
CloudMeasure: A Platform for Performance Analysis
of Cloud Computing Systems

Luis Eduardo Bautista
Villalpando

Department of Electronic Systems
Autonomous University of

Aguascalientes
Aguascalientes, Mexico

E-mail: lebautis@correo.uaa.mx

Alain April
Department of Software Engineering

and Information Technology
ETS – University of Quebec

Montreal, Canada
E-mail: alain.april@etsmtl.ca

Alain Abran
Department of Software Engineering

and Information Technology
ETS – University of Quebec

Montreal, Canada
E-mail: alain.abran@etsmtl.ca

Abstract— Concepts such as price, performance, time to
completion (availability), probability of failure and non-
repudiation are key to being able to produce a comparison
service, in order to establish Service Level Agreements (SLA)
or design better mechanisms to improve the performance in
Could Computing Systems (CCS). This work presents the
design of a platform for performance analysis, which provides
infrastructure, a framework for performance measurement
and tools to facilitate the design, validation, and comparison of
performance models and algorithms for CCS. The purpose of
this platform is to help to establish attribute–performance
relationships relating to specific applications with relatively
well-known demands on systems to be able to determine how
comparison services may be formulated. The design of the
CloudMeasure platform is based on a framework for
implementing big data science in organizations (DIPAR) and
the three-dimensional performance measurement model for
CCS which defines the basis for the analysis of Cloud
Computing concepts that are directly related to performance
and have been identified from international standards such as
ISO 25010.

Keywords— cloud computing; performance; analysis; model;
platform; framework; ISO 25010 quality model, maintenance

I. INTRODUCTION
Cloud Computing (CC) is defined by ISO and IEC as the

paradigm for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable cloud
resources accessed through services which can be rapidly
provisioned and released with minimal management effort or
service provider interaction [1].

Cloud services are categorized into three service models:
1) Infrastructure as a Service (IaaS), 2) Platform as a Service
(PaaS), and 3) Software as a Service (SaaS) [2]. These three
service models include all the technical resources that clouds
need in order to process information, such as: software,
hardware, and network elements. For example, the service
model that relates the most to the software engineering
community is the SaaS model while the IaaS model is most
related to hardware architectures and virtualization. Software
engineers focus on software components, and customers use
IT provider’s applications running on a cloud infrastructure

to process information according to their processing and
storage requirements. One of the main characteristics of IaaS
model is that customers do not manage or control the
underlying Cloud infrastructure (including network, servers,
operating systems, and storage), except for limited user-
specific application configuration settings.

One of the most important challenges in delivering Cloud
Services is to ensure that they are fault tolerant and minimize
anomalies which can degrade its services or impact their
quality, and even their availability. According to Coulouris
[3], a failure occurs in a distributed system (DS), like a CC
system (CCS), when a process or a communication channel
departs from what is considered to be its normal or desired
behavior. An anomaly is different, in that it slows down a
part of a CCS without making it fail completely, impacting
the performance of tasks within nodes, and, consequently, of
the system itself.

 Performance analysis models (PAM) for CCS must
propose a means to identify and quantify "normal cluster
behavior," which can serve as a baseline for detecting
possible failures and anomalies in the computers (i.e. nodes
in a cluster) that may impact the overall cloud performance.
To achieve this goal, measurement methods are needed to
collect the necessary base measures specific to CCS
performance, and analysis models must be designed to
determine the relationships that exist among these measures.

The ISO International Vocabulary of Metrology (VIM)
[4] defines a measurement method as a generic description of
a logical organization of operations used in measurement,
and an analysis model as an algorithm or calculation
combining one or more measures obtained from a
measurement method to produce evaluations or estimates
relevant to the information needed for decision making.

An important aspect in the creation of the above models
is data requirements. Data is necessary to carry on
experiments, simulating different scenarios, in order to select
the best models that fit our requirement. Therefore, it is
necessary to have access to performance data repositories, to
help figuring out performance models that subsequently can
be implemented in live CCS. In addition, it is necessary

measurement frameworks which help during the design
process of PAM for CCS. Unfortunately, currently there are
no CC performance platforms that help in the design and
evaluation of such models.

This paper presents the CloudMeasure project, which
aims to develop and make available a public platform for the
performance analysis of CCS. The purpose of this research
project is to provide a framework, data, and infrastructure to
facilitate the design, validation, and comparison of
performance analysis models and algorithms for CCS. One
of the most important aspects of this project is the integration
of the above components that constitute the CloudMeasure
platform. This integration is very important because this will
determine the efficiency and reliability of the results
obtained from the PAM. In addition, such integration will
help to define the group of CCS elements and the attributes
that determine the performance of CCS. For instance, one
group of elements could be data related to applications
running on the CCS such as the Job history, and some of
their attributes could be the number of success tasks executed
or the time taken to process them.

This paper is structured as follows. Section 2 presents
related work on platforms for data analysis in software
engineering and Cloud Computing. Section 3 presents the
proposed CloudMeasure platform architecture, which
describes the elements in which is based on and its operation.
Section 4 presents the CloudMeasure DataFlow (CMDF),
which defines the steps to follow for designing, developing
and validating performance analysis models for CCS.
Finally, section 5 summarizes the contributions of this work
and suggests future work.

II. RELATED WORK

A. Software Project Platforms and Repositories
The CloudMeasure project provides a conceptual model

for the design of PAM as well as the definition of a standard
format for performance attributes of CCS and tools for data
analysis. In addition, the project offers a collaborative data
loading mechanism that will address different participant’s
role (for example: performance data providers, PAM
contributors and infrastructure users).

There are several data repositories made available
publicly to share information related to software projects,
web systems or data sets of failures traces. For example, The
International Software Benchmarking Standard Group
(ISBSG) [5] maintains the largest publicly available
repository of software projects. The ISBSG mission is to
help to improve software engineering practices and the
business management of information technology resources
through the provision of project and application data.

Other platforms such as the Web Metrics repository [6],
defines a catalogue of web metrics which allows evaluators
and stakeholders to have a service and a consultation
mechanism to support different phases of the development of
the software life cycle in web development. This metrics
repository is used to support different quality assurance
process such as non-functional requirements definition and
specification, metrics understanding and selection, quality

testing definition, development or maintenance phase. In
addition, the Web Metrics repository provides tools to data
collection and cataloguing to analyze the web system and
improve its performance.

Other data platforms record failures traces to allow the
comparison and cross validation of a fault-tolerant model or
algorithms across identical trace data sets. The Failure Trace
Archive (FTA) [7], defines a standard format for failure
traces and provides a toolbox that facilities comparative trace
analysis for its users. A failure trace is a data set collected
from different distributed systems, which contains records of
their availability represented in time series. The FTA
repository presents uniform statistical analysis and failure
models for nine diverse distributed systems. According to
Kondo, this can be used to assess if a model can be
generalized to another context (in terms of reliability or user
base, for example) or to determine which trace data set is
better suited or applicable for a given algorithm or model.
Although the above projects present interesting design of
data repositories, none of them cover Cloud Computing
technologies.

B. Performance Measurement Framework for Cloud
Computing
The Performance Measurement Framework for Cloud

Computing (PMFCC) [8] integrates software quality
concepts from ISO 25010. This framework defines that CCS
performance is determined by two main sub concepts: 1)
performance efficiency, and 2) reliability. In addition, it
establishes that when a CCS receives a service request, there
are three possible outcomes (the service is performed
correctly, the service is performed incorrectly, or the service
cannot be performed). The outcome will determine the sub
concepts that will be applied for performance measurement.

Fig. 1. Quality concepts and sub concepts associated to the
performance measurement of CCS.

For example, suppose that the CCS performs a service
correctly, but, during its execution, the service failed and was
later reinstated. Although the service was ultimately
performed successfully, it is clear that the system availability
(part of the reliability sub concept) was compromised, and
this affected CCS performance. Figure 1 presents the quality
concepts and sub concepts associated to the performance
measurement of CCS.

The performance measurement framework does not
define the type of data format related to the CCS. The
framework only defines the concepts that best represent the
type of attributes, and which can be measured to assess
whether or not the CCS satisfies the stated requirements from
a quantitative viewpoint. These types of attributes are
grouped into such performance concepts, which are
responsible for conducting the measurement process using a
combination of base measures through a data collector. They
are associated with the corresponding ISO 25010 quality
derived measures, as presented in Table I.

The types of attribute presented in Table I are categorized
as performance concepts. These concepts were designed to
shares intermediate results from common performance
measures, reducing the number of operations in the
measurement process at the time of calculation.

In addition, the framework determines how to measure a

quality characteristic, for example how can we measure the
CCS availability characteristic (presented in Table I) using
the framework? To start with, three performance concepts
are needed: 1) the time concept, 2) the task concept, and 3)
the transmission concept. The time concept can use several
different measured attributes, such as CPU utilization by the
user, job duration, and response time. These measures are
obtained using a data collector, and then inputted to the time
concept that calculates a derived measure of the time. The
combination of results of each concept determines a derived
measure of the availability that contributes to CCS
performance, as defined in the framework.

On important aspect of the PMFCC is that the type of
attribute only defines the group in which performance data
will be classified. Performance data most of the time comes
from a number of sources, such as application logs, database
logs, monitoring system tools, etc. This makes very difficult
to know what type of data will be ingested and then used in
the PAM. One of the main problems that arises following the
ingestion of performance data is its cleanliness. This problem
calls for the quality of the data to be verified prior to
performing the performance analysis. Among the most
important data quality issues to consider during data cleaning
are corrupted records, inaccurate content, missing values,
and formatting inconsistencies, to name a few.

The quality of the performance data can affect the results
of the PAM and as consequence the decision-making process
in different stages such as definition of organization’s
requirements, processes evaluation, aspects of
interoperability and design of applications only to name a
few.

III. THE CLOUD MEASURE PLATFORM
The CloudMeasure project proposes a platform for the

design, development and validation of PAM for CCS. The
purpose of this project is to provide a PMFCC, performance
data sets as well as infrastructure to facilitate the design,
validation, and comparison of performance models and
algorithms for CCS. One of the main reasons for the creation
of the CloudMeasure project is the current lack of
information that can help in understanding and defining how
to measure availability, reliability and non-repudiation of
CCS. Actual measurement of concepts such as price,
performance, time to completion (availability), likelihood of
completion (probability of failure) and penalty (non-
repudiation) are key to being able to compare services or to
establish Service Level Agreements (SLA) for CCS.

 According to Li [9], commercial CCS currently enable
the capture of price–performance information relating to
specific applications with relatively well-known demand
patterns. This allows the user to gain useful information to
compare the service between suppliers. Comparisons can
become complex as they can depend on both the
performance requirements of the user, the current availability
of the system, as well as the price the user can afford.
According to Gangadharan [10], the pricing of Cloud
Computing services is currently associated with
differentiated levels of service based on varying capacity of
memory, computing units used, and types of platforms. The

Attribute Type Performance
Concept

ISO 25010 Quality
Characteristic

Failures avoided
Failures detected
Failures predicted
Failures resolved

Failure concept
Maturity
Resource utilization
Fault tolerance

Breakdowns
Faults corrected
Faults detected
Faults predicted

Fault concept Maturity
Fault tolerance

Tasks entered into
recovery

Tasks executed
Tasks passed
Tasks restarted
Tasks restored
Tasks successfully restored

Task concept

Availability
Capacity
Maturity
Fault tolerance
Resource utilization
Time behavior

Continuous resource
utilization time

Down time
Maximum response time
Observation time
Operation time
Recovery time
Repair time
Response time
Task time
Time I/O devices occupied
Transmission response

time
Turnaround time

Time concept

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

Transmission errors
Transmission capacity
Transmission ratio

Transmission
concept

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

TABLE I. FUNCTIONS ASSOCIATED WITH CLOUD COMPUTING
PERFORMANCE CONCEPTS

pricing also varies with respect to the choice of operating
systems and the geographical location of the user. The
criteria for pricing of Cloud Services can also be based on
hourly usage, CPU cycle usage, or other usage approach. In
addition Gangadharan mentions that pricing of infrastructure
Cloud Services depends upon levels of use, layers of service,
or a mix of these. Thus, the CloudMeasure project could
provide a useful tool for maintainers, users and developers to
help to define the performance data which allows to create
performance models to gain knowledge that can contributes
to understand an SLA and help them to analyze the
performance of CCS.

In particular, the CloudMeasure platform contains the
following:

• A PMFCC which defines attributes, concepts and a
measurement method for the performance analysis of
CCS.

• Performance data sets from CCS, differing in scale
and granularity, which contributes to create models to
analyze concepts as availability, non-repudiation,
capacity, etc.

• Infrastructure consisting of a cluster of computers
running Hadoop technology, which can be used for
developing and testing PAM.

• The CloudMeasure DataFlow (CMDF), which defines
the workflow for designing and validating
performance analysis models for CCS.

A. The CloudMeasure Conceptual Mode
The CloudMeasure platform is based on a conceptual

model, which defines and describes the performance data
involved in the performance analysis of CCS. This allows to
document each measure providing, as a result, a
comprehensive catalogue of attributes than can be used by
different stakeholders. The conceptual model is organized
hierarchically (see Figure 2) and includes:

• Performance data design: Defines the type of data
related to performance, which is baseline of
performance platform. This stage ensures the data
quality which is the basis for the creation of datasets
and analysis models.

• Performance data collection: Describes the source
and procedure for the data collection process. This
stage identifies the type of CC architecture,
platform, and application development frameworks
and so on.

• Performance data analysis: Among the most
important data quality issues to consider during the
data analysis stage is data cleaning which refers to
corrupted records, inaccurate content, missing
values, and formatting inconsistencies, to name a
few. An important issue in data integration is
formatting inconsistencies; caused by the very
different forms that data can take as result of data
collection from different architectures, platforms

and applications, and their combination in order to
figure out relationships.

• Development of performance analysis models:
Once the performance data have been integrated
and analyzed, it is necessary to develop models,
which can be used during the decision-making
process by stakeholders. Such models will help to
understand the behavior and performance of CCS.

One important aspects of the CloudMeasure platform is
that users can query specific performance data to create
models or simply analyze content into the data analysis
infrastructure. To facilitate the design of the platform, a
template was defined to build a catalogue of performance
data that allows populating and updating a data performance
repository.

B. The CloudMeasure Template Data Content
Performance data quality is a key component of the

CloudMeasure platform. Enhancing the quality of
performance data is important for a number of reasons,
including:

• The existence of defective data will produce
erroneous results in PAM, contributing to an
unsatisfactory decision-making process.

• The dispersion of performance data among different
sources of CCS, such as hypervisors, individual
virtual machine (VM), VM scheduling information
across multiple hardware cores, etc., does not
provides a coherent and integrated vision for the
analysis of the performance of CCS

• The co-existence of legacy architectures, cloud
platforms and frameworks for development of
applications are normally gathered under different
standards.

Fig. 2. Cloud Measure conceptual model.

One of the goals of the CloudMeasure platform is to
improve the quality of data performance regardless of cloud
architecture, platform or application development framework
used in CCS. This improvement is possible by identifying
the data quality requirements related to performance, which
help ensuring the quality of the information used in the
design and validation of PAM for CCS.

 The CloudMeasure data platform is based on ISO 25012:
Software Engineering: Software Product Quality
Requirements and Evaluation (SQuaRE) – Data Quality
Model [11]. This standard defines a data quality model,
which focuses on the quality of the data as part of a computer
system and defines quality characteristics for target data used
users and operators of the system. According to ISO 25012,
target data are those that the organization decides to be
analyzed and validated through the model. In this case target
data is related to CCS performance. Moreover, ISO 25012
describes characteristics that may be used as a term of
reference to define data quality requirements and data quality
measures to establish criteria for the assessment and
evaluation of the quality of the data managed by a computer
system according to organization’s objectives

One of the main aspects considered for the design of a
standard template is to categorize each attribute to be
measured into the different ISO quality concepts described in
the PMFCC (see Figure 1). For this, we are working on the
design of a Three-Dimensional Performance Measurement
Model for Cloud Computing (P2M2C-3D) which defines
data types and a measurement method that makes it possible
to measure the CC concepts that are directly related to
performance from different perspectives.

C. A three-dimensional Performance Measurement Model
for Cloud Computing
In the Three-Dimensional Performance Measurement

Model for Cloud Computing (P2M2C-3D), performance
concepts have been reviewed and updated according to
different type of perspectives as shown in Table II where the
different sub concept measurements are defined according to
each perspective.

For example, the measurement of the sub concept of time
behavior from perspective number one (TBMP1)
corresponds to the provider, while the same type of
measurement from perspective number two (TBMP2)
corresponds to the costumer perspective, and so on.

Each group of the sub concept measurements is
combined according to the same perspective number in order
to obtain its respective concept indicator (see Figure 3). For
example, the measurement of the sub concepts, MMP1,
RMP1, AMP1 and FTMP1 are combined to obtain the
indicator for the reliability concept (RI1). Similarly, the
measurement of the sub concepts TBMP1, RUMP1 and
CMP1 are combined to obtain the indicator of the
performance efficiency concept (PEI1). Finally, the
indicators related to reliability and performance efficiency
concepts, are integrated to obtain a Key Performance
Indicator (KPI1) from the perspective number one or also
called provider perspective.

The different key performance indicators values (kpi1,
kpi2 and kpi3) shown in Figure 4, represent the values of the
three dimensions, each placed on its tetrahedron side,
describing a sloped plane section (or hyper plane) in the
space returning a quantitative assessment. The key indicators
KPI1, KPI2 and KPI3, represent the different dimensions of
the regular tetrahedron according to the perspectives of
provider, customer and user.

IV. THE CLOUDMEASURE DATAFLOW
The CloudMeasure DataFlow (CMDF) is the result of

designing a platform for performance data collection, data
analysis, analysis models processing and delivering of
results, designed to organize the diverse and complex
dataflow generated by different measures which contributes
to the performance of CCS. The CMDF is based on the

Performance
Measurement

Concept

Sub concept
measurement Description

Performance
efficiency

 TBMP1 Time behavior measurement - provider
perspective

 TBMP2 Time behavior measurement -
costumer perspective

 TBMP3 Time behavior measurement - user
perspective

 RUMP1 Resource utilization measurement -
provider perspective

 RUMP2 Resource utilization measurement -
costumer perspective

 RUMP3 Resource utilization measurement -
user perspective

 CMP1 Capacity measurement - provider
perspective

 CMP2 Capacity measurement - costumer
perspective

 CMP3 Capacity measurement - user
perspective

Reliability

 MMP1 Maturity measurement - provider
perspective

 MMP2 Maturity measurement – costumer
perspective

 MMP3 Maturity measurement - user
perspective

 AMP1 Availability measurement - provider
perspective

 AMP2 Availability measurement - costumer
perspective

 AMP3 Availability measurement - user
perspective

 FTMP1 Fault tolerance measurement - provider
perspective

 FTMP2 Fault tolerance measurement -
costumer perspective

 FTMP3 Fault tolerance measurement - user
perspective

 RMP1 Recoverability measurement from
provider perspective

 RMP2 Recoverability measurement from
costumer perspective

 RMP3 Recoverability measurement from user
perspective

TABLE II. PERSPECTIVES FOR PERFORMANCE MEASUREMENT
CONCEPTS IN CLOUD COMPUTING

Framework for Implementing Big Data Science in
Organizations (DIPAR) [12].

A. DIPAR: A Framework for Implementing Big Data
Science in Organizations
The DIPAR framework proposes a means to implement

Big Data Science (BDS) in organizations, and defines its
requirements and elements. The framework consists of five
stages: Define, Ingest, Preprocess, Analyze, and Report, and
is based on the ISO 15939 Systems and software engineering
– Measurement process standard [13], the purpose of which
is to collect, analyze, and report data relating to products to
be developed.

The DIPAR framework integrates the four activities
described in ISO 15939, and its main objective is to design
Big Data products that have a high impact on organizational

performance. Figure 5 depicts the five stages to be executed
during the implementation of the DIPAR framework, as well
as the order in which should be executed.

Each stage of the DIPAR framework and the elements
they involve are:

• Define: The first step in the DIPAR framework is to
define whether or not a new product is necessary. If
it is not, all the analytical work developed to create
the product will be a waste of time and resources.
For this, it is necessary to define the data needed to
develop the product such as a new PAM for our
case study.

• Ingest: One of the main challenges of ingesting the
system is to define the ingestion sources, because
most of the time data come from a number of
sources, such as Web logs, databases, different
types of applications, etc. This makes very difficult
to know what type of data will be ingested by the
system. One solution to this problem is to use Big
Data (BD) software that is designed specifically to
collect and aggregate data from different sources.
Projects like Flume [14] and Scribe [15] allow large
amounts of log data to be collected, aggregated, and
moved from many different sources to a centralized
data store.

• Processing: One of the main problems that arises
following the ingestion of a system is the
cleanliness of data. This problem calls for the
quality of the data to be verified prior to performing
data analysis. Consequently, one of the main
challenges at the preprocessing stage is how to
structure data in standard formats so that they can
be analyzed more efficiently. This is often easier
said than done: during the process of structuring and
merging data into common formats, there is a risk
of losing valuable information.

• Analysis: Once the data have been preprocessed,
they are analyzed to obtain relevant results. For this,
it is necessary to develop models that can be used in
the creation of new products. One of the main
problems arising during the design of such models
is to recognize which of the available data are the
most relevant to an analysis task. Once it becomes
feasible to develop complex models and algorithms
for data analysis, it is possible to create products
with added value for the organization.

• Report: Once data are ingested, processed, and
analyzed, users need to be able to access and
evaluate the results, which must be presented in
such a way that they are readily understood. Here,
analysis model results are evaluated as part of
decision-making process in order to arrive to
relevant conclusions or design new analysis models.

B. CloudMeasure DataFlow
CloudMeasure DataFlow (CMDF) was designed to

define the workflow to be performed during the process of

Fig. 3. Key Performance Indicator from the provider perspective.

Fig. 4. Regular tetrahedron with KPI1, KPI2 and KPI3 dimensions
which represent the perspectives of provider, costumer and user.

the design, development and validation of PAM for CCS.
One of the objectives of the CMDF is to accelerate time of
definition of performance data, data collection, processing,
analysis and report of results, from different data sources
over a geographically disperse network. Figure 6 shows the
stages and elements that constitute the CMDF process.

At the beginning of the flow, they are found different
CCS (CCSA, CCSB and CCSC) from which are extracted
performance measures that are the baseline for the design
and development of PAM. The extraction of these measures
is performed by means of different Application Program
Interfaces (API) that allow the extraction of data to the
CloudMeasure platform. It is important to mention that such
API’s are developed for third-party entities such as providers
of CCS.

The first stage in the CMDF is the performance data
definition. In this stage, performance data measures extracted
from the different CCS providers are organized according to
the different performance concepts and sub concepts defined
in the P2M2C-3D (see Table II). For example, the
performance measure CPU utilization is categorized as a
measure of the Resource Utilization sub concept from one of
the different perspectives. The categorization of all extracted
performance measures is necessary in order to design,
development and validate different PAM.

Once that performance data is defined, the next step is the
storage of this, which is performed in the data collection
stage. Here, data is stored in some type of distributed storage
as the Hadoop Distributed File System (HDFS) [16] or some
type of NoSQL data base such as Hbase [17]. This type of

storage is very important in order to reduce costs of data
processing.

After data collection is performed, the next stage is data
processing, which consists in verifying the cleanliness of
data; this means that quality of the data needs to be verified
prior to performing data analysis. As it was mentioned, one
of the main challenges at this stage is how to structure data in
standard formats so that they can be analyzed more
efficiently.

Once the quality data is verified, the next step is the
design, development and validation of PAM - data analysis
stage. For this, statistical methods and machine learning
techniques are used in order to analyze the performance of
CCS. This is done using data processing tools which are
available in the CloudMeasure platform such as MapReduce
[18], Hive [19] or Mahout [20].

Finally, the last stage is the report of the results obtained
from the previously designed PAM. These results will be
useful during creating SLA’s, for the design and
development of new analysis models or improving the
performance of CCS. It is important to mention that the
CMDF is an iterative process which is oriented to improve
the quality of data and results. That is, each stage depends on
the previous and as consequence, sometimes it will be
necessary to go back to some specific stage in order to ensure
the quality of the data input and output.

V. CONCLUSIONS AND FUTURE WORK
The CloudMeasure platform is a research project

developed to contribute to the design, development and
validation of PAM for CCS. This project proposes an
approach to support the analysis of the performance
characteristics of CCS during the development, maintenance
and operational stages.

Using the information contained in this platform will
allow end users to better understand and compare the
relationship between performance attributes of different
CCS. Moreover, this platform will help during the design,
validation and comparison of PAM (and algorithms), which
can be used in the design of SLA’s.

One of the main issues in formulating SLA is how to
capture price–performance information relating to specific
applications with relatively well-known demands on systems
to be able to determine how such a comparison service may
be formulated. In this way, the CloudMeasure platform
would be an efficient tool that helps in the creation of models
to determine the price-performance comparisons.

Further work is needed to review and increase
performance data sets in order to validate the CMDF process
within the CloudMeasure platform. In addition, it is
necessary to develop and test new tools for creating
performance analysis models, which contribute to analyze
the performance of CCS that could contribute to validating
proposed methodologies.

Fig. 5 Stages to develop during implementation of the DIPAR
framework.

REFERENCES

[1] ISO/IEC, "ISO/IEC JTC 1 SC38:Cloud Computing Overview and

Vocabulary," ed. Geneva, Switzerland: International Organization
for Standardization, 2012.

[2] ISO/IEC, "ISO/IEC JTC 1 SC38:Study Group Report on Cloud
Computing," ed. Geneva, Switzerland: International Organization for
Standardization, 2011.

[3] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed
Systems Concepts and Design, 5th ed. Edinburgh: Addison Wesley,
2011.

[4] I. I. G. 99-12, "International Vocabulary of Metrology – Basic and
General Concepts and Associated Terms, VIM," International
Organization for Standardization ISO/IEC, Geneva,
Switzerland2007.

[5] ISBSG, "Title," unpublished|.
[6] L. Olsina, G. Lafuente, and O. Pastor, "Towards a reusable

repository for web metrics," J. Web Eng., vol. 1, pp. 61-73, 2002.
[7] D. Kondo, B. Javadi, A. Iosup, and D. Epema, "The Failure Trace

Archive: Enabling Comparative Analysis of Failures in Diverse
Distributed Systems," in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, 2010,
pp. 398-407.

[8] L. Bautista, A. Abran, and A. April, "Design of a Performance
Measurement Framework for Cloud Computing," Journal of
Software Engineering and Applications, vol. 5, pp. 69-75, February
2012 2012.

[9] B. Li, L. Gillam, and J. O’Loughlin, "Towards Application-Specific
Service Level Agreements: Experiments in Clouds and Grids," in
Cloud Computing: Principles, Systems and Applications, Computer
Communications and Networks. vol. 0, ed London: Springer-Verlag,
2010, pp. 361-372.

[10] G. R. Gangadharan and D. M. Parrilli, "Service Level Agreements in
Cloud Computing: Perspectives of Private Consumers and Small-to-
Medium Enterprises," in Cloud Computing for Enterprise
Architectures, Computer Communications and Network. vol. 0, Z.

Mahmood and R. Hill, Eds., ed London: Springer-Verlag, 2011, pp.
207-225.

[11] ISO/IEC, "ISO/IEC 25012: Software Engineering: Software Product
Quality Requirements and Evaluation (SQuaRE) - Data Quality
Model," ed. Geneva, Switzerland: International Organization for
Standardization, 2008, p. 18.

[12] L. E. Bautista Villalpando, A. April, and A. April, "DIPAR: A
Framework for Implementing Big Data Science in Organizations," in
Continued Rise of the Cloud: Advances and Trends in Cloud
Computing. vol. I, Z. Mahmood, Ed., 1 ed London, England:
Springer-Verlag London, 2014, pp. XIX, 410.

[13] ISO/IEC, "ISO/IEC 15939:2007 Systems and software engineering
— Measurement process," ed. Geneva, Switzerland: International
Organization for Standardization, 2008.

[14] A.F.S. (2012, June 13). Apache Flume. Available:
http://flume.apache.org/

[15] Facebook. (2012, June 13). Scribe. Available:
https://github.com/facebook/scribe/wiki

[16] B. Dhruba. (2010). Hadoop Distributed File System Architecture.
Available:
http://hadoop.apache.org/docs/r0.20.2/hdfs_design.htm
l

[17] A.S.F. (2013, June 6th). Apache HBase, the Hadoop database, a
distributed, scalable, big data store. Available:
http://hbase.apache.org/

[18] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Communications of the ACM, vol. 51, pp. 107-
113, January 2008 2008.

[19] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, et
al., "Hive-a petabyte scale data warehouse using Hadoop," in 26th
International Conference on Data Engineering, Long Beach,
California, USA, 2010, pp. 996-1005.

[20] A.S.F. (2012). What is Apache Mahout? Available:
https://cwiki.apache.org/confluence/display/MAHOUT
/Overview

Fig. 6 Stages and elements that constitute the CMDF process.

