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Abstract:  The extensive adoption of high-throughput 
genomics, microarray, and deep sequencing technologies has 
accelerated the possibility of more complex precision medicine 
research using very large amounts of heterogeneous data [1]. 
The availability of this data allows data scientists and 
clinicians to develop tailored individual strategies. Therapeutic 
and preventive treatments can be proposed, with greater 
accuracy, targeting subgroups of patients for specific illnesses 
using large amounts of genomic, clinical, lifestyle, and 
environment data [2]. Next generation sequencing (NGS) 
technology is key in supporting precision medicine research; 
however, the data‘s volume and complexity poses challenges 
for its clinical application [3]. While Big Data‘s analytics 
could uncover hidden patterns, new correlations, and other 
insights through the examination of large-scale data sets, it is 
still difficult to master [4]. In this paper, we present what is 
required of future large-scale precision medicine platforms in 
terms of data extensibility and the scalability of processing on 
demand. It presents a proposed platform architecture as well as 
open-source Big Data technologies that would allow to easily 
enrich a flexible data schema, provide the power needed to 
load large amounts of data and make this centralized database 
available for specific precision medicine research. 
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I. INTRODUCTION 

The terms precision or personalized medicine, translational 
medicine and translational research are used interchangeably in 
the literature [5][6][7][8]. In this paper, we use the term 
precision medicine to refer to an emerging research field aimed 
at personalized disease treatment and prevention that takes into 
account individual differences in genes, patient treatment 
history, environment, and lifestyle. It integrates the 
advancements in molecular biology using clinical trials 
[9][10]. This personalized approach to patient treatments will 
allow doctors and researchers to predict, with greater accuracy, 
the course of treatment and prevention strategies to apply for a 
particular disease for specific groups of individuals. It will also 
allow for the creation of therapeutic and preventive strategies 
targeting the specific needs of patients on the basis of genetic, 
biomarker, phenotypic and psychosocial characteristics, which 
distinguish one patient from another [2]. For precision 
medicine research to be effective, computational models that 
integrate data and knowledge from both clinical and genetic 
research in order to gain a better understanding of disease are 
required [11]. 

In recent years, numerous precision medicine platforms 
have emerged that propose innovative solutions to collect, 
manage, and analyse large amounts of genomic and clinical 
data to be used in precision medicine research. These require 
that the researcher has access to electronic healthcare records 
(EHR) that contain patient clinical data. These platforms often 
offer functionality and programming frameworks that are 

restricted to individual EHR data formats [12]. This is recently 
changing as more and more solutions are appearing.  

Canual et al.[13] analysed the following features for the 
seven precision medicine research platforms listed below: 
Information content (clinical and omics data), privacy 
management environment, analysis supports, visualization 
tools, interoperability support, system requirements, 
programming language and platform support [13]: 

1. Biology-Related Information Storage Kit (BRISK) [14] 
which is an open source Web application providing 
access to phenotype and genotype data allowing 
researchers to conduct GWAS analysis; 

2. Integrated Clinical Omics Database (iCOD) [15][16] 
that allows the researcher to collect and combines data 
pertaining to hepatocellular carcinoma (HCC) cases; 

3. Integrating Data for analysis, Anonymization and 
SHaring (iDASH) [17] which is a computational 
collaborative cloud infrastructure conceived to share 
patient data for research; 

4. tranSMART which is a software framework that allows 
the analysis of integrated data for the purpose of 
hypothesis creation, hypothesis validation, and cohort 
discovery needed in Precision Medicine; 

5. Oncology Data Retrieval System (OncDRS) [18][19]. A 
system that query and integrates clinical and genomic 
data from heterogeneous sources; 

6. Georgetown Database of Cancer (G-DOC) [13][19], A 
data integration and interrogation knowledge discovery 
system for oncology and precision medicine; and 

7. cBio Cancer Genomics Portal for Cancer Genomics 
[19] [20], an open-access platform to explore cancer 
genomics data. 

The first feature is whether the platform supports genetic 
data. We noticed that all platforms store the genetic 
information of a patient. The second feature assessed is 
whether the platform supports other data required for precision 
medicine research. We also conclude that all these platforms 
can store clinical and some can also store environmental data 
about a patient.  

The third feature assessed concerns the data model 
extensibility: is the platform capable of supporting any other 
patient data requirement that does not exist in the current 
platform data model without incurring a major effort? We 
found that none of the platforms offered the possibility to 
easily adjust its proposed data model for specific precision 
medicine analysis needs. Fourth, we assessed a criterion about 
theIT infrastructure portability: is the precision medicine 
platform proposed easily portable to different cloud computing 
suppliers? Here again, we did not find any indication of the 
possibility to move across cloud suppliers. In some cases you 
are locked in the platform IT infrastructure, which does not 
explain where/who, operates it. 

For the fifth feature,we tried to assess the data scalability 
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offered by the platform: does the platform allow the researcher 
to efficiently load very large amount of data without incurring 
any data model or infrastructure limitations?We concluded that 
the platforms were designed to allow for the input of a large 
volume of data about patients. The sixth feature assessed 
addresses the cloud infrastructure scalability: doesthe platform 
allow processing on a cloud distributed scalable infrastructure, 
and provide tools to scale as needed? We did not find any 
indication of the possibility to scale the cloud infrastructure as 
required. Finally, we were looking for a research 
reproducibility function: does the platform allow researchers to 
reproduce their research at any time without a great deal of 
effort.We found that most platforms offer this possibility. 

II. PRECISION MEDICINE PLATFORMS FUTURE 
DIRECTION 

The precision medicine platformof the future will need to 
offer all the features presented earlier and more. Its features 
should be available as SaaS (e.g.software as a service) and 
allow its operation on any cloud-computing supplier. It should 
also have been designed and programmed using open-
sourceBig Data technologiesthat cheaply allowfast in-memory 
processingof large amounts of patient data. Hospital research 
labs will want to profit from the agility of a ‗pay as you 
use‘approach offered by cloud computing suppliers so that 
they do not have to wait and line up to run their analysis on 
university or government research supercomputers/clusters or 
buy theirown hardware and software. Most of all, a key ability 
required by the precision medicine researchers will be allow 
them to easily adjust the data schema of the database to their 
specific research needs as they evolve and change. Finally, 
they will want to scale the cloud IT infrastructure as needed to 
get their results as fast as they need them. 

III. PROPOSING AN EXTENSIBLE PRECISION 
MEDICINE PLATFORM 

 
        Fig. 1 Future Precision Medicine Platform      

We have designed such a platform, with the help of AWS 
Canada researcher grant. This first prototype version of our 
precision medicine platform of the future has been designed in 
three main components: 

1. Input Data: Allowsfor the combination of different 
data sources and their data storage. The main data 
sources are trial cohorts and electronic health care 
records. The volume of this data varies and increases 
continuously; 

2. Data integration: Allows for the collocating of the 
required precision medicine research data in one single 
data model that can be implemented on a scalable cloud 
infrastructure; 

3. Data Analysis:  Researchers can use any data analysis 
tool to conduct their research analysis and mine this 
data.  

In addition, the precision medicine platform of the future 
needs to automate the different data preparation steps (e.g. 
steps 1 to 8 of figure 2) involved in a typical Precision 
Medicine research activity: 

1. Identification/collection of the data required for the 
research goals; 

2. Mapping of the data fields to the existing data model to 
check if it contains all the data fields needed; otherwise, 
can be used the data creation model component to add 
the missing data elements; 

3. Use the scalable data migration infrastructure setup 
component to configure the data migration computer 
infrastructure for the performance needed; 

4. Start the data migration component to load the data 
from the many data sources into the integrated 
database; 

5. If the volume of the data to be loaded is very large, such 
as for genetics, the researcher can easily scale up the 
computer infrastructure by adding new instances; 

6. Once the data is loaded and ready for analysis, the 
researcher can use the data analysis infrastructure setup 
component to configure the infrastructure and 
environment required to start the analysis; 

7. The researcher conducts his precision medicine analysis 
on the data; 

8. Based on the analysis performance needed, the 
researcher uses the scale data analysis framework 
structure tool, at any time, to scale up the computer 
infrastructure to fit the performance requirements for 
their analysis goals. 

 
Fig. 2 Future Precision Medicine Data Analysis Pipeline 

By automating these steps, researchers that do not have 
specialized IT skills available in their lab should be able to 
prepare their data by themselves in a few steps.  
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IV. PROPOSED FRAMEWORK SOFTWARE 
ARCHITECTURE 

The proposed framework designed in our prototype 
includes a number of APIs, that use: 1) an already proven to be 
scalable data model; 2) open-source Big Data technologies, 
like the Apache Hadoop distributed file system (HDFS), 
Spark, Parquet and Yarn to ensure the scalability in processing 
high volumes of data; and finally 3) a scalable cloud 
computing infrastructure on the cloud (e.g. Azure, AWS or 
Google Cloud). Figure 3 shows how we have architectured 
each of these freely available open-source software 
components to meet our requirements. 

 
Fig 3. Proposed future precision medicine platform 

V. PRELIMINARY RESULTS 

To test this proposed platform design, we conducted an 
initial case study which involved preparing the data for a 
precision medicine study that concerned developing a 
predictive model for the complications of chronic kidney 
disease (CKD) in patients with type 2 diabetes using the 
patients‘ genetic variant, clinical and environmental data. It 
uses a list of informative genetic variants encompassing 
relevant risk factors for CKD complications, selected from 
publicly available GWAS data and tests them on the 
ADAVANCE cohort data [21], [23]. For this case study we 
have followed each step recommended by Figure 2.  

The first step is to gather the data. With the researcher, we 
located the data of 1118 patients that were previously 
genotyped using Affymetrix‘s GeneChip arrays resulting in101 
GB of data located in many individual files of .Gen format. 
Then we located and studied the clinical data of these patients 
that was stored in a Postgres relational database.  

In step 2 of Figure 2, we proceeded with the data model 
adjustment for this specific precision medicine study. The 
default data schema for the genotyped data did not need any 
adjustment, as it is quite standard. Alternatively, we needed to 
adjust the database schema to add the clinical data as well as 
the analysis schema specific to this study (see Figure 4). It 
required to add the following five data classes: personal, visit, 
diagnostic history, phenotype and medical treatments. This 
data extension is required as the data items found in the 
Postgres databases comes from the ADVANCE trial case-
cohort [21], [22] and needs to be added for our future analysis. 

 

 
Fig 4. Added clinical and analysis data schemas 

Since our goal is to enable a large-scale and complex 
precision medicine analysis of this patient data using Big Data 
and machine learning algorithms we need to collocate all this 
data in a centralized database schema. The colocation of all 
this data, in a single database, can allow precision medicine 
researchers to exploit the power of popular open source Big 
Data technology(e.g. Hadoop, Spark, Avro and Parquet) 
cheaply to try to identify potential correlations such as 
candidate genes responsible for specific diseases and impact of 
therapies and medications on a patients‘ health. This precision 
medicine analysis is typically evaluated using a patients‘ 
genetic data, clinical data as well as other data such as age, 
gender, ethnicity and weight. Another data schema extension is 
needed and presented in the box on the right side of Figure 4. 
Its aim is to allow researchers to better organize, track, and 
reproduce the results of an analysis. It is composed of the 
following two main data classes: Analysis and Simulation. The 
whole process, of the database schema extension, took only 2 
minutes using our prototype data creation model component 
API that was designed to easily add the missing data elements.  

In step 3, we setup the cloud infrastructure for the data 
conversion/loading process.It took less than 8 minutes to 
configure the Amazon Web Services (AWS) cluster of servers. 
Using AWS for our case study, we configured a cluster of 10 
Linux instances (m4.4xlarge) ready for use. The configuration 
allocated 144 cores and 557 GB of memory in total. 

In step 4, our prototype platform API‘s are used to 
convert/load the data into the target database schema. First, the 
genetic data of each of the 1118 genotyped patients (101 GB) 
needed to be converted from the Oxford genotype file format 
(.Gen) generated by the Affymetrix GeneChip arrays. This 
process took 3 hours 18 minutes. Second, the ADVANCE 
clinical needed to be extracted from its Postgres relational 
database (71 MB) and loaded in the target database. This 
process took only 1.4 minutes. 

Next we conducted some extra experimentation to 
demonstrate the utility ofthe step 5 of Figure 2. We proceeded 
to scale up the processing of the patient genetic migration step. 
We noticed that it was possible, in only 50 seconds, to add an 
instance to the AWS cluster. For amore powerful 
infrastructure, it was also easily possible to add 5 instances but 
this took 3 additional minutes to be executed. This experiment 
concluded that a researcher that is unhappy with the 3.3 hours 
wait for loading large genetic files can quickly adjust the 
power of the cloud infrastructure as required to reduce this 
time. For this first case study, we did not go further in our 
experimentation.  

Our last research taskof this case study was to calculate the 
cost associated with thisprecision medicine data preparation. 
We were pleasantly surprised to find that the total cost for: 1) 
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the data schema extension(2 min.); 2) the cloud cluster 
infrastructure setup (8 min.); 3)the data conversion/migration 
(genetic data 3 h.18 min. and clinical data 1.4 min.) was only 
32$ USD at 0.80$USD/hour for each instance (in this test we 
used 10 m4.4xlarge instances). Next, add to this the cost the 
storage of 101.07 GB of data costing only $2.32/month.Last, 
there is another small fee to consider in this budget. The AWS 
requests price (e.g. Get and Put at $.005 per 1,000 requests) 
that did not go over $4.  

Now, in less than 4 hours and for this very low cost under 
$40 USD, the database is ready for a large-scale precision 
medicine analysis.  

CONCLUSIONS 

Novel precision medicine platform designs should allow 
researchers to easily adjust the data model and scale the data 
preparation/loading on demand. It should also allow the 
analysis activities to be conducted on a single database 
designed for lightning fast and scalable processing. In this 
paper, we presented a proposed design that includes popular 
Big Datatechnologies and stepsto easily prepare the data for 
any research involving a patient‘s genetic, clinical and 
environmental data. A prototype of this platformwas 
experimented and demonstrated a number of advantages: the 
possibility to easily and quickly adapt the data schema for any 
precision medicine analysis requirement; a simple process to 
prepare the infrastructure for converting/loading large amount 
of genetic and clinical data; and the possibility to scale up the 
cloud supplier cluster infrastructure when needed. Finally we 
showed the low cost associated with the preparation of this 
large and complex data. 

NEXT STEPOF THIS RESEARCH PROJECT 

In our next publication, we describe how this framework 
was implemented and trialled by the precision medicine 
researchers, at the Centre Hospitalier Universitaire de 
l‘Université de Montréal (CHUM), to conduct step 7 (data 
analysis) a large-scale precision medicine analysis of diabetes 
patients usinga clinical data set including 2394 patients anda 
their genetics data set (15,213,486,960 rows) as well as the 
Single nucleotide polymorphisms (SNP) list associated with 
eGFR gene and the urinary albumin to creatine ration 
(ACR)risk group. The data that was reshaped into one single 
data table comprising 112 columns: where 76 columns were 
used for genetic data and 36 columns represented clinical data 
(i.e. age, gender, region) across 1118 rows (i.e. 1 row per 
patient). The analysis included 10 simulations (iterations) with 
each of the following three classification models: logistic 
regression, random forest and neural networks to develop a 
CKD predictor. 
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