
CloudMeasure: A Platform for Performance Analysis
of Cloud Computing Systems

Luis Eduardo Bautista
Villalpando

Department of Electronic Systems
Autonomous University of

Aguascalientes
Aguascalientes, Mexico

E-mail: lebautis@correo.uaa.mx

Alain April
Department of Software Engineering

and Information Technology
ETS – University of Quebec

Montreal, Canada
E-mail: alain.april@etsmtl.ca

Alain Abran
Department of Software Engineering

and Information Technology
ETS – University of Quebec

Montreal, Canada
E-mail: alain.abran@etsmtl.ca

Abstract— Concepts such as price, performance, time to
completion (availability), probability of failure and non-
repudiation are key to developing a comparison service in
order to establish Service Level Agreements (SLA) or design
better mechanisms to improve performance in Cloud
Computing Systems (CCS). This work presents our design of a
performance analysis platform that includes an infrastructure,
a framework for performance measurement and tools to
facilitate the design, validation, and comparison of
performance models and algorithms for CCS. The purpose of
the platform is to help establish attribute–performance
relationships relating to specific applications with relatively
well-known demands on systems in order to be able to
determine how comparison services may be formulated. The
design of the CloudMeasure platform is based on a framework
for implementing big data science in organizations (DIPAR)
and the three-dimensional performance measurement model
for CCS which defines the basis for the analysis of Cloud
Computing concepts directly related to performance as
identified in international standards such as ISO 25010.

Keywords— cloud computing; performance; analysis; model;
platform; framework; ISO 25010 quality model, maintenance

I. INTRODUCTION
Cloud Computing is defined by ISO and IEC as the

paradigm for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable cloud
resources accessed through services which can be rapidly
provisioned and released with minimal management effort or
service provider interaction [1].

Cloud services are categorized into three service models:
1) Infrastructure as a Service (IaaS), 2) Platform as a Service
(PaaS), and 3) Software as a Service (SaaS) [2]. Each of
these service models includes all the technical resources that
clouds need to process information, including software,
hardware, and network elements. For example, the service
model that most relates to the software engineering
community is the SaaS model, while the IaaS model is most
related to hardware architectures and virtualization. Software
engineers focus on software components, and customers use
IT provider applications running on a cloud infrastructure to
process information according to their processing and storage

requirements. One of the main characteristics of the IaaS
model is that customers do not manage or control the
underlying Cloud infrastructure (including network, servers,
operating systems, and storage), except for limited user-
specific application configuration settings.

One of the most important challenges in delivering Cloud
services is to ensure they are fault tolerant and minimizes
anomalies which can degrade the services or impact quality
and even availability. According to Coulouris [3], a failure
occurs in a distributed system like a Cloud Computing
System (CCS) when a process or a communication channel
departs from what is considered to be its normal or desired
behavior. An anomaly is different, in that it slows down a
part of a CCS without making it fail completely, impacting
tasks within nodes and, consequently, affecting system
performance.

 Performance analysis models (PAMs) for CCS must
provide a means to identify and quantify "normal cluster
behavior," which can serve as a baseline for detecting
possible failures and anomalies in the computers (i.e. nodes
in a cluster) that may impact overall cloud performance. To
achieve this goal, measurement methods are needed to
collect the necessary base measures specific to CCS
performance, and analysis models must be designed to
determine the relationships that exist among these measures.

The ISO International Vocabulary of Metrology (VIM)
[4] defines a measurement method as a generic description of
a logical organization of operations used in measurement,
and an analysis model as an algorithm or calculation
combining one or more measures obtained from a
measurement method to produce evaluations or estimates
relevant to the information needed for decision making.

An important aspect in the creation of the above models
is the data requirement. Data are necessary to carry on
experiments by simulating different scenarios in order to
select the models that best fit the requirements. Therefore, it
is important to have access to performance data repositories
to help determine the performance models that subsequently
can be implemented in live CCS. In addition, it is necessary
to have measurement frameworks which can assist the design

process of PAMs for CCS. Currently, however, there are no
CCS performance platforms that can help in the design and
evaluation of such models.

This paper presents the CloudMeasure platform process,
which aims to develop and make available a public platform
for CCS performance analysis. Its purpose is to provide a
framework, data and infrastructure to facilitate the design,
validation, and comparison of performance analysis models
and algorithms for CCS. One of the most important aspects
of CloudMeasure is integration of the above components
within the platform. This integration is very important
because it determines the efficiency and reliability of the
results obtained from the PAM. In addition, such integration
helps to define the group of CCS elements and attributes that
determine CCS performance. For instance, one group of
elements might be data related to an application running on
the CCS such as “Job history,” with some of the attributes
being “number of successful task executions” or “time taken
to process them.”

This paper is structured as follows. Section 2 presents
related work on platforms for data analysis in software
engineering and Cloud Computing. Section 3 presents the
proposed CloudMeasure platform architecture and describes
its operation and the elements upon which it is based. Section
4 presents the CloudMeasure DataFlow (CMDF) process and
defines the steps for designing, developing and validating
CCS performance analysis models. Finally, section 5
summarizes the contributions made in this work and suggests
future work.

II. RELATED WORK

A. Software project platforms and repositories
The CloudMeasure platform provides a conceptual model

for PAM design as well as the definition of a standard format
for CCS performance attributes and tools for data analysis. In
addition, the platform offers a collaborative data loading
mechanism that addresses the different participant roles (for
example, performance data providers, PAM contributors and
infrastructure users).

There are several data repositories publicly available for
sharing information related to software projects, web systems
or trace data sets. For example, the International Software
Benchmarking Standard Group (ISBSG) [5] maintains the
largest publicly available repository of software projects. The
ISBSG mission is to help to improve software engineering
practices and the management of information technology
resources by providing project and application data.

Other platforms, such as web metrics repositories [6],
define catalogues of web metrics which allow evaluators and
stakeholders to have a service and a consultation mechanism
to support different phases of the development of the
software life cycle in web development. The web metrics
repository is used to support different quality assurance
processes such as definition and specification of non-
functional requirements, understanding and selection of
metrics, definition of quality tests, and the development or
maintenance phase. In addition, the web metrics repository

provides data collection and cataloguing tools for analyzing
the web system and improving its performance.

Other data platforms record failure traces to allow
comparison and cross validation of a fault-tolerant model or
algorithms across identical trace data sets. The Failure Trace
Archive (FTA) [7] defines a standard format for failure
traces and provides a toolbox that facilitates comparative
trace analysis for its users. A failure trace is a data set
collected from different distributed systems and containing
records of their availability represented in time series. The
FTA presents uniform statistical analysis and failure models
for nine diverse distributed systems. According to Kondo [7],
this can be used to assess whether a model can be
generalized to another context (for example in terms of
reliability or user base), or to determine which trace data set
is better suited or applicable to a given algorithm or model.

Although the above projects present some interesting
designs of data repositories, none of them cover Cloud
Computing technologies.

B. Performance Measurement Framework for Cloud
Computing
The Performance Measurement Framework for Cloud

Computing (PMFCC) [8] integrates software quality
concepts from ISO 25010. This framework defines CCS
performance as determined by two main subconcepts: 1)
performance efficiency and 2) reliability. In addition, it
establishes three possible outcomes to a CCS service request:
the service is performed correctly, the service is performed
incorrectly, or the service cannot be performed. The outcome
will determine which sub-concepts will be applied for
performance measurement.

Fig. 1. Quality concepts and sub-concepts associated with CCS
performance measurement (adapted from [8]).

 For example, suppose the CCS performed a service
correctly but, during its execution, the service failed and was
later reinstated. Although the service was ultimately
performed successfully, it is clear that system availability
(part of the reliability sub-concept) was compromised, and
this affected CCS performance. Figure 1 presents the quality
concepts and sub-concepts associated with CCS performance
measurement.

The performance measurement framework does not
define the type of data format related to the CCS. It only
defines the concepts that best represent the types of
attributes, and which of these can be measured to assess
whether or not from a quantitative viewpoint the CCS
satisfies the stated requirements. These types of attributes are
grouped into performance concepts which serve to conduct
the measurement process using a combination of base
measures through a data collector. They are associated with
the corresponding ISO 25010 quality derived measures, as
presented in Table I.

The types of attributes presented in Table I are grouped
into performance concepts. These concepts were designed to
share intermediate results from common performance
measures, reducing the number of operations in the
measurement process at the time of calculation.

In addition, the framework determines how to measure a
quality characteristic. For example, how would one measure
the CCS availability characteristic (as presented in Table I)?
In this case, three performance concepts are needed: 1) the
time concept, 2) the task concept, and 3) the transmission
concept. The time concept may use several different
measurable attributes, including CPU utilization by the user,
job duration, and response time. These measures are obtained
using a data collector and then input to the time concept,
which then calculates a derived measure of the time. The
combination of results for each concept determines a derived
measure of availability, which is an aspect of CCS
performance as defined in the framework.

One important aspect of the PMFCC is that the type of
attribute only defines the group in which performance data
are classified. Performance data usually come from a number
of sources, such as application logs, database logs,
monitoring system tools, etc. This makes it very difficult to
know what type of data will be ingested and then used in the
PAM. One of the main problems that arises following the
ingestion of performance data is its cleanliness. This problem
calls for the quality of the data to be verified prior to the
performance analysis. Among the most important data
quality issues to consider during data cleaning are corrupted
records, inaccurate content, missing values and formatting
inconsistencies, to name a few.

The quality of the performance data can affect the results
of the PAM and, as a consequence, the decision-making
process in the various development stages such as
organizational requirements definition, process evaluation,
interoperability aspects and application design, to name a
few.

III. THE CLOUD MEASURE PLATFORM
CloudMeasure is a platform for the design, development

and validation of PAM for CCS. Its purpose is to provide a
PMFCC, performance data sets and an infrastructure to
facilitate the design, validation and comparison of CCS
performance models and algorithms. One of the main
reasons for the creation of the CloudMeasure platform was
the current lack of information to assist the definition and
understanding of how to measure availability, reliability and
non-repudiation. Actual measurement of concepts such as
price, performance, time to completion (availability),
likelihood of completion (probability of failure) and penalty
(non-repudiation) are key to being able to compare services
and to establish Service Level Agreements (SLA) for CCS.

 According to Li [9], commercial CCS currently enable
the capture of price performance information related to
specific applications with relatively well-known demand
patterns. This allows the user to gain information useful for
comparing services between suppliers. Comparisons can
become complex as they may depend on both the user’s
performance requirements and the current availability of the
system, as well as the price the user can afford. According to
Gangadharan [10], the pricing of Cloud Computing services
is currently associated with differentiated levels of service
based on storage capacity, computing units used, and type of
platform. The pricing also varies depending on the operating

Attribute Type Performance
Concept

ISO 25010 Quality
Characteristic

Failures avoided
Failures detected
Failures predicted
Failures resolved

Failure concept
Maturity
Resource utilization
Fault tolerance

Breakdowns
Faults corrected
Faults detected
Faults predicted

Fault concept Maturity
Fault tolerance

Tasks entered into
recovery

Tasks executed
Tasks passed
Tasks restarted
Tasks restored
Tasks successfully restored

Task concept

Availability
Capacity
Maturity
Fault tolerance
Resource utilization
Time behavior

Continuous resource
utilization time

Down time
Maximum response time
Observation time
Operation time
Recovery time
Repair time
Response time
Task time
Time I/O devices occupied
Transmission response

time
Turnaround time

Time concept

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

Transmission errors
Transmission capacity
Transmission ratio

Transmission
concept

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

TABLE I. FUNCTIONS ASSOCIATED WITH CLOUD COMPUTING
PERFORMANCE CONCEPTS

system and the geographical location of the user. Pricing
criteria can also be based on hourly usage, CPU cycle usage,
or other usage approaches. Gangadharan further mentions
that the pricing of Cloud Computing services depends upon
levels of use, layers of service, or a mix of these.
Maintainers, users and developers should find CloudMeasure
useful for defining the performance data to be used in
performance models that can help them understand an SLA
and analyze CCS performance.

More specifically, the CloudMeasure platform contains
the following:

• A PMFCC that defines attributes, concepts and a
measurement method for performance analysis.

• Performance data sets, differing in scale and granularity,
used to create models for analyzing concepts such as
availability, non-repudiation, capacity, etc.

• An infrastructure that consists of a Hadoop cluster and
can be used for developing and testing PAMs.

• The CloudMeasure DataFlow (CMDF) process, which
defines the workflow for designing and validating PAMs.

A. The CloudMeasure conceptual model
The CloudMeasure platform is based on a conceptual

model that defines and describes the data involved in CSS
performance analysis. This allows documentation of each
measure, resulting in a comprehensive catalogue of attributes
than can be used by different stakeholders. The conceptual
model is organized hierarchically (see Figure 2) and
includes:

• Performance data design, i.e., defining the types of
performance-related data that constitute the baseline of
the performance platform. This stage ensures data
quality, which is the basis for the creation of data sets
and analysis models.

• Performance data collection, i.e., describing the source
and procedure for the data collection process. This stage
involves identifying the type of CCS architecture,
platform, application development frameworks and so
on.

• Performance data analysis. Among the most important
data quality issues to consider during the data analysis
stage is data cleaning, i.e., removal of corrupted records,
inaccurate content, missing values, and formatting
inconsistencies. An important issue in data integration is
formatting inconsistencies caused by the different forms
that data can take as result of data collection from
different architectures, platforms and applications, or the
combination of those forms in order to figure out
relationships.

• Development of PAMs: Once the performance data have
been integrated and analyzed, it is necessary to develop
models that can be used by stakeholders during the
decision-making process. Such models will facilitate
understanding of CCS behavior and performance.

One important aspect of the CloudMeasure platform is
that users can query specific performance data to create
models or simply analyze content in the data analysis
infrastructure. To facilitate platform design, a template was
defined to build a catalogue of performance data that allowed
populating and updating a data performance repository.

B. The CloudMeasure template data content
Performance data quality is a key aspect of the

CloudMeasure platform. Enhancing the quality of
performance data is important for a number of reasons,
including:

• Defective data will produce erroneous results in the
PAM, contributing to an unsatisfactory decision-
making process.

• The dispersion of performance data among different
sources of CCS, such as hypervisors, individual
virtual machines (VMs), VM information scheduling
across multiple hardware cores, etc., does not provide
a coherent and integrated vision for performance
analysis.

• The coexistence of legacy architectures, Cloud
platforms and application development frameworks is
normally governed by different standards.

One of the goals of CloudMeasure is to improve the
quality of performance data regardless of the Cloud
architecture, platform or application development framework
used in the CCS. This improvement can be achieved by
identifying certain data quality requirements to ensure the
quality of the information used in PAM design and
validation.

 The CloudMeasure data platform is based on ISO 25012:
Software Engineering: Software Product Quality
Requirements and Evaluation (SQuaRE) – Data Quality

Fig. 2. CloudMeasure conceptual model.

Model [11]. This standard defines a data quality model that
focuses on the quality of the data as part of a computer
system and defines quality characteristics for target data used
by users and operators of the system. According to ISO
25012, target data are data that the organization chooses to
be analyzed and validated through the model; in this case,
data related to CCS performance. Moreover, ISO 25012
describes characteristics that may be used as a term of
reference to define data quality requirements and data quality
measures to establish criteria for the assessment and
evaluation of the quality of the data managed by a computer
system according to the organization’s objectives.

One of the main aspects considered for design of a
standard template was to categorize each attribute to be
measured under the different ISO quality concepts described
in the PMFCC (see Figure 1). For this case: the design of a
Three-Dimensional Performance Measurement Model for
Cloud Computing (P2M2C-3D), which defines data types
and a measurement method that allows measurement of the
CC concepts directly related to performance from different
perspectives.

C. A Three-Dimensional Performance Measurement Model
for Cloud Computing
In the Three-Dimensional Performance Measurement

Model for Cloud Computing (P2M2C-3D), performance
concepts were reviewed and updated according to different
types of perspectives as shown in Table II where the
different sub-concept measurements are defined according to
each perspective.

For example, the measurement of the sub-concept of time
behavior from perspective 1 (TBMP1) corresponds to the
provider, while the same type of measurement from
perspective 2 (TBMP2) corresponds to the customer
perspective, and so on.

Each group of sub-concept measurements was combined
according to the same perspective number to obtain its
respective concept indicator (see Figure 3). For example, the
measurements for the sub-concepts MMP1, RMP1, AMP1
and FTMP1 were combined to obtain the indicator for the
reliability concept (RI1). Similarly, the measurements for the
sub-concepts TBMP1, RUMP1 and CMP1 were combined to
obtain the indicator of the performance efficiency concept
(PEI1). Finally, the indicators related to reliability and
performance efficiency concepts, were integrated to obtain a
Key Performance Indicator (KPI1) from perspective 1, also
called provider perspective.

The Key Performance Indicator values (KPI1, KPI2 and
KPI3) shown in Figure 4 represent the values of the three
dimensions, each placed on a side of a tetrahedron describing
a sloped plane section (or hyper plane) in the space providing
a quantitative assessment. The key indicators KPI1, KPI2 and
KPI3, representing the perspective of provider, customer and
user, are shown as different dimensions of the regular
tetrahedron.

IV. CLOUDMEASURE DATAFLOW
CloudMeasure DataFlow (CMDF) is a process for

performance data collection, data analysis, analysis model
processing and delivery of results. It is designed to organize
the diverse and complex dataflows generated by the different
measures contributing to CCS performance. The CMDF is
based on the Framework for Implementing Big Data Science
in Organizations (DIPAR) [12].

A. DIPAR: A Framework for Implementing Big Data
Science in Organizations
The DIPAR framework is a means to implement Big

Data Science (BDS) in organizations and defines its
requirements and elements. The framework consists of five

Performance
Measurement

Concept

Sub concept
measurement Description

Performance
efficiency

 TBMP1 Time behavior measurement -
provider perspective

 TBMP2 Time behavior measurement -
costumer perspective

 TBMP3 Time behavior measurement - user
perspective

 RUMP1 Resource utilization measurement -
provider perspective

 RUMP2 Resource utilization measurement -
costumer perspective

 RUMP3 Resource utilization measurement -
user perspective

 CMP1 Capacity measurement - provider
perspective

 CMP2 Capacity measurement - costumer
perspective

 CMP3 Capacity measurement - user
perspective

Reliability

 MMP1 Maturity measurement - provider
perspective

 MMP2 Maturity measurement – costumer
perspective

 MMP3 Maturity measurement - user
perspective

 AMP1 Availability measurement - provider
perspective

 AMP2 Availability measurement - costumer
perspective

 AMP3 Availability measurement - user
perspective

 FTMP1 Fault tolerance measurement -
provider perspective

 FTMP2 Fault tolerance measurement -
costumer perspective

 FTMP3 Fault tolerance measurement - user
perspective

 RMP1 Recoverability measurement from
provider perspective

 RMP2 Recoverability measurement from
costumer perspective

 RMP3 Recoverability measurement from
user perspective

TABLE II. PERSPECTIVES FOR PERFORMANCE MEASUREMENT
CONCEPTS IN CLOUD COMPUTING

stages: define, ingest, preprocess, analyze, and report. Based
on the ISO 15939 Systems and software engineering –
Measurement process standard [13], its purpose is to collect,
analyze, and report data relating to product development.

The DIPAR framework integrates the four activities
described in ISO 15939. Its main objective is to design big
data products that have a high impact on organizational
performance. Figure 5 depicts the order of the five stages to
be executed during implementation of the DIPAR
framework.

The stages of the DIPAR framework and the elements
involved are:

• Define: The first step is to determine whether or not
a new product is necessary. If not, all the analytical
work developed to create the product will be a
waste of time and resources. For our case study, it
was necessary to define the data needed to develop
the product such as a new PAM.

• Ingest: One of the main challenges of ingesting the
system is to define the ingestion sources.
Frequently, data come from a number of sources,
such as web logs, databases, different types of
applications, etc., which makes it difficult to know
what type of data will be ingested by the system.
One solution is to use Big Data (BD) software
designed specifically to collect and aggregate data
from different sources. Projects like Flume [14] and
Scribe [15] allow large amounts of log data to be
collected, aggregated, and moved from many
different sources to a centralized data store.

• Processing: One of the main issues that arises
following ingestion is cleanliness of the data. Data
quality needs to be verified prior to performing data
analysis. Consequently, one of the main challenges
at the preprocessing stage is how to structure data in
standard formats so as to be analyzed more
efficiently. This is often easier said than done.
During the process of structuring and merging data
into common formats, there is a risk of losing
valuable information.

• Analysis: Once the data have been preprocessed,
they are analyzed to obtain relevant results. For this,
it is necessary to develop models that can be used in
the creation of new products. One of the main
problems arising during the design of such models
is to recognize which of the available data are the
most relevant to an analysis task. Once it becomes
feasible to develop complex models and algorithms
for data analysis, products with added value for the
organization can be created.

• Report: Once data are ingested, processed, and
analyzed, users need to be able to access and
evaluate the results, which must be presented in a
way that is readily understood. Here, analysis model
results are evaluated as part of a decision-making
process in order to arrive at relevant conclusions or
design of new analysis models.

B. CloudMeasure DataFlow
CloudMeasure DataFlow (CMDF) was designed to

define the workflow to be performed during PAM design,
development and validation. One of the objectives of CMDF
was to accelerate the definition of performance data, data
collection, processing, analysis and reporting of results,
where different data sources are distributed over a
geographically disperse network. Figure 6 shows the stages
and elements that constitute the CMDF process.

Initially, performance measures from several different
CCS (CCSA, CCSB and CCSC) are extracted to the

Fig. 4. Regular tetrahedron with KPI1, KPI2 and KPI3 dimensions
representing the perspectives of provider, customer and user.

Fig 3. Key Performance Indicator from the provider perspective.

CloudMeasure platform by means of different Application
Program Interfaces (APIs) and are the baseline for PAM
design and development. It is important to mention that such
APIs are developed for third-party entities such as CCS
providers.

The first stage of the CMDF process is performance data
definition. In this stage, performance data measures extracted
from various CCS providers are organized according to the
performance concepts and sub-concepts defined in P2M2C-
3D (see Table II). For example, the performance measure
CPU utilization is categorized as a measure of the Resource
Utilization sub-concept from one of the perspectives. The
categorization of all extracted performance measures is
necessary in order to design, develop and validate different
PAMs.

Once the performance data have been defined, the next
step is storage, which is performed in the data collection
stage. Here, data are stored in some type of distributed
storage such as the Hadoop Distributed File System (HDFS)
[16] or some type of NoSQL database such as Hbase [17].
This type of storage is important in order to reduce the cost
of data processing.

The next stage is data processing, which consists in
verifying data cleanliness, or quality, prior to data analysis.
As mentioned, one of the main challenges at this stage is
how to structure data in standard formats so that they can be
analyzed more efficiently.

In the next step, data analysis, the PAM is designed,
developed and validated. Here, statistical methods and
machine learning techniques are used to analyze CCS
performance. This is done using data processing tools
available in the CloudMeasure platform such as MapReduce
[18], Hive [19] or Mahout [20].

Finally, the last stage is reporting of the results obtained
from the PAM designed in the previous stage. These results
will be useful for creation of SLAs, design and development
of new analysis models, or improving CCS performance. It is
important to mention that CMDF is an iterative process, that
is, each stage depends on the previous one and, as a
consequence, it will sometimes be necessary to go back to
some specific stage in order to ensure the quality of the data
input and output.

V. CONCLUSIONS AND FUTURE WORK
The CloudMeasure platform was developed to contribute

to the design, development and validation of Performance
Analysis Models for CCS. CloudMeasure supports analysis
of the performance characteristics of a CCS during the
development, maintenance and operational stages.

Using information contained in the platform allows end
users to better understand and compare the relationships
between performance attributes of different CCS. Moreover,
the platform assists the design, validation and comparison of
various PAMs (and algorithms), which can then be used in
the design of SLA.

One of the main issues in formulating an SLA is how to
capture price-performance information relating to specific
applications with relatively well-known demands on systems
so as to determine how such a comparison service may be
formulated. In this way, the CloudMeasure platform is an
efficient tool that helps to create models for price-
performance comparisons.

Further work is needed to validate the CMDF process
within the CloudMeasure platform by reviewing and
increasing the number of performance data sets. In addition,
new tools for creating Performance Analysis Models need to
be developed and tested, which would contribute to CCS
performance analysis as well as validating the proposed
methodologies.

Fig. 5 Stages of development during implementation of the DIPAR
framework (adapted from [12]).

REFERENCES

[1] ISO/IEC, "ISO/IEC JTC 1 SC38:Cloud Computing Overview and

Vocabulary," ed. International Organization for Standardization,
Geneva, Switzerland, 2012.

[2] ISO/IEC, "ISO/IEC JTC 1 SC38:Study Group Report on Cloud
Computing," ed. International Organization for Standardization,
Geneva, Switzerland, 2011.

[3] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed
Systems Concepts and Design, 5th ed. Edinburgh: Addison Wesley,
2011.

[4] I. I. G. 99-12, "International Vocabulary of Metrology – Basic and
General Concepts and Associated Terms, VIM," International
Organization for Standardization ISO/IEC, Geneva, Switzerland,
2007.

[5] ISBSG, " ISBSG dataset Release 11," ed. International Software
Benchmarking Standards Group Limited, Australia, 2012.

[6] L. Olsina, G. Lafuente, and O. Pastor, "Towards a reusable
repository for web metrics," J. Web Eng., vol. 1, pp. 61-73, 2002.

[7] D. Kondo, B. Javadi, A. Iosup, and D. Epema, "The Failure Trace
Archive: Enabling Comparative Analysis of Failures in Diverse
Distributed Systems," in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, 2010,
pp. 398-407.

[8] L. Bautista, A. Abran, and A. April, "Design of a Performance
Measurement Framework for Cloud Computing," Journal of
Software Engineering and Applications, vol. 5, pp. 69-75, February
2012 2012.

[9] B. Li, L. Gillam, and J. O’Loughlin, "Towards Application-Specific
Service Level Agreements: Experiments in Clouds and Grids," in
Cloud Computing: Principles, Systems and Applications, Computer
Communications and Networks. vol. I, ed London: Springer-Verlag,
2010, pp. 361-372.

[10] G. R. Gangadharan and D. M. Parrilli, "Service Level Agreements in
Cloud Computing: Perspectives of Private Consumers and Small-to-
Medium Enterprises," in Cloud Computing for Enterprise

Architectures, Computer Communications and Network. vol. I, Z.
Mahmood and R. Hill, Eds., ed London: Springer-Verlag, 2011, pp.
207-225.

[11] ISO/IEC, "ISO/IEC 25012: Software Engineering: Software Product
Quality Requirements and Evaluation (SQuaRE) - Data Quality
Model," ed. International Organization for Standardization, Geneva,
Switzerland , 2008, p. 18.

[12] L. E. Bautista Villalpando, A. April, and A. April, "DIPAR: A
Framework for Implementing Big Data Science in Organizations," in
Continued Rise of the Cloud: Advances and Trends in Cloud
Computing. vol. I, Z. Mahmood, ed. Springer-Verlag London,
London, England, 2014, pp. XIX, 410.

[13] ISO/IEC, "ISO/IEC 15939:2007 Systems and software engineering
— Measurement process," ed. International Organization for
Standardization, Geneva, Switzerland, 2008.

[14] A.F.S. (2012, June 13). Apache Flume. Available:
http://flume.apache.org/

[15] Facebook. (2012, June 13). Scribe. Available:
https://github.com/facebook/scribe/wiki

[16] B. Dhruba. (2010). Hadoop Distributed File System Architecture.
Available:
http://hadoop.apache.org/docs/r0.20.2/hdfs_design.htm
l

[17] A.S.F. (2013, June 6th). Apache HBase, the Hadoop database, a
distributed, scalable, big data store. Available:
http://hbase.apache.org/

[18] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Communications of the ACM, vol. 51, pp. 107-
113, January 2008 2008.

[19] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, et
al., "Hive-a petabyte scale data warehouse using Hadoop," in 26th
International Conference on Data Engineering, Long Beach,
California, USA, 2010, pp. 996-1005.

[20] A.S.F. (2012). What is Apache Mahout? Available:
https://cwiki.apache.org/confluence/display/MAHOUT
/Overview

Fig. 6 Stages and elements that constitute the CMDF process.

