ples, tutorials, assignments,...), we propose three important
aspects:

• the ability to reuse such artifacts across multiple
courses (for instance, examples or tutorials introducing
a technology used in multiple courses);

• the effort required to maintain these artifacts over time;
• the effort required to deploy these artifacts so students

gain access to them.
From the reuse point of view, course material is very

similar to software components, e.g., finding the right “gran-
ularity” for a reusable tutorial or example requires careful
consideration, which requires more effort than developing
a “one-shot” version of the same artifact. If an example is
to be reused in a mandatory first-year course and also in a
senior elective or even a graduate course, it must indeed be
carefully designed and implemented. However, a reusable



course material artifact should in turn contribute to reduced
effort when it is reused. The notions of coupling applies
here also. Each artifact should be as loosely coupled to
others as possible, in order to improve potential reuse and
maintainability.

Maintainability of courseware is especially important
when the courses discuss or use concepts or technology
that evolves rapidly, which is certainly the case in a lot
of SE courses. From this perspective, course materials also
exhibit similar characteristics to software. Once an educator
commits to a certain technology, changing it becomes harder
as time goes by, because of the time invested in using it
and developing other artifacts (examples, tutorials) around
it. Selecting a specific technology then requires careful
consideration and outlook. It can be very frustrating to invest
substantial effort over long periods of time to support a
specific technology in courses and have that technology
suddenly disappear or become “unsupported”.

One would be tempted to think that with modern means
(web sites, wikis, ...), deploying course materials is not
an issue. One of the challenges we run into is deploying
materials that are reused across courses. Our web server is
structured in a “one site (root) per course” fashion, for all
kinds of valid reasons (access control, simplicity). However,
in such a structure, examples, tutorials and simple web pages
that are reused in multiple courses need to be copied in many
places, with the associated potential problems: the need to
copy any update to such material in multiple places, the
problems caused by forgetting one of these places, etc.

IV. OVERVIEW OF TECHNOLOGY INTEGRATION IN
UNDERGRADUATE SE CURRICULUM

In this section we present some of the technologies and
where they are integrated into the curriculum. Figure 2
shows how various types of technologies are integrated
into courses. The courses are presented in the table in
chronological order relative to the SE undergraduate pro-
gram, showing that students are exposed to technologies
used in industry as early as the first year. We included the
special project and capstone projects that show almost any
technology is optional, since those projects are individually
decided and managed. They share a common element of a
mandatory project management technology, however. The
list of technologies we include is not complete (because
of space constraints), and it should not be construed as a
promotion of those technologies or their suppliers.

We distinguish between technologies that are optional or
mandatory in the context of a course. For example, in the OO
Analysis and Design course, students develop a web-based
application. The simplest solutions can be done with Java
in Eclipse using Derby for a database. Some students prefer
to be more ambitious or use other programming languages
(e.g., C# in .NET). However, all projects must show unit
tests using JUnit (or equivalent).

The following section describes in more detail how these
technologies are integrated into specific courses.

V. EXAMPLES OF TECHNOLOGY INTEGRATION IN
COURSES

This section describes the technologies integrated in two
courses in our SE program. In previous sections we have
mentioned other courses as brief examples, but here we
provide details. The first example is a second-year course
titled “Test and Maintenance”, and the second is a senior
elective titled “Distributed Object-Oriented Architecture”.
In both cases, exposing students to realistic industrial en-
vironments is a high-priority objective. Moreover, given the
fact that a majority of our graduates are likely to work in a
small business environment, students are forced to perform
some relatively “low-level” tasks, such as creating accounts
on servers and configuring their environments themselves,
because they likely won’t have anyone to do it for them.
This requires extra guidance and knowledge from the LAs
and professors, but we concentrate on simple things we are
comfortable with.

A. Test and maintenance course

This course was first offered during the Summer 2008
term. Ideally, a full course would have been created on
each of the main topics, but we could only add one course.
The two halves were developed by two different professors,
hence the two topics are discussed sequentially. The course
is offered twice a year to groups ranging from 50 to 70
students. The pedagogical value of the strategy adopted in
the lab assignments for this course was the focus of another
paper presented elsewhere [6].

During the first half of the term, the practical objective
is to expose students to a mature software maintenance en-
vironment. Students are given a relatively small application
that has a user interface and uses a database. Its size is man-
ageable (six Java classes, approx. 2,100 lines of code) and it
has the potential to highlight the salient issues in performing
maintenance on an application developed by someone else.
It has several problems (poor separation of concerns, bugs,
no documentation). The assumption is that an undisciplined
developer left the company with no documentation, and
all that is available is the source code for the application.
According to our experience, this is a realistic situation in
low-maturity SMEs. The actual maintenance work they must
realize is described in Table II.

Following the maintenance part of the course, the focus
switches to software testing. The overall objective of this
portion of the lab is for students to acquire minimal expe-
rience with basic black- and white-box testing techniques,
and also with basic testing frameworks, by designing, im-
plementing, executing, and reporting test results, at various
levels (unit, integration, system).



Figure 2. Courses (in chronological order) with integrated technology: X=mandatory technology, (X)=optional technology

This course uses a fairly rich set of technologies. When we
selected them, our goal was basically to use at least version-
control and ticket management systems. We also wanted to
use analysis technologies to give various indicators on code
quality, such as violations of programming standards. As
previously stated, the students must perform system admin-
istration tasks, by design. At the time we were selecting the
lab environment for this course, there was a trend towards
virtualization in our department. We consequently decided to
supply each team (3-4 students) with a Linux-based virtual
machine (VM) hosted in a server room and containing some
of the software they need pre-installed, but not completely
configured. Table I summarizes the technologies used for
this course, identifying those installed on the team VMs,
on individual workstations in the lab, and in some cases in
both places. There are five lab assignments in this course,
summarized in Table II (“M” = maintenance, “T” = testing).

In this specific case, there were initially few technical
challenges. The professors developing the initial version of
the course and lab assignments had experience with some
of the technologies, were willing to invest effort to learn
others, and delegated part of the work (VM development
and configuration) to a senior student in the context of his
capstone project. This student had prepared a similar VM
for a student club. It took the student 25 hours of effort to

Table I
TECHNOLOGIES: TEST AND MAINTENANCE COURSE

Workstation VM

Eclipse, CodeCover & Metrics plugins SVN (version-control)
Apache ant (build technology) Trac (ticket management)
Checkstyle, PMD, QAlab (code quality) Apache httpd (web server)
Visual Paradigm (UML from code)

Junit, uispec4j (testing frameworks), Maven

prepare the VM. IT support staff took care of deploying the
configured VMs on the institutional servers. The choice of
LAs was important here, and people who had used most of
the technologies were selected in order to offer students ad-
equate support in the lab. One of the technical challenges we
did not foresee was this environment’s scalability. Initially,
this course was the only one to use VMs. However, as other
courses adopted the VM approach, there was a problem with
hardware resources to accommodate this popular approach.
To solve this problem we did two things: 1) added memory
to the servers, and 2) changed from the freeware VMs to
the Enterprise version (VMware Academic Program) whose
performance is better. It took a competent analyst roughly
two days of effort to configure the VMs for this course with
the new Enterprise virtualization package, but the analyst



Table II
LAB ASSIGNMENTS: TEST AND MAINTENANCE COURSE

Description and tasks Weeks

M1 - Environment setup: test VM, finish configuring Trac
and SVN, create accounts for team members and customer,
create roles and milestones, install application source code in
SVN, generate quality analysis reports, create set of tickets
according to findings.

2

M2 - Reverse engineering and refactoring: produce likely
design (UML diagrams), refactor code to improve maintain-
ability, start fixing defects according to tickets raised, docu-
ment all changes in tickets

2

M3 - Add new functionality: estimate effort for changes,
obtain “customer” approval, perform changes on dedicated
SVN branch

2

T1 - Black-box testing: system level automated functional
testing via the GUI with uispec4j

3

T2 - Test-Driven re-engineering and white-box testing:
incremental layering of architecture, introducing unit and in-
tegration tests

3

pointed out that it took him four to six weeks of full time
effort to learn how to configure the Enterprise version of
VMware for another course (with good prior knowledge of
how to configure the freeware version).

The learnability challenges were important in this case.
A minority of students had been exposed to the technologies
prior to taking this course. Trac and SVN are two examples
of technologies that have a lot of documentation available,
to a point it’s intimidating for a novice. We mitigated
this by carefully looking at “mainstream” documentation
for these technologies, and provided students with well
targeted pointers to specific artifacts in the lab assignment
descriptions. We did not supply any tutorials for this course,
but designed the lab assignments in such a way that students
would learn by actually performing targeted tasks. A simple
example was designed for use in class and as an example in
the lab, to illustrate usage of the various eclipse plugins in
the testing portion of the course.

There were no political challenges to speak of in this
case. Apart from the scalability problems mentioned above
and the normal updates of technologies, there were no
maintainability, reuse or deployment problems either.

Upgrading the environment last summer required impor-
tant effort from the professors and LAs also, mainly because
we decided to start using Maven in this course. Maven
has a relatively important learning curve, and everyone
was learning Maven during the upgrade. The core Maven
functionality is quite limited, and a multitude of plugins must
be used, each having its usage and configuration specificities.
Therefore, a course-specific Maven tutorial was written, in
such a way that students start with the source code and
completely configured environment, and progressively write
their Project Object Model (POM, main Maven build script)
by copying and pasting sections from the tutorial. The main
Maven concepts are explained incrementally throughout this

tutorial. It was successfully used by a group of 70 students
and was globally considered a positive addition to the course.
Table III summarizes the effort put into upgrading the lab
environment and assignments this term.

Table III
EFFORT: LABS UPGRADE, TEST AND MAINTENANCE COURSE

Who Effort Description
(hours)

IT support 160-240 Learning to configure Enterprise VMware (not
specific to this course, but required)

IT support 12 Configuring and deploying the new VMs for
70 students (26 teams)

Professors 100 Recruiting LAs, coordinating the whole effort,
learning maven, writing a course-specific tuto-
rial on Maven, validating lab assignments pro-
duced by the LA, writing new lab assignments,
writing and testing examples, evaluating new
candidate applications for the assignments

LA 90 Learning maven, configuring and testing all the
plugins, testing new versions of applications
on the VM, writing new versions of the as-
signments, validating tutorials produced by the
profs, training two other LAs

B. Distributed Objected-Oriented Architecture course

This course is a senior-level elective. It was first offered
in 2003, and is since then offered once or twice a year to
groups of 30 to 55 students. The core topic of the course is
middleware, and the main objective is to expose students to
two important types of architectures in distributed systems,
namely distributed objects (e.g. CORBA) and server-side
component architectures (JEE).

In this course, the lab environment is deployed differently
than the course described in the previous section. There
is a single central VM used by the whole group, hosting
a database server. All the other technologies required for
the lab assignments are deployed on individual computers
(windows-based PCs) in the department’s computer labs.
The environment is 100% Open Source, allowing students to
reproduce it on their own computers. Moreover, the shared
VM is made available outside the university through a VPN
connection, enabling students to access the servers from
anywhere. This is an important aspect for students, allowing
them to work on their lab assignments outside their assigned
lab period, even if the labs are used by other courses.

This course also uses multiple technologies. The selection
criteria was somewhat different in this case. The CORBA
implementation that came with Sun’s Java SDK was used
initially. We later switched to JacORB, mainly because it
was a more complete CORBA implementation, allowing us
to cover a broader subset of CORBA concepts in the course.
For the JEE part, when the course was initially created, the
professor responsible for it had no experience in JEE, and
relied on experience from colleagues from elsewhere who
suggested a fully open-source set of technologies. Table IV



summarizes the technologies currently used for this course
that are installed on individual workstations. There are three
lab assignments in this course, each lasting four weeks.
Table V summarizes these assignments.

Table IV
TECHNOLOGIES: DISTRIBUTED OO ARCHITECTURE COURSE

Technology

Eclipse IDE JEE edition with m2e and m2e-wtp integration plugins
JacORB (Java CORBA implementation)
Apache Maven (project management)
Apache Tomcat (JEE web container)
PostgreSQL clients (psql, pgadmin)
Hibernate, MyBatis (persistence)
Spring framework (JEE development)

Table V
LAB ASSIGNMENTS: DISTRIBUTED OO ARCHITECTURE COURSE

Description and tasks

1 - Introduction to distributed objects with CORBA: develop a
simple distributed application on at least two hosts, given the interface
specifications (IDL) for all remotely-accessible components.
2 - Introduction to JEE: develop a subset of functionalities from lab1
in JEE using servlets and JSP only (no EJB) and a relational database.
3 - JEE and frameworks: re-implement the same application as in
lab2, introduce at least one web framework and at least one persistence
framework. Framework choices left to students.

This course had numerous technical challenges over the
years. Initially, we used Sun’s reference implementation
(J2EE 1.3) as our J2EE environment. The professor, who
also served as LA, had no experience with this technology.
Luckily, the IT support technician at the time did; he
had setup everything, and it just worked. Nowadays, the
professor needs to give IT support detailed instructions on
which technologies to install and how. This is done via a
dedicated page published by the professor on the course web
site, which is used by IT support, the students who wish
to install the technologies on their own computers, and the
professor himself, who uses this as a reminder for himself
from term to term. This issue highlights the fact that it is hard
to find IT support personnel that know ALL the technologies
required in a SE program.

One of the main technical challenges with this course’s
technology is that some of these technologies evolve rapidly
(IDE, plugins). In the past two years, the professor spent
between 20 and 40 hours each time the course is offered
just to upgrade all the technologies and test them together.
The course examples discussed below are especially useful
to test the environment from term to term.

IT support recently developed a technique to remotely add
individual Eclipse plugins (to an already deployed Eclipse
distribution) on all the lab computers without requiring a
complete re-imaging of the whole disk. This new capability
proved very useful when we discovered we were missing a

crucial plugin in the labs, four weeks after the term had
started. Until recently, it was department policy that no
changes to the lab technologies could be performed during
the term.

Since this course introduces a number of complex tech-
nologies, learnability challenges were addressed by invest-
ing an important effort (over many years) to supply students
with small running examples, each consisting in a small
application highlighting a specific aspect of a technology.
We currently use 11 such examples (2 for CORBA, 1 for
database access, 4 for “basic” JEE, 4 for JEE-related frame-
works). Most of the examples were initially taken “as is”
from the various technology distributions used or on the
Web. Some were modified, and all were extended with an
Ant build script and instructions explaining the core concepts
the example focuses on, and how to deploy it. Some of these
examples are actually being reused by colleagues in other
courses.

To improve learnability, each lab assignment starts by
“forcing” students (a small portion of the grade is assigned
to this) to follow a tutorial (based on one of our examples
mentioned above). Each of these tutorials takes a full lab
period (two hours) to complete. We get sustained positive
feedback on these tutorials in the course evaluations. They
also enable us to confirm that the technologies are correctly
deployed, the students have correctly configured their envi-
ronment, and they are ready to start the “real assignment”
in a timely fashion (they must demonstrate their running
tutorial results the 2nd week of each lab assignment).

We recently introduced Maven in this course also. This
yielded two important advantages, compared to Ant (which
we were using before): 1) automatic resolution of external
dependencies (e.g. required external libraries) at compile/run
time; 2) deploying the examples on the course web site
simply meant creating a ZIP archive containing the source
code, the Project Object Model (Maven script), and the
README.html file (no external JARs). However, we needed
to learn about another set of Maven plugins we hadn’t
needed in the other course (IDL compiler, JEE container
deployment, database access). Replacing the Ant build script
by its Maven equivalent for the 11 examples, learning Maven
in the process, took 70 person-hours this term alone (this
effort is specific to this course). Since this course uses
a simpler environment than the “Test and maintenance”
course, the Maven tutorial developed for the other course
was simplified for this course. This took 16 person-hours.
Also, utility scripts and sample configuration files were
developed to ease the students’ learning of Maven and
its use in the school’s infrastructure. The fact that student
accounts reside on network drives required some adjustments
compared to using a local drive, since by default some
applications (such as Maven) store useful files in the user’s
local account. Altogether, we spent (this term alone) 19
person-hours in preparing the lab environment (setting up



technologies, writing sample configuration files and related
instructions, testing technology deployment in the labs). This
does not include IT support effort to deploy the tools in the
labs. Course evaluations revealed challenges with Maven,
but also positive feedback. We consider Maven usage in this
course a positive experience in general, and will keep using
it with a few adjustments in the future.

There were no political challenges to speak of in this
case either. One maintainability issue we regularly ran into
in the past was keeping the various tutorials up-to-date.
This was complicated by the fact that we used to include
screen shots from the IDE, which basically changes every
time the course is offered. One practical way to reduce this
problem is to refer to menu item sequences instead of screen
shots. We find this easier to maintain over time. In terms
of deployment, adding Maven to the technology set greatly
facilitated deployment at two levels: the examples supplied
to students via the course web site, described earlier, and
also the submission of lab assignments to the LA. In both
cases, external libraries need not be included, since they are
resolved and downloaded by Maven at compile time. For the
lab assignments, students are forced to use Maven, which
imposes a standard project (folder) structure. Compiling,
running and grading the assignments is much easier, since
all their submissions have the same structure.

VI. RELATED WORK

Different proposed curricula in SE have been studied by
Mishra et al. [7], who recognize the importance for tech-
nologies. They suggest that it is in the practice courses (e.g.,
capstone projects) where the students discover and explore
new technologies and development methodologies. In our
approach, technologies are integrated into the majority of
SE courses, although not to the same extent. Rusu et al. [8]
show that having faculty with strong ties to industry who
supervise capstone (senior year) projects is an effective way
to improve student implication in real-world SE projects.

Toth points out [9] that SE programs must go beyond
teaching just theory and increase on practical aspects. He
proposes using open-source projects as the basis for capstone
projects. Although this approach is excellent for capstone
projects, in curriculum where co-op work is done as early
as the first year, practical work must be introduced earlier
if students are to be ready for their industrial contact.
Boloix et al. discuss tool learnability [4], which cannot be
ignored especially with some of today’s very sophisticated
technologies.

Chen et al. [10] consider the benefits of cooperative
education (co-ops) where students spend time in industry
working on real-world software projects. The authors stress
that not only do students gain useful work experience that
relates back to their theoretical work, but it also improves
relations with industry. Reichlmay [11] documents the ad-
vantages of cooperative education, but also discusses the

benefits in terms of faculty and research collaboration. Since
students and faculty are the forces of change who are closest
to a curriculum, it makes sense that they be connected to
industry.

In terms of specific tools, Skevoulis and Makarov [12]
conclude that by using appropriate formal methods tools in
courses, students learn from them and have better attitudes
towards formal methods. In [13], Fuhrman demonstrated
that a tool supporting lightweight modeling and formal
methods can be used to help interpret informal (real-world)
specifications in an undergraduate telecommunications soft-
ware course (see “Telecom SW” in Figure 2). This course
has since been updated with technologies supporting the
Specification and Description Language (SDL) that provide
lightweight model-checking.

For integration of version-control technologies into cur-
riculum, Parada et al. [14] propose a solution using a popular
source-code control technology (Subversion). They provide
an interface to instructors to create workspaces for students.
As far as we can tell from the paper, this technology is not
designed to allow students to create their own workspaces.
Milentijevic et al. [15] consider the benefits of using version-
control in project-based learning. Their solution documents
two roles, supervisor and student, and it’s the supervisor who
must define the project.

VII. CONCLUSION

Many different tools and frameworks are used in practice
in SE. In an ideal world, all students would graduate with a
good understanding and knowhow related to the use of many
of theses tools. In this paper, we discussed our experience in
integrating tools in various SE courses. After describing our
context, we described various types of challenges faced by
the many stakeholders involved in such technology integra-
tion in curricula. These challenges are the main ones we have
been facing for 10 years in our SE program. We highlighted
the numerous aspects to consider when choosing tools
and identified the main technical, learnability, and political
challenges. We also discussed issues such as course material
maintainability, reuse and deployment. We gave an overview
of the numerous tools deployed in our SE program, and
described in some details the specific challenges we faced
when integrating tools in two courses using rich technology
sets, including recently added technology (Maven, VMware
upgrade) and the associated effort required by the various
stakeholders involved. The effort data reported here could
perhaps be considered an upper bound, as the professors
involved invest more time than average in the preparation of
their lab environments.

Students collectively know a lot about technologies, and
they like working with technologies. They are a valuable
source of information about the latest technologies, and in
terms of knowledge, they will always outnumber the few
educators teaching any given course and labs. Open and



honest discussion with students about tools should be en-
couraged in class, via course-related discussion groups, and
their opinions should be carefully considered by educators.
In our context, the fact that students take three co-op courses
adds even more feedback of this nature. These co-op courses
in turn force us to insist on tools throughout the program,
including in the early stages, so that students can bring some
value to the organizations that hire them for their co-op
terms.

We are convinced that pre-existing industrial experience
of faculty, TAs, and IT support staff is essential with
technology integration in curricula. Another helpful aspect
is the existence of resources (a budget) to maintain and
evolve laboratory environments. The LAs assisting us in
the upgrades described here were paid for their work by
the School. The professors and IT support staff’s time is
considered part of their normal work load.

Another aspect to keep in mind is that most of our
graduates will work locally after they finish school. Our
entire program strategy is very much aligned with our
local context, and we assume this would be true for many
universities.

Table VI summarizes the recommendations stated
throughout the paper.

Table VI
SUMMARY OF RECOMMENDATIONS

ID Recommendation

R1 Leverage experience from research environments.
R2 Acquire frequent feedback from industry/students/researchers re-

garding technology fitness.
R3 Identify a faculty evangelist/expert for important technologies.
R4 Invest in competent, reliable, motivated people to support the tools.
R5 Prioritize core features of technology for integration in courseware.
R6 Use Open Source or academic license tools when possible.
R7 Use tools with rich user documentation and examples, or be

prepared to produce them.
R8 Have a heterogeneous environment (operating systems, program-

ming languages).
R9 Expect turnover in IT, but continue to grow it up from the base.
R10 If cloud computing is considered, get fluent with the various laws

and university privacy rules.
R11 Design easily maintainable and reusable courseware.
R12 Avoid screenshots, as they age too quickly.
R13 Think about scalability early if virtualization is to be used.
R14 Provide secure access to computing resources outside the campus.
R15 Impose the “hello world” tool demo as the first lab assignment.

ACKNOWLEDGMENT

The authors would like to thank Patrice Dion, Pierre
Dumouchel, Francois Coallier, Lucie Caron, Sandra Ranger,
Christian Desrosiers, Luc Duong, Nadjia Kara and Carlos-
Teodoro Monsalve, who supplied information that was used
in this paper. We also wish to thank the anonymous review-
ers, whose comments allowed us to improve this paper.

REFERENCES

[1] IEEE Computer Society, “Software Engineering 2004: Cur-
riculum guidelines for undergraduate degree programs in soft-
ware engineering,” http://sites.computer.org/ccse/, Aug. 2004,
date accessed Oct. 20, 2011.

[2] Government of Canada - SME Financing Data Initiative,
“Small business financing profiles,” http://www.sme-fdi.gc.
ca/eic/site/sme fdi-prf pme.nsf/eng/h 02088.html, date ac-
cessed Oct. 22, 2011.

[3] C. Larman, Applying UML and patterns: an introduction to
object-oriented analysis and design and iterative develop-
ment, 3rd ed. Upper Saddle River, N.J.: Prentice Hall PTR,
2005.

[4] G. Boloix and P. N. Robillard, “CASE tool learnability
in a software engineering course,” IEEE Transactions on
Education, vol. 41, no. 3, pp. 185–193, Aug. 1998.

[5] D. Tidmarsh, “ITS delays switch to Gmail,”
http://www.yaledailynews.com/news/2010/mar/30/
its-delays-switch-to-gmail/, Mar. 2010, date accessed
Oct. 20, 2011.

[6] R. Dupuis, R. Champagne, A. April, and N. Seguin, “Exper-
iments of adding to the experience that can be acquired from
a software project course,” in QUATIC ’10, Sep. 2010.

[7] A. Mishra, N. Cagiltay, and O. Kilic, “Software engineering
education: some important dimensions,” European Journal of
Engineering Education, vol. 32, no. 3, pp. 349 – 61, 2007.

[8] A. Rusu and M. Swenson, “An industry-academia team-
teaching case study for software engineering capstone
courses,” in Frontiers in Education Conference, 2008. FIE
2008. 38th Annual, Oct. 2008, pp. F4C–18 –F4C–23.

[9] K. Toth, “Experiences with open source software engineering
tools,” IEEE Software, vol. 23, no. 6, pp. 44–52, Dec. 2006.

[10] J. Chen, H. Lu, L. An, and Y. Zhou, “Exploring teaching
methods in software engineering education,” in 4th Interna-
tional Conference on Computer Science Education, Jul 2009,
pp. 1733 –1738.

[11] T. J. Reichlmay, “Collaborating with industry: strategies for
an undergraduate software engineering program,” in SSEE’06.
New York: ACM, 2006, pp. 13–16.

[12] S. Skevoulis and V. Makarov, “Integrating formal methods
tools into undergraduate computer science curriculum,” in
Frontiers in Education Conference, 36th Annual, Oct. 2006,
pp. 1 –6.

[13] C. P. Fuhrman, “Lightweight models for interpreting informal
specifications,” Requirements Engineering, vol. 8, no. 4, pp.
206–221, 2003.

[14] G. H. A. Parada, A. Pardo, and C. D. Kloos, “Towards
combining individual and collaborative work spaces under a
unified e-portfolio,” in ICCSA’11, 2011, pp. 488–501.

[15] I. Milentijevic, V. Ciric, and O. Vojinovic, “Version control
in project-based learning,” Comput. Educ., vol. 50, pp. 1331–
1338, May 2008.


