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Abstract. This paper discusses a mathematical model together with its
computational realization, for the motivic analysis of a piece of music.
Relations between the mathematical model (motivic topologies), compu-
tational counter-part (OM-Melos), and music analysis are presented in
the light of general concepts of computational music analysis, stressing
the importance of neutrality and scientific rigour in the modelling part,
while preserving the freedom of the analyst.
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1 Introduction

Mathematical modelling in music addresses topics ranging from traditional mu-
sic theory to more contemporary theories of gesture and performance. A math-
ematical model however is an abstract construct, which needs a computational
counterpart in order to be applicable to music analysis. Computational music
analysis (CMA) is an area of research which uses computational means for mu-
sic analysis purposes. Its aims are to produce musicologically interesting results
and formalize the human analytical process, while assisting the analyst with
data, calculations, and making explicit analytical choices. The whole modelling
process, be it mathematical and/or computational, in order to be meaningful
needs to remain close to the main questions of music analysis. In this paper, we
exemplify some of the challenges in this enterprise.

2 The Mathematical and Computational Models

2.1 Motivic Spaces: the Mathematical Model.

We briefly enumerate the main concepts of the model; see [1,2] for details and
examples. A topological space on the infinite set M OT of all theoretical mo-
tives is constructed: A motif M of cardinality n is a non-empty finite set of n
notes with all different onsets. A set mapping t on M OT, called shape type,
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a group P action on motive shapes leading to gestalts (imitation classes), and
pseudo-metrics (similarity functions) d,, on motive shapes with fixed cardinal-
ities n, retracted to motives as gdf (M, N) = inf, sep dn(p - t(M),q - t(N)),
are introduced. This leads to a topological space on each set M OT;, of motives
of cardinality n. But a crucial step for regrouping motives of different cardi-
nalities is the introduction given a similarity threshold ¢ > 0, of the sets:
VHEPA(M) .= {N € MOT|N* C N s.t. gd(N*, M) < €}. If the inheritance
property is fulfilled [1], the collection of all V.%:4F (M) forms a basis for a topol-
ogy T; p.a on MOT. In this space, the e-variations sets, Vart4F (M) := {N €
MOT|N € VEPA(M) or M € VEP4(N)}, conceptualize variations of motives.
The motivic space of a piece S is the relativization of 7; p 4 to MOT(S),
an arbitrary finite collection of motives in .S, and represents the motivic structure
of S [1]. Motivic analysis schemes are further modeled: (1) The identification of
germinal motives, as proposed by Rudolph Réti [3], is modeled by quantifying
Vart4F (M) sets through a weight function [1]; (2) Paradigmatic categoriz-
ing, the first stage of semiotic analysis as proposed by Nattiez [4], is realized
using Vart P (M) sets [5]; and (3) an indirect temporal distribution of

€
motivic paradigms, is proposed by extending the weight function to notes [2].

2.2 OM-Melos: The Computational Model.

Applying the mathematical model to motivic analysis means to explicitly con-
struct a motivic space of a piece together with the analysis scheme models. The
following describes the computational model implementation (‘OM-Melos’ [5]).}

1. Data representation The manipulation of data is symbolic (using MIDI as
the input format). The piece S is reduced to its set of notes: (onset, pitch).
2. Segmentation. Given the segmentation preference (using large sections or a
time window), the set MOT(S) of motives in S for the analysis is computed.
3. Choice of knowledge representation of motives. Given the shape type
t selected by the analyst, that is the musical parameter(s) the analysis will
focus on, OM-Melos computes the shape of each motif in MOT(S).
4. Motivic grouping into gestalts. Given the (paradigmatic) group P se-
lected by the analyst, motives are regrouped with their imitations (gestalts).
5. Motivic similarity. Given a similarity function d, the distance between
any two gestalts of motives in MOT(S) with same cardinality is calculated.
6. Futher motivic analysis procedures
(a) Calculation of weights. Given a weight function, the weight of each
gestalt in M OT(S) and of each note in S are calculated.
(b) Paradigmatic categorization procedure. Given a collection X C
MOT(S) of motives in S, the paradigmatic categorization is calculated.
7. Result production. Intermediate and final results (of diverse types, e.g.
numerical, graphic, and music) are returned to the analyst for interpretation.

! Tt is a complete-model, stand-alone version of MeloRUBETTE in RUBATO [6].
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3 Related Issues in Computational Music Analysis

The above procedure describes the steps in the present computational approach.
Below, some related key concepts of computational music analysis are discussed.

— Segmentation: Any set of motives in a piece could theoretically be set
as MOT(S); e.g. all motives in a piece. But, this would include potentially
absurd note combinations, musically meaningless (e.g. the 2-note motif com-
prising the very first and last note of a piece). The choice of the segmentation
is carried out manually and relies on the judgement of the analyst. Overlap-
ping segmentation is allowed, as well as segments that span across voices.

— The concept of motif: It is a particularly general one. Theoretically, a
motif can be any combination of notes (with different onsets) taken from the
piece. However, in the realization of the piece, only selected motifs through
the segmentation are taken into account (Step 2). A motif may also comprise
non-consecutive notes in the piece.

— Knowledge representation: The representation of information (or knowl-
edge) for use in intelligent problem solving lies at the core of any compu-
tational modelling approach, almost forming an independent area of study
within Artificial Intelligence. In music processing, this defines not only what
musical information is represented, but also how this is done. There can be
several parameters extracted, at different levels of abstraction. In this case,
they are: onset, pitch, duration, and loudness, which can be considered either
alone, or in combinations. Further derived representations, including interval
and contour functions are calculated on any of the parameters, defining thus
the shape of the motif (Step 3). Knowledge representation allows motives
with the same representation to be grouped together. In this case, the sim-
ilarity of the musical surface (different motives) is based on the identity on
the musical parameter level.

— The concept of similarity and categorization: This approach allows
for several levels of motivic groupings and categorizations, based on various
types of similarity relations and criteria: Level 1 is realized through the
different abstract knowledge representations, as explained above (Step 3).
Motives with the same representation are considered identical for further
analysis; Level 2 takes place when constructing the gestalts (Step 4). Motives
with the same gestalts are considered identical for further analysis; Level 3
is related to distances between gestalts, according to a chosen similarity
function and threshold (Step 5). In this level, which allows variations, only
motives with the same cardinality are considered; Level 4 is directly related
to the formalization of variations of motives (as involved in Step 6a). Motives
with different cardinalities are now considered and regrouped in e-variations
Var., according to a similarity threshold e.

4 Theoretical implications and conclusions

In this paper we discussed connections between the mathematical and the com-
putational model of motivic topologies, as applied to music analysis. While sim-
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ilar concepts exist in the two disciplines, mathematics and informatics, their
relation is not always straightforward. To conclude, we bring up two issues that
we consider important for this type of collaborative interdisciplinary research.

a. Scientific rigour and objectivity: A model is by definition rigorous and
scientific. The analysis procedure should thus be reproducable as long as the
parameters used by the analyst are taken into account. One related question is
whether the process of music analysis, following a model, can also be thought of
as “neutral” (in Nattiez’ terms) and objective?. When looking at the described
mathematical model, it first proposes an abstract construct on an infinite set
of theoretical motives. It then carries the topological structure to “an arbitrary
finite set of motives”. Whether the actual choice of the “arbitrary” set of motives
for the analysis of a piece makes sense, or the choice of analysis parameters is
appropriate, one possible answer is that as long as the points of choice for the
analyst are made explicit, the analytical process is formalized, and therefore
perhaps closer to what Nattiez had originally envisaged.

b. Analytical freedom: It is clear that the freedom of choice given to the
analyst is a significant aspect of the model in all its steps. Since the model is
of generic nature, one would wish to vary the parameters for a more complete
and context-free analysis. As in many computational music analysis approaches,
the proposed model involves a similarity threshold in its procedures. Should this
analytical parameter also be made accessible to the analyst (although it is not
clear on which criteria the analyst would base his choice)? This turns out to be
a key aspect of the approach: due to the diverse visualizations of results, the
analyst does not have to select a similarity threshold a priori, but instead can
use the overall motivic spectrum, e.g. the paradigmatic categorization dynamic
plots, and select, a posteriori, which similarity thresholds should be considered
based on the meaningfulness of their corresponding results.
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2 In [7], the authors ask “Can this type of analysis [CMA] be closer to what Nat-
tiez originally thought about the neutrality, objectivity and scientific nature of music
analysis? Researchers working in CMA are called to address the issue.” (pp. 75-76).



