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Physiological processes vary widely across individuals and can influence how individu-
als respond to environmental change. Repeatability in how metabolic rate changes 
across temperatures (i.e. metabolic thermal plasticity) can influence mass-scaling expo-
nents in different thermal environments. Moreover, repeatable plastic responses are 
necessary for reaction norms to respond to selective forces which is important for 
populations living in fluctuating environments. Nonetheless, only a small number of 
studies have explicitly quantified repeatability in metabolic plasticity, and fewer have 
explored how it can impact mass-scaling. We repeatedly measured standard meta-
bolic rate of n = 42 delicate skinks Lampropholis delicata at six temperatures over the 
course of four months (N[observations] = 4952). Using hierarchical statistical techniques, 
we accounted for multi-level variation and measurement error in our data in order to 
obtain more precise estimates of reaction norm repeatability and mass-scaling expo-
nents at different acute temperatures. Our results show that individual differences in 
metabolic thermal plasticity were somewhat consistent over time (Rslope = 0.25, 95% 
CI = 2.48 × 10−8 – 0.67), however estimates were associated with a large degree of 
error. After accounting for measurement error, which decreased steadily with tem-
perature, we show that among individual variance remained consistent across all tem-
peratures. Congruently, temperature specific repeatability of average metabolic rate 
was stable across temperatures. Cross-temperature correlations were positive but were 
not uniform across the reaction norm. After taking into account multiple sources of 
variation, our estimates for mass-scaling did not change with temperature and were in 
line with published values for snakes and lizards. This implies that repeatable plastic 
responses may promote thermal stability of scaling exponents. Our work contributes 
to understanding how energy expenditure scales with abiotic and biotic factors and the 
capacity for reaction norms to respond to selection.
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Introduction

All biological processes hinge on the availability of energy 
(Allen et al. 2005). Metabolic rate (MR) governs how much 
energy is available to be allocated to competing processes 
such as growth, reproduction and maintenance (De Jong and 
Van Noordwijk 1992, Brown et al. 2004, Biro and Stamps 
2008). MR is thought to be critical to fitness due to its func-
tional links to morphology, behaviour and life-history pro-
moting the integration of these traits (Biro and Stamps 2010, 
Réale et al. 2010, Friesen et al. 2017, Malishev et al. 2017). 
For example, short-lived ecotypic garter snakes Thamnophis 
elegans tend to have much higher mass-specific metabolic 
rates, larger body sizes, faster growth rates and invest more 
heavily into reproduction compared their long lived ecotypic 
counterparts (Bronikowski and Vleck 2010). The integration 
of these traits may be due to the close association between 
body mass and metabolic rate. Body mass and metabolic rate 
typically show a power relationship with an scaling exponent 
ranging from 0.64 to 0.88 (White et al. 2006). Scaling expo-
nents less than one indicate that energy expenditure scales 
disproportionately with mass, such that small organisms 
tend to have higher energy expenditure after controlling for 
body mass. Metabolic scaling exponents are incredibly heter-
ogenous among (White et al. 2006, Uyeda et al. 2017) and 
within taxa (Burton et al. 2011, Norin and Gamperl 2018), 
yet the drivers of such variation are not well understood.

One powerful application of mass-scaling relationships 
is its ability to explain and predict ecological processes 
across levels of biological organisation (Brown  et  al. 2004, 
Allen et al. 2005, Barneche and Allen 2018). In theoretical 
studies, among and within individual variation in energy 
consumption is assumed to be the same, however, few empir-
ical studies have actually tested this assumption. Indeed, 
individuals can vary in their relative organ mass and body 
composition yielding very disparate energetic demands in 
different environments (Scott et al. 1996, Steyermark 2005). 
Additionally, variation in mitochondrial efficiency in fish 
underpins stark differences in MR despite mass remaining 
the same (Salin et al. 2016). Ignoring individual variability 
in physiological processes may be problematic for compara-
tive studies as individual effects can be erroneously absorbed 
into higher levels of biological organisation (van de Pol and 
Wright 2009). This may bias mass-scaling exponents and 
increase heterogeneity among studies. Furthermore, mass-
scaling exponents may be susceptible to sampling variability 
because metabolic rate and body mass tend to be measured 
once per individual and then averaged across a population. 
Understanding the consistency of metabolism at the indi-
vidual level may help explain interspecific variation in mass-
scaling exponents (Uyeda et al. 2017).

Temperature fluctuates extensively within the lifetime of 
ectothermic organisms and this has a profound impact on met-
abolic rate. Numerous studies have found that scaling expo-
nents show temperature dependence in a multitude of ways, 
however patterns are highly species-specific (Glazier 2005, 
Barneche et al. 2016). For example, mass-scaling exponents 

increased with temperature in teleost fish (Killen et al. 2010), 
but decreased with temperature in crustaceans (Ivleva 1980). 
In contrast, mass-scaling exponents were stable across tem-
peratures in tegu lizards (Toledo  et  al. 2008). Temperature 
dependence of mass-scaling relationships imply that meta-
bolic costs for individuals of varying body sizes depend on 
the thermal environment (Barneche et  al. 2016). However, 
individuals can also vary in their metabolic thermal plasticity, 
that is, their capacity to adjust their metabolic rate in response 
to temperature (Individual × Temperature, Nussey  et  al. 
2007). Individual thermal plasticity can be important for 
understanding temperature dependence of mass-scaling and 
how selection might shape metabolic plasticity, however, 
this has rarely been considered (Piersma and Drent 2003, 
Barneche  et  al. 2016). Low consistency in individual ther-
mal plasticity can introduce variability in metabolic rate 
across temperatures which can give rise to spurious patterns 
of temperature dependence. If individuals respond to tem-
perature consistently though, mass-scaling is expected to be 
robust to temperature changes (Clarke 2004). Consistent 
variation in metabolic thermal plasticity is also the minimum 
requirement for plasticity to evolve as it represents the raw 
material for selection to act on (Wilson 2018). Despite stud-
ies on a range of taxa recognising that individuals differ in 
their metabolic thermal plasticity, its repeatability has rarely 
been formally estimated (but see Briga and Verhulst 2017, 
Réveillon et al. 2019).

Here we examine how individuals differ in energy expen-
diture in relation to body size and acute temperature changes 
in male delicate skinks Lampropholis delicata. While sex dif-
ferences in metabolic rate have been reported in some liz-
ard species (Orrell  et  al. 2004), we only used males in our 
study because the extended period over which metabolism 
measurements took place meant that females would be gravid 
and ovipositing – characteristics that can drastically influence 
metabolic rate (Patterson and Davies 1984, Angilletta and 
Sears 2000). We repeatedly measured routine metabolic rate 
over four months to address three key questions. 1) Does 
metabolic thermal plasticity consistently differ among indi-
viduals? 2) How does repeatability of MR change with tem-
perature? 3) Do population mass-scaling exponents change 
with temperature when accounting for among- and within-
individual variation in MR? Unravelling the complexities of 
individual physiological processes will have important con-
sequences for understanding how populations respond in 
warming environments.

Material and methods

Lizard collection and husbandry

Lampropholis delicata is a small oviparous, skink found 
throughout eastern Australia (Chapple  et  al. 2011). They 
have a short lifespan (2–4 years in the wild) and their repro-
ductive season is from September to February (Chapple et al. 
2014). Between 28 August and 8 September 2015, 42 male L. 
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delicata were collected from four sites near Sydney, Australia. 
Lizards were caught by hand or by mealworm fishing and 
were transported individually in calico bags in an ice-cooler 
to Macquarie University. Lizards were housed in a tempera-
ture-controlled room set at 26°C and were provided with a 
thermal gradient (24–34°C) to allow for thermoregulation. 
Each lizard was kept individually in an opaque plastic enclo-
sure measuring 35 × 25 × 15 cm (L × W × H). Each enclo-
sure was lined with newspaper and lizards were given access 
to a water bowl and tree bark as a refuge. Enclosures were 
placed under UV light (11L:13D light–dark cycle). Lizards 
were fed three to four small crickets Acheta domestica dusted 
with calcium powder and multi-vitamin every two days when 
metabolism measurements were not taking place.

Measuring metabolic rate at different temperatures

Given the scale of our experiment, we used closed-system 
respirometry instead of intermittent-flow through respirom-
etry. We measured routine metabolic rate (hereafter referred 
to as metabolic rate [MR]) as we could not control for addi-
tional energy expenditure resulting from small amounts of 
activity within chambers (although it was likely to be small) 
(Withers 1992, Mathot and Dingemanse 2015). Metabolic 
rate was measured as the volume of CO2 production per unit 
time ( VCO2  ml min−1) for animals in a post-absorptive state 
because CO2 production is easier to detect in smaller organ-
isms, and is less susceptible to fluctuations in water vapour 
than O2 consumption (Artacho  et  al. 2013). Our prelimi-
nary data showed that CO2 production was strongly corre-
lated with O2 consumption nonetheless (r = 0.94, p ≤ 0.05). 
Measurements took place a year after collection, between 
26 November 2016 and 19 March 2017 as lizards were also 
part of ongoing breeding experiments. While lizards were 
predicted to have acclimated to lab conditions, our measure-
ments should have still captured any individual variation 
in MR attributed to genetic and developmental differences 
among individuals (Dingemanse and Wolf 2013). Due to 
logistical constraints, lizards were randomly assigned to one 
of two blocks for MR measurements. Each block was mea-
sured three days apart (block 1: n = 23, block 2: n = 22). 
We used two incubators to control the acute temperature 
at which measurements were taken (± 1°C). Measurements 
were taken in a random order at 22, 24, 26, 28, 30 and 32°C 
over three days (measurements at two temperatures per day). 
We also statistically accounted for the order of temperatures 
animals experienced in our analyses to control for any pos-
sible carry over effects of higher temperatures on individuals’ 
subsequent MR measurements.

After a 24-h fasting period, the body temperature of 
each individual inside their enclosure was taken using an 
infrared laser gun (Stanley stht0-77365) in the morning 
(~06:00). Each lizard was then gently encouraged into 
their 146 ml opaque chamber and weighed using a digital 
scale to the nearest 0.01 g. Chambers were placed inside 
the incubators in the dark at a randomised temperature for 
30 min. The lids of the chambers were left ajar during this 

time to minimise CO2 build up. After 30 min, each cham-
ber was flushed with fresh air and sealed. A 3 ml ‘baseline’ 
air sample was immediately taken via a two-way valve to 
account for any residual CO2 that was not flushed from the 
chambers. The chambers were left in the incubator at the 
set temperature for lizards to respire for 90 min. After this 
time, two 3 ml air samples were taken from each chamber. 
Chambers were then reopened and flushed with fresh air 
before being placed back into the incubator for the second 
measurement temperature (two temperatures per day) fol-
lowing the same procedure.

All air samples were injected into the inlet line of a Sable 
System FMS with the flow rate set to 200 ml min−1 to mea-
sure VCO2  and VO2 . Water vapour was scrubbed from the 
inlet air after the injection point using Drierite (Fig. 4.1, 
Lighton 2008). Output peaks were processed using the 
R package ‘metabR’ (<https://github.com/daniel1noble/
metabR>). The rate of CO2 produced by an individual was 
calculated following Eq. 4.21 in Lighton 2008:

V ml min CO
CO

chamber lizard
2

- = ´ -1 2% ( )V V
t

	  (1)

where %CO2 is the maximum percentage of CO2 in air 
sample above baseline, which was corrected by subtracting 
any ‘baseline’ CO2 from the initial flush from the two air 
samples; Vchamber is the volume of the chamber (146 ml); Vlizard 
is the volume of the lizard, we used the mass of the lizard as 
a proxy for its volume (1 g = 1 ml) because of their high cor-
relation and increased accuracy and precision in mass mea-
surements (Friesen et al. 2017), and t is the duration of time 
in minutes after the chamber had been sealed and the first 
air sample was taken (90 min). Overall, our protocol allowed 
us to characterise the full reaction norm for each lizard 10 
times while accounting for measurement error. As such, our 
design resulted in n = 5040 measurements of metabolic rate 
across the 42 lizards ([2 air samples × 6 temperatures] × 10 
sampling sessions = 120 samples per lizard). However, miss-
ing data, resulting from equipment malfunction, meant that 
our total sample size was n = 4952.

Statistical analyses

All statistical analyses were conducted using the R environ-
ment, ver. 3.6.1 (<www.r-project.org>). Details on data 
cleaning are presented in the Supporting information, and all 
data and code with which to generate our results are openly 
available via the Open Science Framework (doi: 10.17605/
OSF.IO/TZ2H5, url: https://osf.io/tz2h5/).

Initial analyses showed that there were no differences in 
logVCO


2  between collection sites or statistical blocks of liz-
ards therefore these grouping variables were not included 
in our final models (Supporting information). Body tem-
peratures experienced by lizards prior to measurements were 
different depending on both 1) their home enclosure tem-
perature and 2) the first temperature experienced on the day 
of measurement. Differences in body temperature may result 
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in carry-over effects of the previous temperature on a lizard’s 
MR measurement at a given point in time. We therefore 
tested whether the body temperature measured in the home 
enclosure before the first measurement or the previous mea-
surement temperature (if MR measurements were underway) 
influenced logVCO



2  at subsequent temperatures. We found 
that a model containing ‘previous temperature experience’ as 
a covariate was better supported compared to a model without 
it (ΔWAIC (full model–reduced model = −8.39), we there-
fore included ‘previous temperature experience’ in all subse-
quent analyses (Supporting information). Pearson correlation 
coefficients and scatterplots showed that predictor variables 
were not strongly collinear (Supporting information).

We used Bayesian linear mixed effect models from either 
the package ‘brms’ (Bürkner 2017) or ‘MCMCglmm’ 
(Hadfield 2010). For logistical reasons, we fitted the ran-
dom slope model using ‘MCMCglmm’, and a multivariate 
response model using ‘brms’. Details on model priors and set 
up are presented in the Supporting information. For every 
model, we pooled the posterior estimates from multiple 
chains and presented posterior means and their 95% credible 
intervals.

Measurement error and repeatability of metabolic thermal 
plasticity
Repeatability is a ratio of among-individual and residual 
variance components (R = σA/(σA + σR)) and represents the 
proportion of phenotypic variance attributed to among-indi-
vidual differences (Nakagawa and Schielzeth 2010). The rela-
tive contribution to each variance component can shed light 
on the processes that promote repeatable traits (Dingemanse 
and Dochtermann 2013). Measurement error, however, can 
bias the estimation of variance components and affect repeat-
ability estimates (Ponzi  et  al. 2018). Given that we took 
two air samples for each MR measurement, we were able to 
estimate measurement error by including a nested random 
effect of individual ID, sampling session and temperature 
(Individual_ID:Session_ID:Temp, hereafter referred to as 
measurement error) in our models. This term partitions out 
variance attributed to measurement error among replicates 
from the residual variance, which includes other sources of 
within individual variance.

We fitted the following random slope model in 
‘MCMCglmm’ (nobs = 4952) in order to quantify the repeat-
ability of metabolic thermal plasticity (i.e. slopes for each 
individual):

logV Temp zlogBodyMass PriorTemp 1 Temp Individual_IDCO2
 ~ + + + +( | ))

+ +

+

( )

(

1 Temp Individual_ID Session_ID

1 Individual_ID Sess

|

|

:

: iion_ID Temp):

where: logVCO


2  is log-transformed VCO2 ; Temp is the tem-
perature in degrees Celsius; zlogBodyMass is log-transformed 
body mass that is then subsequently z-transformed; PriorTemp 
is previous temperature experienced by the lizard (enclo-
sure temperature or the previous treatment temperature). 

Individual ID, series (Individual_ID:Session_ID) and mea-
surement error were included as random intercepts. Series is 
a nested random effect of individual ID and sampling session 
(see Araya-Ajoy  et  al. 2015 for further explanation) which 
allowed us to estimate the slope repeatability. This term est-
mates between individual variance in slopes and takes into 
consideration of any changes in MR over the course of our 
four months of study. Temperature was included as a random 
slope for both individual ID and series to estimate among 
and within individual slopes. The repeatability of the slope is 
then calculated following Eq. 1 in the Supporting informa-
tion (Araya-Ajoy et al. 2015).

Repeatability of MR at each temperature and cross-
temperature correlations
After assessing whether individuals differ in their metabolic 
thermal plasticity, we were interested in knowing whether 
consistent among-individual differences in average MR 
change across temperatures. To achieve this, we fitted a mul-
tivariate response model by treating MR measurements for 
each of the six temperatures as separate traits (nobs = 840) in a 
6 × 6 response matrix:
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where, logVCO ”C21 1 22, ,  is the metabolic rate for individual 
1 in sampling session 1 at 22°C and logVCO ”C21 10 22, ,  is the 
metabolic rate for individual 1 in sampling session 10 at 22°C 
and so forth. Similar to the random slope models, we included 
zlogBodyMass and PriorTemp as fixed effects. Note that tem-
perature is no longer a predictor or a random slope term as tem-
perature is now part of the response matrix. In some instances, 
mechanical errors occurred during air collection. Given that 
‘brms’ requires complete data in the response matrix, we used 
the ‘mi’ function to impute the missing samples at each temper-
ature as this prevented us from excluding 607 rows of data. We 
included individual ID and series as random intercepts. In this 
model, series is responsible for partitioning out measurement 
error from the residuals. We calculated temperature specific 
repeatability following Eq. 2 in the Supporting information. 

We were also interested in the extent to which MR was 
correlated across all temperatures as this may illuminate trad-
eoffs in physiological function at different temperatures. We 
obtained cross-temperature correlations at the among-indi-
vidual level using the variance–covariance matrix obtained 
from the multivariate response model.

Mass-scaling exponents at different temperatures
Population estimates of scaling exponents can be affected 
by within and among individual variation (van de Pol and 
Wright 2009). We therefore wanted to partition out within 
individual effects in order to obtain more precise estimates 
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of mass-scaling across temperatures. To achieve this, we cal-
culated the mean mass across all sampling sessions for each 
individual (among individual effect), and subtracted an 
individual’s mass from its own mean to account for within 
individual effects (also known as within-individual centering, 
van de Pol and Wright 2009). These mass effects were log-
transformed and included in two models fitted in ‘brms’. The 
total number of observations for this analysis was nobs = 3933 
because ‘brms’ requires no missing values in logVCO



2  in order 
for this model to run. The first model (interaction model) 
had the following structure,

logV Temp logAmongIDMass Temp logWithinIDMass

1 logWit

CO2
 ~ ´ + ´

+ + hhinIDMass 1 TemIndividual_ID ( Individual_ID Session_ID| | : :( ) + pp)

where: Temp × logAmongIDMass is the interaction term 
between temperature and the log transformed among indi-
vidual mass effect; Temp × logWithinIDMass is the inter-
action term between temperature and the log transformed 
within individual mass effect. Individual ID was fitted a 
random intercept with logWithinIDMass as a random slope 
as individuals masses changed at different rates through the 
study (Supporting information). We also included the mea-
surement error term. The second model (main effects model) 
only had the main effects of temperature, the among individ-
ual mass effect and the within-individual mass effect and the 
same random effects structure as the interaction model. We 

tested whether population mass-scaling exponents (i.e. the 
among individual mass effects) changed with temperature by 
comparing WAIC and loo values between the interaction and 
main effects model. We report expected log predictive density 
(ELPD) values and standard error for the difference between 
the two models (Vehtari et al. 2017). We also present in the 
Supporting information an analysis that compared the mass 
scaling exponents with estimates, i.e. a model that represents 
the typical analysis of a metabolic scaling study from a model 
that did not account for the multi-level variation in the data.

Results

Repeatability of metabolic thermal plasticity

Individual slopes describing the effect of temperature on MR 
were significantly repeatable, albeit with wide credible inter-
vals (Rslope = 0.25, 95% CI = 2.48 × 10−8 – 0.67), suggesting 
individuals consistently varied in how their metabolic rate 
changed with temperature (Fig. 1). However, repeatability of 
the slope was relatively low.

Repeatability of metabolic rate at each temperature

We found that the repeatability of MR (i.e. individ-
ual intercepts) was stable across acute temperatures 
(Fig. 2). Temperature-specific repeatability was greatest at 
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Figure 1. A subset of ten random individual reaction norms of mass-corrected log metabolic rate ( VCO2  ml min−1) at six measurement tem-
peratures for sampling session one (left panel), five (middle panel) and ten (right panel) reaction norms. Points are predicted values from a 
random slope model. Each line represents a unique individual (n = 10).
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24°C, however credible intervals overlapped with estimates at 
other temperatures (Fig. 2, Supporting information). Upon 
closer inspection of the variance components at each tem-
perature, we show that measurement error decreased steadily 
with increasing temperature, whereas among individual 
variation remained relatively consistent with temperature 
(Fig. 2B). In contrast, within individual variance showed no 
consistent pattern with temperature, however it was highest 
in 32°C. In other words, individuals were responding more 
variably as 32°C while among individual differences were 
relatively stable (Fig. 2).

Cross-temperature correlations in metabolic rate

Metabolic rate across temperatures were positively correlated 
at the among-individual level (Fig. 3, Supporting informa-
tion). Positive correlations indicate that some individuals 
maintained a consistently high metabolic rate relative to other 

individuals, while others had a relatively low metabolic rate, 
across all temperatures. Metabolic rate measured at neigh-
bouring temperatures (e.g. 22°C and 24°C) were strongly 
correlated, but the strength of this correlation decreased with 
increasing differences between the two temperatures (Fig. 3).

Temperature dependence of population mass-scaling 
exponents

According to the WAIC values, there was equal support 
for both models ([Interaction model - main effects model] 
WAIC: ELPD = -4.54, SE = 3.69), whereas loo values pre-
ferred the interaction model ([Interaction model - main 
effects model] loo: ELPD = -18.19, SE = 6.44). Nonetheless, 
the credible intervals for the mass scaling exponent at each 
temperature overlapped substantially, suggesting a small over-
all effect size and weak evidence for temperature dependence 
(Fig. 4). Across all temperatures, the average mass scaling 
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Figure 2. Posterior mean of variance components and repeatability of log metabolic rate ( VCO2  ml min−1) at six measurement temperatures 
estimated over four-month period across n = 42 individuals. Error bars represent 95% credible intervals.
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exponent was 0.96 (95% CI = 0.39–1.52) which is in line 
with values reported for squamates (0.84, 95% CI = 0.70–
0.97, Uyeda et al. 2017). Mass-scaling exponents tended to 
be spurious and estimated with a larger degree of error when 
the within individual effects and measurement error were not 
statistically accounted for, see the Supporting information.

Discussion

Our results show that metabolic thermal plasticity was weakly 
repeatable over the four months of study in delicate skinks. 
Moreover, the repeatability of average MR was also not sus-
ceptible to acute temperature changes. Cross-temperature 
correlations of MR were all positive at the among-individual 
level. However, the strength of these correlations was not 
uniform across all temperatures. Mass scaling exponents were 
not strongly affected by temperature and in line with values 
reported for squamates when other sources of variation were 
partitioned out. Below we discuss the implications of our 
results for understanding how plasticity may evolve, and how 
MR scales at different hierarchical levels.

Consistent variation in metabolic thermal plasticity

Natural selection acts on phenotypic variation among indi-
viduals. Consistent among individual variation is therefore 
a key prerequisite for any trait to evolve and sets the ‘upper 

limit of heritability’ (Falconer 1952, cf. Dohm 2002). Our 
findings show that individuals differ consistently in how 
their MR responds to acute temperature changes over an 
ecologically relevant time period, although overall repeat-
ability of the slope was relatively low and imprecise. It is 
important to note that repeatability estimates capture varia-
tion due to both genetic and environmental effects, such as 
different developmental environments experienced by ani-
mals (Careau et al. 2014, Nørgaard et al. 2021). However, 
assuming a proportion of among-individual differences is 
the result of heritable variation our findings suggests that 
metabolic thermal plasticity may be capable of evolutionary 
change allowing shifts in population-level metabolic reac-
tion norms (Ghalambor et al. 2007). Average metabolic rate 
was also repeatable and stable across temperatures and sug-
gests that the operable range of temperature in L. delicata 
promotes consistency in physiological traits (Matthews et al. 
2016, Goulet et al. 2017). Measurement error declined with 
increasing temperature presumably because individuals were 
respiring at a higher rate making it easier to detect changes in 
CO2 production. Measurement error can inflate repeatability 
estimates if it is not accounted for statistically (Ponzi et al. 
2018). Indeed, we found a significant increase in repeatabil-
ity and among individual variance when we took averages 
between the two replicate air samples (Supporting informa-
tion). Consequently, one would mistakenly conclude that 
the capacity for selection to act on MR would increase at 
hotter temperatures. We stress the importance of consider-
ing confounding sources of variances such as measurement 
error or shared environmental effects to ascertain the poten-
tial for physiological traits to undergo selection. Quantifying 
the repeatability of reaction norm slopes is incredibly labour 
intensive and future studies should be aware that the accu-
racy of slope repeatability will be highly dependent on exper-
imental design and sample size (for guidelines see van de Pol 
2012 and Araya-Ajoy et al. 2015).

Cross-temperature correlations

Metabolic rate was positively correlated across all tempera-
tures at the among individual level. This suggests that indi-
viduals with high MR at one temperature also tend to exhibit 
high MR at other temperatures (and vice versa for individu-
als with low MR). Individuals could vary in their acquisi-
tion or allocation of resources enabling certain individuals to 
maintain a consistently high MR across all temperatures (De 
Jong and Van Noordwijk 1992, Angilletta Jr.  et  al. 2003). 
Consistent individual differences in MR, irrespective of 
the thermal environment, may be functionally linked with 
other aspects of the phenotype (Biro and Stamps 2010). Our 
results give precedence to ‘pace-of-life’ theory, specifically, the 
assumption that consistent individual differences in energetic 
expenditure underly individual differences in behaviour and 
life-history within the same population (Careau et al. 2008, 
Biro and Stamps 2010). For metabolism to be a causal driver 
of other phenotypic traits, it must be repeatable and corre-
lated across different temperatures, as we have shown.

Figure  3. Cross-temperature correlations of log metabolic rate 
( VCO2  ml min−1) at the among-individual level estimated from 
n = 42 individuals. Diagonal values are each measurement tempera-
tures. Lower triangle represents posterior mean estimates of 
correlations. Width and colour of the ellipse in the upper triangle 
represents the strength of the correlation.
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Figure 4. (Top) Posterior mean estimates of population mass scaling exponents (i.e. among individuals) of log metabolic rate ( VCO2  ml 
min−1) across six measurement temperatures when within individual variation in mass and measurement error in metabolic rate has been 
statistically accounted for. The dashed line represents the mass-scaling exponent of 0.84 estimated for squamates from Uyeda et al. (2017). 
Error bars represent 95% credible intervals. (Bottom) Raw log metabolic rate plotted against log body mass for a random subset of n = 20 
individuals at six measurement temperatures. Each uniquely coloured point represents one individual. Thick bold line represents the change 
in log metabolic rate over log body mass across all individuals (among individual mass scaling slope). Thin lines represent the change in log 
MR over log body mass within an individual (within individual mass scaling slopes).



9

The strength of cross-temperature correlations can help 
identify tradeoffs in physiological processes across different 
thermal environments. Such tradeoffs have been hypothe-
sised to be important mechanisms in shaping reaction norms 
(Angilletta Jr.  et  al. 2003). Generalist–specialist tradeoffs 
occur when some individuals have enhanced physiologi-
cal function in one environment but diminished function 
in another environment, manifesting as a negative cross 
environment correlation (Berger et al. 2014). We show that 
across different temperatures, correlations were all positive, 
providing no support for tradeoffs between temperatures 
in energy expenditure. While our temperatures fell within 
the normal temperature range experienced by animals in 
the wild, tradeoffs may exist in other parts of the thermal 
performance curve (Angilletta Jr.  et  al. 2003). Assuming 
phenotypic cross-temperature correlations reflect the under-
lying genetic architecture of metabolic rate (Roff 1995), the 
strength of correlation can dictate how strongly selection 
acting on one component of the reaction norm will result in 
indirect selection on another (Via et al. 1995). This implies 
that response to selection would be stronger between neigh-
bouring temperatures (e.g. 28°C versus 32°C) compared to 
more distant temperatures (e.g. 22°C versus 32°C) which 
might be important for the evolution of non-linear reaction 
norms (Berger et al. 2013). It is possible that low precision 
in incubator temperatures (± 1°C) may have contributed 
to positive cross-temperature correlations between adjacent 
temperatures, however this does not explain why correla-
tions were stronger at hot temperatures compared to cool 
temperatures.

Population mass-scaling across different 
temperatures

Mass-scaling exponents were robust to acute temperature 
changes, which disagrees with a growing number of studies 
that show temperature dependence of mass scaling expo-
nents (Glazier 2005, 2015, Killen  et  al. 2010, Price  et  al. 
2012, Barneche  et  al. 2016). Discrepancies may be due to 
the method by which we quantified mass scaling exponents. 
For example, we used mass as a proxy of body volume in 
our calculation of MR which can confound body mass with 
other aspects of body composition such as water content, 
lean mass and fat mass and in turn affect mass scaling coef-
ficients (Daan  et  al. 1990, McLean and Speakman 2000). 
Furthermore, in our study, we sampled sexually mature 
adults repeatedly over four months in order to estimate a 
static mass scaling relationship, while other studies tend to 
measure ontogenetic allometry (change in body mass and 
metabolic rate throughout development, Glazier 2009). The 
energetic demands of growth during ontogeny may be more 
sensitive to temperature change and therefore result in tem-
perature-dependence in ontogenetic mass scaling exponents 
(Hirst et al. 2014, Barneche and Allen 2018). In support of 
this, a recent comparative analysis has shown that develop-
ment (passing through life stages) shows stronger tempera-
ture dependence than increases in mass (Forster et al. 2011).

The magnitude and precision of mass scaling exponents 
may be affected by processes occurring at different hierarchi-
cal levels. Genetic and developmental differences that impact 
the physiological system can maintain permanent differences 
among individuals (Dingemanse and Wolf 2013). While fluc-
tuations in the internal environment, such as circulating hor-
mones and body composition, can affect the within individual 
responses (Scott  et  al. 1996, McCue 2010, Dupoué  et  al. 
2013). After accounting for within individual effects and mea-
surement error, our mass-scaling exponent estimates were con-
gruent with values reported from a phylogenetically informed 
analyses in squamates (Uyeda et al. 2017). This result may have 
important implications for current designs of metabolic scaling 
studies as MR and body mass tend to only be measured once, 
making them sensitive to sampling error and within indi-
vidual ‘noise’. Theoretical studies that make use of the predic-
tive relationship between body mass and metabolism should 
be more aware of the different sources of variation when try-
ing to extrapolate individual level processes to higher levels of 
biological organisation. Future work is warranted to investi-
gate the degree to which intra-individual variance in MR and 
body mass impact scaling exponents as this has largely been 
neglected, yet may help elucidate why mass scaling exponents 
are variable at higher levels of biological organisation (McLean 
and Speakman 2000, Maxwell et al. 2003, Glazier 2005).

Conclusion

In this study, we found that metabolic thermal plasticity was 
repeatable to a certain extent, with individuals showing mod-
erately low consistency in their reaction norms to acute tem-
peratures. Such individual consistency is difficult to quantify 
with high precision but may be important in promoting sta-
bility in mass-scaling across temperature. Our work implies 
that selective processes have a potential in shaping metabolic 
reaction norms. Quantitative genetic and experimental evo-
lution studies are necessary to truly understand the evolu-
tionary potential of metabolic thermal plasticity. However, 
our work also emphasises that future work should consider 
important hierarchical and methodological factors that can 
impact upon variation (e.g. measurement error). Neglecting 
to consider individual variation resulting from different levels 
of biological organisation altogether may misguide predic-
tions about ecological processes (Botero et al. 2015) and mis-
construe the evolutionary relevance of phenotypic variability 
in physiological traits (Ponzi et al. 2018).
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