
Addressing Provenance issues in Big Data Genome
Wide Association Studies (GWAS)

David Lauzon, Beatriz Kanzki, Victor Dupuy,
Alain April*

École de Technologie Supérieure (ÉTS)
1100, rue Notre-Dame Ouest,

Montréal, QC, Canada
davidonlaptop@gmail.com
 beatriz.kanzki@gmail.com
vdcd120491@gmail.com

alain.april@etsmtl.ca

Michael S. Phillips, Johanne Tremblay*,
Pavel Hamet*

Centre de Recherche du Centre Hospitalier
de l’Université de Montréal (CRCHUM)

900, rue St-Denis
Montréal, QC, Canada
pgxdoc@gmail.com

johanne.tremblay@umontreal.ca
pavel.hamet@umontreal.ca

* corresponding authors

Abstract—Effective genome wide association studies

(GWAS) present new Big Data challenges for health
researchers: data processing delays, data provenance and
efficient real-time visualization. This paper presents two recent
open source initiatives that, used together, aim at solving these
issues. First, an introduction to GWAS is presented followed by
a description of the issues faced by the bioinformatics staff at
this small health research lab. We then introduce two open
source project we initiated: a query engine (QnGene) and a
genetic output analysis tool (GOAT) to address these issues and
give an overview of their internal architecture and our current
experimentation and validation plan.

Keywords—GWAS health systems provenance; Big Data;
dbSNP discrepancies; GWAS visualization; open-source.

I. BACKGROUND AND PROBLEM
Genome wide association studies (GWAS) have recently

evolved into a powerful tool for investigating the genetic
association to human diseases and are very popular among
health scientists. This type of study searches the whole
genome for small variations, called single nucleotide
polymorphisms (SNPs), that occur more frequently in
patients with a particular disease than in the general
population that does not have the disease [1]. Results
generated from GWAS involve millions of SNPs per
phenotype which the researchers usually store in a relational
database (for example MySQL) for annotation, drill down
analysis and results quality investigations. In Dr. Pavel
Hamet’s diabetes research lab, at the CHUM located in
Montreal, limits of the use of relational database technology
was starting to hinder research. For example, retrieving data
for one GWAS associated with one phenotype (i.e. which is
around 6 000 000 SNPs) can take up to 5 minutes for just 4
criteria (i.e. rsId, p-value, position, and chromosome), and is
up to 50 minutes if the researcher would like to extract 10
GWAS in order to compare the different phenotypes
concurrently. So it looks like there is a linear relationship
between the size of the data set being used and the MySQL
query response time [2]. In that context, investigating this

data is becoming time consuming, limit certain analysis and
is preventing the research team from finding potential hidden
relationships between phenotypes as they have such slow
turnaround time.

The provenance of the GWAS results is another issue
reported. GWAS results originates from a complex sequence
of data transformations that have generated many
intermediate files during the discovery process. Hence we
can compare this discovery process to a graph of trial and
errors activities, where a fraction of its paths could lead to
significant findings that can be further investigated. As the
number of steps, in the discovery process increases, the
number of branching possibilities increase as well
exponentially. Some branches may be deleted or ingnored,
but others may become significant and investigated at a later
time. The consequence of using this type of discovery
process is that the workflow, from raw data to GWAS
results, generates many larges intermediate files, and the
management of those files and results, to ensure the
repeatability of the GWAS is quickly becoming a major
challenge for the bioinformatics staff of Dr. Hamet’s lab. If
the intermediate files, of a published experiment are deleted,
then the provenance of the data is lost and it may be difficult
or even impossible to reproduce the published result when
time comes.

A third issue, also related to provenance, is that our sci-
entific comprehension of the human genome is constantly
evolving and some facts we take for granted may prove to be
wrong in the future. The dbSNP database [3], which is used
as the genetic variant reference for most GWAS experiments,
is reported to contain erroneous data that could introduce
significant errors in GWAS interpretations. Some authors
[4], [5] have reported that the dbSNP database may contain
up to 15–17% of false positives. dbSNP contains a ”unique”
RS number for each variant in its database, but the variant(s)
associated with the RS number may change over different
dbSNP build number releases. A variant can be splitted in
multiple variants, merged with another variant, and/or moved

to a different position on a genome as our scientific
comprehension of the genome improves [6]. Therefore it is
recommended that authors also include the dbSNP build
number release along with the RS number they are
publishing. However, most GWAS software, such as plink
[7] and snptest [8], do not store this information, which make
it difficult for researchers to identify the provenance of the
RS number they are publishing in their research.

In this paper we present an overview of two open-source
projects we initiated to meet the challenges of data
provenance, horizontal scalability and visualization of
GWAS in a Big Data context :

• QnGene: A scalable provenance-aware
implementation of an initial GWAS algorithm;

• GOAT: A responsive user interface for mining
GWAS results.

II. CURRENT SOLUTIONS AND SHORTFALLS

A. Genomics in Big Data
Most GWAS softwares, for example plink [7], use a

single process or even a single thread of processing on
computers to process the data. This leads to slow computing
times. A typical solution, to improve the scalability of this
type of software architecture, is to split the data into multiple
files (e.g. 1 file per chromosome), invoke the software once
for each file, and merge the results back at the end of all
concurrent processing. This workaround solution is
performed either manually, using a custom shell script, or
using a workflow engine like Taverna [9]. While this
approach works to an extent, it complexifies the user-
software interactions and generates additional intermediate
files that will need to be preserved to ensure the provenance
and repeatability of experiments.

Fig. 1. Hourglass layered architecture of the ADAM variant calling
framework developed at UC Berkeley[10].

A better approach would be to tackle the scalability
problem at its core by creating a file schema that can be
automatically be distributed on a cluster of computers. The
ADAM open-source project, at U.C. Berkeley [10], has been
able to achieve a 28x speedup over existing genetic variant
calling solutions using this solution. To sustain the evolution
of the project and provide a solid scalable core, they suggest
using a 7-layer architecture (see Figure 1) that leverage
existing Big Data technologies such as Hadoop[11] and
Spark[12] to allow easy concurrent processing. Another
advantage of building new algorithms based on ADAM is
that it minimize the amount of code (and programming time
which leads to lower efforts/costs) to implement new
algorithms that can scale easily on such a distributed system.
However, ADAM was designed for whole genome
sequencing and therefore currently lacks the data structure
required to perform GWAS at our lab. Section III of this
paper will present how this is being adressed currently by our
software engineering research project.

B. Provenance for Big Data health research applications
Some provenance solutions have been published but fall

short of what is needed here. For example, the Provenance
Aware Storage System (PASS) [13] is a file system approach
to provenance. The principle of PASS is that instead of
writing the data to the file system directly, the application
writes to the PASS system which in turns records the
provenance and stores the data in its underlying file system.
PASS has been designed and optimized for storing data in
the Amazon S3 file system which can be unpractical
(because of storage cost) for long-term storing of terabytes
and even petabytes of data required in the field of genomics
research. Furthermore, PASS is currently not compatible
with the Hadoop Distributed File System (HDFS) which is
already an abstraction on top of a regular file systems. If
PASS would be used to trace the file operations in HDFS, it
would currently not be able to view the file names directly
but only the file’s blocks id (e.g. BP-1976835025-
172.17.0.55-1440087701986).

RAMP [14] is one of the first attempt at bringing prove-
nance natively in the Hadoop ecosystem. RAMP provides
wrapper classes for the Map and Reduce functions. These
wrapper classes record the provenance. The drawbacks are
that 1) their benchmark results report a 16% to 76% range of
performance overhead; 2) RAMP was designed to work only
for older versions of Hadoop MapReduce (i.e. RAMP code
has not been updated since nearly 5 years); and 3) Apache
Spark is becoming more popular than Hadoop MapReduce
which is beign phased out in recent months.

Recently, the Titian project [15] added provenance
support natively in Apache Spark. Titian claims that its
overhead ”rarely exceeds 30% above the baseline job
execution time”. However, as Titian does not persist the
provenance metadata after a job has completed, it seems to
be useful mostly for debugging a job’s code and not
adressing repeatability of experiments in a real health lab
experimental setting.

Finally, we looked at Cloudera’s Navigator [16] which is
a commercial product that integrates well with the Hadoop

ecosystem. Navigator transparently records the provenance
and has features for visual data lineage and audits. Overall
great product if you can afford it. Navigator however is not
optimized for doing the provenance of genome wide
association studies.

Based on what is available, we decided to undertake the
design of a solution that is divided in two open-source
initiatives as some users may only want one of the two
functions for their lab. The next section describes the
proposed solution for adressing provenance issues in Big
Data Genome Wide Association Studies (GWAS).

III. ARCHITECTURE OVERVIEW
Our initial objective, with this first version of QnGene, is

to solve the scalability issues of our GWAS open source
project named: Genetic Output Analytic Tool (GOAT). The
source code and vision document for the first version of
GOAT is available on GitHub (https://github.com) by
searching for: GOAT Genetic Ouput Analysis Tool.

GOAT’s first release quickly suffered from performance
issue where the main query to the database was not very
responsive. We tried to use the Bokeh Server [22] to solve
this problem, but this query was still taking several minutes
to execute. We identified that most of the query process
duration was spent in the relational database processing (in
our case MySQL). After detailed analysis of the query, we
found out that it only needed a small subset of the columns.
However, traditional relational databases (RDBMS), like
MySQL, are optimized for business transaction processing
where the whole record is transferred. As a result of the
RDBMS’s internal design, the whole row (i.e. all the
columns of a row) needed to be read from disk even when
only a subset of columns was needed for the GWAS
manhattan graph display.

Therefore, we proposed that this specific query would
benefit from techniques used by analytical data stores
(OLAP). OLAP systems store each column individually: a
row is split across multiple files, or segment of a file. This
means that if a query need only 1 column from a 10-columns
table, it only needs to load 10% of the data from disk. The
next version of GOAT, will use the open source Parquet
columnar file format [23], which is one of the most popular
format in use by Big Data systems today.

This open source project is based on Berkeley’s variant
calling architecture (refer to Fig. 1). QnGene will use a
similar approach for GWAS (see Fig. 2). QnGene will use a
REST web service interface (i.e. HTTP) so that clients, such
as GOAT and other open-source visualization tools, can use
it to query the GWAS results. This is an important layer
because if a visualization tool, like GOAT, would have
interacted directly with Spark, it would have been more to
difficult to record its provenance efficiently. QnGene is using
the Apache Parquet technology to distribute the data
horizontally, on a cluster of nodes, and Apache Spark is used
to scale the data processing.

Finally, we also extended the ADAM format to
incorporate the data structures required to store GWAS
results. We plan on contributing this extension back to the

ADAM project once the QnGene code base is more stable
and the project is released to the general public.

Fig. 2. Architecture of our GWAS components. Artefacts in green
represents our contributions to the field.

IV. RECORDING THE PROVENANCE
While the focus of previous approaches to provenance in

Big Data systems have been aiming at debugging the system
itself [14], [13], [15], our objective is to record the
provenance with the purpose of actual reproducibility and
third party auditing for small health research labs. However,
this approach can also be used along side other provenance
software such as Titian [15] if needed.

From the perspective of GOAT, QnGene acts as presen-
tation wrapper around Spark. We expect that recording the
provenance this way would generate less than 10% overhead
over the computation of GWAS studies since we only need
to capture the provenance at the beginning and end of the
transaction. This will be experimented later this year (see
Figure 4).

Another advantage, over current proposals, is that now
that the provenance metadata is available in a database, it
becomes queryable by the users. While this is not a complete
provenance solution yet, we believe it is a good first step
towards meeting the regulations of the FDA CFR 21 Part 11
[17] imposed on all health research labs.

A. Improving the provenance of published variants
To get around dbSNP limitation described in section I,

we’ve modified the ADAM data model to store the dbSNP
build number along with every RS number in the database.
When the genotypes are imported in QnGene, the user
specify the dbSNP release that generated the genotypes. This
information is then carried over automatically when
performing a GWAS with QnGene.

Currently, QnGene version 0.1 will provide built in
support to perform GWAS with linear and logistic regression
models only at first. We plan adding support for more
algorithms in the future, as needed by our team and/or as the
open source community will contribute to the project.

For GWAS results generated with other softwares, such
as plink[7], the user will also be able to import the results in
QnGene and then benefit from the dbSNP build number
provenance fonctionality.

V. GENETIC OUTPUT ANALYSIS TOOL (GOAT)
GOAT is an other open source project we designed for

GWAS real-time visualisation of manhattan graphs used in
GWAS. It is a web based GWAS mining visualisation tool
developed with Python programming language and using the
Django framework [18]. We are working on the second
release of GOAT presently. The following text explains the
internals of this software. GOAT uses currently a MySQL
relational database containing all GWAS data that is stored
in Apache Parquet format in order to ensure compressed and
efficient processing based on a columnar data storage
technology developed for Big Data applications. In this
second release, the database will interact with a Spark back-
end where queries from the Django web application of
GOAT will be processed so that response time for each
query can be decreased, improving time response for queries.

Finally the Django web application will interact with
GOAT’s user interface by providing HTML, CSS, Javascript
files, and data to user according to query and also process
user’s queries through the Django application. In this second
release, the MySQL database will be only kept for defining a
user table containing login info, and personal settings. In
order to better allow open source contributions to GOAT’s
future development, the architecture was improved to be as
modular as possible, from a high level perspective to a low
level implementation.

Therefore, the second release of GOAT will be composed
of four distinct layers. A summary of GOAT’s new modular
architecture can be seen in Figure 3.

First, at the top of Fig. 3, we find a columnar store
database (i.e. in Parquet format), that will contains all the
GWAS results. Second, a Spark back-end will query the
database and send the data to the third layer, which is
composed of a Django based Web application. This Web
application will send the user HTML, CSS and JavaScript
files, relay its queries to the Spark back-end and send back
data, in JSON format, to the front-end application. The front-
end, located at the bottom of Fig. 3, is GOAT’s last layer,
and consist of a Single Page Application (SPA) built with
Facebook’s framework React.js, on top of a Flux
architecture.

React.js technology allows to create reusable components
for the front-end. This is extremely useful in order to allow
for quick design of new functionalities, and to avoid
repeating a lot of logic, like user input validation. An SPA is
like a state-machine: the state of the application determines
what is displayed to the user. In order to create a new feature,
a developer only has to add one additional state, which
avoids to interfere and break the previous ones. The Django
Web application main role is to pass queries from the front-
end to the Spark back-end, as well as distributing the
necessary files to the user in order to display using the SPA.
Each feature is contained in its own module. To add a new
feature, a developer only needs to create a new “Django
App” (i.e. which is basically a folder), and import it where it
is needed. A “Tools” module has also been dedicated to the
re-usable tools: like passing the data to the JSON format, or
passing a query to the Spark back-end.

Fig. 3. Modular view of GOAT’s new architecture.

Finally, the Spark back-end will contain pre-configured
queries, which will be used to fetch data in the database
when the Django Web application will specifically call them.

VI. EARLY EXPERIMENTATION OF QNGENE
We are at very early validation stage at the time of

writing this paper. In Figure 4, we present the experimental
methodology that we are following to experiment QnGene
provenance solution for Big Data Genome Wide Association
Studies. At the top of the figure we find the a priori model
(Provenance model v1) that has been presented and
discussed with U.C. Berkeley’s ADAM main contributors for
feedback during our last visit. Since this meeting, we are now
working on a second iteration (Provenance model V2) as
described in this paper. This improved model is tightly
integrated with the visualization software named GOAT. We
will validate this second provenance model using a case
study at CHUM lab, where we will compare the benefits of
our approach with the current situation (i.e. without a
workflow system) and with two other solutions (i.e. Biogenix
and Galaxy). This will help us better understand the
strenght/weaknesses of our proposed solution.

For the third version, we aim to develop a provenance
measurement model that can produce a global score of the
provenance quality of a GWAS pipeline.

Fig. 4. Proposed experimental methodology for QnGene

Further experiments are planned during 2016-17 and we
will report on our progress.

VII. CONCLUSION
In this paper, we have described the approach we are
currently working on to improve the scalability and
provenance of GWAS. We have also discussed the growing
scalability challenge by showing how Apache Spark and
Parquet can be used to improve GWAS provenance by
showing how it is used in two GWAS open source mining
tools: Genetic Output Analysis Tool (GOAT) and QnGene.
While QnGene supports currently a limited subset of GWAS
algorithms that tracks the dbSNP build number
automatically, we have described how it was possible to
import the GWAS results from other software. We hope that
this novel approach to GWAS provenance and scalability
will provide a reference model for all small health research
centers and this is the reason to open source it.

ACKNOWLEDGMENT
We would like to thank Michael Phillips for his constant

support and Frank Nothaft and Matt Massie of U.C
Berkeley’s AMPLAB for their comments and advice on
provenance for ADAM.

REFERENCES
[1] W. S. Bush and J. H. Moore, “Genome-wide association studies,”

PLoS Comput Biol, vol. 8, no. 12, p. e1002822, 2012.

[2] R. Hofstede, A. Sperotto, T. Fioreze, and A. Pras, “The network data
handling war: Mysql vs. nfdump,” in Networked Services and
Applications-Engineering, Control and Management. Springer, 2010,
pp. 167–176.

[3] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M.
Smigielski, and K. Sirotkin, “dbsnp: the ncbi database of genetic
variation,” Nucleic acids research, vol. 29, no. 1, pp. 308–311, 2001.

[4] A. A. Mitchell, M. E. Zwick, A. Chakravarti, and D. J. Cutler,
“Discrep-ancies in dbSNP confirmation rates and allele frequency
distributions from varying genotyping error rates and patterns,”
Bioinformatics, vol. 20, no. 7, pp. 1022–1032, 2004.

[5] L. Musumeci, J. W. Arthur, F. S. Cheung, A. Hoque, S. Lippman, and
J. K. Reichardt, “Single nucleotide differences (SNDs) in the dbSNP
database may lead to errors in genotyping and haplotyping studies,”
Human mutation, vol. 31, no. 1, pp. 67–73, 2010.

[6] A. Kitts, L. Phan, M. Ward, and J. B. Holmes, “The Database of Short
Genetic Variation (dbSNP) 2013 Jun 30 [Updated 2014 Apr 3],”
2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/books/NBK174586/

[7] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D.
Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly et al., “Plink:
a tool set for whole-genome association and population-based linkage
analyses,” The American Journal of Human Genetics, vol. 81, no. 3,
pp. 559–575, 2007.

[8] J. Marchini and B. Howie, “Genotype imputation for genome-wide
association studies,” Nature Reviews Genetics, vol. 11, no. 7, pp.
499– 511, 2010.

[9] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S.
Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P.
Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna workflow suite:
designing and executing workflows of Web Services on the desktop,
web or in the cloud.” Nucleic acids research, vol. 41, no. Web Server
issue, pp. 557–561, 2013.

[10] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yek-
sigian, J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman, M. J.
Franklin, A. D. Joseph, and D. A. Patterson, “Rethinking Data-
Intensive Science Using Scalable Analytics Systems Categories and
Subject Descriptors,” Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015.

[11] D. Cutting and M. Cafarella. (2016) Apache hadoop: an open-source
software for reliable, scalable, distributed computing. [Online].
Available: https://hadoop.apache.org

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” NSDI’12 Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pp. 2–2, 2012.

[13] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “PASS:
Provenance for the Cloud,” Proceedings of the 8th USENIX
Conference on File and Storage Technologies, pp. 14–15, 2010.

[14] R. Ikeda, H. Park, and J. Widom, “Provenance for generalized map
and reduce workflows,” Proceedings of the Fifth CIDR, pp. 273–283,
2011.

[15] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie, “Titian: Data Provenance Support in
Spark,” Proceedings of the VLDB Endowment, vol. 9, no. 3, pp. 216–
227, 2015.

[16] Cloudera. (2015) Cloudera navigator: Big data meets data
governance. [Online]. Available:
https://cloudera.com/products/cloudera-navigator.html

[17] FDA, “Title 21: Food and Drugs, Chapter I: Food and Drug
Administra-tion, Department of Health and Human Services,
Subchapter A:General, Part 11: Electronic Records; Electronic
Signatures,” Tech. Rep., 2016.

[18] D. Moore, R. Budd, and W. Wright, Professional Python
Frameworks: Web 2.0 Programming with Django and Turbogears.
John Wiley & Sons, 2008

