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Abstract The study analyses the relationship between
local and global modulus of elasticity and develops and

evaluates different models to predict local from global

modulus measurements. The mechanical tests were per-
formed on four species commonly used in Italy for struc-

tural purposes: fir, Douglas-fir, Corsican pine and chestnut.

Two or three cross-sections and two provenances were
sampled for each species. A theoretical analysis showed

that the local–global modulus relationship was of polyno-

mial form with only one coefficient. The effect of the
species on the relationship was significant as well as the

cross-section but only for softwoods. The effect of the

cross-section was explained by the presence and the size of
defects in the mid span. The different models were applied

and then compared by means of the optimum grading:

only slight differences among models emerged. Although

optimum grading was strongly dependent on the sampling
and on the grade combination, for softwoods the model for

species and section showed very similar results to the

grading with the true local modulus; inclusion of the knot
values in the model led to only slight improvements. For

chestnut all models were found to be comparable.

Zusammenhang zwischen lokalem und
globalem Biege-E-Modul und dessen
Auswirkung auf die Festigkeitssortierung

Zusammenfassung Diese Studie untersucht den Zusam-

menhang zwischen lokalem und globalem E-Modul von
Schnittholz und entwickelt und vergleicht verschiedene

Modelle, um den lokalen E-Modul aus globalen Messun-

gen zu bestimmen. Die Versuche wurden an vier in Italien
häufig als Bauholz verwendeten Holzarten durchgeführt:

Tanne, Douglasie, Korsische Schwarzkiefer und Edelkast-

anie. Je Holzart wurden zwei oder drei Querschnitte aus
jeweils zwei Wuchsgebieten beschafft. Eine theoretische

Untersuchung zeigte, dass der Zusammenhang zwischen
lokalem und globalem E-Modul einer Polynom-Funktion

mit nur einem Koeffizienten entspricht. Signifikanten

Einfluss auf den Zusammenhang hatte die Holzart und bei
Nadelhölzern auch der Querschnitt, was durch das

Vorhandensein und die Größe der Äste im mittleren Prüf-

bereich begründet wurde. Die verschiedenen Modelle
wurden angewandt und bezüglich ihrer Auswirkung auf die

optimale Sortierung verglichen: Es zeigten sich nur geringe

Unterschiede. Obwohl die optimale Sortierung sehr stark
von der Probenahme und der Sortierklassen-Kombination

abhing, führte das Modell auf Basis von Holzart und

Querschnitt bei den Nadelhölzern zu sehr ähnlichen
Ergebnissen wie eine Sortierung nach dem gemessenen

lokalen E-Modul; die Berücksichtigung der Astwerte führte
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nur zu geringen Verbesserungen. Für die Edelkastanie

waren alle Modelle vergleichbar.

1 Introduction

The standard EN 338 (2009) defines timber strength classes
applied when designing structures. The modulus of elas-

ticity is one of the three wood properties (together with

bending strength and wood density) used to allocate single
timber elements to the strength classes. An accurate mod-

ulus of elasticity measurement is therefore essential to use

timber properly: an overestimation could lead to unsafe
structures, while an underestimation to yield losses.

The standard EN 408 (2012) provides two methods for

the determination of the static modulus of elasticity in
bending, defined as local (Elocal) and global (Eglobal)

modulus, and both methods have advantages and disad-

vantages. In the Elocal determination method the mid-span
deflection is measured. It represents the pure bending

deflection (no shear effect), but it is also subject to higher

risks of measurement errors due to the reference points for
deflection measurement, initial specimen twist and, mainly,

due to the little deflection size (Boström et al. 1996; Solli

1996; Boström 1997; Källsner and Ormarsson 1999; Solli
2000). Besides, the Elocal is measured in the third span and

considers only a small part of the test specimen volume

(Bogensperger et al. 2006). The Eglobal determination
method provides the measurement of the total deflection,

which is representative of the whole span, less subject to

measurement errors (although it may include higher
deflection measures due to the local indentation at the

loading points), but it combines bending and shear defor-

mation (Solli 2000).
Previous studies investigated the relationship between

local and global modulus. Boström (1999) found an effect

of the shear deformation, the specimen depth and the wood
quality (critical defect) on the relationship between local

and global modulus in Norway spruce and Scots pine from

Sweden. For high values of the modulus of elasticity, Elocal

was higher than Eglobal, the opposite for low values; the

ratio Elocal/Eglobal was mainly affected by shear deforma-

tions for large dimension specimens, while for small
dimension timber there was a greater influence of the

critical defect on Elocal than Eglobal. Holmqvist and

Boström (2000) and Solli (2000) reported similar results
for Norway spruce. The linear models were: Elocal =

1.13 9 Eglobal - 800 (R2 = 0.82, N = 800, Holmqvist

and Boström 2000) and Elocal = 1.18 9 Eglobal - 856
(R2 = 0.89, N = 200, Solli 2000). Denzler et al. (2008)

showed that in spruce the ratio Elocal/Eglobal was above the
unity for high values of modulus of elasticity and below the

unity for low values in spruce. The regression model for

spruce was: Elocal = 1.224 9 Eglobal - 1,584 (R2 = 0.90;

N = 3491). On the contrary Ravenshorst and van de
Kuilen (2009) showed a very constant relationship between

Elocal and Eglobal both for spruce, some tropical hardwoods

and chestnut, while no effect of depth was reported. The
regression model for the 1,354 specimens was: Eloca-

l = 1.16 9 Eglobal - 257 (R2 = 0.88; spruce N = 601,

chestnut N = 300, cumarù N = 192, massaranduba
N = 54, purpleheart N = 45, tauari vermelho N = 51 and

azobé N = 111). Finally, Ridley-Ellis et al. (2009) mea-
sured both bending modulus of elasticity and shear mod-

ulus in specimen of Sitka spruce and concluded that the

main reason of the difference between Elocal and Eglobal

was the high variability of Elocal within the specimen, not

shear deformation.

The determination of the characteristic values of struc-
tural timber (EN 384 2010) provides the measurement of

Eglobal for the modulus of elasticity and the following

conversion equation to pure bending modulus (EEN384) is
applied: EEN384 = 1.3 9 Eglobal - 2,690. Such equation

was tested for Central European species and it seemed to

underestimate Elocal, independently by size, species
(spruce, pine, Douglas-fir and larch were analysed), nor

wood quality. However, the difference was considered

marginal and the authors suggested to keep the EN 384
equation unchanged (Denzler et al. 2008). Bogensperger

et al. (2006), on the contrary, discussed the mechanical

inconsistency of the EN384 linear equation and proposed
the substitution by a hyperbolic function. Nevertheless,

most of the cited studies were concerned with Central or

Northern European species and provenances. The aim of
this study was thus (a) to analyse the effects of species, size

and wood quality over the relationship between Elocal and

Eglobal for structural timber of Italian provenances; (b) to
develop models that include such factors, aimed to predict

Elocal from Eglobal measurements; (c) to evaluate the

models and, thus, to verify the fitting of EN384 conversion
equation to South Europe timber.

2 Materials and methods

2.1 Sampling

Tests were performed on a total of 1,939 specimens of four

species: fir (Abies alba Mill.—ABAL) and Douglas-fir
(Pseudotsuga menziesii Franco—PSMN) sampled in cen-

tral Italy; Corsican pine (Pinus nigra Arnold subsp. laricio
(Poir.) Maire—PNNL) and chestnut (Castanea sativa
Mill.—CTST) sampled in southern Italy. For each species

2 or 3 cross-sections and 2 provenances were sampled. The

number of specimens grouped by species and size is
reported in Table 1 (Nocetti et al. 2010).
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2.2 Methods

After kiln-drying to a nominal moisture content of 12 %,

the knot characteristics of each specimen were recorded by
means of GoldenEye (MiCROTEC Srl). The machine uses

X-ray technology to detect the presence of each knot in the

timber element and measures knot dimension and position
and returns a ‘‘knot parameter’’ (KN) calculated by an

algorithm that combines the projected knot area over a

window length of 150 mm and the knot position. The
greater the defect the higher is KN (Giudiceandrea 2005;

Bacher 2008). Here, the highest KN detected in the mid-

test span (selected as described in the following) was
assigned to the specimen.

Four point edgewise bending tests were then carried out

in accordance with EN 408 (2012). The critical section of
each specimen was defined by visual grading and placed in

the mid-test span. The local deformations were measured in

the neutral axis on both sides of the beam and the mean of
the two measures was used to calculate Elocal (Eq. 1). In the

same test setup, the total deformations were measured in the

central point on the tension (for the large cross-sections—
80 9 150 mm only) or compression (for medium and small

cross-sections) edge of the beam and used to calculate Eglobal

(Eq. 2). The load was applied until failure and the bending
strength parallel to grain (fm) was computed (Eq. 3).

Elocal ¼
3al21P

4bh3wlocal
ð1Þ

Eglobal ¼
l3P

bh3wglobal

3a

4l

! "
% a

l

# $3
% &

ð2Þ

fm ¼ 3aPmax

bh2
ð3Þ

With P: the applied load increment, Pmax: the load at

failure, l: the length between the two supports, b: the

thickness, h: the width, a: the distance between the load

point and the nearest support, l1: the central gauge length,
wlocal and wglobal: the deformation increments.

Following testing, density and moisture content were

determined cutting a small specimen from each test piece
in accordance with EN 408 (oven-dry method). The

moisture content adjustment for modulus of elasticity and

the size adjustment for bending strength were made
according to EN 384 (2010).

2.3 Data analysis

After the development of the theoretical aspects of the
static modulus determination, non-linear (second degree

polynomial equation) as well as linear models were cal-

culated assuming Elocal as dependent variable and Eglobal as
predictor variable.

Then, the General Linear Model (GLM) was used to

conduct analysis of variance for experiments with factors
and covariates: the effect of the species and of the cross-

section in the relationship between local and global mod-

ulus of elasticity was investigated. In this case, the
dependant variable was the Elocal, the fixed effect was

the species in a first step and the cross-section later, and the

covariate was the Eglobal. This type of model encompasses
both analysis of variance and regression.

A partitioning cluster analysis was then performed to

study the effect of the presence of defects (knots) on the
static modulus determination. The algorithm of Hartigan

and Wong (1979) was used (k-means clustering); the knot

parameter (KN) was used as explanatory variable and two
clusters were specified.

Finally, multivariate linear models were calculated

keeping the Elocal as dependent variable and Eglobal as well
as KN as predictors.

The statistical analysis was made using R software

version 2.13 (R Development Core Team 2011).

2.3.1 Optimum grading

The optimum grading procedure was applied to analyse the

effect of the modulus of elasticity measurement and its

calculation over the timber grading. The optimum grades
were computed by following the instructions of the stan-

dard EN 14081-2 (EN 2010). An important point to high-

light was that no unique algorithm existed for optimum
grading, while the grading results were obviously strongly

dependent on the algorithm used. The algorithm used is

detailed in the following:

1. The adjusted bending strength values were sorted in

descending order and the maximum number of pieces
that satisfied the required strength values for the

Table 1 Number of specimens grouped by cross-section and species
Tab. 1 Anzahl der Prüfkörper getrennt nach Querschnitt und Holzart

Cross
section
(mm)

Abies
alba
(ABAL)

Pinus
nigra
subsp
laricio
(PNNL)

Pseudoztuga
menziesii
(PSMN)

Castanea
sativa
(CTST)

Total

50 9 70 253 256 293 – 802

70 9 110 173 155 198 – 526

80 9 150 109 99 103 – 311

80 9 80 – – – 130 130

50 9 100 – – – 170 170

Total 535 510 594 300 1,939

The species code from EN 13556 (2003) is in brackets

Kurzzeichen der Holzarten gemäß EN 13556 (2003) stehen in
Klammern
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highest strength class tested (EN 338 2009) was

identified.

2. Step (1) was repeated for the modulus of elasticity
values and for the density values. Thus 3 groups of

pieces were identified, one for each grade determining

property.
3. The group with the highest number of pieces was

selected and sorted again for the two other properties

(i.e., if the largest group was the one initially ranked
for strength, then it was selected and ranked firstly for

modulus and secondly for density and strength; the

maximum number of pieces that satisfied the require-
ment for modulus were then identified, and the

procedure was repeated, ranking firstly for density

and secondly for modulus and strength; finally the
maximum number of pieces that satisfied the require-

ment for density were selected).

4. The characteristic values of the population so identi-
fied were computed and compared to the highest class

thresholds. When not all the requirements were met,

steps (1), (2) and (3) were repeated for the selected
population.

5. When all the requirements were met, the population

was checked to be higher than 20 pieces and,
subsequently, the pieces were assigned to the tested

grade. The process went back to step (1) considering

the next grade and without considering the population
previously graded.

3 Results

3.1 Descriptive statistics and measurement uncertainty

Table 2 presents the mean and the standard deviation val-
ues for static mechanical parameters, wood density and

moisture content. It was verified that the moisture content

of each species was close to the nominal value of 12 %
without a high dispersion of values. It was also verified that

a significant difference existed between Elocal and Eglobal

(means comparison on paired samples, t = 28.4;
p\ 0.001; N = 1,939), and between Elocal and EEN384

(t = 3.2; p = 0.001; N = 1,939): the mean ratio Elocal/

Eglobal was found to be between 1.07 and 1.11 (mean rel-
ative difference of 8.6 %).

Furthermore, Fig. 1 shows that the Elocal was higher

than the Eglobal for high modulus samples (global modulus
higher than 8300 MPa), and lower for low modulus values.

To evaluate the experimental measurement error on the

local and global modulus of elasticity, 30 static tests were
performed on the same beam (Douglas-fir, PSMN). The

load was applied at a constant rate at a low level of loading

(40 % of the estimated rupture force). For each repetition,
the beam was removed and placed again between the

supports and loading points as if it was a new one; the

dimensions were also measured each time.

Table 2 Descriptive statistics (N = number of pieces; m = mean;
sd = standard deviation) for the timber characteristics (MC = mois-
ture content, fm = strength, Elocal = local modulus of elasticity, Eglo-

bal = global modulus, EEN384 = modulus of elasticity calculated
according to EN 384)
Tab. 2 Werte der Holzeigenschaften (MC = Feuchtegehalt;
fm = Festigkeit, Elocal = lokaler Elastizitätsmodul, Eglobal = globaler
Elastizitätsmodul, EEN384 = gemäß EN 384 berechneter Elasti-
zitätsmodul), N = Anzahl der Prüfkörper; m = Mittelwert; sd—
Standardabweichung

Species MC
(%)

Density
(kg/m3)

fm
(MPa)

Elocal

(MPa)
Eglobal

(MPa)
EEN384

(MPa)

ABAL (N = 535)

m 11.1 440 44 13,000 11,900 12,800

sd 0.6 38 15 3,660 2,660 3,450

PNNL (N = 510)

m 12.2 530 50 12,300 11,500 12,200

sd 1.3 64 18 4,390 3,330 4,330

PSMN (N = 594)

m 11.1 510 55 15,400 1,4000 15,500

sd 0.5 55 22 5,170 3,600 4,690

CTST (N = 300)

m 13.4 580 49 13,000 11,700 12,500

sd 1.3 47 13 2,340 1,660 2,200
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Fig. 1 Relationship between local and global modulus of elasticity
(the straight line represents the linear regression, the dotted line is the
Elocal = Eglobal line)
Abb. 1 Zusammenhang zwischen lokalem und globalem E-Modul
(die durchgezogene Linie stellt die Regressionsgerade dar, die
gestrichelte Linie entspricht Elocal = Eglobal)
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The repeatability results are presented in Table 3. The

expanded uncertainty was computed using a coverage factor

equal to 2 (95 % confidence interval). The measurement
uncertainty was found to be higher for the Elocal

(4.7 %, ±620 MPa) than for the Eglobal (4.0 %, ±490 MPa).

3.2 Relation between Elocal and Eglobal conversion

equation

The theoretical aspect of the determination of static mod-

ulus was first developed. In a second step, the experimental

adjustments between local and global modulus were
presented.

Considering the test geometry defined in Fig. 2, the

displacement Uy, along the Y axis and between the points
[0, C], can be expressed as follows (Brancheriau et al.

2002):

Uy x; y; zð Þ
'' '' ¼ P

4IGzEx

l% að Þ
2

l2

4
% x2 % l% að Þ2

12

"

þ vxy
IGz
S

% y2
! "

% vxz
2IGz
S

% z2
! "

þ 2IGzEx

GxyS

&

ð4Þ

With P: the applied load increment, l: the length

between the two supports, S: the cross-section area, a: the
distance between the load point, IGZ: the second moment of

area, Ex: the modulus of elasticity, GXY: the shear modulus,

mXY and mXZ: the Poisson’s ratios.

According to the determinations of the local and global

modulus (EN 408 2012), the deformation increments wlocal

and wglobal were deduced from Eq. 4 and (l = 3a):

wlocal ¼ Uy 0; 0;
b

2

! "
% Uy

l1
2
; 0;

b

2

! "''''

'''' ¼
l21P

16IGzEx

l% að Þ
2

¼ 3al21P

4bh3Ex

ð5Þ

wglobal ¼ Uy 0;% h

2
; 0

! "''''

''''

¼ a3P

bh3Ex

23

4
% vxy

2

h

2

! "2

% vxz
2

b

a

! "2

þ Ex

2Gxy

h

a

! "2
" #

ð6Þ

With b: the thickness, h: the height of the beam and l1:
the central gauge length.

Equation 5 was equivalent to the local modulus equation

of the standard. The modulus Ex was thus equal to the local

modulus value Elocal. The expression of the global modulus
Eglobal was written in Eqs. 8 and 9 using the following Eq.

(7):

wglobal ¼
a3P

bh3Eglobal

23

4

¼ a3P

bh3Elocal

23

4
% vxy

2

h

a

! "2

%vxz
2

b

a

! "2

þElocal

2Gxy

h

a

! "2
" #

ð7Þ

Eglobal ¼
Elocal

1% 2
23 vxy h

a

( )2þvxz b
a

( )2% Elocal
Gxy

# $
h
a

( )2 ð8Þ

1

Elocal
¼ 1

1% 2
23 vxy h

a

( )2þvxz b
a

( )2# $# $ 1

Eglobal
% 2

23

h

a

! "2 1

Gyx

" #

ð9Þ

The Poisson’s term in Eq. 9 was negligible because
inferior to 0.002 in the case of a standard static test. The

theoretical relation between the local and global modulus

Table 3 Descriptive statistics and measurement error on Elocal and
Eglobal determination
Tab. 3 Mittelwert und Messfehler von lokalem (Elocal) und globalem
(Eglobal) E-Modul bei 30 Wiederholungsmessungen

Elocal Eglobal

Mean (MPa) 13,300 12,300

Standard deviation (MPa) 310 250

Expanded uncertainty (MPa) 620 490

Relative uncertainty (%) 4.7 4.0

Fig. 2 Geometric description of a four point bending test. P load increment, l1 central gauge length, l test span, a distance between the load
points, h specimen width, b specimen thickness
Abb. 2 Geometrische Darstellung der 4-Punkt-Biegeprüfung. P: Belastung; l1: Messbereich für Elocal; l: Spannweite; a: Abstand zwischen den
Lasteinleitungsstellen; h: Prüfkörperhöhe; b: Prüfkörperbreite
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(Eq. 10) was finally written as follows using a Taylor series

development (for h/a = 3/18):

1

Elocal
' 1

Eglobal
% 1

414Gyx
) Elocal

' Eglobal þ
1

414Gyx
E2
global ð10Þ

This last equation shows that the relationship between

local and global modulus was not linear andwas furthermore

a function of the shear modulus. Assuming that the shear
modulus was a constant (assumption of the EN 384

conversion equation) and independent of the longitudinal

modulus of elasticity, this relation indicates that the link of
modulus should be adjusted in a polynomial form without

intercept. The results of the non-linear regression between

Elocal and Eglobal (Eq. 10) are given in Table 4. The Taylor
series development was also statistically tested at a higher

rank, but the associated regression coefficient was not

significant. To be coherent with the conversion equation of
EN 384 standard, the linear adjustments coefficients are also

presented in this table (regression plots in Fig. 3). Table 4

shows that the non-linear models are equivalent to the linear
ones. This table also shows that the species directly affected

the adjustment coefficients.

3.3 Factors affecting the relation between Elocal

and Eglobal

The effect of the species on the relationship between local

and global modulus of elasticity was investigated and the

results of the GLM procedure are reported in Table 5. The

linear model was thus written as:

Elocal ¼ 1:29( Eglobal % 2410% 110( PNNL% 340
( PSMN + 320( CTST

For example with PNNL, the model became: Elocal =
1.29 9 Eglobal - 2520.

The results in Table 5 show that the factor ‘‘species’’ has a

significant effect on the linear relationship Elocal - Eglobal.
The degree of significance varied according to the spe-

cies and a high difference was found between fir

(ABAL) and Douglas-fir (PSMN), while no significant
difference was detected between fir and pine (PNNL).

Chestnut (CTST) was also different from the other

softwoods.
For each species, the effect of the section on the

Elocal - Eglobal relationship was tested and the results are

presented in Table 6. As excepted for chestnut, the effect
of the section on the relationship was significant. For the

softwoods, the difference between sections was very high

between the small one (50 9 70 mm) and the two others
(70 9 110 and 80 9 150 mm), which, on the contrary, did

not differ from each other significantly.

To highlight this phenomenon, Fig. 4 was drawn for the
softwoods with different markers according to the section

(50 9 70 mm, 70 9 110 mm and 80 9 150 mm). This

Figure shows that for low values of modulus of elasticity
(less than 13,000 MPa) a difference existed between the

section 50 9 70 mm and the two others: to equal values of

Eglobal correspond lower values of Elocal.

Table 4 Conversion equations (non-linear and linear models) from global modulus to local modulus according to the species (SEC: standard
error of calibration)
Tab. 4 Umrechnungsformel (nicht lineare und lineare Modelle) vom globalem E-Modul zum lokalem E-Modul getrennt nach Holzart (SEC:
Standardfehler der Kalibrierung)

Equation: Elocal = Eglobal 9 (1 ? A 9 Eglobal)

Species A [95 % CI] R2 SEC (MPa) N

ALL 7.7e - 06 [7.3; 8.1] e - 06 0.88 1,500 1,939

ABAL 7.7e - 06 [6.8; 8.5] e - 06 0.81 1,600 535

PNNL 7.0e - 06 [6.1; 7.7] e - 06 0.89 1,500 510

PSMN 7.7e - 06 [7.1; 8.3] e - 06 0.89 1,700 594

CTST 9.7e - 06 [8.9; 10.5] e - 06 0.81 1,000 300

Equation: Elocal = A 9 Eglobal ? B

Species A [95 % CI] B [95 % CI] R2 SEC (MPa) N

ALL 1.28 [1.26; 1.30] -2,300 [-2,600; -2,000] 0.88 1,500 1,939

ABAL 1.24 [1.19; 1.29] -1,800 [-2,400; -1,100] 0.81 1,600 535

PNNL 1.24 [1.21; 1.28] -2,000 [-2,400; -1,500] 0.89 1,400 510

PSMN 1.36 [1.32; 1.40] -3,700 [-4,200; -3,100] 0.90 1,700 594

CTST 1.27 [1.20; 1.34] -1,800 [-2,600; -950] 0.81 1,000 300
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To verify the possible role of the critical defect (knots)

on the relationship Elocal/Eglobal and the deformation mea-
surement with the small sections, a cluster analysis was

performed using the knot parameter (KN) as explanatory

variable in order to separate the specimens of small section

(50 9 70 mm) into two groups. The partitioning shown in
Fig. 5 was obtained as a result of the analysis (ratio of

within group to between group distance = 0.28). The

specimens in cluster 1 are separated by low values of knot
parameter, that means small knots, and are characterized by

high values of Elocal in respect to Eglobal. In cluster 2 the

specimens with bigger knots are allocated and Elocal

decreases when compared to Eglobal (Fig. 6).

Because of the observed significant effect of KN and
section on the Elocal vs Eglobal relationship, these variables

were included in the bending strength in a multivariate

linear model calculation. The results obtained (Table 7)
show a slight improvement of the prediction in respect to

the linear models reported in Table 4.

3.4 Comparison of the models: influence on grading

In a first step the conversion equation reported in EN
384 was compared with the linear models developed for

each species (Table 4) and it was noticed that all the

computed moduli from the equation of the standard are
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Fig. 3 Global vs local modulus
according to the species, linear
adjustments (dotted lines: 95 %
confidence interval of individual
prediction)
Abb. 3 Zusammenhang
zwischen globalem und lokalem
E-Modul getrennt nach Holzart;
lineare Anpassung (gestrichelte
Linien: 95 %
Vertrauensintervall der
Einzelwerte)

Table 5 Effect of the species on the Elocal-Eglobal relationship
(General Linear Model, N = 1,939)
Tab. 5 Einfluss der Holzart auf die Beziehung zwischen lokalem und
globalem E-Modul (allgemeines lineares Modell, N = 1,939)

Coefficients Estimate Std. Error t value Signif. [CI]

Eglobal 1.29 0.01 114 *** [1.27; 1.32]

ABAL
(Intercept)

-2,410 150 -16.1 *** [-2,700;
-2,120]

PNNL -110 94 -1.2 ns [-290; 75]

PSMN -340 94 -3.6 *** [-520;
-150]

CTST 320 110 2.8 ** [100; 530]

ns not significant

*** Significant at level 0.001, ** 0.01
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included in the 95 % confidence interval of the species

equations.
Secondly, all the models were compared by means of

the optimum grade calculation. The optimal grading pro-

cedure was used with different local modulus of elasticity:

the measured value Elocal obtained by static test was first

included in the procedure, then replaced by the conversion
equation of the EN 384 standard, the linear equations per

Table 6 Effect of the section (mm) on the Elocal-Eglobal relationship according to the species (General Linear Model)
Tab. 6 Einfluss des Querschnitts (mm) auf die Beziehung von lokalem und globalem E-Modul getrennt nach Holzart (allgemeines lineares
Modell)

Coefficients Estimate Std.Error t value Signif. [CI]

ABAL (N = 535)

Egobal 1.37 0.03 45 *** [1.31; 1.43]

50 9 70 (Intercept) -3,910 422 -9.3 *** [-4,730; -3,080]

70 9 110 1,300 176 7.4 *** [964; 1,650]

80 9 150 1,050 201 5.2 *** [652; 1,440]

PNNL (N = 510)

Egobal 1.31 0.02 61 *** [1.27; 1.35]

50 9 70 (Intercept) -3,150 294 -11 *** [-3,730; -2,580]

70 9 110 952 160 6.0 *** [639; 1,270]

80 9 150 788 179 4.4 *** [437; 1,140]

PSMN (N = 594)

Egobal 1.43 0.02 64 *** [1.39; 1.47]

50 9 70 (Intercept) -5,110 371 -14 *** [-5840; -4,380]

70 9 110 907 173 5.2 *** [568; 1,250]

80 9 150 865 208 4.2 *** [457; 1,270]

CTST (N = 300)

Egobal 1.27 0.04 35 *** [1.20; 1.34]

50 9 100 (Intercept) -1,800 423 -4.2 *** [-2620; -963]

80 9 80 53 119 0.4 ns [-181; 287]

ns Not significant

*** Significant at level 0.001
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Fig. 4 Relationship between Elocal and Eglobal according to the
section for the three softwoods
Abb. 4 Zusammenhang zwischen globalem und lokalem E-Modul
bei den drei Nadelholzarten getrennt nach Querschnitt
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Fig. 5 Relationship between Elocal and Eglobal according to the two
clusters (black cluster 1, gray cluster 2), as a result of the partitioning
analysis using knot parameter as explanatory variable for the small
section softwoods (50 9 70 mm)
Abb. 5 Zusammenhang zwischen globalem und lokalem E-Modul bei
den zwei Clustern, bei denen die kleinen Querschnitte (50 9 70 mm) in
Proben mit kleinen bzw. großen Ästen getrennt wurden
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species given in Table 4, the equations per species and

section (Table 6) and the multi-linear equations per species
(Table 7). Several strength class combinations were tested:

i.e., C40-C30-C18/C35-C24-C16/C35-C18/C30-C18/C24

for softwoods and D40-D30-D18/D35-D18/D30-D18/D24
for chestnut.

The samples tested in this study were mainly limited by

bending strength: attempts of grading performed only by
modulus of elasticity proved totally ineffective.

In general, no differences could be detected for combi-
nations with only 1 or 2 classes, small variations appeared

when 3 classes were used together. In Fig. 7 the results of

the optimal grading are presented for the class combination
C35-C24-C16 (a logarithmic scale was used to highlight

the differences in the lower grades). In that case no dif-

ferences emerged concerning the higher grades for all the
species, while only slight differences are shown concerning

the other grades between the grading with Elocal and the

ones with the other models. Results were also found to be
very similar between EN 384 equation and linear equations

per species. These remarks were true for all the species.

Focusing on each species, the models were all equiva-
lent for Castanea sativa. The multi-linear equations were in

better agreement with the Elocal grading than the EN 384

equation and the models per species for Pinus nigra and

Pseudotsuga menziesii. However, concerning Abies alba,
the multi-linear equations did not improve the grading in
reference compared to the one of Elocal. For all the species,

the model per species and section was also in very good

agreement with the grading with Elocal. The effect of the
section was thus the predominant effect on the optimal

grading.

4 Discussion

Elocal was found to be higher than Eglobal at mean level, in

a range coherent with that reported in previous studies
(Boström 1999; Holmqvist and Boström 2000; Ravenshorst

and van de Kuilen 2009). The measurement uncertainty was

higher for Elocal (±620 MPa) than for Eglobal (±490 MPa).
This fact was mainly explained by the difference in the

deflection range (Denzler et al. 2008). However, no authors

indicated the value of these errors and, surprisingly, the error
difference between the two determination methods was

found to be less than 1 % (4.7 % for Elocal and 4.0 % for

Eglobal). From this last observation, it would be better to
directly measure the local modulus, unless such a measure-

ment is more time consuming. The measurement uncertainty

of Elocal and Eglobal has an effect on the R
2 values of the linear

models (Table 4). If a perfect linear relationship between the

two modulus is assumed, an analysis of variance taking into

account the uncertainties leads to maximum values of:
R2 = 0.992 (PSMN), R2 = 0.990 (PNNL), R2 = 0.986

(ABAL) and R2 = 0.964 (CTST) (three decimals are given

to highlight the difference between these four values). The
true experimental values were R2 = 0.900 (PSMN), R2 =

0.890 (PNNL), R2 = 0.809 (ABAL) and R2 = 0.811

(CTST). The rank order between the linear models is thus a
consequence of the measurement uncertainty coupled with

the species effect and the size effect.

Considering a clear and homogeneous beam, the main
difference between local and global modulus is the shear

deformation. From this last remark, the comparison local–

global modulus is the same problem than comparing local
modulus in 4 point bending and ‘global’ modulus in 3 point
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Fig. 6 Box plots of local and global modulus of elasticity for the two
clusters
Abb. 6 Box-Plot-Diagramm des lokalen und globalen E-Moduls der
beiden Cluster

Table 7 Multivariate linear regression conversion equation from global modulus, knot parameter (KN) and height (h) to local modulus
according to the species (SEC: standard error of calibration)
Tab. 7 Multiple lineare Umrechnungsformel vom globalem zum lokalem E-Modul unter Berücksichtigung des Astparameters (KN) und der
Höhe (h) getrennt nach Holzart (SEC: Standardfehler der Kalibrierung)

Equation: Elocal = A x Eglobal ? B 9 (KN/h) ? C

Species A [95 % CI] B [95 % CI] C [95 % CI] R2 SEC (MPa) N

ABAL 1.19 [1.14; 1.23] -63.8 [-74.6; -53.0] 0 [-600;700] 0.85 1,400 535

PNNL 1.13 [1.09; 1.17] -53.6 [-62.5; -44.7] 0 [-300; 900] 0.91 1,300 510

PSMN 1.24 [1.20; 1.228] -62.4 [-72.2; -52.6] -950 [-1,600; -300] 0.92 1,500 594

CTST 1.23 [1.16; 1.31] -36.3 [-57.9; -14.7] -1,300 [-2,100; -400] 0.82 1,000 300
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bending with a low level of stress (Brancheriau et al. 2002).

A theoretical development (Eq. 9 and 10) demonstrated
that the relationship between local and global modulus was

not linear but of second order. Other authors proposed

different theoretical expressions (ASTM 2009; Boström
1999; Källsner and Ormarsson 1999). These formulas used

a form factor (‘K’ equal to 5/6 for a rectangular cross

section) and the deflection equation was written:

d2Uy xð Þ
dx2

¼ % Mz

ExIGZ
þ 1

KGyxS

d2Mz

dx2
ð11Þ

This last equation assumed at least a parabolic distri-

bution of the bending moment Mz. This assumption was

false in the case of a four point bending test. However, an
analogy with a uniform loading allowed overcoming this

problem. The polynomial form (Eq. 10 and Table 4)

explained the fact that the constants of the linear adjust-
ments were always significant (the polynomial form was

approximated by a straight line). The non-linear and linear

models were found to be equivalent for the timber tested in
the present work (Table 4), but the advantage of the non-

linear model was that only one coefficient was needed. The

value of this coefficient was circa 8 9 10-6 which corre-
sponded to 1/(414*Gyx) with Gyx equal to 300 MPa

(coherent value for structural timber).

Afterwards, the effects of the species and section were

demonstrated to be significant over the relationship
between local and global modulus; only for chestnut no

differences were detected between cross-sections (Table 5

and 6). Moreover, Elocal was found to be higher than Eglobal

for high stiffness values and lower for lower stiffness

values (Fig. 1). Similar results were reported by Boström

(1999); Holmqvist and Boström (2000); Solli (2000) and
explained by the fact that the ratio Elocal/Eglobal was mainly

affected by shear deformations for large dimension speci-

mens, while for small dimension timber there was a greater
influence of the critical defect (Ridley-Ellis et al. 2009).

Models taking into account the effect of the height were

thus used and Boström (1999) showed the effect of the
beam depth on the relation between Elocal and Eglobal. In

this study, the cross-section that distinguishes itself is the

small one.
Previous works associated the influence of the cross

section on the relationship between local and global mod-
ulus with the presence of stiffness reducing defects, mainly

knots (Boström 1999; Holmqvist and Boström 2000; Rid-

ley-Ellis et al. 2009). Here we clearly demonstrated the
effect of the knots on the modulus measurement (Fig. 5).

The influence of knots is higher on small cross sections

because of both their higher dimension relative to the depth
of the specimen (h) and the shorter test span (calculated as
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Fig. 7 Optimal grading
computed with different local
modulus of elasticity. Elocal,

EN 384 conversion equation,
equation per species,

equation per species and
section, multi-linear
regression equation. a Abies
alba, b Pinus nigra,
c Pseudotsuga menziesii,
d Castanea sativa, N number of
pieces
Abb. 7 Optimale Sortierung
nach verschiedenen lokalen
Elastizitätsmoduln. lokaler
E-Modul, Gleichung aus EN
384, Gleichung je Holzart,
Gleichung je Holzart und
Querschnitt, Multiple lineare
Gleichung. a Abies alba,
b Pinus nigra, c Pseudotsuga
menziesii, d Castanea sativa,
N Anzahl der Prüfkörper
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a function of h). Besides, the stiffness reducing effect is

higher on local than on global modulus because of the
position of knots relative to the reference points for

deflection measurement (closer for local modulus

determination).
Finally the comparison of the conversion models was

investigated by means of the optimum grading, such as to

analyse the possible influence of the different conversion
functions on timber grading. First of all it has to be said

that the study was difficult because the optimum grading
was strongly dependent on the timber resource (strength

limited timber) and on the grade combination. Several

grade combinations were tested and one combination was
shown, which was able to highlight the differences between

the models (Fig. 7).

Similar results were found between EN 384 equation
and linear equations per species. The means were signifi-

cantly different (t test on paired samples): mean differ-

ence = -281 MPa for fir, -121 MPa for pine, 76 MPa for
Douglas-fir and -536 MPa for chestnut (Table 2). How-

ever, all the computed moduli from the equation of the

standard were included in the 95 % confidence interval of
the species equations and the optimum grading procedure

used individual values for grouping the beams by grade.

This remark explained the observed similarity.
For softwood, the effect of the section was found to be

the predominant effect on the optimum grading and the

equation per species and section gave similar grading
results to the Elocal.

A multiple linear model including the amount of defect

in the section and the depth was thus tested. This choice
was motivated because it constituted the simplest type of

multivariate model. However, the efficiency was not better

than a model per species for fir and it was only slightly
better than the model per species and per section for pine

and Douglas-fir.

The relationship between the local modulus and these
parameters was probably not linear and a specific study

should be done to determine the best non-linear model.

For chestnut, no predominant effect could be identified
and all the models were comparable. This could be

explained either by the similarity of the cross-sections

tested (80 9 80 mm and 50 9 100 mm), or by a less
influence of the defects (knots) on the modulus of elasticity

determination in hardwoods. Therefore, further studies are

needed before a conclusion on that can be drawn.
In the end, the conversion equation in the current

European standard (EN 384 2010) can be improved but, in

practice, the conversion equation used can have an
important effect mainly for stiffness limited material: the

optimum grading is dependent on the resource and on the

grade combination. The EN 338 (2009) standard defines
thresholds for the characteristic values of density, modulus

of elasticity and bending strength. These thresholds are

ordered from the class the less resistant to the strongest
class. In the two-dimensional space generated by the

modulus of elasticity and the bending strength, the

thresholds are a curve that bounds the resources strength-
limited and stiffness-limited. Populations with the modu-

lus-strength point lying below this curve are limited in

strength. The parameter determining the grading is thus the
bending strength because for a nearby bending strength of

the threshold value, the average modulus is always greater
than the standard threshold value. In this particular case,

the bias induced by a conversion equation will have little

influence on the final grading. On the contrary, when the
modulus- strength point lies above the curve, the popula-

tions are stiffness-limited. As grading algorithms seek to

approach more closely the boundaries of class, a bias in the
conversion equation will have a significant effect on the

final result for the stiffness-limited populations.

The bias of the conversion equation is the uncertainty
(confidence interval) induced by the statistical fit between

the local and the global modulus. If this uncertainty is low,

it will be possible to divide the resource in several groups
(classes) with a low probability of recovery; that means

quasi-equality between grading from the local modulus and

grading from the conversion equation. The number of
classes will decrease when uncertainty increases to keep

this quasi-equality between local modulus and conversion

equation. The maximum difference between optimum
grading with the EN 384 equation and with a direct

determination of the local modulus would be reached in the

case of a combination of many grades (3 or more, not very
common in practice) applied on a stiffness limited resource

(when the modulus of elasticity is the main grading

parameter). However, no difference would be found in the
case of one grade applied to a strength limited resource (in

this case, the main parameter is the modulus of rupture).

Moreover, the EN 384 equation as well as the use of
linear models may lead to higher estimation errors for low

stiffness material (Bogensperger et al. 2006) and, therefore,

to bigger consequences for timber grading. Thus, the
conversion equation should be in better agreement with the

theory: Eq. 10 with or without the development in Taylor

series or an equivalent proposed for example by Bogen-
sperger et al. (2006). Further analysis could be very

interesting in this direction.

5 Conclusion

Determination of local and global modulus was performed

on 1,939 structural beams of four species with different

cross-sections. The mean value of the local modulus was
higher than the global modulus in a ratio of 8.6 %.
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However, the difference was not constant: the local mod-

ulus was superior to the global modulus for the high
modulus samples, and inferior for low modulus values.

The measurement uncertainty was ± 620 MPa for the

local modulus and ± 490 MPa for the global modulus.
Nevertheless, the error difference between the two deter-

mination methods was found to be less than 1 %, so as to

reconsider the possibility to directly measure the local
modulus.

A theoretical analysis showed that the relationship
between local and global modulus was not linear. This

analysis also indicated that the link of modulus should be

adjusted in a polynomial form with only one coefficient.
The factor ‘‘species’’ was found to be significant for the

linear relationship between local and global modulus and

the degree of significance varied according to the species;
while the effect of the section was highly significant for the

softwoods, but not for chestnut. The section effect was

explained by the presence and the size of defects in the mid
span (knots).

In order to analyse the effect of the different conversion

equations, the local modulus (true values, EN 384 equation,
equations per species, equations per species and per sec-

tion, and multi-linear equations per species) were com-

pared by means of the optimum grade calculation. No big
differences in the grading results emerged due to the use of

the various models for the timber tested in this work

(strength limited), but dissimilarities could be expected
when low stiffness material is analysed.
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