
 Development of an infrastructure automation API platform

by

Adrien GASTÉ

TECHNICAL REPORT PRESENTED TO ÉCOLE DE TECHNOLOGIE
SUPÉRIEURE IN PARTIAL FULFILLEMENT OF COURSE STA802 -

STAGE D’ENTREPRISE ET RAPPORT TECHNIQUE

MONTREAL, AUGUST 23, 2018

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Adrien Gasté, 2019

 II

Cette licence Creative Commons signifie qu’il est permis de diffuser, d’imprimer ou de sauvegarder sur un

autre support une partie ou la totalité de cette œuvre à condition de mentionner l’auteur, que ces utilisations

soient faites à des fins non commerciales et que le contenu de l’œuvre n’ait pas été modifié.

ACKNOWLEDGMENT

I would like to personally thank:

• the team and manager of the AUTO project for welcoming me warmly in their team

to work on this project, for always taking time to answer my questions and for

helping me acquire a great deal of knowledge,

• Ubisoft for giving me this opportunity to work in their company for four months,

• My school, École de Technologie Supérieure, for giving advice in how to find and

prepare an internship through one of their courses,

• My supervisor, Alain April, for accepting to review my internship report and being

available to answer my questions,

• Last, but not least, Florian Elizagoïen, without whom I would not have gotten this

internship.

DÉVELOPPEMENT D’UNE PLATEFORME API PERMETTANT

L’AUTOMATISATION D’INFRASTRUCTURES POUR LES ÉQUIPES DE

PRODUCTION D’UBISOFT

Adrien GASTÉ

RESUMÉ

Lors de mon stage chez Ubisoft, j’ai contribué au développement d’une plateforme offrant
une API capable d’automatiser des infrastructures virtuelles. Nommée AUTO, elle est
destinée aux équipes de production de jeux vidéo ainsi qu’aux administrateurs services.

Lors de mon mandat de stage, nous avons continué à améliorer la plateforme qui a été déjà
déployée à mon arrivée. L’équipe s’est centrée sur l’ajout d’un service au produit qui permet
d’automatiser la création d’une infrastructure avec plusieurs ressources simultanément. Nous
avons notamment automatisé le déploiement d’une application de surveillance
d’infrastructures sur une base de données orientée documents. Nous avons également
déployé un système de gestion de bases de données.

À l’occasion de la version 1.2, nous nous sommes concentrés sur la création d’un service
permettant d’automatiser la configuration d’un répartiteur de charges pour des serveurs
utilisés par les équipes de production de jeux vidéo, ainsi que sa validation et sa suppression.
Cette tâche nous a également poussés à mettre à jour notre plateforme dans l’environnement
de production où allait être déployé notre nouveau service; cela consistait à ajouter ou mettre
à jour les différents services proposés par notre produit.

Plusieurs bugs de taille plus ou moins importante auront été détectés et corrigés durant le
stage, et la documentation officielle de la plateforme a été mise à jour tout le long du projet,
afin de faciliter son utilisation par nos clients.

Adoptant la méthode Scrum, nous avions des réunions hebdomadaires et spontanées pour
organiser et partager le travail, ainsi que permettre à chaque membre de proposer des idées
ou donner des conseils.

Mots clés : Infrastructures, Automatisation, Infonuagique, Agile, Orchestration

DEVELOPEMENT OF AN API PLATFORM FOR AUTOMATING
INFRASTRUCTURES FOR THE PRODUCTION TEAMS OF UBISOFT

Adrien GASTÉ

ABSTRACT

During my internship at Ubisoft, I have participated in developing an API platform for
automating infrastructures. Named AUTO, it is destined for the teams responsible for making
the company’s video games, as well as service administrators.

Durant my mandate, we have continued improving the platform whose first version was
already released when I arrived. The team focused on adding a service to the product capable
of automating the creation of an infrastructure with more than a few resources
simultaneously. We have also automated the deployment of a monitoring software, named
Sensu, on a document-oriented database called MongoDB. We have notably created a
database management system, called PostgreSQL.

At the next iteration, we concentrated on creating a service capable of automating the
configuration of a load balancer for servers used by video game production teams, as well its
validation and its deletion. This task has also forced us to update our platform in the
production environment in which our new service would be released; it consisted in adding
or updating the different services proposed by out product within said environment.

Bugs of size more or less important related to services or the platform itself have been
detected during these iterations and have been corrected during the internship, and the API’s
official documentation was also updated frequently, so as to help its use by our clients.

Adopting the Scrum method, we had weekly and spontaneous meetings to organize and share
our work, as well as allow each member to suggest ideas or give advice on something.

Keywords: Infrastructures, Automation, Cloud computing, Agile, Orchestration

 VIII

TABLE OF CONTENTS

Page

INTRODUCTION1	

CHAPTER 1 THE THEORETICAL KNOWLEDGE ACQUIRED AT ÉTS APPLIED
TO THE INTERNSHIP’S MANDATE2	

1.1	 Project development and management – GES801, MGL805, MTI825Error!
Bookmark not defined.2

1.2	 Methodology for the project development: Agile, Scrum and Kanban– MTI825,
GES801Error! Bookmark not defined.6	

CHAPTER 2 MANDATE OF THE INTERNSHIPError! Bookmark not defined.9	
2.1	 The AUTO API Platform9
2.2	 Iteration v1.19

2.2.1	 Automate the installation of a Sensu client in the MongoDB service
Error! Bookmark not defined.9

2.2.2	 Deploy a PostgreSQL instance in the Production environment Error!
Bookmark not defined.14

2.2.3	 Fix bugs and update the Documentation website Error! Bookmark not
defined.16

2.3	 Iteration v1.2917
2.3.1	 The load balancer configuration service: IntroductionError! Bookmark

not defined.18
2.3.2	 The load balancer configuration service: Implement the CREATE

logicError! Bookmark not defined.18
2.3.3	 Test the LB-Sandbox service, documentation and bug fixesError!

Bookmark not defined.24
2.3.4	 Updating AUTO services: Validate backward compatibility in

AUTOError! Bookmark not defined.25
2.3.5	 Updating AUTO services: Configure the Staging environmentError!

Bookmark not defined.26
2.3.6	 Updating AUTO services: Deploy in the Staging environmentError!

Bookmark not defined.29
2.4	 Iteration v1.3931

2.4.1	 Generate Gitlab pages for AUTO servicesError! Bookmark not
defined.31

CONCLUSION32	

ANNEX I EXAMPLE OF TESTING A FUNCTION IN THE CONTEXT OF THE
TESTING DONE FOR THE CREATE LOGIC ADAPTER; WE
CONSIDER A CLASS WITH TWO ATTRIBUTES ASSOCIATED TO

OTHER CLASSES, AND A FUNCTION MADE UP OF TWO
METHODS3535	

 XI

LIST OF FIGURES

Page

Figure 1.1 DevOps Toolchain, Kharnagy, 2016, Wikipedia ...4

Figure 2.1 Manual addition of a Sensu client in MongoDB instance12

Figure 2.2 Link between the MongoDB instance and the Uchiwa dashboard13

Figure 2.3 Simplified architecture of the PostgreSQL instance15

Figure 2.4 Load Balancer configuration architecture ..19

Figure 2.5 Single Responsibility Principle architecture for the LB-Redbox service ..19

Figure 2.6 Black Box concept for the API layer functional tests23

Figure 2.7 Generating Gitlab pages using a tox environment in a Docker container .32

 XIII

LIST OF ABREVIATIONS

API Application Programming Interface

ÉTS École de Technologie Supérieure

GES801 Application Scope of Project Management (ÉTS Course)

MGL805 Software Verification and Quality Assurance (ÉTS Course)

MTI825 Information Technology Service Management (ÉTS Course)

PMBOK Project Management Body of Knowledge

 1

INTRODUCTION

As part of my Master’s degree in Information Technology at École de Technologie

Supérieure (ÉTS), I have fulfilled a four-month internship at Ubisoft Montréal, a video game

developer well known for releasing several critically acclaimed video game franchises, such

as Assassin’s Creed and Far Cry.

With the growing number of gamers throughout the world, the company needs even sturdier

and efficient services to continue delivering top quality games and continuous support to

guarantee an unforgettable experience to the players. This increases the workload for the

employees who find it more and more challenging to create and maintain the necessary

infrastructures able to keep up with the demand. The Information Technology service of

Ubisoft has therefore created a project with the goal and vision to offer within the company a

true infrastructure as code platform1: AUTO, a platform providing an API for providing

infrastructure automation services: creation of virtualized environments, domain name

servers, and even the provisioning of an entire IT production infrastructure.

Having joined the team as the first version 1.0 was being released, I have taken part of its

ongoing development and improvement where I have added new modules and functionalities

while fixing defects that emerged as time went on.

The next parts will first describe how the knowledge acquired at ÉTS was applied during my

internship. We will then talk about the tasks I have contributed to in regard to the

development of the AUTO platform.

Due to a signed non-disclosure agreement, several services and technologies used within the

API platform cannot not be explicitly named. I apologize in advance for the inconvenience it

might cause to the reader of this document.

1 Process of provisioning and managing computer data centres through machine-readable

definition files, rather than physical hardware configuration of interactive configuration tools.

 2

CHAPTER 1

THE THEORETICAL KNOWLEDGE ACQUIRED AT ÉTS APPLIED TO THE
INTERNSHIP’S MANDATE

1.1 Project development and management – GES801, MGL805, MTI825

The strongest notion that I learned and worked on at ÉTS and directly involved in my

internship was project development and management.

Indeed, during the course GES801 - Application Scope of Project Management, we have

grasped the basic knowledge of how to manage a project, its different steps and what it

entails, through the teachings of the Project Management Body of Knowledge guide

(PMBOK), a standard of terminology and guidelines for project management. Most

importantly, we detailed the five process groups a team has to go throughout a project:

• Initiation: during each of our project’s iterations, we had a couple of meetings

between team members and the project manager to define the next steps we should

take to further develop our application; a base plan for the entire upcoming year was

given by our project manager, but ideas and suggestions either from the team or from

our clients could also come up spontaneously. These were discussed to see whether it

was an urgent matter or if it could be an addition for later, to leave place to probably

more important features. Each member could always give his opinion on the matter,

with the project manager ultimately deciding on the final work plan we would follow.

• Planification: with the roadmap correctly defined and authorized by the project

manager, we had to further refine the objectives by splitting them into smaller tasks,

plan the schedule and see what could be done during the sprint (the methodology will

be described in Chapter 1.3). We would then decide on the workload distribution

between us: some members were assigned their tasks as they were the most fit to

accomplish them successfully, however each of us could also choose which tasks they

would be interested in doing, no one was forced to take something they did not feel

comfortable with.

 3

• Execution: Task definition for one version usually started during the previous one and

workload distribution at the end. The reason we do this is to gain time in management

and because it also depended on our clients, who came up to us to ask for new or

improved services. Once everything was set, we would then work on each task,

depending on their priority. We assigned them to ourselves, and we could also pair

program with another member of the team for more complex ones, however some

could also come up on the way, be reported by a team member and assigned to

someone else. We relied on an issue tracking software to follow the team’s progress

for the given objectives (it will be more detailed in Chapter 1.2).

• Monitoring and controlling: As stated before, we use a software to track the progress

of each task. When was done, it would then go into review and testing, where

everyone could give their opinion and check that what has been done works the way

we want it to. Documentation was also done during the entire process, to give a

clearer explanation of what our services offer.

• Closing: After all tasks were completed, reviewed and done, there was a final demo

shown to the project manager to show him our work and what has been done. He

would then give his feedback and if it was positive, we would close this iteration and

officialise its release to the rest of Ubisoft by making an announcement on the

company’s private website. All the tasks done were then archived and we moved on

to the next iteration.

These five process groups are equivalent to systems development life cycles, a term used to

describe the process to follow to deploy an information system; it is a concept that has been

seen in the previous course, as well as course MGL805 - Software Verification and Quality

Assurance.

 4

Another important notion learned at ÉTS is the concept of DevOps, a software engineering

culture that unifies software development and software operation, learned through course

MTI825- Information Technology Service Management. Our very API platform is based on

the foundations of DevOps.

Indeed, our way of developing new features for our product follows the DevOps

toolchain. When wanting to add a new feature to the AUTO service, we define the

necessary business value and requirements through team meetings (“Plan” step).

We then proceed to the “Create” step, where the coding takes place. When a pre-release

version is ready, it is tested for its performance and quality, relying on the Gitlab

solution, which not only provides test automation, but also continuous integration and

continuous delivery, three essential concepts of DevOps (“Verify step”); they help us in

continually integrating and testing every change we make in order to improve our service

when it is up for review and speed up delivery by automating the software release

process.

These changes are then approved and deployed for production, always through Gitlab as

it hosts all our projects, as well as a history of all the modifications made since the first

release. If the deployment for some reason fails, we can rollback to the previous version

in the master branch of said project (“Release” step). Monitoring is constantly done when

a service is released: each instance providing a service is closely checked to make sure it

runs correctly and does not use too many resources (“Monitoring” step).

Figure 1.1.1: DevOps Toolchain, Kharnagy, 2016, Wikipedia

 5

Quality assurance is an essential part of any software product. Defined as the means of

preventing mistakes and defects when delivering a product to a client, it is the main subject

of one the courses followed at ÉTS, course MGL805.

It is one of the most important steps of the systems development life cycle, because it is what

guarantees the quality of the product.

Once the coding for a specific component, it is reviewed and tested by the one who created it,

but also other members of the team. This is because while it can work individually, there is

no guarantee it will work when combined with the rest of the system. Therefore, before even

thinking of pushing these changes to Gitlab, the one responsible for the task tests it locally by

integrating it with the service he is currently working on. Once he is sure everything works

fine, only then does he create a merge request on Gitlab to push his modifications; it is then

up for review for the rest of the team. This step is essential because since we all have

different ways of viewing things, they may come up with something we would not have

thought about and vice versa. They give their opinion about the changes made, test it

themselves and even try to break it to see if it should not work when it is not supposed to.

This step prevents anyone from integrating code without verification which could break

down the entire system.

With automation, continuous integration and continuous delivery, monitoring integrated as

well as being an infrastructure as code platform, the AUTO API is a true DevOps product.

 6

1.2 Methodology for the project development: Agile, Scrum and Kanban–
MTI825, GES801

At school, I learned new ways of how to approach a project: these are the Agile approach and

its framework Scrum. I also acquired basic knowledge in task management and issue tracking,

through the Kanban lean method These notions have been addressed in courses MTI825 and

GES801.

The Agile approach is a methodology for project management which encourages emphasis on

adaption to change, continual improvement and collaboration between cross-functional teams.

It is based on 12 principles from the Manifesto for Agile Software Development to follow to

improve our product’s quality, most of which have been recognized and used within the

AUTO project:

• As said in the previous part, some changes can come up much later after the plan has

been prepared,

• We had some objectives that evolved throughout an iteration and we have

consistently adapted to it,

• Each of our iterations is based on a six-week schedule, during which we propose a

certain number of features that we commit to deliver on time; there has been cases

where we released later, but others where it was ready before due time. These short

schedules incite us to continually improve our product and suggest many more

features,

• While the team and the manager had weekly and daily informal meetings, the

manager always kept in touch with the client.

• Even though we were a team of nearly ten people, we all sat at desks next to or in

front of each other and always had face-to-face conversations with other members

when having issues with a specific task,

 7

• Code reviews were mandatory when we finished with a task, as the approval of at

least two team members was required to merge our modifications in the master

branch of the project; this helped in guaranteeing continuous attention to code quality,

• Even if we sometimes wrote code in a verbose way, we made it a priority to always

simplify it as much as possible,

• Like stated previously, each team member could give his opinion on architectural

designs or requirements; ideas from different people leads to creating a much more

optimal solution than simply proceeding with one mindset,

• Pair programming is quite frequent, as it helps work faster if it is handled well,

• One-on-one meetings were done with the manager with each member of the team so

that we could reflect on how performant we are and what we wanted to achieve and

how to become more performant.

More importantly, we have also adopted the Scrum framework for managing our project.

Indeed, the manager had given us a list of all features that were required to have in the

AUTO platform for the upcoming year. He would then concentrate on the first sprint, where

he would hand us the ranked list of what he wants for the next release.

The team would therefore select all those it could actually commit to deliver by the end of the

sprint. The tasks were then broken down between everyone after going through all of them,

which effectively started the sprint that lasted for six weeks.

Every morning, we would have an informal stand-up meeting to see how was done the

previous day and what will be done this day. It was also the opportunity to raise any blockers

to get help from other when possible. Finally, there were weekly meetings on Friday to check

the overall sprint advancement and see if we were falling behind the due date or not, with

task priority occasionally changing and suggestions on how to solve some issues.

When the product was ready to be delivered, a sprint review and retrospective was done to

see if we had done a good work and if we fulfilled the client’s requirements. We then went to

the next iteration and started the whole process again.

 8

Handling the tasks progress efficiently would not have been possible without the Kanban

method, a scheduling system for managing work through visualisation of a Kanban board.

Because we had a high number of tasks for each iteration, this was the only method we could

use to efficiently follow the sprint’s progress.

We relied for this on Jira, a proprietary issue tracking software. All tasks were listed per

version release, and had a priority tag, going from P4 (weakest) to P0 (strongest). They were

all display on a virtual Kanban board made up of six columns: “To Do”, “In Progress”,

“Blocked”, “In review”, “In testing” and “Done”. Each task could be assigned to one team

member (however, more than one member could work on it), who updated its status by

moving the task around the different columns: this helped us know how far we had gotten

compared to the time we had left. We could leave comments in a corresponding task to show

the advancement but more importantly, the Kanban board was directly linked to our AUTO

project on Gitlab; this allowed us to easily handle task progress with both technologies.

In the next chapter, we will describe the main tasks executed during this internship. They will

be split in three sub-chapters, corresponding to the three sprints I’ve taken part of.

 9

CHAPTER 2

MANDATE OF THE INTERNSHIP

2.1 The AUTO API Platform

Like presented quickly in the introduction, AUTO is an API platform developed with the

goal of helping in simplifying and automating infrastructure sources within the company.

Its inception came about as production teams and service administrators faced a challenging

task when dealing with infrastructures, and this solution would offer a true infrastructure as

code platform2.

When the first version 1.0 was released, several RESTful services supporting CRUD (Create,

Read, Update, Delete) operations were available to use, and such as orchestration and

configuration management tools. In order to use these services, the client needs to

authenticate and get permissions; they are necessary headers to make the API call. The HTTP

request is sent to a gateway based on Kong3, which then sends the request to the appropriate

service.

2.2 Iteration v1.1

2.2.1 Automate the installation of a Sensu client in the MongoDB service

To help in their tasks, the AUTO team has conceived some Terraform modules that can be

reused in other services. One such is the MongoDB Terraform module, based on the

MongoDB document-oriented database.

2 Process of provisioning and managing computer data centres through machine-readable definition files, rather
than physical hardware configuration of interactive configuration tools.
3 Microservice API gateway.

 10

To monitor such services, we have relied on a framework called Sensu. Working as a

monitor for infrastructures, it can for example give checks on the health of an application

(whether it is alive or not), show the live CPU usage, or even memory usage. It has already

been implemented in more than a few services used by AUTO, but at that point had yet to be

implemented in the MongoDB instances relied on by our product. The goal was to first

successfully install a Sensu client4 manually in an already existing MongoDB instance, check

that it worked correctly (through testing the different checks available), and then automate

the installation process so that when a MongoDB instance is created (the creation process

will be explained later), the Sensu client is automatically configured to be installed and ready

to use within it.

This task helped me learn to be familiar with some of the technologies used by our team for

the AUTO platform, namely Terraform and Ansible.

The MongoDB instance is, in other words, a Mongo database orchestrated with a Terraform

module.

This instance is then provisioned and configured with several services with the help of an

open-source automation platform named Ansible, that allows for configuration management

and application deployment. This is done through what we call Ansible roles, written in the

YAML language, which consist of many Ansible playbooks, scripts that allow the

configuration of complex environments through simple commands (for example, which

packages are necessary to install an application, how the service is to be configured).

This is where plugging the Ansible role for the Sensu client into the MongoDB instance

comes in.

After first deploying a MongoDB instance in the AUTO Staging environment5, we pulled an

already defined Ansible role capable of configuring the Sensu client service from the

project’s Gitlab into my local machine.

4 Runs in the system requiring monitoring, and connects to the Sensu server, via a message bus. The one by
default (and the one we use) is RabbitMQ.
5 Virtual environment where all services are tested to make sure they work correctly before being deployed in
the Production environment (the one being used by the clients using the AUTO platform).

 11

The client IP address (corresponds to the instance which requires the monitoring) was hard

coded in its configuration files such that it pointed to the IP address of the MongoDB

instance (it was obtained by accessing the OpenStack cluster for AUTO listing all instances

deployed in the Staging and Production environment).

We also updated the http and https proxy settings to allow the MongoDB instance to access

Internet; indeed, the Sensu Ansible role, once installed in the instance, needed access to the

Internet to fetch the necessary packages when executing its tasks defined in the Ansible role.

The reason this change had to be made is because the network in which we worked has some

restrictions, and the default set values prevented communication between the MongoDB

instance and the outside world, thus preventing the Ansible role from completing its tasks to

configure the Sensu client the right way on the MongoDB instance. The issue was discussed

with teammates who helped me find the correct proxy settings allowing valid interaction

between the Ansible role and deployed Terraform module.

All that was left was setting up RabbitMQ, the message bus that the Sensu client with the

Sensu server. For this purpose, we edited a JSON configuration file, in which the host and

port of the Sensu server was specified, as well as the user and password necessary to log in

the server.

With all these modifications, the Ansible role could then correctly install the Sensu Client

service in the MongoDB instance, configure the Sensu client and link it to the MongoDB, as

well as the RabbitMQ host which links the instance to the Sensu server.

To check that the service was correctly running in the instance, we used another already

available service, Uchiwa, an open-source dashboard specifically conceived for the Sensu

monitoring framework. Make note that the Uchiwa dashboard is the front-end user interface

of the Sensu server itself. By logging in to the one in Staging, the verification was done by

checking the list of all instances connected to it and see if the MongoDB instance was there.

 12

To this end, we edited a configuration file in the Sensu client Ansible role, made up of two

tasks which link the Sensu client to the MongoDB instance and the Sensu server. This file is

then loaded by the Uchiwa dashboard and allows the instance to appear in the dashboard.

After confirming its presence, selecting the instance allowed me to see all the basic checks

that were provided in the Sensu client Ansible role; seeing all returning an “ok” status on a

regular basis proved the configuration of the Sensu client in the MongoDB instance was a

success (See Figure 2.1 for this model’s architecture).

However, this solution of manual installation was not optimal: the instance had to be first

deployed, then the Sensu client Ansible role pulled locally and manually modified to be

linkable to the MongoDB (this part has been automated by making the modifications directly

in the role and making sure the MongoDB module correctly pulled the updated version of the

role) and had to be executed manually. It was why the team and I decided to directly

integrate the Sensu client configuration in the MongoDB Terraform module to gain time and

efficiency.

In this aspect, we created an Ansible playbook which does the Sensu client installation and

configuration at the same time as the MongoDB instance is orchestrated.

Figure 2.1: Manual addition of a Sensu client in MongoDB instance

 13

All the previously hardcoded values, such as the IP address of the MongoDB instance, were

now written dynamically, gaining time and efficiency in the Sensu client configuration.

The newly updated Terraform module for the MongoDB was then tested as before, by

deploying it in Staging and then checking right away the associated Uchiwa dashboard, since

the Sensu client was automatically configured at the same time as the instance was being

orchestrated (See Figure 2.2 for this model’s architecture).

During this task, some bugs that came up were also fixed: when testing the service locally

through a Makefile, we corrected some Linting6 -based errors that popped up. we fixed one

of the tasks executed by the Sensu client Ansible role that consists in installing a gem

package necessary for the Sensu configuration. Based on the nature logs we got, we could

understand the source of the problem and searched the Internet to see if other developers had

a similar problem and had found a solution.

6 Lint refers to tools that analyze code to find programming errors, bugs or stylistic errors.

Figure 2.2: Link between the MongoDB instance and the Uchiwa dashboard

 14

With the MongoDB instance correctly running with the Uchiwa dashboard showing Sensu

checks being done regularly on it, the modifications were pushed in Gitlab through a merge

request to get the approval of other members of the team on this task; they also made

suggestions or simply created open discussions.

2.2.2 Deploy a PostgreSQL instance in the Production environment

PostgreSQL is the database management system used by AUTO. A new instance of it had to

be set up in one of the Production environments.

To that end, we first set up the orchestration of said instance, based on a Terraform module:

it created an instance with a PostgreSQL server in it, as well as set up a Cinder volume, a

Block Storage solution by OpenStack, and a Sensu Client for monitoring purposes. A

superuser is also created (username and password variables) to connect to the server.

A network issue prevented a Sensu plugin from being set up correctly during the

configuration. This error was identical to the one we encountered with the MongoDB

instance, so we knew it was due to the proxies that were not set up to allow communication

with the outside world, for example when trying to fetch a package outside of Ubisoft’s

network; we fixed it by updating the proxy settings in the PostgreSQL Ansible role that was

used by the Terraform module to configure the database and the Sensu client, just like with

MongoDB.

Another task was also added to execute in this Ansible role to set up an additional Sensu

check for verifying the memory usage of the instance, which was missing.

After having the merge request for these modifications approved, the Sensu client could then

be installed successfully during the orchestration.

The next step after installing the PostgreSQL server was configuring roles. We used another

Terraform configuration file specifically for this role (the separation allows for better

 15

troubleshooting), which connects to the server using the superuser’s credentials created

earlier, and then adds two databases and three PostgreSQL roles.

To test that the instance was correctly deployed, we established an SSH connection to the

instance and then tried logging into the server with each user created and see if we could

access each database created. We also made sure all the Sensu checks were periodically

executed on the instance through Uchiwa. The changes were then pushed for a merge request

in Gitlab for approval.

All the usernames and configured earlier were stored as secret variables in Gitlab so as not to

hardcode them in the Terraform files and thus increase security. They were also added to a

running Vault7 instance in Production, thus one could only access the server and databases

created by connecting to the Vault User Interface to see the variables.

7 Tool for managing secrets. It can secure, store and control access to tokens, certificates, API keys or any type
of secret.

Figure 2.3: Simplified architecture of the PostgreSQL instance

 16

2.2.3 Fix bugs and update the Documentation website

A documentation website had been developed by the team, consisting of an API

documentation showing all the available endpoints of currently deployed services, a user

guide to explain how to use the platform, and a developer documentation to give more in-

depth details about the services of AUTO.

As important as developing and maintaining services was important, making sure there was

documentation accompanying it was just as essential. With the constant evolution of the

platform, the website had to be consistently updated.

One of the tasks we did was removing all references to Gitlab repositories. Indeed, due to

privacy restrictions, we could not give away those URLs to our clients.

The documentation website is brought up with a service named ‘docs’, which creates the

base website and its different sections, and then pulls all the documentation from all

deployed services.

To accomplish this task, we deployed a local Docker container with the docs service in it. We

first sought out the pages with explicit Gitlab references. Once we saw in which service they

were, the aforementioned line was removed in the Markdown documentation page of said

service (it is the file that is fetched by the docs service), and ran the Docker service

responsible for deploying it locally.

To test that my change was correctly done, we re-ran the docs service container who fetched

the updated document of a service.

Once all Gitlab references were removed and the testing showed that the deletion was done

successfully, we created a merge request to push my modifications on the Gitlab repository.

A non-negligible bug also came up during this iteration: the API documentation section in

the documentation website deployed in one of the Production environments, which provides

the deployed service endpoints, as well as showed the request and response example bodies,

 17

went down. Indeed, when trying to access it, an error message by ReDoc8 popped up.

Because it specified that it was an error with ReDoc failing to render a spec, that meant the

generated data for the API documentation was corrupted.

We deployed locally the docs service in a Docker container, accessed it and extracted all its

data under the JSON format.

We then installed and deployed a Swagger validator Docker image on my local machine, in

which we tried to validate the JSON data from earlier; indeed, the API documentation is

based on the Swagger specification. The validator was deployed locally for security

purposes, as sensitive information was in the JSON data, thus using a public validator online

could risk exposing secrets.

It was then that the Swagger validator9 raised some semantic (multiple body parameters not

allowed) and schema (parameters having additional properties, expected values different

from actual ones) errors in the JSON data.

Being more than one working on it, we fixed the problem by correcting the syntax, adding or

modifying values in the validator.

Once all raised errors were gone, we ported the same modifications done in the editor into

the services which raised the errors and redeployed for testing the docs service. Seeing the

API documentation page was now clean of errors, the updates were therefore pushed for a

merge request in the Gitlab repository.

2.3 Iteration v1.2

The second iteration, version 1.2, is centered around two deliverables:

• Creation of a new service to handle load balancer configurations. For understanding

purposes, let us call it LB-Redbox,

• Update our services in one of the Production environments.

8 API Reference documentation based on Swagger.
9 Service for validating a Swagger-based specification

 18

We will first talk about my involvement with the LB-Redbox service, and then what was

done regarding the Production environment update.

2.3.1 The load balancer configuration service: Introduction

The objective was to conceive a service capable of creating, validating and deleting a load

balancer configuration for servers and load balancers: for easier understanding, we will name

the service encompassing both the load balancers and the servers a Redbox. It would

encompass the functionalities of two already existing services, which were already

responsible for doing the validation check on the configuration, as well for configuring and

managing a load balancer.

Considering Redbox which is made up of a set of Windows servers, the load balancer must

be configured such that the incoming load is equally distributed among these servers.

I mainly took part in creating the CREATE logic of the service.

2.3.2 The load balancer configuration service: Implement the CREATE logic

The way the Load balancer configuration works is as follows: given Redbox server nodes

(i.e. the Windows servers), resources are created for each of them and are bind together under

a service group. Given the load balancer itself, a resource for it is also created and is bind to

the previously created service group (See Figure 2.4).

 19

For the implementation of this service, the team agreed to rely on the single responsibility

principle in 3 layers (See Figure 2.5 for a better understanding of the architecture):

• Presentation layer: the API; corresponding to the entry point of the service, it is

responsible for receiving the request payload and sends it to the next layer, the

Controller,

• Business logic layer: the Controller; receiving the request payload from the API layer,

it is responsible for handling the domain logic and redirects the payload to the

Adapter depending on the /endpoint he received,

• Data Access layer: the Adapter; the final layer, it is the one responsible for making

the external library calls and CRUD operations.

Figure 2.4: Load Balancer configuration architecture

Figure 2.5: Single Responsibility Principle architecture for the LB-Redbox service

 20

To create a load balancer configuration, a user sends a valid request payload (contains

information about one or more Redbox’s load balancers and servers) to the service, via the

Kong gateway. After the authentication and authorization process, the service retrieves

credentials from Vault, which are used to transform the load balancer’s public IP into a

private one, which is then used to create the configuration payload using an updated load

balancer service developed by a member of the team. The configuration payload is then sent

back to the user.

We started with the lowest layer of the architecture, namely the adapter for the CREATE

logic, as it is where all the work is done.

At this stage, the adapter should have received the request payload and the private IP address

of the Load balancer to configure from the controller.

We defined a class (suppose it is called “lbClient”) which corresponds to the load balancer

service we are using and will be the class that will create the load balancer configuration

payload at the end.

We first crafted an intermediate payload, that we will call Redbox load balancer definition

payload. It gives information about the client Redbox load balancer server to configure, the

associated Redbox servers and the service group resource to create: they make up the

Redbox.

This payload is built using a configuration template we created serving as the skeleton, a

Redbox instance in found in the load balancer service given the private IP, as well as the

cluster host in which is located that Redbox.

The load balancer configuration is then created using the Redbox load balancer configuration

definition, for each Redbox defined. It is done through a method from an external library. It

creates an empty dictionary and fills it with the data coming from the Redbox load balancer

configuration definition payload. The advantage of knowing whether this payload was

 21

correct is because of a sub-dictionary named “errors”, that was not empty so long as errors

were raised.

The CREATE logic for the adapter being done at this point, we now had to add unit tests to

make sure all the functions we created worked like they are supposed to and failed when they

needed to.

With the other members working on the other endpoints, it was decided we would rely on

three technologies: fixtures from the pytest framework, the mock object library for testing in

Python and the flexmock library.

Mock objects are simulated objects that mimic the behaviour of real objects. Based on the

“action à assertion pattern” (run some tasks, then assert the results), they can be very useful

when using a real object is impossible or too difficult to integrate in a unit test.

Flexmock is an improved testing library for Python and is also a way to generate fake objects

on the fly. What makes it very useful and simple to use is that, given an object with several

methods, it can stub the methods and replace them with fake ones. You can even dictate the

behaviour of a function, from the methods it calla to the values it should return, making it

very intuitive to use.

Fixtures help set up the system by providing the necessary code to initialize it. For example,

using the context of the LB-Redbox, a fixture could be setting up valid Vault credentials for

use by different methods requiring it, such as for when getting the Redbox instance in the

load balancer service using the private IP. They not only allow reusability, but also prevent

us from using real data and modifying them; a fixture’s data will always have the same setup

every time it is being run.

We started from the beginning of the CREATE adapter to build the unit tests: The first thing

defined is the “lbClient” class itself, and because it would be reused often since it is called by

all its methods, a fixture instantiating an instance was written, with all its attributes being

flexmocked. This fixture could then be used in any test functions involving a “lbClient”

instance.

 22

Mock payloads were created for test purposes and became fixtures for reusability when doing

assertions. We created the request, Redbox load balancer definition and Load Balancer

configuration payloads, both valid and invalid (by removing a key-value for example).

Every single function defined in the adapter was tested, taking all possible results we could

expect, successful scenarios and failed ones alike.

See Annex I for an example of how the problem was tackled when considering a function

made up of two methods.

To help in raising the expected errors in the tests, we created Exceptions specific to the type

of error we intend to get (for instance, if it is due to a Vault connection issue or a load

balancer issue). One exception would equal to one fail test. They would later inherit the

APIException class to raise the classic HTTP errors, as they will be required by the

middleware to show the type of HTTP error raised when a client will use the service, and

something goes wrong.

Running the tests using Pycharm10 ’s integrated unit tester, the logs would help me fix any

test that did not finish how it should.

After making sure that all the functions in the adapter were covered by a unit test, we added

docstrings to describe each function’s role, their parameters and the return value for

documentation purposes, and then started to work on the CREATE logic for the controller.

Made up of the “lbController” class, which has the load balancer and IP translation services

as attributes, the controller has 3 functions corresponding to the CREATE, VALIDATE and

DELETE operations of the service. I only concentrated on the first one.

Only two methods were called with the CREATE logic:

• Get the load balancer’s private IP by passing the public one in parameters,

• Create the Load Balancer configuration payload.

10 Integrated Development Environment for the Python language.

 23

The unit tests for each method were already done through the adapter, in consequence there

was no need to test them again here. The only testing that was to be done was the CREATE

logic encompassing the two functions. This meant 4 possible scenarios:

• the Load Balancer configuration creation succeeds,

• the private IP fetch fails (therefore the remaining method is not tested),

• the private IP fetch succeeds, but the Load Balancer configuration creation fails, and

because there are two possible exceptions that can be raised (load balancer service

issue or configuration creation issue), that meant one fail test for each.

The mocking and usage of fixtures followed the same principle as what was done with the

adapter.

Finally, the last part to do was working on the API layer for the CREATE logic. The

implementation was the simplest of them, as you simply had to fetch the controller, and then

make a call of the CREATE function on it.

The main difference was regarding the tests. Instead of doing unit tests, we transitioned to

doing functional tests, which instead of examining the internal structure of an application,

considers it as a black box; we only send it an input and expect an output. This is because the

API is at such a high level compared to the controller and adapter (see Figure 2.6).

Figure 2.6: Black Box concept for the API layer functional tests

 24

The tests that we made consisted in seeing if a Load Balancer configuration payload was

successfully created, and all the failed creation scenarios, which consisted of all external calls

made by the whole service that raised an error. These were:

• Not finding any cluster in the load balancer service to which the private IP belonged

to,

• Finding an invalid cluster in load balancer service in the same context as the previous

scenario,

• Finding a valid cluster but not the associated traffic domain, an essential parameter

for the service group,

• The generation of the Netscaler Redbox definition payload fails,

• The Load Balancer configuration has the “errors” dictionary in its payload.

The fixtures that were created all mocked the external services (such as Vault) used by the

LB-Redbox service.

With this final step done, the CREATE logic of the LB-Redbox service was essentially done.

All the changes had been progressively pushed into merged request over time.

2.3.3 Test the LB-Sandbox service, documentation and bug fixes

Once the VALIDATE and DELETE logic were also done by other members of the team, we

could finally deploy the service in Staging and start testing it.

We used the Swagger service, as well as an external software called Postman11, to test each

endpoint.

Using a valid request payload with real data, we tested all 3 routes, making sure that it

returned a 200 or 201 HTTP response with a response payload to confirm it. We also

modified the request payload to make sure that the right exception was raised for each of the

11 API development environment for testing APIs CRUD operations.

 25

test cases that we created, such as if the service could note change the load balancer’s public

IP to a private one, or if we missed the required permissions.

We also checked some unusual behaviors that could happen and that could not be really

tested, such as what would happen if we tried to create the configuration with only one

parameter being changed each time (would it create a new configuration? Would it raise an

“already exists” error?). The service had never given an unexpected answer; therefore, the

service could be considered as fully functional, ready to be deployed in Production for actual

use by the client who requested this service to us.

We also updated the service’s documentation to display it in the website generated by the

‘docs’ service, mainly explaining how to use the different endpoints in the User Guide.

The API documentation in Staging went down at one moment. When we checked the website

and read the error, we understood it was due to a JSON component, “schema”, that could not

be loaded properly in the loadbalancer service; 3 endpoints were impacted by it. This bug

was similar to the one that was mentioned in chapter I.4., therefore the same process was

executed: deploying locally the “docs” service, extracting its data in a JSON format and

analyzing it in a locally deployed Swagger Validator; this showed there were semantic and

schema errors. To solve these errors, we removed the schema and their parent component and

instead specified a predefined payload.

2.3.4 Updating AUTO services: Validate backward compatibility in AUTO

In AUTO, there were two services with up to date and deprecated routes still working:

• api/<service_name>/<version>/<endpoint>: correct, updated route

• api/<version>/<service_name>/<endpoint>: deprecated route

The issue here is that the deprecated routes are still being used by our services. To this end,

we worked mainly with a service named Discovery, which is responsible for dynamically

finding all running services, along with their definition, health, documentation and routes, in

 26

a Docker swarm. It would then store them in a Consul12 store and finally send the updated list

of running services to the Kong gateway, that takes care of updating its own list.

However, the deprecated routes were not dynamically found, and so we had to statically

configure them in the Discovery service, so that they would always be recognized by

Discovery, and the gateway would therefore always have these deprecated routes.

We edited a JSON file which is called by Discovery and holds all static configurations for the

service; we looked for a dictionary corresponding to the deprecated services to keep in the

gateway, and added there the two services: We specified their name, their deprecated URI, as

well as the upstream URL associated to the deprecated routes; a specific port also had to be

mentioned.

To test that the modifications were correctly done, we deployed a local Discovery service

with those updated modifications, as well as a Consul and Kong instances. We also added

some logs to the route of each service to make sure that calling either the new or deprecated

endpoint would lead to the same result. Deploying them to the same stack, we then applied a

curl command to the gateway calling each endpoint for the verification.

With the tests being successful, we pushed the modifications to the Gitlab repository for a

merge request approval.

This task has helped me better understand the way how the services are registered in the

Kong gateway, and it also aided me in learning how to use the Discovery and Kong services.

2.3.5 Updating AUTO services: Configure the Staging environment

One of the remaining main tasks we did for this iteration was configuring the majority of the

Staging environment.

12 Key-value store used to register the running services and their properties found by Discovery. Removes
unused ones.

 27

To accomplish this, there was a breakdown of the different tasks to do in order:

• Create a Terraform file to orchestrate the Staging environment,

• Create new floating IPs mapping for the new the Staging environment,

• Create a HAProxy for the Staging environment.

• Create blue and green clusters in the Staging environment and test the switching

between both.

Knowing we relied on the blue-green deployment solution13, we first had to create two

Terraform files that orchestrate the cluster in Staging, one that would be the Blue

environment, while the other would be Green.

In each Terraform file, we orchestrate the deployment of one manager and two workers for

load balancing purposes when switching between the blue and green clusters. We specified

the name, dependant on the blue-green environment, the environment in which the cluster

were to be created (in other terms, Staging in this case), as well as defined a Cinder volume.

We also needed a way to know which color was currently active, to be able to do the switch

successfully: The color was saved in a file, which would then be updated every time a switch

happened.

The next step was then to create 6 floating IP addresses and map them to the blue and green

cluster’s managers and workers. They were created using a Terraform module for generating

these.

The values were then stored in a file and assigned variables, themselves used to parameterize

the IP address of the managers and workers: once deployed, the clusters would have those

floating IPs.

13 Technique that reduces downtime and risk by running two identical environments called Blue and Green. At
any time, one of the environments is live, being the actual production environment, while the other is idle and
can be used to develop and test a new version.

 28

At that point we tried to deploy the cluster in Staging (the one to deploy depended on the

current colour present in the state file mentioned earlier) to test whether they were correctly

orchestrated with the right floating IPs assigned to them, however we encountered at that

point an SSL certificate verification error. With some help from a team member, we found

out it was due to the CentOS Docker image used as a basis for the cluster. Even though the

Dockerfile related to the parent image correctly specified the necessary certificates and added

them in the Docker image corresponding to the blue/green cluster, nothing was done with

them; in other words, while they were there, the container did not do anything with them and

thus did not use them for the SSL certificate verification.

To solve this problem, we manually force updated the authentication store within the

blue/green image. This fixed the issue and we were able to correctly deploy one of the two

clusters. It is however a temporary fix, and it has been discussed that the CentOS Dockerfile

image had to be modified with the authentication store update, so that we do not have to redo

the operation manually in the future.

With the deployment of the cluster happening as wanted, and after checking that the

managers and workers had their floating IPs correctly assigned to them, we proceeded to the

next step: creating the HAProxy, an open-source software providing a high availability load

balancer, for the 2 clusters, which will be required to safely do the switching.

This was simply done by creating another Terraform file as well, which relied on an already

defined Terraform module to set up a HAProxy.

Finally, the last step to set up the cluster in the Staging environment is to create the cluster

and test the switching; this would also test the correct configuration of the HAProxy, as the

load balancer would help in making the switch correctly.

The script file for switching the clusters was already done. Another team member had added

a solution on top of it which consisted in dockerizing the blue/green switch: Instead of

manually deploying a cluster and then call manually the switch-cluster script, the cluster

switching is also done at the same time as the cluster deployment, automatically.

 29

We therefore made the test by using the blue-green dockerization method, and then checked

the currently active cluster by fetching the state file showing the current colour of the cluster.

After fixing a quick issue causing the switch to not work if the cluster did not exist in the first

place (an Ansible task called by the switching cluster bash file responsible for cloning the

state of one cluster in the other before the cluster switch failed if neither of the blue or green

cluster were first deployed; solving it would simply require skipping the task if this situation

happened), the switch was successfully done, and all modifications were then pushed into a

merge request in the Gitlab repository for approval.

2.3.6 Updating AUTO services: Deploy in the Staging environment

With the new Staging environment now up and running, the remaining thing to do was

redeploying the basic services of AUTO.

To deploy each service in the Staging environment, we configured a file named “.gitlab-

ci.yml”, which is the file used by the Gitlab runner to manage and execute the project’s job.

We added a stage for deployment the Staging environment which would first fetch the IP

address of the cluster’s current manager to know where the AUTO stack, if it exists, is and

update it with by deploying this service.

The IP get is done by making a curl command to an AUTO service which gives a state of a

particular environment in a JSON format and also lists the running services, as well as the IP

address of the manager of the currently active cluster. It would simply create the stack and

then add the service otherwise.

It would then export a Transport Layer Security verification to check that the communication

over the network is secure, export the path to the certificates in Staging necessary when

trying to fetch the cluster manager’s IP address (without those certificates, you cannot get

this IP address as a trust issue would be raised) before actually deploying the service in the

AUTO stack present in the Staging environment, using the manager’s IP address to find the

 30

stack’s location. We would also specify the environment to have a description of where the

service is being deployed.

The deployment in the Gitlab CI stage is done by doing a ‘docker stack deploy’ command,

which creates or updates an existing stack, and using a docker-compose file for deploying it

in the Staging environment.

To test the correct deployment of a service, we would specify in the “.gitlab-ci.yml” file to

run the pipeline with 2 stages only, one that builds the Docker image, and one which deploys

the service with it in the Staging environment. This has been done by mentioning that it

should only run in the working branch in which we did my current modifications:

As such, when pushing my branch to Gitlab, the runner would then run the pipeline for this

branch and do the deployment. After the pipeline succeeded, checking the success of the

deployment usually relied on connecting to the Kong gateway in the Staging environment

and seeing whether the service was there; an extra verification could be made by connecting

to the currently active manager (through SSH) and list all the running services and check if

the one we are looking for is there.

The actual final deployment would then be made after my working branch would be merged

with the master branch, which runs its own pipeline; in other words, after having my

modifications approved.

While adding the new stage for deployment in the Staging environment in the “.gitlab-

ci.yml” file, we also updated the global variables set for making the Transport Layer Security

and certificate verification in Docker as their old values were deprecated and had to be

updated with the new ones that they should be pointing to: this was done by creating new

secret variables stored in the Gitlab repository with the correct values (for the certificate

verification, this corresponded the new path where the certificates were stored in the Gitlab

runner used to run all pipelines for our projects).

 31

2.4 Iteration v1.3

2.4.1 Generate Gitlab pages for AUTO services

The last task done before the end of the internship was generating Gitlab pages for the AUTO

services for documentation purposes.

Gitlab pages are simply stage websites for Gitlab projects. For our case, they are

documentation on all functionalities of a given service and are generated using “sphinx”, a

documentation generator.

The first service to update was the Cookie Cutter service, which serves as a boilerplate to

create an AUTO microservice; all AUTO services follow the same architecture.

There were previously 2 ways to accomplish this task: either generate the pages within a

Docker container running on a sphinx Docker image, or within a tox environment in a

Docker container running this time on the service’s own Docker image. We ended up

choosing the latter, as it was easier to set up.

We followed the same architecture for the other services requiring the Gitlab pages.

These modifications were then tested locally by first building the image and then running a

Makefile rule executing the sphinx commands in the tox environment within the container. It

was then tested in the Staging environment by running the Gitlab runner and checking that

the URL for Gitlab pages for this service was up in said environment.

 32

CONCLUSION

During this internship at Ubisoft Montréal, I have taken part in developing an infrastructure

automation API platform, called AUTO. With the version v1.0 being released at my arrival, I

started working on the next iteration.

Several features were already requested to be added to the service throughout a year long

plan. The next step was checking which ones we could commit to deploy in our API. Relying

on Agile methods such as Scrum and Kanban to plan and track task progress during an

iteration, we have released several new additions to our product:

I have added automated the installation and configuration of a monitoring solution to a

document-oriented database system, with the automation process being reusable for any other

service which may be in need for such a thing. I have also deployed a database system

management in the Production environment to replace the old one and updated the basic

AUTO services in the Staging environment that has also been reconfigured to adapt to the

new gateway that allows access to using AUTO’s various services.

Figure 2.7: Generating Gitlab pages using a tox environment in a Docker container

 33

One of the most important tasks realised during the internship was creating a new service

capable of creating, validating and deleting load balancer configurations, for which I

implemented and tested the CREATE logic.

Throughout the three iterations I have been part of, I have also fixed bugs that occasionally

came, whether they came from the services or the platform itself and have created

documentation for the API platform’s services.

I have applied all the theoretical knowledge I acquired during my courses at ÉTS for the

internship, such as project management, DevOps, the Agile methods and Scrum framework,

as well as Quality Assurance.

More importantly, however, is the huge amount of knowledge I assimilated during the

internship, learning a great deal about cloud computing in general, several orchestration and

configuration tools, and even higher-level notions, like new methods of developing and

testing a software application.

All in all, this internship has brought so much, and I will definitely use what I learned in the

foreseeable future.

 35

ANNEX I

EXAMPLE OF TESTING A FUNCTION IN THE CONTEXT OF THE TESTING
DONE FOR THE CREATE LOGIC ADAPTER; WE CONSIDER A CLASS WITH
TWO ATTRIBUTES ASSOCIATED TO OTHER CLASSES, AND A FUNCTION

MADE UP OF TWO METHODS

src/adapter.py file ###

class Class1(): # Main class of the adapter

 def __init__ (self, arg1, arg2)

 self.attr1 = arg1

 self.attr2 = arg2

 def function1(arg1, arg2): # Main function of adapter

 res1 = self.attr1.function2(arg1, "arg2")

 return self.attr2.function3("arg2", res1[0])

 def function2(arg1, arg2):

 [...]

 return result

 def function3(arg1, arg2):

 [...]

 return result

tests/units/conftest.py file à where all fixtures and mock objects are created ###

from package1 import ObjectClass

from package2 import ObjectClass2

@pytest.fixture

 36

def fixture_class_instance(): # We mock an instance of the main class, along with its

attributes

 [...]

 return Class1(flexmock(ObjectClass1), flexmock(ObjectClass2));

@pytest.fixture

def fixture_input_payload(): # We create a fixture of the input payload

 [...]

 return input_payload;

@pytest.fixture

def fixture_output_payload(): # We create a fixture for the expected output payload

 [...]

 return output_payload;

test/units/tests.py file : where all tests are written ###

def test_function1_successfully(fixture_class_instance, fixture_input_payload,

fixture_output_payload):

 (flexmock(fixture_class_instance.attr1)

 .should_receive("function2")

 .with_args(fixture_input_payload, "valid_value")

 .and_return(result1))

 (flexmock(fixture_class_instance.attr2)

 .should_receive("function3")

 .with_args("valid_value", result1[0])

 .and_return(fixture_output_payload))

 final_result = fixture_class_instance.function1(fixture_input_payload, "valid_value")

 37

 assert final_result == fixture_output_payload

def test_function1_fails_at_function2_invalid_payload(fixture_class_instance,

fixture_output_payload):

 (flexmock(fixture_class_instance.attr1)

 .should_receive("function2")

 .with_args(corrupted_payload, "valid_value")

 .and_raise(Error1, "The input payload is corrupted"))

 with pytest.raises(Error1) as exc:

 fixture_class_instance.function1(corrupted_payload, "valid_value")

 assert type(exc.value) is Error1

def test_function1_fails_at_function2_invalid_value(fixture_class_instance,

fixture_input_payload, fixture_output_payload):

 (flexmock(fixture_class_instance.attr1)

 .should_receive("function2")

 .with_args(fixture_input_payload, "INVALID_VALUE")

 .and_raise(Error2, "The value given is invalid"))

 with pytest.raises(Error2) as exc:

 fixture_class_instance.function1(fixture_input_payload, "INVALID_VALUE")

 assert type(exc.value) is Error2

def test_function1_fails_at_function3(fixture_class_instance, fixture_input_payload,

fixture_output_payload):

 (flexmock(fixture_class_instance.attr1)

 .should_receive("function2")

 38

 .with_args(fixture_input_payload, "valid_value")

 .and_return(result1))

 (flexmock(fixture_class_instance.attr2)

 .should_receive("function3")

 .with_args("valid_value", result1[0])

 .and_raise(Error3, "result1 is missing parameters"))

 with pytest.raises(Error3) as exc:

 fixture_class_instance.function1(fixture_input_payload, "valid_value")

 assert type(exc.value) is Error3

 39

