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Abstract

An important problem in computational music analysis is
the representation and automated discovery of recurrent pat-
terns. In this paper we present a new method for pattern rep-
resentation and discovery in a large corpus of music. Using
the formalism of multiple viewpoints, music is viewed as mul-
tiple streams of description derived from the basic surface
representation. Patterns are discovered within viewpoint se-
quences derived from the corpus for selected viewpoints. A
statistical method is used to restrict attention to only those
patterns which occur much more frequently than expected,
where expectation is based on a Markov model of viewpoint
elements. The concept of the longest significant patterns in a
corpus is introduced. The method presented in this paper is
designed to rapidly enumerate all longest significant patterns
within a large corpus. An application of the method to the
Bach chorales is presented.

1 Introduction

The low entropy of music is due to the inherent structural con-
straints in a musical style, and repetition of both intra- and
inter- opus musical material. An important problem in com-
putational music analysis is the representation and automated
discovery of recurrent musical patterns. Patterns can be used
for abstraction and compact representation of a work (Smaill
et al. 1993); as musical building blocks for the paradigmatic
analysis of a work (Nattiez 1975); as fragments for motive-
based algorithmic composition (Rolland and Ganascia 2000);
as keys for content-based music retrieval (Hsu et al. 1998);
and for the recognition and distinction of musical style or au-
thorship (Westhead and Smaill 1993).

Repetition in music occurs not only as repetition of exact
pitches and durations, or as mere transposition into a differ-
ent key, but is often much more subtle. There can be repe-
titions within different musical parameters, such as specific
intervals, melodic motion (contour), relative rhythmic values,
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middle or fundamental structure, harmonic progressions (im-
plicit or explicit), register, dynamics series, pitch class sets,
and so on. Approaches to pattern discovery in music analysis
have so far concentrated on the similarity relationships within
pitch or transposed passages rather than on recurrent patterns
within deeper musical parameters. However, in a music anal-
ysis task of any kind, it would make more sense to be able
to capture these recurrent patterns: they are more general,
look at a deeper level of similarity within the musical corpus
and make explicit exactly where the similarities between the
patterns lie. Pattern discovery algorithms should be able to
handle the comparison of a small set of pieces as well as the
processing of a large corpus with hundreds or thousands of
pieces. Finally, such methods should have some selection
procedures for the results, removing uninteresting patterns
from consideration.

The topic of this paper is the discovery of general pat-
terns that span a substantial number of diverse works. Our
pattern discovery technique is based on the music represen-
tation formalism of multiple viewpoints (Conklin and Witten
1995), presented in this paper, where each viewpoint models
some musical parameter. In this way we are able to search
for patterns within these parameters, or viewpoints, rather
than patterns of notes taken directly from the music, and we
can capture the exact level where similarity occurs in the mu-
sic. Pattern discovery is performed by building a suffix tree
data structure with all multiple viewpoint sequences derived
from the corpus for chosen viewpoints. A subsequent step
finds those patterns that occur in a specified minimum num-
ber of pieces and that satisfy a statistical significance crite-
rion. A further filtering looks at all significant discovered
patterns and selects the longest significant patterns within the
set. This paper presents an application of the method to the
Bach chorales.



2 Methods

2.1 Multiple viewpoints of music

The representation language we use for music is based on the
formalism of multiple viewpoints (Conklin and Witten 1995).
Viewpoints are functions, defined or selected by the music
analyst, that operate on the basic representation. A viewpoint
models some specific type of musical feature derived from
the musical surface, for example, melodic contour, intervals,
duration, or interval from a tonic referent pitch. A piece of
music is therefore transformed into a higher level description
derived from the basic surface representation. At the surface,
a piece is represented as a set of sequences (tracks, voices) of
events derived from a MIDI encoding: an event has a pitch,
duration, and a start time. In addition to these event attributes,
we assume some global attributes such as fermatas (used as
phrase markers), key signature, and time signature.

In more detail, a viewpoint is a partial function which as-
sociates a viewpoint element with sequences. The notation [7]
denotes the range of this function; the set of valid viewpoint
elements for a viewpoint 7. For example, for the melodic
interval viewpoint, the viewpoint elements are integers. A
viewpoint is a partial function, meaning that it may be unde-
fined at certain locations. For example, the melodic interval
viewpoint is undefined for a sequence containing only one
event (see Figure 1).

For every viewpoint a viewpoint sequence function trans-
forms a sequence of basic events into a sequence of defined
viewpoint elements. The viewpoint sequence function sim-
ply applies the viewpoint to every element in the sequence,
retaining those elements where the viewpoint is defined. For
example, for the melodic contour viewpoint, this function
transforms a sequence of pitches into a sequence of contour
indicators (see Figure 1).

A linked viewpoint is a combination of two or more view-
points that models other viewpoints simultaneously. A link
between viewpoints can be defined using the constructor &.
For a linked viewpoint 7 = 7 ® ... ® 7,, and any sequence
m, 7(m) is undefined if 7;(m) is undefined for any compo-
nent viewpoint, else it is the tuple (71(m), ..., 7,(m)). The
set of viewpoint elements is therefore the cross product of all
sets of component viewpoint elements:

1 ®...071] =[r] X ... x[m] (1)
For example, Figure 1 illustrates the linked viewpoint be-
tween melodic contour and duration. Note how the elements
of this viewpoint are pairs of values, one from each compo-
nent viewpoint.

A threaded viewpoint models the value of a base view-
point at defined temporal or metric locations within a piece;
for example, at the beginning of a bar or phrase or at every
quarter note pulse. These defined locations are captured by

a test viewpoint. A threaded viewpoint is defined only at lo-
cations where the test viewpoint is true. In this way, a view-
point “threads” through a sequence, potentially ignoring non-
adjacent surface events. Any viewpoint (even a linked view-
point) can be used as a base viewpoint. The test viewpoint
must have a Boolean (0 or 1) value. Given a base viewpoint
7 and a test viewpoint 6, a threaded viewpoint can be defined
using the constructor @. The set of viewpoint elements for a
threaded viewpoint is the cross product of the base viewpoint
elements and the set of inter onset intervals:

[T ©6] =[7] x [i0i] 2)

The ioi viewpoint is the inter onset interval between two
events; the difference between their start times.

For example, we can construct a viewpoint that measures
the melodic interval between events that occur as the first
event in a bar, or a viewpoint that threads through events that
start on crotchet beats (see Figure 1).

2.2 Viewpoint patterns

A viewpoint pattern P, is a sequence of viewpoint elements
for some viewpoint 7. A pattern occurs in a piece if it is con-
tained in the viewpoint sequence for that piece (see Figure 2).
The length of a pattern P is denoted I(P). The empty pattern
(. for a viewpoint 7 has zero length and is defined to occur
anywhere that the viewpoint is defined. Henceforth we omit
the subscript from viewpoint patterns as the viewpoint should
always be evident from context.

The piece count of a pattern is the number of pieces that a
pattern occurs in. The fotal count of a pattern is its total num-
ber of occurrences, including repetitions within an individual
piece.

Pattern scoring. The potential musical significance of a
viewpoint pattern P with respect to a data set is evaluated
by comparing the piece count of P with how many times we
expect it to occur if pieces in the data set were generated from
a Markov model of viewpoint elements.

Large differences between observed and expected counts
indicate a potentially interesting pattern. A pattern is given a
pattern score, which represents the magnitude of this differ-

ence: ,
(#(P) - B(P) 5

E(P)
where #(P) is the observed total count and E(P) is the
expected total count (defined below) for the pattern P. The

score for a pattern will increase with the difference between
its observed and expected total count.

Expected count for a pattern. The expected total count for
a pattern is the number of sites where the pattern could possi-
bly occur multiplied by the probability of finding the pattern



Viewpoint Sequence || Result

st er 36

pitch 3P 74

int e1 undefined

contour ® dur | €13 (1,8)

int ® ioi e1 undefined

int ® ioi €13 (—2,8)

st er (8,12, 20,24, 30, 32, 36)

int ® ioi e1 0O

int @ ioi €7 ((0,4),(7,8), (=3,4), (—2,6), (—2,2),(0,4))
contour €16 (o1,-1,-1,-1,0,1,1,-1,1,1,-1,—-1,—1,-1)
int © fb €16 ((4,12), (—4,12),(2,12), (5,12),(—3,12), (—4,12))
int @ fph e ((4,48))

int © isq er ({(0,4),(7,8),(—3,4),(—4,8),(0,4))

Figure 1: A fragment from the chorale Aus meines Herzens Grunde, with some example applications of the viewpoint element
function (top) and the viewpoint sequence function (bottom) for various viewpoints. Start time (st) is represented as semiquaver
ticks from time 0, and pitch as a MIDI number. The first event in this fragment starts at tick 8. The notation €,, is an abbreviation

for a sequence of events (e, . .

., ey). The viewpoint contour refers to melodic contour, and int to melodic interval. The ioi

viewpoint is the inter onset interval between two events. The test viewpoints £b, fph, and isq, used to construct threaded
viewpoints, are true if an event is the first in a bar, first in a phrase, or on a crotchet beat, respectively.

Viewpoint Pattern Occurrences

int (] 2,3,...,16

int ® ioi (0,4) 2,7

dur (4,3,2,4) 3,6

int © fb 0 4,7,10,12,14,16
contour @ fb | ((1,12),(-1,12)) | 2,10

Figure 2: Examples of viewpoint patterns for the chorale fragment in Figure 1. Occurrences refer to the event number of the
first event in the fragment where the pattern occurs. Note the use of the empty pattern () which is defined anywhere that the

viewpoint is defined.



in a random viewpoint sequence. These two quantities are de-
fined here.

Consider a pattern P of length I(P). In a single piece,
there are [(P) — 1 positions where the pattern cannot possi-
bly occur, because it would extend past the end of the piece.
Therefore, in a data set of n pieces, there are n(l(P) — 1)
positions where the pattern cannot possibly occur. It follows
that there are #(0) — n(I(P) — 1) positions where the pat-
tern P might occur in the data set. The expected number of
occurrences E(P) of a pattern P in the data set is therefore

E(P) = p(P) x (#(0) —n(l(P) — 1)) Q)

That is, the number of times we expect to see a pattern P is
the probability p(P) of the pattern multiplied by the number
of positions where the pattern could occur. Probabilities of
viewpoint patterns are computed using a blended zero- and
first-order Markov model of viewpoint elements seen in the
corpus.

Statistical significance. It is useful to report a p-value for a
pattern; the probability that an equal or greater pattern score
could arise within random viewpoint sequences. Patterns with
high p-values will frequently occur in random viewpoint se-
quences and therefore are not interesting.

An exponential probability distribution is used to model
pattern scores. This p-value of a pattern must be adjusted to
reflect that fact that we are evaluating its significance not in
isolation but within all patterns found in the corpus. This is
called a Bonferroni adjustment, and reflects the probability of
finding a pattern of equal or greater score within all patterns
tested. Given a particular pattern score, an adjusted p-value is
computed by multiplying it by an adjustment factor which is
simply the total number of patterns evaluated for significance.

Pattern discovery algorithm. The pattern discovery algo-
rithm (Figure 3) employs a suffix tree data structure, which
compactly stores all suffixes and substrings occurring within
a data string. The algorithm proceeds as follows. First, for a
viewpoint selected by the analyst, every piece is transformed
into a viewpoint sequence. Then, every suffix of this view-
point sequence is incorporated into the suffix tree. This suffix
tree is scanned to produce the set of all patterns that occur
within at least £ pieces (we use & = 10 for most of our re-
sults). The size of this set is the adjustment factor used to
compute pattern p-values. The statistical significance of each
pattern in this set is evaluated, and insignificant patterns are
discarded.

Longest significant patterns. The output from the algo-
rithm above can include many patterns that are significant
yet contained within longer significant patterns. To handle
this effect, we place all significant patterns into a subsump-
tion taxonomy (Woods 1991). This is a directed graph where

(a) For a selected viewpoint, transform all pieces in the cor-
pus into viewpoint sequences.

(b) Incorporate the viewpoint sequence for every piece into a
suffix tree.

(c) Search the suffix tree, building the set of all patterns oc-
curring in at least k pieces.

(d) Compute a p-value for each pattern, discarding insignifi-
cant patterns.

(e) Build a subsumption taxonomy from all remaining signif-
icant patterns.

(f) Report the leafs of this structure as the longest significant
patterns in the corpus.

Figure 3: The multiple viewpoint pattern discovery algorithm.

events
voice total average
soprano | 9226 50
alto 11361 61
tenor 11570 63
bass 11809 64

Table 1: The event composition of 185 Bach chorales; the
total number of events in a voice, and the average number in
each voice in a chorale.

nodes represent patterns and links represent pattern contain-
ment (subsumption). In a sense, the subsumption taxonomy
can be viewed as an expansion of the suffix tree; nodes be-
come explicit patterns rather than viewpoint elements.

Following the construction of the subsumption taxonomy,
the longest significant patterns are found at the leafs (nodes
subsuming no other nodes) of the data structure.

The chorale data set. This study uses 185 Bach chorales,
comprising a total of about 40000 events (Table 1). Sections
annotated by a repeat are not expanded. Even so, this data set
has some redundancy, in the form of some transposed chorale
melodies and transposed reuse of phrase material. For this
study we do not attempt to remove this redundancy.

3 Results

About 20 viewpoints were encoded; most of them pertain to
melodic and rhythmic aspects of the chorales. Several view-
points are test viewpoints that are used mainly for linking and
threading with other viewpoints. We have also encoded some
viewpoints which model harmonic or vertical structures. An
extended set of viewpoints and results will appear in a longer



number of patterns

k total significant longest

2 11305 | 7263 275 (16.9)
5 1285 | 237 81 (7.1)
10 | 535 96 33 (6.1)
25 174 40 15 (5.1
50 |75 23 9 (4.6)
100 | 28 9 6 3.7

Table 2: Numbers of patterns found within the soprano line of
185 Bach chorales, using the melodic interval viewpoint. The
second column refers to the number of raw, unfiltered patterns
occurring in at least £ pieces. The third column refers to the
the number of statistically significant patterns at a p-value of
0.01. The last column refers to the number of patterns remain-
ing at the leafs of the subsumption taxonomy. The average
length of the longest patterns is indicated in brackets.

paper. Here, the adjusted p-value cutoff for patterns was set
to 0.01. In all experiments, unless specified otherwise, the pa-
rameter k (the minimum number of pieces a pattern must oc-
cur in) was set to 10.

In this section we present some results obtained with the
pattern discovery algorithm. Our most interesting results came
from the linked and the threaded viewpoints, where we iden-
tified patterns that captured deeper structure of the music. The
patterns presented in Figure 4 are among the highest scoring
patterns that were discovered for the particular viewpoints.

General behavior of the algorithm. Table 2 illustrates the
behavior of the algorithm as a function of the parameter k
(the minimum number of pieces a pattern must occur in). At
lower values, the method discovers many patterns. The fil-
tering effectiveness (from total patterns to longest significant
patterns) can be as high as 98%. At & = 2 many long pat-
terns are found; most of these long patterns arise from redun-
dancy with the corpus. As k increases, the patterns found are
shorter, as they are required to occur in more pieces. Even
with k£ = 100, some significant patterns are found.

Melodic intervals in soprano and alto voices. For the so-
prano line, 33 longest significant melodic interval patterns
were found. For the alto line, 29 were found. Referring to
example 4(a), it is quite common in the soprano to have step-
wise movement. The initial rising fourth suggests a harmonic
progression of V-1, and it is likely that the I is on the strong
beat.

Example 4(b) demonstrates a familiar feature of alto lines:
flat melodic lines that serve mainly to fill in the harmony. The
semitone movement suggests a leading note to tonic succes-
sion. A leading note is restricted: it can usually rise up to the

(a) int 11,10 (soprano) (5,2,2,1,2, -2, —-1,—2)

fies s

o o

(b) int 13,12 (alto) (1,0, —1,1,0,—1, —4)

A
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B go © © go © ©° Zo
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D LS =
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(f) int ® dur 10,10 (soprano) ({(—5,2), (2, 2), (1,4),(—1,4))
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(g) int © iSq 14’10 (SOPraDO) ((17 4)7 <7174>7 <727 4)7 <7274>7 <474>)

- \ \ !

L

Figure 4: Some multiple viewpoint patterns discovered in the
185 Bach chorales. Each block illustrates an instance of a pat-
tern, with its viewpoint, total count, piece count, voice, and
pattern. An event is presented as a semibreve if its duration
is not determined by the viewpoint pattern. The viewpoint
pcint is the pitch class interval viewpoint. The dots between
the crotchets in the threaded viewpoint signify that quavers or
even semiquavers may occur between the indicated pitches.
All viewpoint patterns are invariant under transposition.



tonic, or occasionally drop a third (in the middle voices). Here
we have an example of both.

Melodic contour. A single significant melodic contour pat-
tern, example 4(c), was discovered by our algorithm. This is
a long line, spanning 12 events, that occurs within 10 pieces.
It is of interest that the interval pattern of 4(a) is a specific
instance of a portion of this contour pattern.

Pitch class intervals for bass. For the bass line, we used
a pitch class interval viewpoint. A total of 57 longest signif-
icant pitch class interval patterns was found. Pattern 4(d) is
an example of harmonic movement — the end of the segment
shows a potential perfect cadence.

A well known common pattern in the bass line of the
chorales is a chromatic stepwise movement, which is men-
tioned in most Bach chorale composition books. In example
4(e) we have found a pattern for this phenomenon. This pat-
tern occurs 19 times, within 12 different pieces.

Linked interval and duration. For linked viewpoints, we
were able to combine different parameters to see how these
are related in the music. For example, for a linked viewpoint
between melodic intervals and duration, we found 23 longest
significant patterns. Figure 4(f) is an example of a leap in the
soprano followed by rapid stepwise movement of the oppo-
site direction, presumably to counterbalance potential singing
mistakes in a congregation.

Threaded viewpoints. An example of a threaded viewpoint
is one which describes the melodic interval at crotchet beats.
A total of 335 patterns was discovered, and after the subsump-
tion filter 17 remained. Figure 4(g) shows one threaded pat-
tern. Occurrences of this pattern can include quavers or semi-
quavers in between the crotchets. These can be passing notes
(at the last interval), consonant skips, échapées, cambiatas,
and suspensions.

Threaded patterns are a step closer to the metric reduction
or deeper structure of a work in the Schenkerian sense (Forte
and Gilbert 1982). However, a metric reduction is more com-
plicated than the process of the threaded viewpoint: for ex-
ample, in case of a suspension, the harmonic note might not
be on a crotchet beat. In that case, applying pattern discovery
to a metric reduction of the score would yield better results.

4 Discussion

Pattern discovery in music is a difficult problem. Making truly
new discoveries is rare, but computational techniques can con-
tribute. This paper has presented a new formalism for de-
scribing musical patterns and a new algorithm for discovering
them. The computational approach employed is to look for

patterns which occur much more frequently than expected.
The use of p-values for patterns can separate the truly signif-
icant patterns from statistical background. These significant
patterns can be explored further by the music analyst.

There have been various approaches to automatic pattern
discovery in music. Most approaches focus their analysis on
a single piece for patterns (Cambouropoulos 1998; Hsu et al.
1998; Meredith et al. 2001) and are not directly applicable to
the analysis of a large number of pieces. Though an artificial
single piece might be constructed for these methods by join-
ing several pieces together, since they have running times of
a polynomial order in the length of the piece they may not be
practical for the analysis of hundreds or thousands of pieces.

An approach that can naturally find patterns in two pieces
is known as dynamic programming (Mongeau and Sankoff
1990). In this technique musical similarity is encoded into a
distance function, pairs of transposed melodies are compared,
and the common pattern is the trace of aligned elements. It-
erations of this pairwise comparison are necessary in order to
find patterns occurring within more than two sequences. By
contrast, in our approach, knowledge is encoded into discrete
modules, the viewpoints. Patterns are found not in a surface
representation but rather in a deeper transformed representa-
tion. Rather than looking at similarity or partial similarity in
the score, we shift the problem into the representation level,
and look for identity. An identity at one or more viewpoints
results from a similarity (of varying degree) in the music. Fur-
thermore, since we seek identities within a transformed repre-
sentation, our algorithm is computationally efficient and will
find all of the patterns in a corpus.

Pattern discovery algorithms can produce voluminous out-
put which must be filtered for both statistical and musical sig-
nificance. This is usually done by preferring the longest, most
frequent patterns. However, the properties of pattern length
and frequency are inversely related, because longer patterns
tend to occur less frequently. Balancing these two properties
in a single measure is the essence of evaluating a pattern.
Cambouropoulos (1998) uses a function of the three variables
of pattern length, pattern frequency, and pattern overlap to
rank patterns. The parameterization of the equation involving
these three variables is performed manually by the investiga-
tor. Hsu et al. (1998) calibrate a minimum acceptable pattern
length by running the method on synthetic random melodies.

It can be demonstrated that the pattern score of Equation 3
balances the two properties of frequency and length in a sin-
gle measure, and avoids the need for pattern length threshold
specification. It follows from Equation 3 that for a pattern P,
if its frequency #(P) remains constant while its length in-
creases, its expected frequency F(P) will decrease while its
score will increase. On the other hand, if its length remains
constant while its frequency #(P) increases, its score will
increase because F/(P) will remain constant.

In Nattiez’ (1975) two paradigmatic analyses of Debussy’s



Syrinx, we observe the need for longest significant patterns
(first analysis) and most general patterns (second analysis).
Both types of patterns are useful for further music analysis.
Nattiez permits pattern overlapping in exceptional circum-
stances, when it is felt that both patterns are equally important
and belong to different classes. In our method, pattern over-
lapping is allowed only when the overlapping patterns are not
covered by a longer significant pattern.

An approach to musical style recognition (Westhead and
Smaill 1993) and generation (Cope 1987) is to use a catalog
of signatures that cover instances of the style. An interest-
ing application of our method is to produce the most general
consistent patterns occurring within a musical corpus. Con-
sistency can be defined with respect to positive and negative
examples of the style. The most general consistent patterns
will be more useful than the longest significant patterns for
the task of style recognition, as they are more frequent in the
musical corpus and much more likely to occur in new, unseen
examples of the style. For the task of style generation, general
patterns are less likely to be recognizable as fragments from
the pieces used to define the patterns.

Patterns are statistically significant if they are surprising
with respect to a background model. Therefore, the closer
the background model is to the style under consideration, the
more subtle and interesting the discovered patterns will be.
In this study we have used a fairly primitive Markov model
as a background model. Alternatives to this are to parameter-
ize the Markov model on another style, or on another voice
within the corpus.

Although Bach chorales have traditionally been treated as
exemplary harmonic sequences of a homophonic texture, our
results show that voice-leading techniques are just as impor-
tant as in the other works of J.S.Bach. Our model is espe-
cially suitable for teaching purposes in that it can contribute
information on Bach chorale composition by the production
of significant sequential patterns of the various viewpoints.

In summary, this paper has presented a new approach to
pattern representation and discovery which is particularly well
suited to various music analysis purposes. Based on the mul-
tiple viewpoint formalism, it produces explicit viewpoint pat-
terns rather than similarity judgments of note patterns. Music
is transformed into viewpoint sequences. An efficient suffix
tree data structure is used to rapidly discover all patterns. A
statistical method is used to restrict attention to only those
patterns which occur much more frequently than expected.
The significant patterns are organized into a subsumption tax-
onomy, and the longest significant patterns in a corpus are
found at the leafs of the structure. The method presented here
can be used to rapidly enumerate all patterns within a large
corpus.

Future work will include application of the pattern dis-
covery method to harmonic aspects of music, and a more
extensive analysis of patterns discovered for multiple view-

points. The interactions between melodic and vertical view-
points will be used to provide further interesting insights to
the corpus of the Bach chorales.
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