
Addressing Provenance issues in Big Data Genome 
Wide Association Studies (GWAS) 

 

David Lauzon, Beatriz Kanzki, Victor Dupuy,   
Alain April* 

École de Technologie Supérieure (ÉTS) 
1100, rue Notre-Dame Ouest, 

Montréal, QC, Canada 
davidonlaptop@gmail.com  
 beatriz.kanzki@gmail.com   
vdcd120491@gmail.com  

alain.april@etsmtl.ca 

Michael S. Phillips, Johanne Tremblay*,  
Pavel Hamet* 

Centre de Recherche du Centre Hospitalier  
de l’Université de Montréal (CRCHUM) 

900, rue St-Denis 
Montréal, QC, Canada 
pgxdoc@gmail.com 

johanne.tremblay@umontreal.ca 
pavel.hamet@umontreal.ca

 
* corresponding authors 

 
Abstract—Effective genome wide association studies 

(GWAS) present new Big Data challenges for health 
researchers: data processing delays, data provenance and 
efficient real-time visualization. This paper presents two recent 
open source initiatives that, used together, aim at solving these 
issues. First, an introduction to GWAS is presented followed by 
a description of the issues faced by the bioinformatics staff at 
this small health research lab. We then introduce two open 
source project we initiated: a query engine (QnGene) and a 
genetic output analysis tool (GOAT) to address these issues and 
give an overview of their internal architecture and our current 
experimentation and validation plan.  

Keywords—GWAS health systems provenance; Big Data; 
dbSNP discrepancies; GWAS visualization; open-source. 

I. BACKGROUND AND PROBLEM 
Genome wide association studies (GWAS) have recently 

evolved into a powerful tool for investigating the genetic 
association to human diseases and are very popular among 
health scientists. This type of study searches the whole 
genome for small variations, called single nucleotide 
polymorphisms (SNPs), that occur more frequently in 
patients with a particular disease than in the general 
population that does not have the disease [1]. Results 
generated from GWAS involve millions of SNPs per 
phenotype which the researchers usually store in a relational 
database (for example MySQL) for annotation, drill down 
analysis and results quality investigations. In Dr. Pavel 
Hamet’s diabetes research lab, at the CHUM located in 
Montreal, limits of the use of relational database technology 
was starting to hinder research. For example,  retrieving data 
for one GWAS associated with one phenotype (i.e. which is 
around 6 000 000 SNPs) can take up to 5 minutes for just 4 
criteria (i.e. rsId, p-value, position, and chromosome), and is 
up to 50 minutes if the researcher would like to extract 10 
GWAS in order to compare the different phenotypes 
concurrently. So it looks like there is a linear relationship 
between the size of the data set being used and the MySQL 
query response time [2]. In that context, investigating this 

data is becoming time consuming, limit certain analysis and 
is preventing the research team from finding potential hidden 
relationships between phenotypes as they have such slow 
turnaround time. 

The provenance of the GWAS results is another issue 
reported. GWAS results originates from a complex sequence 
of data transformations that have generated many 
intermediate files during the discovery process. Hence we 
can compare this discovery process to a graph of trial and 
errors activities, where a fraction of its paths could lead to 
significant findings that can be further investigated. As the 
number of steps, in the discovery process increases, the 
number of branching possibilities increase as well 
exponentially. Some branches may be deleted or ingnored, 
but others may become significant and investigated at a later 
time. The consequence of using this type of discovery 
process is that the workflow, from raw data to GWAS 
results, generates many larges intermediate files, and the 
management of those files and results, to ensure the 
repeatability of the GWAS is quickly becoming a major 
challenge for the bioinformatics staff of Dr. Hamet’s lab. If 
the intermediate files, of a published experiment are deleted, 
then the provenance of the data is lost and it may be difficult 
or even impossible to reproduce the published result when 
time comes. 

A third issue, also related to provenance, is that our sci-
entific comprehension of the human genome is constantly 
evolving and some facts we take for granted may prove to be 
wrong in the future. The dbSNP database [3], which is used 
as the genetic variant reference for most GWAS experiments, 
is reported to contain erroneous data that could introduce 
significant errors in GWAS interpretations. Some authors 
[4], [5] have reported that the dbSNP database may contain 
up to 15–17% of false positives. dbSNP contains a ”unique” 
RS number for each variant in its database, but the variant(s) 
associated with the RS number may change over different 
dbSNP build number releases. A variant can be splitted in 
multiple variants, merged with another variant, and/or moved 



to a different position on a genome as our scientific 
comprehension of the genome improves [6]. Therefore it is 
recommended that authors also include the dbSNP build 
number release along with the RS number they are 
publishing. However, most GWAS software, such as plink 
[7] and snptest [8], do not store this information, which make 
it difficult for researchers to identify the provenance of the 
RS number they are publishing in their research. 

In this paper we present an overview of two open-source 
projects we initiated to meet the challenges of data 
provenance, horizontal scalability and visualization of 
GWAS in a Big Data context : 

• QnGene: A scalable provenance-aware 
implementation of an initial GWAS algorithm; 

• GOAT: A responsive user interface for mining 
GWAS results. 

II. CURRENT SOLUTIONS AND SHORTFALLS 

A. Genomics in Big Data 
Most GWAS softwares, for example plink [7], use a 

single process or even a single thread of processing on 
computers to process the data. This leads to slow computing 
times. A typical solution, to improve the scalability of this 
type of software architecture, is to split the data into multiple 
files (e.g. 1 file per chromosome), invoke the software once 
for each file, and merge the results back at the end of all 
concurrent processing. This workaround solution is 
performed either manually, using a custom shell script, or 
using a workflow engine like Taverna [9]. While this 
approach works to an extent, it complexifies the user-
software interactions and generates additional intermediate 
files that will need to be preserved to ensure the provenance 
and repeatability of experiments. 

 
Fig. 1. Hourglass layered architecture of the ADAM variant calling 
framework developed at UC Berkeley[10]. 

A better approach would be to tackle the scalability 
problem at its core by creating a file schema that can be 
automatically be distributed on a cluster of computers. The 
ADAM open-source project, at U.C. Berkeley [10], has been 
able to achieve a 28x speedup over existing genetic variant 
calling solutions using this solution. To sustain the evolution 
of the project and provide a solid scalable core, they suggest 
using a 7-layer architecture (see Figure 1) that leverage 
existing Big Data technologies such as Hadoop[11] and 
Spark[12] to allow easy concurrent processing. Another 
advantage of building new algorithms based on ADAM is 
that it minimize the amount of code (and programming time 
which leads to lower efforts/costs) to implement new 
algorithms that can scale easily on such a distributed system. 
However, ADAM was designed for whole genome 
sequencing and therefore currently lacks the data structure 
required to perform GWAS at our lab. Section III of this 
paper will present how this is being adressed currently by our 
software engineering research project. 

B. Provenance for Big Data health research applications 
Some provenance solutions have been published but fall 

short of what is needed here. For example, the Provenance 
Aware Storage System (PASS) [13] is a file system approach 
to provenance. The principle of PASS is that instead of 
writing the data to the file system directly, the application 
writes to the PASS system which in turns records the 
provenance and stores the data in its underlying file system. 
PASS has been designed and optimized for storing data in 
the Amazon S3 file system which can be unpractical 
(because of storage cost) for long-term storing of terabytes 
and even petabytes of data required in the field of genomics 
research. Furthermore, PASS is currently not compatible 
with the Hadoop Distributed File System (HDFS) which is 
already an abstraction on top of a regular file systems. If 
PASS would be used to trace the file operations in HDFS, it 
would currently not be able to view the file names directly 
but only the file’s blocks id (e.g. BP-1976835025-
172.17.0.55-1440087701986). 

RAMP [14] is one of the first attempt at bringing prove-
nance natively in the Hadoop ecosystem. RAMP provides 
wrapper classes for the Map and Reduce functions. These 
wrapper classes record the provenance. The drawbacks are 
that 1) their benchmark results report a 16% to 76% range of 
performance overhead; 2) RAMP was designed to work only 
for older versions of Hadoop MapReduce (i.e. RAMP code 
has not been updated since nearly 5 years); and 3) Apache 
Spark is becoming more popular than Hadoop MapReduce 
which is beign phased out in recent months. 

Recently, the Titian project [15] added provenance 
support natively in Apache Spark. Titian claims that its 
overhead ”rarely exceeds 30% above the baseline job 
execution time”. However, as Titian does not persist the 
provenance metadata after a job has completed, it seems to 
be useful mostly for debugging a job’s code and not 
adressing repeatability of experiments in a real health lab 
experimental setting. 

Finally, we looked at Cloudera’s Navigator [16] which is 
a commercial product that integrates well with the Hadoop 



ecosystem. Navigator transparently records the provenance 
and has features for visual data lineage and audits. Overall 
great product if you can afford it. Navigator however is not 
optimized for doing the provenance of genome wide 
association studies. 

Based on what is available, we decided to undertake the 
design of a solution that is divided in two open-source 
initiatives as some users may only want one of the two 
functions for their lab. The next section describes the 
proposed solution for adressing provenance issues in Big 
Data Genome Wide Association Studies (GWAS). 

III. ARCHITECTURE OVERVIEW 
Our initial objective, with this first version of QnGene, is 

to solve the scalability issues of our GWAS open source 
project named: Genetic Output Analytic Tool (GOAT). The 
source code and vision document for the first version of 
GOAT is available on GitHub (https://github.com) by 
searching for: GOAT Genetic Ouput Analysis Tool. 

GOAT’s first release quickly suffered from performance 
issue where the main query to the database was not very 
responsive. We tried to use the Bokeh Server [22] to solve 
this problem, but this query was still taking several minutes 
to execute. We identified that most of the query process 
duration was spent in the relational database processing (in 
our case MySQL). After detailed analysis of the query, we 
found out that it only needed a small subset of the columns. 
However, traditional relational databases (RDBMS), like 
MySQL, are optimized for business transaction processing 
where the whole record is transferred. As a result of the 
RDBMS’s internal design, the whole row (i.e. all the 
columns of a row) needed to be read from disk even when 
only a subset of columns was needed for the GWAS 
manhattan graph display. 

Therefore, we proposed that this specific query would 
benefit from techniques used by analytical data stores 
(OLAP). OLAP systems store each column individually: a 
row is split across multiple files, or segment of a file. This 
means that if a query need only 1 column from a 10-columns 
table, it only needs to load 10% of the data from disk. The 
next version of GOAT, will use the open source Parquet 
columnar file format [23], which is one of the most popular 
format in use by Big Data systems today. 

This open source project is based on Berkeley’s variant 
calling architecture (refer to Fig. 1). QnGene will use a  
similar approach for GWAS (see Fig. 2). QnGene will use a 
REST web service interface (i.e. HTTP) so that clients, such 
as GOAT and other open-source visualization tools, can use 
it to query the GWAS results. This is an important layer 
because if a visualization tool, like GOAT, would have 
interacted directly with Spark, it would have been more to 
difficult to record its provenance efficiently. QnGene is using 
the Apache Parquet technology to distribute the data 
horizontally, on a cluster of nodes, and Apache Spark is used 
to scale the data processing. 

Finally, we also extended the ADAM format to 
incorporate the data structures required to store GWAS 
results. We plan on contributing this extension back to the 

ADAM project once the QnGene code base is more stable 
and the project is released to the general public. 

 
Fig. 2. Architecture of our GWAS components. Artefacts in green 
represents our contributions to the field. 

IV. RECORDING THE PROVENANCE 
While the focus of previous approaches to provenance in 

Big Data systems have been aiming at debugging the system 
itself [14], [13], [15], our objective is to record the 
provenance with the purpose of actual reproducibility and 
third party auditing for small health research labs. However, 
this approach can also be used along side other provenance 
software such as Titian [15] if needed. 

From the perspective of GOAT, QnGene acts as presen-
tation wrapper around Spark. We expect that recording the 
provenance this way would generate less than 10% overhead 
over the computation of GWAS studies since we only need 
to capture the provenance at the beginning and end of the 
transaction. This will be experimented later this year (see 
Figure 4). 

Another advantage, over current proposals, is that now 
that the provenance metadata is available in a database, it 
becomes queryable by the users. While this is not a complete 
provenance solution yet, we believe it is a good first step 
towards meeting the regulations of the FDA CFR 21 Part 11 
[17] imposed on all health research labs. 

A. Improving the provenance of published variants 
To get around dbSNP limitation described in section I, 

we’ve modified the ADAM data model to store the dbSNP 
build number along with every RS number in the database. 
When the genotypes are imported in QnGene, the user 
specify the dbSNP release that generated the genotypes. This 
information is then carried over automatically when 
performing a GWAS with QnGene. 

Currently, QnGene version 0.1 will provide built in 
support to perform GWAS with linear and logistic regression 
models only at first. We plan adding support for more 
algorithms in the future, as needed by our team and/or as the 
open source community will contribute to the project. 

For GWAS results generated with other softwares, such 
as plink[7], the user will also be able to import the results in 
QnGene and then benefit from the dbSNP build number 
provenance fonctionality. 



V. GENETIC OUTPUT ANALYSIS TOOL (GOAT) 
GOAT is an other open source project we designed for 

GWAS real-time visualisation of manhattan graphs used in 
GWAS. It is a web based GWAS mining visualisation tool 
developed with Python programming language and using the 
Django framework [18]. We are working on the second 
release of GOAT presently. The following text explains the 
internals of this software. GOAT uses currently a MySQL 
relational database containing all GWAS data that is stored 
in Apache Parquet format in order to ensure compressed and 
efficient processing based on a columnar data storage 
technology developed for Big Data applications. In this 
second release, the database will interact with a Spark back-
end where queries from the Django web application of 
GOAT will be processed so that response time for each 
query can be decreased, improving time response for queries. 

Finally the Django web application will interact with 
GOAT’s user interface by providing HTML, CSS, Javascript 
files, and data to user according to query and also process 
user’s queries through the Django application. In this second 
release, the MySQL database will be only kept for defining a 
user table containing login info, and personal settings. In 
order to better allow open source contributions to GOAT’s 
future development, the architecture was improved to be as 
modular as possible, from a high level perspective to a low 
level implementation. 

Therefore, the second release of GOAT will be composed 
of four distinct layers. A summary of GOAT’s new modular 
architecture can be seen in Figure 3. 

First, at the top of Fig. 3, we find a columnar store 
database (i.e. in Parquet format), that will contains all the 
GWAS results. Second, a Spark back-end will query the 
database and send the data to the third layer, which is 
composed of a Django based Web application. This Web 
application will send the user HTML, CSS and JavaScript 
files, relay its queries to the Spark back-end and send back 
data, in JSON format, to the front-end application. The front-
end, located at the bottom of Fig. 3, is GOAT’s last layer, 
and consist of a Single Page Application (SPA) built with 
Facebook’s framework React.js, on top of a Flux 
architecture. 

React.js technology allows to create reusable components 
for the front-end. This is extremely useful in order to allow 
for quick design of new functionalities, and to avoid 
repeating a lot of logic, like user input validation. An SPA is 
like a state-machine: the state of the application determines 
what is displayed to the user. In order to create a new feature, 
a developer only has to add one additional state, which 
avoids to interfere and break the previous ones. The Django 
Web application main role is to pass queries from the front-
end to the Spark back-end, as well as distributing the 
necessary files to the user in order to display using the SPA. 
Each feature is contained in its own module. To add a new 
feature, a developer only needs to create a new “Django 
App” (i.e. which is basically a folder), and import it where it 
is needed. A “Tools” module has also been dedicated to the 
re-usable tools: like passing the data to the JSON format, or 
passing a query to the Spark back-end. 

 
Fig. 3. Modular view of GOAT’s new architecture. 

Finally, the Spark back-end will contain pre-configured 
queries, which will be used to fetch data in the database 
when the Django Web application will specifically call them. 

VI. EARLY EXPERIMENTATION OF QNGENE 
We are at very early validation stage at the time of 

writing this paper. In Figure 4, we present the experimental 
methodology that we are following to experiment QnGene 
provenance solution for Big Data Genome Wide Association 
Studies. At the top of the figure we find the a priori model 
(Provenance model v1) that has been presented and 
discussed with U.C. Berkeley’s ADAM main contributors for 
feedback during our last visit. Since this meeting, we are now 
working on a second iteration (Provenance model V2) as 
described in this paper. This improved model is tightly 
integrated with the visualization software named GOAT. We 
will validate this second provenance model using a case 
study at CHUM lab, where we will compare the benefits of 
our approach with the current situation (i.e. without a 
workflow system) and with two other solutions (i.e. Biogenix 
and Galaxy). This will help us better understand the 
strenght/weaknesses of our proposed solution. 

For the third version, we aim to develop a provenance 
measurement model that can produce a global score of the 
provenance quality of a GWAS pipeline. 



 

 
Fig. 4. Proposed experimental methodology for QnGene 

Further experiments are planned during 2016-17 and we 
will report on our progress. 

VII. CONCLUSION 
In this paper, we have described the approach we are 
currently working on to improve the scalability and 
provenance of GWAS. We have also discussed the growing 
scalability challenge by showing how Apache Spark and 
Parquet can be used to improve GWAS provenance by 
showing how it is used in two GWAS open source mining 
tools: Genetic Output Analysis Tool (GOAT) and QnGene. 
While QnGene supports currently a limited subset of GWAS 
algorithms that tracks the dbSNP build number 
automatically, we have described how it was possible to 
import the GWAS results from other software. We hope that 
this novel approach to GWAS provenance and scalability 
will provide a reference model for all small health research 
centers and this is the reason to open source it. 
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