
Generalized self consistent polycrystalline model applied to heterogeneous 
materials exhibiting log normal grain size distribution 

 
 

Quang H. Bui1, Salah Ramtani2, Guy F. Dirras3 

 
 

Laboratoire  des Propriétés Mécaniques et Thermodynamiques des Matériaux, 
 LPMTM – CNRS UPR 9001, Université Paris 13 

 99 avenue J. B. Clément 93430 Villetaneuse, France 
1bui@lpmtm.univ-paris13.fr, 2salah.ramtani@lpmtm.univ-paris13.fr, 

 3dirras@ lpmtm.univ-paris13.fr 
 
 

ABSTRACT 
 
 

A generalized self consistent approach, recently proposed by Jiang and Weng [1] for 
investigating the properties mechanical of nanocrystalline (NC) materials, is revisited and 
reformulated following an incremental scheme. The NC material is modeled as composed of 
spherical randomly distributed grains with a lognormal grain size distribution. Each oriented 
grain and its immediate grain boundary form a pair, which in turn is embedded an infinite 
effective medium with a property representing the average orientation of all these pairs. The 
plastic deformation of the grain phase takes into account the dislocation glide mechanism 
whereas the boundary phase is modeled as an amorphous material.  
 
 
1. Introduction 
 
NC and utrafine-crystalline materials (UFG) are research topic subjects that bridge several fields, 
from materials science to mechanical engineering since more than a decade [2]. This type of 
materials processes superior mechanical strength over their microcrystalline counterparts but 
limited plastic deformation. Both experimental and theoretical investigations show deformation 
mechanisms being dominated by the grain boundary phase activity. More generally, when the 
grain size decreases down to about tenth of nanometers, the yield strength increases linearly with 
the inverse square root of the grain size as described by the Hall-Petch law: 1/ 2

0y kDσ σ −= + , 
where 0σ is the frictional stress, k the Hall-Pecth slope and D the mean grain size. Nevertheless, 
is should be noticed that the mechanical properties of a given material depend on the as-
processed microstructure characteristics (such as the grain size distribution, the crystallographic 
texture, the grain boundary structure, the grain shape etc…) and not only on the mean grain size. 
Most of these microstructures characteristics are often out of reach experimentally. In the same 
time, numerical simulations are good means for predicting, optimizing, and controlling the 
processing of material. Jiang and Weng developed a generalized self consistent polycrystal 
model [1], based on Christensen and Lo’s solution [3] and Lou and Weng’s solution [4] to 
predict the influence of the as processed microstructure on the subsequent mechanical behavior. 



In doing so, they considered solely the average grain size as structural parameter. However, 
experimental investigations do demonstrate that the grain size is dispersed in an interval within 
the lognormal distribution. Taking into account the lognormal distribution and the dispersion 
around the mean grain size allows to better simulating, with more accuracy, the behavior of the 
bulk NC or UFG materials and constitutes the goal of this study presented here.  
   
 
2. The generalized self-consistent approach 
 
In this paper, the generalized self-consistent model, recently proposed by Jiang and Weng [1], is 
rewritten following an incremental small strain scheme. The representative volume element 
(RVE) of this micromechanical model is an oriented grain identified by Eulerian angles 

1 2( , , )φ θ φ  and its immediate boundary forming a pair embedded in a homogeneous equivalent 
medium. Under the macroscopic Cauchy stress rate ijΣ , the plastic deformation of the grain is 
governed by its crystallographic slips systems. However the stress and strain of the surrounding 
grain boundary, modelled as an amorphous material, are closely related to the plastic strain of its 
enclosed grain. The nonlinear problem can be resoled by superposition of two linear auxiliary 
problems as schemes in Fig 1.   
 
 
 
 
 
 
 
 
 
 

Figure 1. The decomposition scheme of the initial non-linear (A) problem into two linear 
auxiliary problems according to Christensen and Lo (B) and Lou and Weng (C). 
 
The stress-strain relation of each oriented grain is given by 
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where ( )g
ijklC  is the crystal elasticity tensor, ( )sγ is the shear rate, ( )s

klν  is the Schmid factor tensor of 
the slip system s, defined as the tensor product of the unit slip direction tensor and the slip plane 
normal tensor of the considered slip system. 
 
The plasticity of the grain-boundary phase is isotropic and incompressible (p=0). The yield 
function described by [5]: ( ) ( ) ( )( ) gbngb gb p gb

e y gb ehσ σ ε= +  where ( )gb
eσ , ( )p gb

eε and ( )gb
yσ  are the Mises’ 

effective stress, effective plastic strain and the yield strength initial of grain boundary 
respectively. The parameters gbh  and gbn are the material constant related to the grain boundary. 
The grain boundary thinness was given a value of δ=1 nm [1]. 
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3. Results and discussions  
 
The application of the present model for the copper processed by inert gas condensation method 
[6] was presented in this section. Fig. 2a compares the true stress-true strain curve obtained from 
experimental tensile test at room temperature at the strain rate of 10-4s-1 and the one of the 
current model prediction. Three types of material, corresponding to three different mean grain 
sizes of 49 nm, 110 nm and 20 µm, were studied. It is clear that the flow stress depends on the 
grain size and the simulation compares fairly well with the experimental results.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. (a) Calculated (mod) and experimental (ex) stress-strain relations of copper with 

different grain sizes. (b) Predicted flow stress at 0.2% plastic strain as a function of mean grain 
size for different relative dispersion ∆D/D.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Map for the effective stress of the grain phase (at the overall axial plastic strain 
level Ep=1%) in terms of the orientation of the grain (random orientations) at mean grain size 
Dmean=49 nm and different relative dispersion. 

 
A procedure is used to generate different discrete lognormal distribution with given means and 
dispersions [7]. The flow stresses at 0.2% plastic strain are plotted in Fig. 2b as a function 

(a) (b) 

D=49 nm, ∆D/D=0 D=49 nm, ∆D/D=6 



of 1/ 2
meanD− . The relative dispersion ∆D/D takes the values 0, 1, 2, 4, 6 and all the curves appear to 

be quite linear. Our results, like those presented by Berbenni et al [7], display a unique effect of 
the grain size dispersion which becomes more significant at the NC regime (49 nm). 
 
Fig. 3 illustrates the evolution of effective stress of the grain phase (which is defined 

as
1/ 2
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) at the overall axial plastic strain level Ep=1% taking into account the 

initial grain orientation, different mean grain sizes and associated relative dispersions. It can be 
seen that in the all cases, the effective stress of the grain phase is heterogeneous and the high 
effective stresses are located at 1 2( , )φ φ  = (50°,50°), (50°,125°), (125°,50°) and (125°,125°). In 
the case of (Dmean=49nm, ∆D/D=6), the effective stress exhibits more heterogeneity than the 
other cases with the presence of additional high effective stress located at 1 2( , )φ φ  = (0°,110°), 
(40°,160°), (100°,0°), and (130°,80°) (see Fig. 3b). Comparing the effective stress in the case of 
the coarsest mean grain size Dmean=20µm with no dispersion (∆D/D=0) to the case of a broader 
dispersions like ∆D/D=6, the resulting stress fields are very close (in position and levels) (not 
show here). As for the NC sample (Dmean=49nm), a loss of the effective stress fields is found 
when the two extreme dispersions ∆D/D=0 and ∆D/D=6 (Fig. 3a and 3b) are compared. These 
results confirm that the effect of the grain size dispersion on the effective stress fields at Ep=1% 
becomes more significant at finest mean grain sizes. 
 
As in previous work [7], we have numerically investigated the hypothesis that broad dispersions 
tend to reduce the grain size dependence whereas the individual grain behaviour is grain size 
dependent.  
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