Optimization the Spherical-Statistical Optical Model parameters for fast neutron scattered from 90Zr and 138Ba Nuclei

Mahdi Hadi Jasim

Department of physics, College of Science, University of Baghdad, Iraq

ARTICLE INFO

Volume 3
Number 5/2014
Issue 9
DOI Prefix: 10.15590/ajase/

Received: Oct 30, 2014
Accepted: Dec 16, 2014
Revised: Dec 22, 2014
Published: Jan 05, 2015
E-mail for correspondence: drmhj@scbaghdad.edu.iq

ABSTRACT

The spherical-statistical optical model (SSOM) with Hauser-Feshbach coupled channel model (HFCCM) has been employed in optimizing the optical parameters for the scattering of fast neutrons scattered from 90Zr and 138Ba nuclei. Empirical formulae for optical parameters have been predicted for nuclei range $40 \leq A \leq 140$ and neutron energy ranges 1-20 MeV through analyses enormous sets of experimental data for scattering cross-sections with minimum accuracy. The calculated angular distributions for elastic and inelastic 8 MeV neutrons from 90Zr and 138Ba nuclei have been compared with standard experimental and evaluated data. Also, the real and imaginary volume integral parameters found a nuclear symmetry dependence and neutron energy with minimized the F-ratio test for the medium range of nuclei.

Keywords: Spherical-Statistical Optical Model, fast neutrons, elastic and inelastic scattering cross-sections, 90Zr nuclei, 138Ba nuclei, Volume integral, optical parameters.

INTRODUCTION

The SSOM has been used extensively in the analysis, elastic scattering cross-section data for a wide range of projectile energies and nucleus target masses (Perey, 1963; Hodgson, 1971; Perey & Perey, 1976; Greenlees et al, 1968; Smith et al, 1987). The
investigation concentrated on the optimization the optical model with complex potential and adjustable parameters that consist with the behaviour of the experimental data, and also, diagnosed more information about the energy and the isospin dependence of the optical model potentials. Nevertheless, these parameters found by different authors are differed somewhat and make the interpolation between different energies and nuclei are uncertain. In addition the utilitarian value of such parameters, we believe that useful information about nuclear forces and structure can be obtained from the systematic analysis of neutron elastic scattering. For the purpose of phenomenological analysis the central term in the optical potential is taken to have real and imaginary potentials with their radius and diffuseness parameters \(V(r) = U_f(r) + i W g(r) \), where the \(U \) and \(W \) are real and imaginary potential depths, and \(f(r) \) is the Saxon-Woods form factor, and \(g(r) \) is either Saxon-Woods (Volume Absorption) or derivative Saxon-Woods (Surface Absorption). This model was first proposed by (Serber & Phys, 1974) and used by (Fernbach et al, 1949) to calculate the scattering and absorption of 90 MeV neutrons by a range of nuclei. An extensive analysis work of experimental data by (Perey & Buck, 1962) indicated that the differences in optical parameters found by various investigators were mainly explained by the experimental uncertainties and differences in techniques of the optical model analysis used. Also, they found that it was possible to find a single optical potential that gives cross-sections in excellent agreement with the data for medium and heavy nuclei for incident neutron energies from (1-25) MeV. From the work of (Perey & Buck, 1962), it seems the non-local optical potential give better results than those obtained with local potentials. While (Wilmore & Hodgson, 1964) viewed numerical complexity in number of adjustable parameters and calculated an equivalent local potential that gives good agreement with experimental data of cross-section for medium and heavy nuclei in the neutron energy range 1-15 MeV. A large amount of accurate data from proton and neutron elastic scattering, for energies less than 50 MeV, with medium to heavy nuclei, has been investigated by (Becchetti & Greenlees, 1969), which has allowed and improved set of nucleon-nucleus optical model parameters to be determined. With SSOM, (Hodgson et al, 1991) presented a good comparison concerns Hauser-Feshbach calculations with and without the width fluctuation correction. They calculated shape and compound elastic and inelastic scattering cross-sections for neutron of energy 0.2-2 MeV from \(^{60}\)Co target nuclei. The properties of SSOM and coupled channel model of Hauser-Feshbach in the region of the doubly closed shell at \(A=208 \) and the neighbouring \(^{209}\)Bi are examined by (Smith, 2007) with a particular attention to the energy dependence of imaginary potential that gives a good description of the observed neutron cross-section.

THEORY

In SSOM the present considerations are extensions of the conventional spherical surface absorption neutron optical model. The optical potentials consist of the Woods-Saxon volume and surface derivative forms which can be described as:-

\[
V_{opt}(r) = U_s(r) + i U_f(r) + U_{so}(r)
\]

(1)

where \(U_s(r) \): is the real central potential and its form is taken to be a Woods-Saxon Well (Woods & Saxon, 1954; Bespalova et al, 2002), \(U_f(r) \), is constitutes of the imaginary control potential which is responsible for the absorption, that occurred within the nuclear volume (is proportional to the Woods-Saxon Well) and near the nuclear surface (is proportional to the derivative of the Woods-Saxon Well), and \(U_{so}(r) \) is the spin-orbit potential that has a Thomas form with the radial variation (Hodgson, 1971; Hodgson, 1984).
So the optical-model potential becomes:

\[V_{op}(r) = -V_k f(x) + \left(\frac{\hbar}{m_c} \right)^2 V_{\mu}(\vec{q} \cdot \vec{\tau}) \frac{1}{r} \frac{d}{dr} \left[W f(x) - 4W \frac{d}{dx} f(x) \right] \]

(2)

The functions \(f(x_\mu), f(x_{so}), f(x_{sv}) \) are Woods-Saxon form factors with approbiable radius and diffusivity parameters in real, spin-orbit, volume and surface terms respectively.

In more detail the conventional shape-elastic scattering cross-section formulae at low and high incident neutron energies can be found in (Serber & Phys, 1974; Hodgson et al, 1991; Smith, 2007; Hodgson, 1984; Lawson & Smith, 1999).

The HFCCM provides a prescription for dividing the compound cross-section into the compound elastic scattering and other channels in which the nucleus is primarily left in an excited state and the neutron is emitted with reduced energy (Serber & Phys, 1974; Fernbach et al, 1949; Hodgson et al, 1991). The total compound elastic or inelastic scattering cross-section for emitting neutron with energy \(E \), leaving the nucleus in the final state can be calculated from a knowledge of the transmission coefficients \(W_i \) in all channels and the energies, and the angular momenta of the states of the residual nuclei becomes (Lawson & Smith, 1999):

\[\sigma_{ill}(E_i) = \frac{\pi \hbar^2}{2(2J_i + 1)} \sum_j \left[W_{j'j}(E) \delta_{j'j} \sum_{j''} W_{j''j}(E_j) \delta_{j'j''} I/W_a \right] \]

(3)

where the transmission coefficient of the neutron emission in the channel \(a(E', j', l') \) is \(W_a = \sum_{j''} W_{j''j}(E_0) \delta_{j'j}, \delta_{j'j''} = 1 \) if \(|J_0 - j| \leq J \leq (J_0 + j) \) or equal zero otherwise, \(E_0 \) is the energy of the outgoing neutron in a channel \(O \) and \(j_i \) is the spin for the ground state.

The insensitivity of the shape and compound elastic scattering cross-section to variations in the depth \((U) \) and radius \((r_R) \), of the real part of the potential that maintain the constancy of \((U r_R^2) \) (Greenlees et al, 1968), suggests that it is useful to adopt the Volume integral of the real and imaginary potentials (VIRP and VIIP) as a relatively invariant function of the parameters, and to investigate its variation with energy and nuclear asymmetry parameter.

Therefore, the volume integral per nucleon defined as:

\[J = \frac{1}{A} \int V(r) \, dr \]

(4)

For a potential of Woods-Saxon form, ie. \(U = -V \left[1 + \exp \left((r - R)/a \right) \right]^{-1} \), \(R = rA^{1/3} \) and \(U = U_R + U_D + U_{so} \), the volume integral becomes:

\[J = \frac{4\pi}{3} \frac{R^3}{A} \left\{ 1 + \left(\frac{\pi a}{R} \right)^2 + \left[\left(\frac{a}{R} \right)^4 \right] \right\} \]

(5)
An extensive series of calculations of 1-20 MeV neutron elastic and inelastic scattering cross-section on different nuclei has been achieved using the SSOM with HFCCM. In this work, nine optical parameters are considered \((v_r, w_r, w_{so}) \) and compared with standard experimental data, EXFOR (EXFOR, 2014), and standard Evaluation data, ENDF V VII (ENDF/B-VII-1, 2014). The optical parameters have been optimized through the minimization of chi-square per point, within the range 0.81-2.04 for the range of target nuclei \(40 \leq m_t \leq 141 \) amu, and compared the calculated results with experimental data of (ENDF/B-VII-1, 2014). The optimized optical parameters \(V_{\rho}, w_{\rho}, W_{I}(W_{V}, W_{D}), r_{I}, a_{I}, W_{SO}, r_{SO}, a_{SO} \) are formulated using the multiple regression analysis and indicated that the real and imaginary potentials are nuclear asymmetry, \(\xi \), dependence, and neutron energy, while the other optical parameters are fixed as shown in table (1). These parameters differ from (Engelbrecht & Fiedeldey, 1967).

A comparison with the date of (EXFOR, 2014; ENDF/B-VII-1, 2014) show a quite successful agreement in behaving the angular distribution in the energy 8 MeV for \(^{90}\text{Zr}\) target nuclei, figure (1), and 14 MeV neutrons on \(^{138}\text{Ba}\) a target nucleus, figure (2). In table (1) a summary of the predicted optical parameters that weighted with experimental data of (EXFOR, 2014) and (ENDF/B-VII-1, 2014) through F-ratio and square residuals. The angular distributions of inelastic scattering cross-section of 8 MeV and 14 MeV neutrons from Zr and Ba nucleus, have been investigated from a continuum excited states using HFCCM. Figure (3) shows a good agreement for the neutron scattering cross-section from 1.751 MeV and 2.186 MeV excited states of \(^{90}\text{Zr}\) nuclei compared with experimental results of (EXFOR, 2014). Since no experimental data available for a neutron inelastic scattering cross-section of the continuum states of \(^{138}\text{Ba}\) nuclei, therefore the present work explores the angular distributions from five excited states (1.453 MeV, 2.09 MeV, 2.189 MeV, 2.203 MeV, 2.217 MeV), as shown in figure (2). Similarly, the volume integral, equation (5), has been formulated for a wide set of experimental data via optical potential \((V_{OP}(r)) \) in case of real and imaginary potentials. Figure (4) shows the behaviour of the empirical formula of the volume integral against a neutron energy range 1-20 MeV for \(^{90}\text{Zr}\) nuclei, where the comparison done with the calculated ABAREX code (Lawson & Smith, 1999), and shows an acceptable agreement in the case of the real potential volume integral.

In general, the theoretical calculations indicated that the probability of the Shape elastic scattering in the forward directions is larger than that probability of the compound elastic and become less difference in the backward directions, due to the neutron energy status, that caused the incident particle may be absorbed to form the compound nucleus, which subsequently re-emits a similar particle back into the entrance channel. Since, experimentally the probability of the compound elastic is indistinguishable from the shape elastic scattering, therefore, the theory of the optical model can counted as part of the compound nucleus cross-section.

CONCLUSION

The SSOM with HFCCM have been used to analyze the optical model parameters (OMPs) for range of target nuclei \(40 \leq m_t \leq 141 \) amu and at neutron energy range 1-20 MeV. The optimization of the OMPs \(V_{\rho}, r_{\rho}, a_{\rho}, W_{I}(W_{V}, W_{D}), r_{I}, a_{I}, W_{SO}, r_{SO}, a_{SO}, VIRP, VIIP \) have been obtained through the minimization of chi-square per point, within the range
0.81-2.04, by comparing the calculated data with the experimental data of (ENDF/B-VII-1, 2014). It was concluded that the OMPs are nuclear asymmetry, ξ, dependence, and neutron energy, while the other optical parameters are fixed as shown in Table (1). These parameters differ from (Engelbrecht & Fiedeldey, 1967).

Also, from the analysis of the OMPs, it concluded that the imaginary potential W_I value, which has the Saxon-Woods derivative forms, is a nuclear asymmetry and neutron energy dependence rather than neutron energy dependence mentioned by (Hodgson, 1971). This conclusions also withdraw for the dependence of VIRP and VIIP parameters on neutron energy and nuclear asymmetry.

The calculated angular distributions for elastic and inelastic scattering cross-sections for 90Zr and 138Ba target nuclei, at 8 and 14 MeV respectively, show good consistency with theoretical, experimental and evaluated data of (Lawson & Smith, 1999; EXFOR, 2014; ENDF/B-VII-1, 2014), while no experimental data found for a neutron inelastic scattering cross-section of the continuum states (1.453 MeV, 2.09MeV, 2.189MeV, 2.203MeV, 2.217MeV) of 138Ba nuclei.

Table (1): The neutron energy and nuclear asymmetry dependence for empirical form parameters calculated in terms of SOM, for target masses $40 \leq A \leq 141$ amu.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Empirical formula</th>
<th>F-Ratio</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real potential</td>
<td>$V_R = 51.523 -(0.32\pm0.133)E_n -(42.581\pm22.335)\xi + (0.0581\pm0.032)A$ (MeV)</td>
<td>1.90</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>$r_2 = 1.17$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>$a_2 = 0.75$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Imaginary Potential</td>
<td>$W_I = 6.672 +(0.173\pm0.069)E_n +(33.209\pm11.518)\xi - (0.059\pm0.016)A$ (MeV)</td>
<td>5.94</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>$r_I = 1.26$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>$a_I = 0.58$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Spin-Orbit Potential</td>
<td>$V_{SO} = 6.2$ (MeV)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>$r_s = 1.1$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>$a_s = 0.75$ (fm)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>VIRP</td>
<td>$J_R = 476.107 -(2.125\pm0.708)E_n -(132.004\pm175.065)\xi - (0.362\pm0.284)A$ (MeV.fm)3</td>
<td>13.00</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>$J_I = 100.078 +(1.963\pm0.463)E_n +(303.853\pm101.63)\xi - (0.855\pm0.162)A$ (MeV.fm)3</td>
<td>27.78</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Figure (1): The angular distribution of differential elastic scattering cross-section for 8 MeV neutrons scattered from 90Zr nuclei compared with experimental data, (EXFOR, 2014) and ENDF/BV-II-1 (ENDF/B-VII-1, 2014).

Figure (2): The differential elastic and inelastic scattering cross section of the 14 MeV neutron form 138Ba nuclei compared with experimental data, EXFOR, (EXFOR, 2014) and ENDF/B-VII-1 (ENDF/B-VII-1, 2014). The optical parameters $[V_R, R, a_R, W_V, W_D, R, a_I, W_{SO}, W_{ASO}]$ are 50.65 MeV, 1.17 fm, 0.75 fm, 8.49 MeV, 1.26 fm, 0.58 fm, 6.2 MeV, 1.1 fm and 0.75 fm respectively.
Figure (3): The angular distributions of inelastic scattering cross-section of 8 MeV neutrons from 1.761 MeV and 2.186 MeV excited states of 90Zr nuclei compared with experimental data of (EXFOR, 2014).

Figure (4): The predicted real and imaginary volume integral as a function of neutron energy for 90Zr nuclei compared with ABAREX code calculations (Lawson & Smith, 1999) for the real volume integral.
REFERENCES

Perey, C. M. and Perey, F. G. , Atomic Data and Nuclear Data Tables, 17, 1, 1976.

Serber, R. D. , Phys. Rev. 72, 1008, 1974

Open Access Philosophy

Under Open Access Philosophy, AJASE will not charge for the access of its journals. This will ensure that a large percentage of students, scholars, researchers and practitioners will be able to benefit from the research published through ABC journals. Moreover, this process will also enable authors’ papers to receive a higher ranking. A greater number of people being able to access and consequently refer to papers will mean a higher citations and Impact Factor for ABC journals. Following are advantages of Open Access Philosophy:

1. The full text of all issues of AJASE is freely available to anyone, online.
2. Your research work will be indexed and abstracted in the internationally reputed databases and search engines immediately after publication.
3. Open Access increases the number of downloads, page views, citations etc. increasing the rate of dissemination of your research work manifold.
4. It is inferred from past researches that the papers published under “Open Access Philosophy” are four times more likely to be cited than the papers published under “Non-Open Access Philosophy”

Peer Review Policy

Paperless, web-based peer review system, professional and helpful suggestions from reviewers. Articles in this journal have undergone a rigorous blind peer review system, based on initial editor screening and involving in-country and international refereeing, ensures that articles meet the highest standards of quality. Most ABC journals have ISSN with IMPACT FACTORS. It facilitates our scholars, researchers, scientists, professors, corporates, governmental research agencies, librarians etc., in a more positive way in their research proceedings.

Faster Turnaround Time

Many journals take many months, even years to publish research. By the time papers are published, often they become outdated. AJASE publishes papers in the shortest possible time, without compromising on quality. This will ensure that the latest research is published, allowing readers to gain maximum benefit. We provide feedback instantaneously and furnish details of the outcome within about 5 - 6 working days of submission of your research paper. This enables research scholars to use their time effectively on the actual research rather than on the follow ups.

Strong International network & Collaboration

We have exposure to wide range of industries across geographies and worldwide connect through international colleagues and thereby the recognition. We work in collaboration with extremely creditable companies, academic institutions, reputed publication units, government bodies and research firms. By publishing with us, you join ABC Global Research Community of 50,000 scientists / researchers.

For Details- go through the link: www.ajase.weebly.com
Asian Business Consortium (ABC) is a multi-disciplinary research, training, publishing, digital library supporting and service house. Though founded in 2010 as the Business and Computing organization of Asia, it was reconstituted as the ABC in 2011. It has been working for creating and nurturing talents in USA, Malaysia and Bangladesh since its inception. The objectives of consortium are solely centered round the welfare and humane attitude of the founders who enthusiastically took up this noble cause and materialized it with a view to promote research and educational activities for the encouragement of scholars to develop their knowledge, to publish their analysis oriented scientific researches in international journals, books, the task of organizing workshops, seminars, conferences, training, personality development programs and allied services.

In addition to research activities, ABC provides a good number of scholarships to the poor and meritorious students at various levels of education throughout the world. It plays an important role in the field of research by funding research projects and publishing the research papers. This consortium will unquestionably become the mouth-piece of the dark horses and unacknowledged scholar whose endowed and commendable contributions shall be provided an outlet keeping in mind the greater good of the larger society of the world.

ABC runs the following international referred journals for creating a platform to share the thoughts of professionals, scholars and academicians throughout the world.

ABC Publications (ABC Journals)

- Asian Accounting and Auditing Advancement (4A Journal)
- Asian Business Review (ABR)
- Asian Journal of Applied Sciences and Engineering (AJASE)
- Global Disclosure of Economics and Business (GDEB)
- ABC Journal of Advanced Research (ABC-JAR)
- International Journal of Reciprocal Symmetry and Theoretical Physics (IJRSTP)
- American Journal of Trade and Policy (AJTP)
- Asian Journal of Humanity, Art and Literature (AJHAL)
- Malaysian Journal of Medical and Biological Research (MJMBR)
- Asia Pacific Journal of Energy and Environment (APJEE)
- Engineering International (EI)
- ABC Research Alert (Online)

Each journal home page provides specific information for potential authors and subscribers. Open access policy, the quick review process, rich editorial boards and quality publications have already made ABC Journals unique. **ABC Journals** are published under the direct supervisions of renowned academicians of the world.

Collaboration in Conference: ABC considers high-quality conference papers for publication. Please contact us for detailed information.

Collaboration in Publishing: If you like to start writing a book, propose a new journal or advertise in ABC journals, please feel free to contact us.