Increased pro-inflammatory milieu in combat related PTSD – A new cohort replication study

Introduction

Several lines of evidence indicate that increased inflammation is associated with Post-Traumatic Stress Disorder (PTSD). We have previously reported that peripheral inflammatory markers are significantly higher in combat-exposed veterans with than without PTSD. This study was designed to replicate these findings in a new study cohort using the same population and recruitment strategies.

Methods: Sixty-one male war veterans (31 PTSD and 30 control subjects) were included in this replication study. Levels of Interleukin-6, Tumor Necrosis Factor-alpha, Gamma interferon, and high-sensitivity C-reactive protein were quantified in blood samples. A standardized “total pro-inflammatory score” was calculated to limit the number of statistical comparisons. The Clinician Administered PTSD Scale (CAPS) rating scale was used to assess PTSD symptom severity.

Results: PTSD subjects had significantly higher total pro-inflammatory scores compared to non-PTSD subjects in unadjusted analysis (Cohen's d = 0.75, p = 0.005) as well as after adjusting for potentially confounding effects of age, BMI, smoking, and potentially interfering medications and somatic co-morbidities (p = 0.023). There were no significant correlations between inflammatory markers and severity of symptoms within the PTSD group.

Conclusions: We replicated, in a new sample, our previous finding of increased inflammatory markers in combat-exposed PTSD subjects compared to combat-exposed non-PTSD controls. These findings strongly add to the growing literature suggesting that immune activation may be an important aspect of PTSD pathophysiology, although not directly correlated with current PTSD symptom levels in the PTSD group.

© 2016 Elsevier Inc. All rights reserved.
2010), but not all (Bonne et al., 2011), cross-sectional studies have shown that PTSD subjects have significantly higher mean levels of pro-inflammatory cytokines in blood or cerebrospinal fluid. Further, a recent large-scale genome-wide study reported a significant association between PTSD and ANKRD55, a gene previously linked to autoimmune and inflammatory disorders (Stein et al., 2016).

In line with most of these studies, our group reported that male combat-exposed veterans with PTSD have higher blood levels of pro-inflammatory markers compared to a demographically similar group of combat-exposed male war veterans without PTSD (Lindqvist et al., 2014). That study was the first to include a control group comprising combat-exposed individuals who did not develop PTSD, thus taking into account the potential confounding effects of combat exposure per se on cytokine levels. We here report on pro-inflammatory cytokine levels in a replication sample, again comprised of combat-exposed PTSD subjects and combat-exposed controls. Using the same study design, recruitment strategies, and assays as in the prior report (Lindqvist et al., 2014), we hypothesized that a diagnosis of PTSD would again be associated with a pro-inflammatory state in this replication sample.

2. Material and methods

2.1. Ethical statement

The Institutional Review Boards of Mt. Sinai School of Medicine (New York, NY), the James J. Peters Veterans Administration Medical Center (Bronx, New York), New York University Medical Center (New York, NY), and the University of California, San Francisco, School of Medicine (San Francisco, CA) approved this study. Study participants gave written and informed consent to participate. The study was conducted in accordance with the provisions of the Helsinki Declaration.

2.2. Recruitment procedures and study participants

Subject recruitment procedures and inclusion/exclusion criteria have been described in detail elsewhere (Lindqvist et al., 2014). Briefly, 61 male combat-exposed veterans from Operation Iraqi Freedom and Operation Enduring Freedom were recruited by New York University (NYU) and Mt. Sinai/James J. Peters Veterans Administration (MSSM/JJPVAMC). Diagnoses were established with the Structured Clinical Interview for DSM-IV disorders (First, 1997) and the Clinician Administered PTSD Scale (CAPS) criteria (Blake et al., 1990). PTSD subjects were positive for current war-zone related PTSD of at least 3 months duration, as indexed by the DSM-IV and the CAPS criteria with CAPS score >40. Controls had also served in war zones but were negative for life-time PTSD and had current CAPS score <20. Smoking status was determined by self-report or, when this was missing (n = 5, 1 control and 4 PTSD), it was based on plasma cotinine levels.

The CAPS was used to determine the lifetime and current PTSD diagnosis, the severity of current PTSD symptoms (past month), and symptom levels during the most severe lifetime episode of combat-related PTSD. Exposure to early life trauma was evaluated using the Early Trauma Inventory (ETI): Self Report Short Form (Bremner et al., 2007). Depression symptom severity was assessed with the self-rated Beck Depression Inventory-II (BDI-II) (Beck et al., 1996). The Deployment Risk and Resilience Inventory-2 (DRRI-2) (Vogt et al., 2013) is a suite of 17 individual scales that assess key deployment-related risk and resilience factors. For the purpose of assessing the degree of combat exposure in PTSD subjects and controls, we used the Combat Experiences subscale (section D). This information was only available in a subset of subjects (25 controls and 21 PTSD subjects).

2.3. Blood sampling and cytokine assays

Blood was drawn in the morning after a night of fasting. Whole blood was collected into 10 ml SST tubes (Becton Dickinson, Franklin Lakes, NJ). Serum levels of Interleukin (IL)-6, Tumor Necrosis Factor (TNF)-α, IL-10, Interferon (IFN)-γ and high sensitivity C-reactive protein (hs-CRP) were quantified using previously described assays (Lindqvist et al., 2014). IL-1β was also assayed, however a large number (approximately equally divided between the PTSD and control groups) of values were undetectable, therefore IL-1β was excluded from this report.

In order to minimize the risk of Type I statistical error due to multiple cytokine comparisons (Babyak, 2004), we summarized all the pro-inflammatory cytokine values into a single, “total pro-inflammatory score” by adding standardized z-scores of normalized Interleukin IL-6, TNF-α, Interferon (IFN)-γ, and hs-CRP for each case, similar to the method used in our prior paper (Lindqvist et al., 2014). Exploratory analyses were subsequently conducted on the individual cytokines. One subject had IL-6 below the detection limit of the assay, and in that case we imputed one-half of the lowest detected value. One value for IFN-γ was >10 SD above the mean and was removed from the subsequent analyses. For the purpose of calculating the total pro-inflammatory score, two missing data points (extreme outlier on IFN-γ and CRP) were replaced with mean z-scores of all other available pro-inflammatory cytokine levels for that subject.

2.4. Statistical analyses

Univariate group-wise comparisons were carried out by means of Student’s T-test. We controlled for potential confounds by means of analysis of covariance (ANCOVA). Univariate correlations were calculated using Pearson’s r. Pearson’s chi-square test was used to compare proportions. Before analyses, data were transformed using their natural logarithms (Ln); in cases when log-transformation did not yield a normal distribution, Blom transformation (Blom, 1958) was used.

Covariates in the group comparisons between PTSD and controls were selected based on their known association with cytokines or significant, or near significant, bivariate associations with the total pro-inflammatory score. Based on these criteria the following covariates were used in the ANCOVA’s: BMI, smoking, age, and medications and immune/inflammatory illnesses that might affect pro-inflammatory markers. Ten subjects (8 PTSD subjects and 2 controls) either took medications (antidepressants, NSAIDs, statins) or had somatic conditions (asthma, allergies) that might alter cytokine levels.

3. Results

3.1. Demographics and clinical characteristics

Demographic and clinical characteristics of all subjects are presented in Table 1. PTSD subjects were more likely to be smokers (p = 0.031). The use of antidepressants was more common in the PTSD group, although not statistically significant (p = 0.14); this is consistent with the higher proportion of PTSD subjects having comorbid diagnoses of MDD (p < 0.001). Symptom severity scores are shown in Table 1. As expected, subjects with PTSD had significantly higher scores for CAPS current and lifetime symptom severity (all p < 0.001), Early Trauma Inventory (ETI) summary score (p = 0.003) and BDI-II depression severity score (p < 0.001) compared to controls. PTSD subjects had significantly higher scores on DRRI-2 Combat Experiences subscale (p < 0.001), indicating that individuals in this group had been...
hs-CRP = high sensitivity C-reactive protein; IL = Interleukin; TNF = Tumor necrosis factor; IFN = Interferon.

Cytokine levels in PTSD subjects and controls. Group comparisons are presented as unadjusted Student’s T-tests and ANCOVAs adjusting for age, BMI, smoking, and medication.

Demographic characteristics of Subjects with PTSD and Controls.

<table>
<thead>
<tr>
<th>Age (years, mean ± SD)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (df)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.8 ± 5.6</td>
<td>31.2 ± 5.5</td>
<td>0.28 (59)</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education level, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12th grade: 1 (3)</td>
<td>Up to 12th grade: 1 (3)</td>
<td>6.35 (4)</td>
<td>0.18</td>
</tr>
<tr>
<td>HS diploma or GED: 5 (17)</td>
<td>HS diploma or GED: 12 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 years college: 4 (13)</td>
<td>2 years college: 7 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 years college: 17 (57)</td>
<td>4 years college: 9 (29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters degree: 3 (10)</td>
<td>Masters degree: 2 (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gender

<table>
<thead>
<tr>
<th>Smokers, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (17)</td>
<td>13 (42)</td>
<td>4.68 (1)</td>
<td>0.031</td>
</tr>
</tbody>
</table>

MDD Diagnosis, n (%) 0 (0) 20 (65) 28.80 (1) <0.001

Clinical characteristics

Beck Depression Inventory-II sum severity score (mean ± SD) 6.1 ± 6.2 26.9 ± 9.9 9.46 (56) <0.001

Early Trauma Inventory, total severity score (mean ± SD) 4.7 ± 3.8 8.8 ± 5.9 3.11 (56) 0.003

CAPS current symptom severity (mean ± SD) 5.1 ± 6.3 71.8 ± 17.1 20.06 (59) <0.001

CAPS lifetime symptom severity (mean ± SD) 10.5 ± 9.6 92.7 ± 16.5 23.64 (59) <0.001

DRRI-2, Combat Experiences subscale score (mean ± SD) 31.0 ± 14.5 52.9 ± 21.4 4.63 (44) <0.001

Metabolic measurements

Body Mass Index (mean ± SD) 28.8 ± 5.8 30.0 ± 5.0 0.85 (59) 0.40

Medications

<table>
<thead>
<tr>
<th>Taking statins, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0)</td>
<td>2 (6)</td>
<td>2.39 (1)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taking NSAID regularly, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0)</td>
<td>1 (3)</td>
<td>0.98 (1)</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taking antidepressants, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian: 3 (10)</td>
<td>Asian: 1 (3)</td>
<td>5.39 (4)</td>
<td>0.25</td>
</tr>
<tr>
<td>Caucasian: 13 (43)</td>
<td>Caucasian: 7 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic: 6 (20)</td>
<td>Hispanic: 12 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other: 2 (7)</td>
<td>Other: 2 (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian: 13 (43)</td>
<td>Caucasian: 7 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic: 6 (20)</td>
<td>Hispanic: 12 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other: 2 (7)</td>
<td>Other: 2 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (0)</td>
<td>20 (65)</td>
<td>9.46 (59)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication, n (%)</th>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking statins, n (%)</td>
<td>Controls (n = 30)</td>
<td>PTSD (n = 31)</td>
<td>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</td>
</tr>
<tr>
<td>Taking NSAID regularly, n (%)</td>
<td>Controls (n = 30)</td>
<td>PTSD (n = 31)</td>
<td>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</td>
</tr>
<tr>
<td>Taking antidepressants, n (%)</td>
<td>Controls (n = 30)</td>
<td>PTSD (n = 31)</td>
<td>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</td>
</tr>
<tr>
<td>Asian: 3 (10)</td>
<td>Asian: 1 (3)</td>
<td>5.39 (4)</td>
<td>0.25</td>
</tr>
<tr>
<td>Caucasian: 13 (43)</td>
<td>Caucasian: 7 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic: 6 (20)</td>
<td>Hispanic: 12 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other: 2 (7)</td>
<td>Other: 2 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (0)</td>
<td>2 (6)</td>
<td>2.24 (2)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Exploratory unadjusted analyses of the individual inflammatory markers showed that PTSD subjects also had significantly higher levels of IL-6 (p = 0.003) and hs-CRP (p = 0.006). Eleven of the PTSD subjects and four of the controls had hs-CRP levels above 3 mg/L (p = 0.037) indicating an elevated vascular risk in the former group (Ridker, 2003). TNF-α levels were also higher in PTSD subjects at trend level (p = 0.077). After adjusting for covariates, the differences in hs-CRP and IL-6 were still statistically significant. There was no significant difference in IFN-γ or IL-10 between PTSD subjects and controls.

3.3. Correlations between total pro-inflammatory score and clinical symptoms

Within the PTSD group, there were no significant correlations between total pro-inflammatory score and CAPS total current or lifetime scores, BDI, or ETI score (all p > 0.1).

Table 2

Cytokine levels in PTSD subjects and controls. Group comparisons are presented as unadjusted Student’s T-tests and ANCOVAs adjusting for age, BMI, smoking, and medication and somatic illnesses that might influence inflammatory markers. Raw data, rather than transformed values, are presented. Cytokine concentrations are given in pg/mL and hs-CRP concentrations are in mg/L. The total pro-inflammatory score is given as a standardized score; thus, positive or negative values may be seen.

<table>
<thead>
<tr>
<th>Controls (n = 30)</th>
<th>PTSD (n = 31)</th>
<th>Statistical value (t), unadjusted</th>
<th>Statistical value (F), adjusting for age, BMI, smoking, medications, and somatic illnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pro-inflammatory score (mean ± SD)</td>
<td>-0.97 ± 2.31</td>
<td>1.03 ± 2.99</td>
<td>2.91</td>
</tr>
<tr>
<td>IL-6 (mean ± SD)</td>
<td>0.35 ± 0.19</td>
<td>0.60 ± 0.51</td>
<td>3.10</td>
</tr>
<tr>
<td>hs-CRP (mean ± SD)</td>
<td>1.59 ± 2.58</td>
<td>4.10 ± 5.18</td>
<td>2.86</td>
</tr>
<tr>
<td>TNF-α (mean ± SD)</td>
<td>3.30 ± 5.80</td>
<td>3.40 ± 3.59</td>
<td>1.80</td>
</tr>
<tr>
<td>IFN-γ (mean ± SD)</td>
<td>3.60 ± 1.45</td>
<td>6.16 ± 7.06</td>
<td>0.53</td>
</tr>
<tr>
<td>IL-10 (mean ± SD)</td>
<td>0.28 ± 0.26</td>
<td>0.26 ± 0.12</td>
<td>1.53</td>
</tr>
</tbody>
</table>

hs-CRP = high sensitivity C-reactive protein; IL = Interleukin; TNF = Tumor necrosis factor; IFN = Interferon.

* p < 0.05.
** p < 0.01.
*** p < 0.1.

There was no significant difference in total study, approximately 60% of the PTSD subjects had co-morbid 2009; Lindqvist et al., 2009; Miller et al., 2009). In the present

ing the risk for type 1 statistical error (Babyak, 2004).

inflammatory score”, an approach that has the advantage of reduc-

between-group differences in a composite “total pro-

line with the present study, although we found significant

exposure on cytokine levels. Moreover, we controlled for a number

inclusion of a combat-exposed non-PTSD control group enabled

relationship between PTSD and a pro-inflammatory state. The

pers in order to identify subjects at high risk of inflammation-

ers in order to identify subjects at high risk of inflammation-

pro-inflammatory score between PTSD subjects with and without

MDD, suggesting that co-morbid MDD was likely not a major dri-

ver in the association between PTSD and inflammation. This is in

with our previous report (Lindqvist et al., 2014), as well as studies from other groups (Maes et al., 1999; von Kanel et al.,

Despite a robust association between PTSD and a pro-

flammatory state, we did not see a correlation between inflam-

mation and PTSD symptom severity within the PTSD group. This is consistent with some previous studies including our own initial report (Lindqvist et al., 2014; Maes et al., 1999), while others have reported such correlations (Gill et al., 2010). Our findings raise the possibility that increased inflammation may be a vulnerability marker for PTSD, as opposed to being the result of trauma exposure or symptom burden. This hypothesis is in line with a large-scale prospective study on male veterans demonstrating that high base-

line hs-CRP levels predicted more severe PTSD symptoms post-

deployment, even after factoring out trauma exposure (Eraly et al., 2014).

Persons suffering from PTSD are at higher risk of developing a

number of somatic illnesses including cardiovascular disease (Coughlin, 2011). Interestingly, increased inflammation has been

proposed as a biological mechanism that could confer this increased risk in PTSD subjects (Gander and von Kanel, 2006). Ele-

ven out of 31 PTSD subjects in our sample had hs-CRP levels above 3 mg/L indicating an elevated vascular risk in this group (Ridker, 2003). Inflammation may increase the risk of cardiovascular dis-

ease via interactions with endothelial dysfunction (Grenon et al., 2016) and hypercoagulability (von Kanel et al., 2006), two biological characteristics of PTSD.

There are certain limitations to the current study. First, we used an all male sample, thus our findings may not generalize to females

with PTSD. Moreover, causality cannot be inferred, given the cross-

sectional study design. Thus, longitudinal studies involving cyto-

kine measurements at multiple time points are needed in order to
determine whether immune activation in PTSD is a consequence of the disorder or a risk factor. While our use of a combat exposed
control group is a strength because it controls for combat exposure per se as a variable affecting inflammatory cytokines, it could also be considered a weakness, since combat exposed individuals who did not develop PTSD may be a resilient group, although we do not have data to further evaluate that possibility. Finally, although our approach of summarizing pro-inflammatory markers into a

standardized total pro-inflammatory score has some distinct advantages as described above, it also comes with some potential shortcomings. E.g., by using a composite score we lose specific information about the individual components (in this case the individual pro-inflammatory markers) while preserving the degrees of freedom in the model (Babyak, 2004). Therefore, we also con-
ducted exploratory analyses on the individual pro-inflammatory markers.

4. Discussion

In this study, we replicated in a different set of individuals, our previous finding of increased inflammatory markers in combat-exposed male PTSD subjects compared to combat-

exposed non-PTSD male controls (Lindqvist et al., 2014). Specif-

ically, we found that the total pro-inflammatory score, as well as individual inflammatory markers IL-6 and hs-CRP, were higher in the PTSD group. This replication further strengthens the notion that immune activation may be an important pathophysiological feature of combat-related PTSD that appears to be independent of combat exposure per se. Further, we also repli-
cated our previous finding that immune activation in PTSD is not significantly correlated with current or lifetime PTSD symp-
tom severity.

Many studies (cited in the introduction) have shown that PTSD subjects, irrespective of the type of trauma, have increased mean levels of pro-inflammatory cytokines. In a recent meta-analysis, IFN-γ, TNF-α, IL-6, and IL-1β were identified as the cytokines most commonly elevated in PTSD (Passos et al., 2015). This is mainly in line with the present study, although we found significant between-group differences in a composite “total pro-
inflammatory score”, an approach that has the advantage of reduc-
ing the risk for type 1 statistical error (Babyak, 2004).

Our study adds to the growing body of literature indicating a

relationship between PTSD and a pro-inflammatory state. The inclusion of a combat-exposed non-PTSD control group enabled us to take into account the potential confounding effect of combat exposure on cytokine levels. Moreover, we controlled for a number of potential confounders (including age, BMI, smoking, potentially interfering medications and somatic co-morbidities), and our main findings did not substantially change. Only a few previous studies have taken into account the potential mediating effect of co-
morbid MDD on the relationship between inflammation and PTSD. This is critical, since MDD, a common co-morbidity of PTSD, may itself be associated with increased inflammation (Dhabhar et al.,

2009; Lindqvist et al., 2009; Miller et al., 2009). In the present

study, approximately 60% of the PTSD subjects had co-morbid MDD. There was no significant difference in total

Fig. 1. Total pro-inflammatory score in PTSD subjects and controls. Error bars indicate +/- 1 SD from the mean. The total pro-inflammatory score is given as a

standardized score; thus, positive or negative values may be seen.

5. Conclusion

In this replication study, we affirm that PTSD in male war vet-

erans is associated with a pro-inflammatory state. It is possible that targeting immune-related pathways using pharmacological agents, dietary supplements or life style interventions may be one way forward in improving PTSD clinical management. Further-

more, pro-inflammatory cytokines may be used as PTSD biomark-
ers in order to identify subjects at high risk of inflammation-

related illnesses. It is premature, however, to view inflammation as a specific biomarker for PTSD, as inflammation is seen in other psychiatric conditions.
Acknowledgments

This study was supported by the following Grants: United States Department of Defense, W81XWH-11-2-0223 (PI: Charles Marmar); U.S. Department of Defense, W81XWH-10-1-0021 (PI: Owen M. Wolkowitz); The Mental Illness Research, Education and Clinical Center (MIRECC). Daniel Lindqvist was supported by the Swedish Research Council (2015-00387), Marie Sklodowska Curie Actions, Cofund (Project INCA 600398), the Swedish Society of Medicine, the Söderström-Königska Foundation, the Sjöbring Foundation, OM Persson Foundation and the province of Scania (Sweden) state grants (ALF). The authors declare no conflict of interest. The funding sources had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

References

