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Abstract
1. Publication bias threatens the validity of quantitative evidence from meta- 

analyses as it results in some findings being overrepresented in meta- analytic 
datasets because they are published more frequently or sooner (e.g. ‘positive’ 
results). Unfortunately, methods to test for the presence of publication bias, or 
assess its impact on meta- analytic results, are unsuitable for datasets with high 
heterogeneity and non- independence, as is common in ecology and evolutionary 
biology.

2. We first review both classic and emerging publication bias tests (e.g. funnel plots, 
Egger's regression, cumulative meta- analysis, fail- safe N, trim- and- fill tests, p- 
curve and selection models), showing that some tests cannot handle heterogene-
ity, and, more importantly, none of the methods can deal with non- independence. 
For each method, we estimate current usage in ecology and evolutionary biology, 
based on a representative sample of 102 meta- analyses published in the last 10 
years.

3. Then, we propose a new method using multilevel meta- regression, which 
can model both heterogeneity and non- independence, by extending existing 
regression- based methods (i.e. Egger's regression). We describe how our multi-
level meta- regression can test not only publication bias, but also time- lag bias, and 
how it can be supplemented by residual funnel plots.

4. Overall, we provide ecologists and evolutionary biologists with practical recom-
mendations on which methods are appropriate to employ given independent and 
non- independent effect sizes. No method is ideal, and more simulation studies are 
required to understand how Type 1 and Type 2 error rates are impacted by com-
plex data structures. Still, the limitations of these methods do not justify ignoring 
publication bias in ecological and evolutionary meta- analyses.
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1  | INTRODUC TION

Evidence from meta- analyses often drives future research, and 
sometimes leads to changes in policy and practice (Gurevitch 
et al., 2018; Nakagawa et al., 2017). Therefore, it is essential for 
meta- analytic evidence to minimize bias. However, the validity 
of meta- analytic results can be compromised by publication bias 
(Marks- Anglin et al., 2021). Publication bias occurs when a subset of 
research findings, such as statistically non- significant results, are less 
likely to be published (e.g. the file drawer problem; Rosenthal, 1979). 
In a wider sense, publication bias could encompass many different 
types of bias relating to dissemination of evidence (see Jennions 
et al., 2013; Marks- Anglin et al., 2021; Moller & Jennions, 2001). In 
this article, the following two types are most relevant: (a) outcome 
reporting bias, where selective reporting occurs within published 
studies (Marks- Anglin & Chen, 2020a, 2020b) and (b) time- lag bias, 
where positive results are published earlier than negative results 
(Koricheva et al., 2013; Koricheva & Kulinskaya, 2019; Trkalinos & 
Ioannidis, 2005). Regardless of underlying causes of publication bias, 
if published findings are unrepresentative of all available evidence, 
meta- analytic results can be distorted.

Numerous methods have been developed to test for publication 
bias. These tests can be broadly categorized into two types: those 
that detect publication bias, and those that also assess the impact of 
publication bias on the results of the meta- analysis (Sutton, 2009). 
Both of these types of tests have been routinely used in meta- 
analyses in the medical and social sciences (Rothstein et al., 2005). 
However, in a survey of 100 meta- analyses in ecology and evolution, 
only 49% tested for publication bias, with just 22% conducting both 
types of tests (Nakagawa & Santos, 2012). In another survey, only 
31% of 322 ecological meta- analyses reported at least one test of 
publication bias (Koricheva & Gurevitch, 2014). Low uptake might 
reflect that many currently available tests for publication bias are 
unsuitable for ecological and evolutionary meta- analyses (Nakagawa 
& Santos, 2012), although the main cause probably is lack of wide-
spread awareness of the importance of publication bias tests in meta- 
analysis in ecology and evolution (Koricheva & Gurevitch, 2014).

Two features common to meta- analytic datasets in ecology and 
evolution pose problems for publication bias tests: high levels of 
heterogeneity and non- independence. Importantly, many currently 
available tests for publication bias fail when there are high levels of 
heterogeneity (e.g. Macaskill et al., 2001; Moreno et al., 2009; Sterne 
et al., 2001). Furthermore, Nakagawa and Santos (2012) noted that, 
at the time, there were no statistical methods to test for publication 
bias that could explicitly account for non- independent effect sizes. 
Highly heterogeneous data are common in ecology and evolutionary 
biology, as research questions often span many types of ecosystems 

and species. Non- independence is pervasive because many studies 
produce multiple effect sizes and, if a meta- analytic dataset includes 
multiple species, then effect sizes might also be correlated due to 
phylogenetic relatedness (Noble et al., 2017). Therefore, for a publi-
cation bias test to be useful in ecology and evolution, it would need 
to adequately handle both heterogeneity and non- independence (cf. 
Fernandez- Castilla et al., 2021; Rodgers & Pustejovsky, 2021).

Our aim for this article is twofold. First, we review classic and 
emerging methods for detecting and adjusting for publication bias, 
and assess their usage by conducting a new survey of 102 meta- 
analyses in ecology and evolution. Second, we introduce a method 
that both detects and adjusts for publication bias while dealing with 
heterogeneity and non- independence among effect sizes. To make 
our article widely accessible, we start by revisiting key statistical 
concepts in meta- analysis such as effect sizes, sampling variance, 
weights and heterogeneity (readers who are familiar with these con-
cepts can, therefore, skip the following section).

2  | KE Y STATSTIC AL CONCEPTS

2.1 | Common effect size statistics

Three types of standardized effect size statistics are most commonly 
used in meta- analyses in ecology and evolutionary biology (Koricheva 
& Gurevitch, 2014; Nakagawa & Santos, 2012). The first effect size sta-
tistic is the standardized mean difference, SMD (Cohen's d or Hedges' 
g are well- known estimators of SMD), whose point estimate and sam-
pling variance can be written as (Cohen, 1988; Hedges & Olkin, 1985):

where the ith effect size (SMD) and sampling variance (Var) are a func-
tion of the means (X), standard deviations (SD of sample) and sam-
ple size (n) of the two groups (1 and 2); Equations 1 and 2 could be 
modified to add a small sample- size correction factor (see Borenstein 
et al., 2009). Second, the logarithm of response ratio, lnRR (Hedges 
et al., 1999; also known as the ratio of means, or RoM; Friedrich 
et al., 2008) can be written as:
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where the notations are the same as above (see also Lajeunesse, 2015; 
Senior et al., 2020). Finally, Fisher's transformation of the Pearson's 
correlation coefficient, Zr (unbounded and normally distributed), can 
be written as (Hedges & Olkin, 1985):

where ni is the ith sample size used to obtain the correlation coeffi-
cient, ri. Incidentally, the variance of the correlation coefficient is: 
Var(ri) = (1− r2

i
)2∕

(
ni − 1

)
, although a meta- analysis using r, which is 

bounded at −1 and 1, is generally not recommended (see a relevant 
point in Section 4.2).

These frequently used equations show that sampling variance is 
at the heart of meta- analysis. As one can see, sampling variance is 
always a function of sample size, indicating (un)certainty around the 
point estimate of each effect size (see equations above). It is import-
ant to note that sampling variance, (sampling) standard error, preci-
sion and weight are often used interchangeably in the meta- analytic 
literature to refer to (un)certainty of a point estimate (Figure 1). For 
example, a point estimate with high certainty has low ‘standard 
error’ and ‘variance’, but high ‘precision’ and ‘weight’.

2.2 | Heterogeneity

Ecologists and evolutionary biologists predominately use a ‘random- 
effects model’ meta- analysis rather than a ‘fixed- effect model’ 
(Koricheva & Gurevitch, 2014; Nakagawa & Santos, 2012). A fixed- 
effect model assumes that a common overall mean exists among the 
population of effect sizes (i.e. homogeneity). A random- effects model 
and its extensions, on the other hand, assume that each study has its 
own mean estimate (for an extension, see Section 4.1; Nakagawa & 
Santos, 2012; see also figure 4 in Nakagawa et al., 2017). A random- 
effects model can be written as:

where �0 is the overall estimate (or meta- analytic mean), si is the 
between- study (effect size) effect for the ith effect size, normally 
distributed with a mean of zero and a variance of �2

s
 (which is more 

commonly referred to as �2; note when �2
s
 = 0, this model reduces to a 

fixed- effect model), and mi is the sampling error for the ith effect size, 
distributed with the ith sampling variance (vi; note that i = 1, 2, …, Neffect 

size, the number of effect sizes; when Neffect size = Nstudy, the number 
of studies, effect sizes are usually independent). The proportion of �2

s
 

against the total variance is often quantified as I2 = �2
s
∕(�2

s
+ v), where 

v is referred to as the ‘typical’ within- study (sampling) variance, which 
can be considered as a mean value of vi (Higgins & Thompson, 2002). 
In ecological and evolutionary meta- analyses, I2 is around 90%, on 
average, meaning only ~10% of variation among effect sizes is due to 
sampling variance (Senior et al., 2016). Therefore, publication bias tests 
assuming homogeneity (I2 or �2

s
 = 0) are unlikely to be useful for ecol-

ogy and evolution.

3  | PUBLIC ATION BIA S TESTS

The primary goal of this section is to provide a non- exhaustive but 
up- to- date overview of publication bias tests, both classic and emerg-
ing, especially for ecologists and evolutionary biologists (cf. Moller 
& Jennions, 2001; Jennions et al., 2013; for thorough technical re-
views, see Rothstein et al., 2005; Vevea et al., 2019; Marks- Anglin & 
Chen, 2020a; Marks- Anglin et al., 2021). Therefore, we summarize 
different methods of testing for the presence of publication bias and 
assessing its impact on meta- analytic findings— describing which 
methods are suitable for datasets with high heterogeneity and non- 
independence. Our recent survey of publication bias tests used in 
102 ecology and evolutionary meta- analyses indicates that many 
of these methods will be unfamiliar to ecologists and evolutionary 
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F I G U R E  1   A schematic showing the relationship among 
common terminology in the meta- analytic literature: standard error 
(SE), sampling variance, precision (the inverse of SE) and weight (the 
inverse of variance). Note that the inverse of variance is the weight 
for a fixed- effect model (the weight for a random- effect model is 
the inverse of the sum of sampling variance and between- study 
variance). In the statistical literature, the inverse of variance is 
also referred to as precision. Importantly, ‘standard error’ (SE) can 
be referred to as ‘standard deviation’ (SD), which is not incorrect 
because standard error is ‘standard deviation of a statistic’— not to 
be confounded with ‘standard deviation of a sample’
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biologists; Figure 2 shows the results of the survey (for the details of 
survey procedure, see Appendix S1).

Following Sutton (2009; see also Vevea et al., 2019), we cate-
gorize publication bias tests into two types: (a) detecting publica-
tion bias (e.g. funnel plots, Egger's regression; Section 3.1) and (b) 
assessing the impact of publication bias (e.g. Fail- safe N, trim- and- 
fill method and selection models; Section 3.2). Publication bias, 
including outcome reporting bias, creates patterns of missing data 
(known as ‘funnel asymmetry’; see the next section). Commonly, the 
magnitude of the overall effect is exaggerated because statistically 
non- significant effect sizes are less likely to be published, especially 
when they are based on small sample sizes. For time- lag bias, the 
magnitude of effect size and its statistical significance are related to 
publication year so that this bias requires different tests from publi-
cation and outcome reporting bias (see Section 3.1.3).

3.1 | Detecting publication bias

3.1.1 | Funnel plots

In the absence of publication bias and heterogeneity, plotting 
effect sizes against a measure of certainty (or uncertainty; see 
Figure 1) should produce a symmetrical funnel shape around the 
overall effect, referred to as a funnel plot. These graphs are the 
most popular method for detecting publication bias in ecological 
and evolutionary meta- analyses (Figure 2). Funnel plots are also 
the most preferred graphical tool to detect publication bias in the 

medical and social sciences (Marks- Anglin & Chen, 2020a; Sterne 
et al., 2005; Sutton, 2009; Vevea et al., 2019), even though many 
other graphical methods have been proposed such as weighted his-
tograms and normal quantile plots of effect sizes (as in Figure 2; for 
other graphical methods, see Rothstein et al., 2005; Marks- Anglin 
& Chen, 2020a).

The original funnel plot used sample size as the measure of un-
certainty (Light & Pillemer, 1984; Figure 3a). Yet, more recent rec-
ommendations are to use SE, precision, variance or the inverse of 
variance (Figure 1; Sterne et al., 2005; but for why sample size may 
often be preferred, see Section 4.3). For these four quantities, unlike 
for sample size, we can draw 95% confidence intervals (based on the 
y- axis; 1.96 × SE) that create a funnel, showing the degree of het-
erogeneity among effect sizes (if data are homogeneous, most dots 
will be inside the 95% confidence interval region, e.g. Figure 3b,c). 
This confidence region also makes it easier to see funnel asymme-
try caused by the lack of statistically non- significant effect sizes 
with high uncertainties (see Figure 3b,c). In a similar vein, a contour- 
enhanced funnel plot shows different statistical significance regions 
(around 0) to help detect asymmetry (Peters et al., 2008; Figure 3c). 
Lastly, Kossmeier et al. (2020) have recently proposed a sunset fun-
nel plot, a type of contour- enhanced plot, which adds visual indica-
tors of statistical power (Figure 3d).

One of the limitations of funnel plots is that funnel asymmetry 
can be caused not just by publication bias (as in Figure 3b, missing 
large effect sizes of high uncertainties or unexpected missing data 
points can create such asymmetry; see also Terrin et al., 2005). For 
instance, heterogeneity among effect sizes can create asymmetries 

F I G U R E  2   Frequencies of the usages 
of different publication bias tests in our 
survey of 102 meta- analyses in ecology 
and evolution. Note that only one 
paper employed a method (a weighted 
histogram) belonging to a category that 
was not pre- specified (including ‘None 
reported’; the labels for items A– K match 
the labels used in our survey). For the 
details of the survey, see Appendix S1
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F I G U R E  3   Examples of funnel plots and a radial plot using the same dataset (Neffect size = Nstudy = 100): (a) a funnel plot with sample size 
as a measure of uncertainty; (b) a funnel plot with precision (1/SE) as a measure of uncertainty, red dots representing ‘expected’ missing 
data under publication bias, and blue dots representing ‘unexpected’ missing data; (c) a counter enhanced funnel plot with SE as a measure 
of uncertainty; (d) a sunset plot showing statistical power of data using the overall effect estimate as a true effect (the black line indicates 
the overall effect); (e) a residual funnel plot from a meta- regression with one moderator; and (f) a radial plot showing the overall effect by 
its slope's steepness and heterogeneity with the degree of scattering of the data points (for more details, see the main text). We used the r 
packages metafor (panels a– c and e; Viechtbauer, 2010), metaviz (panel d; Kossmeier et al., 2020) and meta (panel f; Schwarzer et al., 2015) for 
visualizations
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of many kinds (Figure 3b). Incidentally, the other potential sources 
of asymmetry are data irregularities (e.g. mistakes, frauds, unique 
observations; cf. Nakagawa & Lagisz, 2016), artefacts and chance 
(Egger et al., 1997). Among these other sources, it is artefacts due 
to the intrinsic associations between many standardized effect size 
statistics and sampling variance (or SE) that are probably most im-
portant. Therefore, we expand on this later (see Section 4.3).

As mentioned above, high heterogeneity is common in ecologi-
cal and evolutionary meta- analyses (Senior et al., 2016). Therefore, 
a standard funnel plot is unlikely to be informative about publication 
bias. To account for some of the heterogeneity, several research-
ers recommend plotting residuals from a meta- regression model 
(Figure 3e; e.g. Roberts & Stanley, 2005). In practice, however, no 
meta- regression model would explain all the heterogeneity. The re-
maining heterogeneity might still generate asymmetry in a residual 
funnel plot. The funnel plot should, therefore, be seen as a tool to 
explore small- study effects where effect sizes based on small sam-
ple sizes tend to be larger. Small- study effects may indicate publica-
tion bias, but not necessarily (Sterne et al., 2005, 2011). Although 
extensive work exists on funnel plots and heterogeneity, no system-
atic studies exist asking how funnel plots perform when effect sizes 
are correlated (but see Section 4.1).

Before moving to the next section where we introduce inferen-
tial tests of funnel asymmetry (or small- study effects), the radial plot 
proposed by Galbraith (1988) is worth mentioning, even though our 
survey found no use of these plots in ecological and evolutionary 
meta- analyses. The idea of a radial plot is similar to that of a funnel 
plot. The radial plot shows effect sizes divided by their SEs (essen-
tially, z scores) on the y- axis and corresponding precisions on the 
x- axis. The plot, as in Figure 3f, has a slope with a zero intercept 
(solid line) and its 95% confidence interval based on lines drawn from 
±1.96 values (dashed lines) with the steepness of the slope repre-
senting the overall mean. The radial plot is useful for visually detect-
ing heterogeneity because data are completely homogeneous when 
all the data are inside this rectangle (analogous to a funnel shape 
in funnel plots). These axes of the radial plot (but not those of the 
funnel plot) help us better understand the original inferential test for 
observed funnel asymmetry, the so- called Egger's regression (Egger 
et al., 1997), which is our next topic.

3.1.2 | Regression-  and correlation- based methods

Egger's or Egger regression in its original form can be written as:

where zi is the ith z score obtained from dividing an effect size by its 
SE (yi/sei), �0 is the intercept, �1 is the slope for the precision (prec 
or 1/se) and e is residuals, normally distributed with a variance of �2

e
. 

When �0 (not �1) is statistically significantly different from zero, then 

we statistically detected funnel asymmetry (Figure 4a); the more �0 
deviates from zero, the more severe the asymmetry.

Although Egger's regression checks for asymmetry in a funnel 
plot, Equation 8 does not have effect sizes as a variable, while a 
funnel plot does (Figure 3). We intuitively like to draw a regression 
line (�1 and �0) using Equation 8 in a funnel plot but this could be a 
confusing task as ones needs to put �1 as the intercept and �0 as 
the slope. However, it is possible to reformulate Egger's regression 
(Equation 8) so that its intercept (�0) and its slope (�1) can directly 
be used in a funnel plot, using a weighted regression, as follows 
(Thompson & Sharp, 1999):

where yi is the ith effect size and �i is the residuals, normally distributed 
with a variance of vi�, which is sampling variance (v) and the multipli-
cative parameter (�) estimated in the weighted regression (in a meta- 
regression, � is set to be 1, which assumes that vi is the exact sampling 
variance; see the next equation and also cf. Equation 7). Notably, 
Equation 8's �0 is identical to Equation 9's �1 and also Equation 8's �1 
is identical to Equation 9's �0 (we demonstrate this in Appendix S2). 
Therefore, we can now look at the statistical significance of the slope 
of SE (sei in Equation 9), whose magnitude indicates the severity of 
asymmetry, and we are also able to put a regression line through a fun-
nel plot (Figure 4b).

Given that Equation 9 is very similar to a meta- regression, later 
versions of Egger's regression variants have taken the same form as 
a meta- regression (Moreno et al., 2009), for example:

which is the same as Equation 7 (the random- effects model) plus the 
slope of SE (�1) (note that different variants have precision, variance or 
the inverse of variance instead of SE; Moreno et al., 2009).

According to simulation studies (Macaskill et al., 2001; Moreno 
et al., 2009; Sterne et al., 2001), Egger's regression and its variants 
suffer from low power and poor performance when there are fewer 
than 20 effect sizes, or when the overall effect is large. However, 
meta- analyses in ecology and evolution often include over 20 ef-
fect sizes and our overall effect is usually small (Senior et al., 2016). 
Therefore, the regression- based method for publication bias is likely 
to be of use, at least to detect small- study effects. Furthermore, in 
this meta- regression formulation it is possible to: (a) add moderators 
to absorb some heterogeneity and (b) use multilevel meta- regression 
to account for non- independence among effect sizes. We expand on 
these possibilities in Section 4.

Similar to regression- based publication bias tests, correlation- 
based methods also statistically test for a relationship between ef-
fect sizes and corresponding uncertainties (e.g. sampling variance). 

(8)zi = �0 + �1preci + ei ,

ei ∼ �
(
0, �2

e

)
,

(9)yi = �0 + �1sei + �i ,

�i ∼ �
(
0, vi�

)
,

(10)yi = �0 + �1sei + si + mi ,

si ∼ �
(
0, �2

s

)
, mi ∼ �

(
0, vi

)
,



     |  7Methods in Ecology and EvoluonNAKAGAWA et Al.

All the correlation methods are based on a version of the rank cor-
relation test first proposed by Begg and Mazumdar (1994). This 
method essentially calculates a Kendall's rank correlation between 

effect sizes and their sampling variance (or other uncertainty mea-
sures, including sample size); a statistically significant correlation can 
indicate a small- study effect. Thus, it is very simple to implement, 

F I G U R E  4   Examples of various plots (using the same dataset as Figure 3b minus 25 red datapoints; therefore, Neffect size = 75): (a) a 
scatter plot with the height of the solid line representing the degree of funnel asymmetry (cf. the radial plot at Figure 3f); (b) a scatter plot 
with the steepness of the slope representing the degree of funnel asymmetry; (c) a forest plot showing results of cumulate meta- analyses, 
where only a portion of the dataset (Neffect size = 15) was used; (d) a bubble plot showing a ‘decline effect’ over time, where only a portion of 
the dataset (Neffect size = 15) was used; (e) a funnel plot with precision (1/SE) and with a trim- and- fill method filling missing data (red circles; 
using the R0 estimator); and (f) the same as panel (e) but with SE as a measure of uncertainty. We used the r packages GGPLOT2 (panels a, b 
and d; Wickham, 2009) and metafor (panels e and f; Viechtbauer, 2010) for visualizations
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but it seems that the rank correlation is less powerful than Egger's 
regression under many circumstances (Macaskill et al., 2001). Also, 
a recent simulation shows that the rank correlation methods, using 
both sampling variance and sample size, had severely inflated Type 
I error rates when effect sizes are correlated (Fernandez- Castilla 
et al., 2021). Therefore, we recommend that meta- analysts use 
regression- based methods instead of correlation- based methods to 
test for publication bias (in our survey, these methods were roughly 
equally popular, being reported in around 10% of papers; Figure 2).

3.1.3 | Time- lag bias tests

Time- lag bias occurs when larger or statistically significant effects are 
published more quickly than smaller or non- statistically significant 
effects, and can manifest as a decline in the magnitude of the overall 
effect over time (i.e. a decline effect; Koricheva & Kulinskaya, 2019). 
According to our survey (Figure 2), fewer than 5% of meta- analyses 
in ecology and evolution tested for this type of publication bias. This 
is concerning, as time- lag bias is likely to be prevalent in ecology and 
evolution (Jennions & Moller, 2002; Sánchez- Tójar et al., 2018). To 
test for time- lag bias, we caution against using correlation- based 
methods because this approach does not account for effect size pre-
cision (e.g. quantifying a rank correlation between effect size and 
publication year; Barto & Rillig, 2012). Instead, there are two recom-
mended ways to investigate time- lag bias (or a decline effect): (a) 
using a cumulative meta- analysis and (b) using a regression- based 
method (see Koricheva et al., 2013; Koricheva & Kulinskaya, 2019; 
Trkalinos & Ioannidis, 2005). Regardless of the method, the key fea-
ture of time- lag bias tests is that, as more studies accumulate, the 
mean effect size is expected to converge on its true value. As such, 
we expect to see a change in the mean effect size as studies accu-
mulate across the time.

Cumulative meta- analysis is where a meta- analytic model (e.g. 
random- effects model) is applied to a set of effect sizes, which is 
increased by one effect size at a time iteratively (starting from the 
oldest effect size). Then, the results are displayed as a forest plot 
(see Figure 4c). One can easily see when statistical significance or 
magnitude of the overall effect size changes over time. When multi-
ple effect sizes are obtained from each study, adding one study (one 
or more effect sizes) rather than one effect size is more practical. 
For complex data structures (see Section 4.1), limited sample sizes 
might prevent models from running in the early years of the dataset.

The second method is based on regression and is easy to fit, for 
example (cf. Equation 10):

where yeari is the publication year for the ith study (effect size). It is 
noted that, in Equation 11, we are assuming a simple linear change in 
effect size over time which is to be expected with a ‘decline effect’ 
(as described above). This assumption may be unrealistic depending 
on how time- lag bias manifests. One way of dealing with this is to 

model the logarithm of (publication) year, the inverse of year or the 
quadratic effect of year along with the linear effect (for an example 
of log ‘publication year’, see Stanley & Jarrell, 1998; see also Jarrell 
& Stanley, 2004). As with Equation 8, this method can accommo-
date other moderators (i.e. potential confounding variables) and 
also can be extended to model non- independent effect sizes (see 
Section 4.2).

3.2 | Assessing the impact of publication bias

3.2.1 | Fail- safe N

We now move to the methods that can assess the impact of publica-
tion bias rather than merely detecting it. Fail- safe N (also known as 
the ‘file- drawer number’) represents the number of statistically non- 
significant unpublished results needed to exist to make the overall 
effect non- significant (e.g. Rosenberg, 2005; Rosenthal, 1979) or 
negligible in magnitude (e.g. Owrin, 1983). If the fail- safe N is large 
(>5Nstudy + 10), the results of the analyses may be considered to 
be robust with respect to publication bias as such large number of 
statistically non- significant results is unlikely to exist. The original 
fail- safe approach by Rosenthal (1979) is the oldest publication bias 
assessment method and probably the simplest:

where zi is the ith z value (yi/sei) as in Equation 7 and 1.645 is the z value 
for α = 0.05 (the one- tailed test). The method by Owrin (1983) relies on 
the magnitude of the effect size rather than statistical significance; one 
version of this method can be written as:

where y is the overall mean (i.e. an estimate from a fixed- effect model) 
and yn is the effect size value that is considered to be small or negligi-
ble. Although Rosenthal's and Orwin's fail- safe numbers ignore sample 
sizes (uncertainty) of effect sizes in the dataset, the method proposed 
by Rosenberg (2005) explicitly includes such information. An equation 
that assumes a fixed- effect model can be written as:

where wi is the inverse of sampling variance or weight (1/vi; note that 
wi can be modified for a random- effects model), W is the amount 

(11)yi = �0 + �1yeari + si + mi ,

(12)NRosenthal =

⎛⎜⎜⎝

∑Nstudy

i=1
zi

1.645

⎞⎟⎟⎠

2

− Nstudy,

(13)NOrwin =
Nstudy

(
y − yn

)
yn

,

(14)NRosenberg =
NstudyW

∑Nstudy

i=1
wi

,

W =

⎛⎜⎜⎝

∑Nstudy

i=1
wiyi

t0.05(Nstduy)

⎞⎟⎟⎠

2

−

Nstudy�
i=1

wi ,



     |  9Methods in Ecology and EvoluonNAKAGAWA et Al.

of additional weight required to reach statistical significance and 
t0.05(Nstduy) denotes the t value with the α level of 0.05 with the number 
of studies (effect sizes) as the degrees of freedom, DF (for the use of a 
different DF, see Rosenberg, 2005).

Although fail- safe approaches are the most popular method 
after the funnel plot in our survey (14.1%), Becker (2005) has called 
for abandoning all fail- safe approaches, now that other methods for 
handling publication bias are available. Becker has argued that the 
fail- safe N is difficult to interpret (e.g. no criterion on what consti-
tutes a small or large N), and also that a variety of fail- safe num-
bers can be obtained for the same dataset depending on the exact 
methods. For example, the r package metafor implements the three 
methods above (Viechtbauer, 2010); its example dataset shows 
NRosenthal = 598, NOrwin = 84, and NRosenberg = 370 (for details, see 
Appendix S3). Unfortunately, none of the proposed methods ade-
quately control for heterogeneity (e.g. by incorporating moderators) 
or non- independence among effect sizes. Furthermore, none of the 
methods of fail- safe N are inferential.

3.2.2 | Trim- and- fill tests

The trim- and- fill test provides a nonparametric method that can 
visualize potentially missing data, and statistically both detect and 
correct for funnel asymmetry (Duval & Tweedie, 2000a, 2000b). A 
recent survey showed that the number of studies using the trim- 
and- fill method is increasing every year (in 2018, over 2000 meta- 
analyses used this method; Shi & Lin, 2019), and this method is used 
in 7.5% of the ecology and evolution meta- analyses in our survey. In 
short, this method uses an iterative process to determine how many 
effect sizes are missing (say, Nmissing) from a funnel, using an initial 
overall estimate and one of three estimators (R0, L0 & Q0; see an ac-
cessible account in Duval, 2005). Then, it ‘trims’ off Nmissing effect 
sizes to suppress funnel asymmetry, and estimates a new overall 
mean to see whether it can trim more effect sizes until the value 
Nmissing stabilizes. Subsequently, Nmissing effect sizes are ‘filled’ as 
mirror images (Figure 4e,f). Finally, an overall effect is re- estimated 
including the filled values. We note that Duval (2005) has recom-
mended the use of R0 and L0, and that the estimator R0 can provide 
a significance test for whether the number of missing values is zero 
or not.

The problem with the trim- and- fill test is that the original method 
assumes homogeneity (i.e. a true mean for all effect sizes). In prac-
tice, the trim- and- fill method seems to tolerate some heterogeneity, 
but performs worse as heterogeneity increases (Moreno et al., 2009; 
Peters et al., 2007). Although trim- and- fill tests have been extended 
to meta- regressions (Weinhandl & Duval, 2012), the implementation 
of this extension is currently limited to one moderator. Furthermore, 
recent simulation work by Rodgers and Pustejovsky (2021) shows 
that ignoring non- independence and fitting a trim- and- fill method 
(using R0) increases Type I error rates, especially when a large overall 
effect exists.

3.2.3 | p- value- based methods and selection models

Ecologists and evolutionary biologists have hardly used the 
available methods based on p- values and selection models (p- 
value- based: 1.4%, selection models: 0%, Figure 2), even though 
both types of methods can provide adjusted overall means. The 
p- curve method was introduced by the same researchers who 
popularized the terms ‘researcher degrees of freedom’ (Simmons 
et al., 2011) and ‘p- hacking’ (Simonsohn et al., 2014). The p- curve 
method relies on the distribution of statistically significant p val-
ues of effect sizes in a dataset (Figure 5a). The p- uniform method 
is a similar method, which also exploits the distribution of p val-
ues (van Assen et al., 2015). Interestingly, McShane et al. (2016) 
have pointed out that both p- curve and p- uniform tests are ver-
sions of a selection model first suggested by Hedges (1984); all 
of these methods, unfortunately, do not perform well with het-
erogeneity as they assume one true effect (see also, van Aert & 
van Assen, 2021; van Aert et al., 2016). Clearly, in ecology and 
evolution, where high levels of heterogeneity are commonplace 
(Senior et al., 2016), these methods may be of limited use, espe-
cially compared to more advanced selection models.

Selection model- based methods represent the most sophisti-
cated, complex class of publication bias methods (reviewed in Marks- 
Anglin & Chen, 2020a; Rothstein et al., 2005; Vevea et al., 2019). 
There are probably as many selection models as all other methods 
combined (Marks- Anglin & Chen, 2020a), but a property common 
to all of them is that they model how effect sizes are missing (or se-
lected to be published), based on one or more statistical parameters, 
for example, p values, effect sizes or sampling variance (e.g. Carter 
et al., 2019; Preston et al., 2004; Rodgers & Pustejovsky, 2021; 
Figure 5b,c). Importantly, selection models can tolerate and model 
heterogeneity. Indeed, the recent model by Citkowicz and Vevea 
(2017) can statistically test for publication bias, incorporate moder-
ators, tolerate substantial heterogeneity, provide an adjusted overall 
effect, and even correct estimates for small sample sizes. Yet, no 
selection methods are implemented for non- independent effect 
sizes, and as far as we are aware, such implementation is extremely 
challenging.

4  | METHODS FOR DEPENDENT EFFEC T 
SIZES

In this section, we first define a multilevel model that explicitly in-
corporates non- independence among effect sizes. Next, we con-
sider how to best visualize such datasets as a funnel plot. Then, 
we build upon a regression- based method introduced above to 
propose a new publication bias testing method. This new method 
can both detect and correct for funnel asymmetry or small- 
study effects, while modelling heterogeneity and complex non- 
independence involving both correlation and variance– covariance 
matrices.
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4.1 | A multilevel meta- analysis and funnel plots

The simplest multilevel meta- analytic model can be written as 
(Nakagawa & Santos, 2012):

where �0 is the overall estimate (or meta- analytic mean); sj is 
the between- study effect for the jth study, normally distributed 
with the variance of �2

s
; ui is the between- effect- size effect, or 

within- study effect, for the ith effect size, distributed with a mean 
of zero and the variance of �2

u
; and mi is the sampling error (as in 

Equation 7; note that j = 1, 2, …, Nstudy, the number of studies, and 
i = 1, 2, …, Neffect size, the number of effect sizes; Neffect size > Nstudy). 
Equation 15 explicitly models multiple effect sizes per study. Also, 
in Equation 7, the term �2

s
 is the only source of heterogeneity, while 

in Equation 15, both �2
s
 and �2

u
 are each contributing to heterogene-

ity among effect sizes.
Now we can extend this to a meta- regression model. For exam-

ple, a meta- regression with two moderators can be written as:

(15)yi = �0 + sj + ui + mi ,

sj ∼ �
(
0, �2

s

)
, ui ∼ �

(
0, �2

u

)
, mi ∼ �

(
0, vi

)
,

(16)yi = �0 + �1x1j + �2x2i + sj + ui + mi ,

F I G U R E  5   Example plots for p- curves and selection models (using the same dataset as in Figure 4; Neffect size = 75): (a) a line plot showing 
the distribution of statistically significant p values under three scenarios: (1) with the observed p values (blue solid line), (2) when there is 
no effect (red dotted line) and (3) when there is an effect (i.e. an observed overall effect as a true effect) with 33% statistical power (note 
that if a blue line increases at the α level of 0.05, this is a sign of p- hacking; for more details of this plot, see www.p- curve.com); (b) a plot 
showing four different weight functions that model, based on the data, the likelihood of effect sizes being selected for publication: (1) a 
half- normal function based on p values (black solid line), (2) the same function but based both on p values and precisions (black dotted line), 
(3) a logistic function based on p values (red solid line) and (4) the same function but based both on p values and precisions (red dotted line; 
these functions are based on Preston et al., 2004); and (c) a plot showing two different ‘step’ weight functions based on: (1) three cut- 
points (α = 0.05, 0.1, 0.5) and (2) one cut- point (α = 0.05; this model is sometimes referred to as a three- parameter selection model, PSM 
with the three parameters being an overall mean, the between- study variance and an index determining the likelihood of selection; e.g. 
Carter et al., 2019; Rodgers & Pustejovsky, 2021). We used the r packages dmetar (panel a; Harrer et al., 2021) and metafor (panels b and c; 
Viechtbauer, 2010) for visualizations

http://www.p-curve.com
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F I G U R E  6   Examples of funnel plots from a dataset with lnRR (Nstudy = 70; Neffect size = 271; panels a– d) and a different dataset with Zr 
(Nstudy = 48; Neffect size = 104; panels e, f): (a) a funnel plot of raw data (the same colour indicating effect sizes from the same studies); (b) 
a funnel plot of marginal residuals with the fixed effects removed (as in Equation 17); (c) a funnel plot of conditional residuals with fixed 
effects and the between- study effect removed (as in Equation 18); and (d) a funnel plot of conditional residuals with all effects apart from 
sampling errors removed (as in Equation 19); (e) a scatterplot showing a meta- regression on SE (black line; the red line is the same line as in 
panel (f), scaled to the standard error shown on the x- axis of panel e). Note that an overall mean is set to be 0 in this simulated dataset along 
missing effect sizes imitating publication bias; and (f) a scatterplot showing a meta- regression on sampling variance (red line, an equivalent 
line as the one in panel e). The red lines, for both panel (e) and panel (f), intersect the effect size at the intercept because they are the 
same regression lines plotted on different x- axes. We used the r packages metafor (panels a– d; Viechtbauer, 2010) and ggplot2 (panels e, f; 
Wickham, 2009) for visualizations
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where �1 is the slope for x1, a study- level moderator (characteristics 
of different studies, j; e.g. experimental vs. observational) and �2 is the 
slope for x2, an effect- size- level moderator (characteristics of effect 
sizes, i; different measurements or sexes). We have mentioned that we 
can draw a funnel plot with residuals rather than the observed effect 
sizes (for an example of a funnel plot with non- independent effect 
sizes, see Figure 6a). A complication is that, given Equation 15, we can 
extract at least three different residuals, which are:

where residm represents marginal residuals (subtracting only fixed ef-
fects from the observations; Figure 6b), whereas residc1 and residc2 are 
conditional residuals (Figure 6c,d; Nobre & Singer, 2007). As shown in 
Figure 6a– d, marginal residuals still show the patterns due to study or-
igin (i.e. sample sizes are the same or similar). Contrastingly, conditional 
residuals no longer show such obvious patterns as we have taken a 
clustering factor (sj), meaning that these residuals are independent, at 
least with respect to this factor. Thus, funnel plots with conditional 
residuals (Figure 6c,d) seem like a useful exploratory tool for publica-
tion bias when effect sizes are correlated, in addition to using marginal 
residuals (Figure 6b).

As the conditional residuals are supposed to be independent, 
Nakagawa and Santos (2012) suggested using conditional residuals 
along with corresponding sampling variance or standard error (vi or 
sei) in publication bias tests (e.g. the original Egger's regression and 
trim- and- fill tests). However, this approach is limited by some as-
sumptions. First, all such residual analyses assume that sampling SE 
(sei) does not covary with moderators in meta- regression (e.g. x1 and 
x2 in Equation 16; see Freckleton, 2002). Second, sampling SE is as-
sumed to be the same as the SE of the residuals (which are shown 
in Figure 6b– d), but they are not the same, although they are often 
strongly correlated (see Doleman et al., 2020). Finally, in the presence 
of non- independent data, Equation 15's sampling variances are often 
correlated; that is, mi ∼ � (0, M) where M is a variance– covariance 
matrix. For example, when Neffect size = 3 and the first two effect sizes' 
sampling variance are correlated, then we can write M as:

where � is the correlation between the sampling effects of the first 
two effect sizes (��1�2 is the covariance). Whenever sampling (error) 
effects are correlated, neither residc1 nor residc2 are independent. 
Then, none of publication bias tests reviewed in Section 3 should be 
used. Incidentally, we note that the robust variance estimator (RVE) 
originally proposal by Hedges et al. (2010) can circumvent modelling 

the variance– covariance matrix M even when sampling errors are 
correlated. This is because covariances are estimated from the data 
and the associated errors are reflected in standard errors (variance) of 
point estimates via the RVE (cf. Rodgers & Pustejovsky, 2021; also see 
Bom & Rachinger, 2020).

4.2 | Multilevel meta- regression and 
Egger's regression

As an alternative to using residual analysis, we can directly 
model sampling SE in Equation 15 (cf. Equation 10; Doucouliagos 
& Stanley, 2009; Fernandez- Castilla et al., 2021; Havranek & 
Irsova, 2011; Rodgers & Pustejovsky, 2021):

By examining Equation 21, we may realize that �0 represents a 
conditional estimate of an overall effect when SE is 0, which means, 
theoretically, there is no uncertainty (Figure 6e). Then, we can ask 
‘does �0 provide an adjusted estimate of an overall effect, when �1 is 
statistically significant (i.e. detecting a small- study effect)?’ Stanley 
and Doucouliagos (2012, 2014) have shown that, with statistically 
significant �1, �0 provides an adjusted estimate that is downwardly 
biased, when a true positive or a null effect exists (Figure 6e). They 
also state that with non- statistically significant �1, �0 provides the 
best estimate of an adjusted mean. If the slope of SE (�1) is statisti-
cally significant then fitting sampling variance instead of SE is recom-
mended according to the following equation:

This is equivalent to fitting se2
i
, which is a quadratic term. Stanley and 

Doucouliagos (2012, 2014) have shown that �0 in Equation 22 is still 
downwardly biased, but much less so, although Equation 21 is more 
powerful (i.e. an adjustment tends to underestimate) when there is a 
positive (or no) effect (cf. Figure 6f). While this two- step approach, 
using Equations 21 and 22, may seem simplistic (see also Stanley, 2017; 
Stanley et al., 2017), it provides an easy- to- implement publication bias 
test that explicitly models non- independent data.

Furthermore, this regression approach can be used to test time- 
lag bias (or decline effect) by modelling the publication year (yearj):

When heterogeneity exists, it is best to combine Equations 21 and 23 
with moderators. Such a model can be written as:

where �k is the slope for the kth moderator (k = 3, 4,…, Nmod; the number 
of moderators), the other parameters are as above, but one will need 

(17)residmi = yi −
(
�0 + �1x1j + �2x2i

)
,

(18)residc1i = yi −
(
�0 + �1x1j + �2x2i + sj

)
,

(19)residc2i = yi −
(
�0 + �1x1j + �2x2i + sj + ui

)
,

(20)M =

⎡
⎢⎢⎢⎢⎣

�2
1

��1�2 0

��2�1 �2
2

0

0 0 �2
3

⎤
⎥⎥⎥⎥⎦
,

(21)yi = �0 + �1sei + sj + ui + mi .

(22)yi = �0 + �1vi + sj + ui + mi .

(23)yi = �0 + �1yearj + sj + ui + mi .

(24)yi = �0 + �1sei + �2c
(
yearj

)
+

N mod∑
k=3

�kxk + sj + ui + mi ,
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to centre the moderator, yearj (i.e. set the mean value of yearj as 0) or 
other continuous variables to keep �0 meaningful to be interpreted as an 
adjusted overall effect (see more details in Appendix S4). Similar mod-
els to Equation 24, including the publication year as a covariate, can be 
found in meta- analyses in the social sciences, especially the field of eco-
nomics (e.g. Costa- Font et al., 2013; Havranek & Sokolova, 2020; Jarrell 
& Stanley, 2004; Matousek et al., 2021). However, simulation studies 
have shown Egger's regression variants with sampling standard error as 
a moderator (e.g. Equations 10 and 21) perform poorly, even when ad-
equately powered (Deeks et al., 2005; Macaskill et al., 2001). This is es-
pecially true when there is a (mathematical) relationship between effect 
size and sampling SE not due to publication bias. Furthermore, sampling 
SE can often be poorly estimated.

4.3 | Multilevel meta- regression using sample size: 
A proposed approach

To understand how a correlation between effect size and SE can 
come about, and when SE can be estimated inaccurately, we now 
go back to comparing sampling variance among the three commonly 
used effect sizes (Equations 2, 4 and 6). The SMD's sampling vari-
ance contains the square of the point estimate (Equation 2), whereas 
lnRR's sampling variance contains both the treatment and control 
means that are also contained in the point estimate (Equation 4; 
Costa- Font et al., 2013; Zwetsloot et al., 2017; Doncaster & Spake, 
2018; Pustejovskyei & Rodgers, 2019). This can lead to a correlation 
between point estimates (i.e. lnRR and SMD) and their sampling SE, 
resulting in ‘artefactual’ funnel asymmetry (Section 3.2; note that 
this issue is widespread, and also found in other standardized ef-
fect sizes, such as odds ratio and risk difference; Peters et al., 2006). 
Furthermore, we also notice that in Equation 4 (i.e. lnRR's variance), 
when sample sizes (n1 and n2) are small, the sample mean (X) and par-
ticularly, the sample standard deviation (SD) will be poorly estimated. 
This will result in an unreliable estimate of sampling variance (this is 
also the case for Equation 2). These issues do not affect the sampling 
variance of Zr, which is a function only of sample size (n; Equation 6; 
cf. Rucker et al., 2008). Therefore, the sample size (n1 + n2) has been 
suggested as a moderator instead of SE (e.g. Equation 21) when 
we use effect size statistics such as SMD and lnRR (also correla-
tion, r; see Section 2.1; Macaskill et al., 2001). Simulations suggest 
using the sample size as a moderator outperforms SE with close to 
nominal Type 1 error rates in the cases of both independent (Deeks 
et al., 2005; Macaskill et al., 2001), and non- independent effect sizes 
(Fernandez- Castilla et al., 2021).

Instead of the sample size (n1 + n2), however, for a meta- analysis of 
SMD or lnRR, we propose using the ‘effective sample size’ (4ñi or just 
ñi) because it accounts for unbalanced sampling (cf. Stanley, 2005). 
The effective sample size is given by (Bakbergenuly et al., 2020a, 
2020b; also see; Deeks et al., 2005; Bakbergenuly et al., 2020c):

When n = n1 = n2, the formula reduces to 2n. Indeed, the inverse of ñi is 
a part of sampling variance in both SMD and lnRR (Equations 4 and 6):

where the middle part of the formula corresponds to Equation 2 when 
setting SMD = 0, while the right- hand side corresponds to Equation 4 
when setting CV (SD/X) = 1. This means that the use of ñi is comparable 
to that of sampling variance after taking out uncertain elements.

Taken together, we can rewrite Equations 21 and 22, respec-
tively, as (Deeks et al., 2005):

where 
√
1∕ñi is a replacement of sei in Equation 21, and 1∕ñi is a 

replacement of vi in Equation 22 (note that, at the intercept, ñi is in-
finitely large). We recommend using Equation 27 to check the statis-
tical significance of funnel asymmetry (small- study effects) because 
it has greater statistical power than Equation 28. Equation 27 can 
also be used to obtain an adjusted mean when �1 is not statistically 
significant. This is because �0 represents an adjusted overall mean 
when 

√
1

ñi
 = 0. In other words, the predicted overall mean when a 

study has an infinitely large sample size, ñi, and therefore little to no 
sampling variance. In contrast, when �1 is statistically significant in 
Equation 27, we recommend using Equation 28 to obtain an overall 
estimate adjusted for publication bias because it is less biased. Note 
that these recommendations are for the effect sizes SMD and lnRR 
(with Zr, we should use Equations 21 and 22). This adjusted estimate 
should not be taken as a true estimate, however. We should treat this 
adjusted estimate as a possible overall estimate as a part of sensitiv-
ity analysis in which we run alternative statistical models to test the 
robustness of results from the original analysis (Noble et al., 2017).

In practice, multilevel meta- analytic models are often more com-
plex than what is shown above. For example, Nakagawa and Santos 
(2012) proposed a phylogenetic multilevel model with a phyloge-
netic random factor and a non- phylogenetic random factor as a the-
oretically sound model when effect sizes are obtained from different 
species (see also Hadfield & Nakagawa, 2010). The major benefit of 
our proposed meta- regression approach for publication bias tests is 
that we can easily extend these models to incorporate other sources 
of heterogeneity. An example of a meta- regression model testing 
publication bias and time- lag bias that also includes phylogenetic 
and non- phylogenetic random effects can be written as:

(25)4ñi =
4n1in2i
n1i + n2i

.

(26)1

ñi
=

n1i + n2i

n1in2i
=

1

n1i
+

1

n2i
,

(27)yi = �0 + �1

√
1

ñi
+ sj + ui + mi ,

(28)yi = �0 + �1

(
1

ñi

)
+ sj + ui + mi ,

(29)yi = �0 + �1

√
1

ñi
+ �2c

(
yearj

)
+

N mod∑
k=3

�kxk + ah + qh + sj + ui + mi ,

ah ∼ �
(
0, �2

a
A
)
, qh ∼ �

(
0, �2

q

)
, mi ∼ � (0, M) ,
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where ah is the phylogenetic effect for the hth species, considered 
multivariate normally distributed with a covariance of �2

a
A (A is a cor-

relation matrix derived from a phylogeny); qh is the non- phylogenetic 
effect for the hth species, distributed with the variance of �2

q
 (h = 1, 

2, …, Nspecies, the number of species; Nspecies ≠ Nstudy); and the other 
notations are the same as above. Relevantly, when using SMD or lnRR, 
we may be better off using ñi along with residuals for drawing funnel 
plots (see Section 4.1; Doleman et al., 2020) rather than SE, precision, 
or variance. In the Supporting Information, we use two datasets and 
the three effect sizes to illustrate how to practically code these pro-
posed methods; there, we have redrawn Figure 6a– d using ñi instead 
of SE (see Appendix S4).

4.4 | Alternative approaches: Averaging or sampling

Many of the methods we introduced in Section 3 are still useful, 
even in the presence of non- independent data, if we aggregate 
effect sizes per study or sample one effect size per study. When 
sampling variances are correlated (i.e. M as in Equation 29), ‘average’ 
sampling variance needs to be calculated by using the following for-
mula (not by simple weighted averaging as for the mean; Borenstein 
et al., 2009):

where yg and yl are the gth and lth effect size in a study (g = 1, …, Nwithin 
and l = 1, …, Nwithin where Nwithin is the number of effect sizes within 
a paper or a species to be combined), �2

i
 and �2

g
 are the sampling error 

variances for yg and yl, and rgl is the correlation between the sampling 
errors of yg and yl.

Overall means will generally not be biased using aggregated or 
single sample/study effect sizes (Song et al., 2020). Also, Rodgers 
and Pustejovsky (2021) showed that when averaging effect sizes 
within studies, Egger's regression (similar to Equation 10), the 
trim- and- fill test (using R0 estimator) and the three- parameter se-
lection model (as in Vevea & Hedges, 1995) all had the appropri-
ate level of Type 1 error, although the three- parameter selection 
model was noticeably more powerful in detecting publication bias 
than the others. However, averaging or sampling is not a general 
solution when we have a phylogenetic signal (�2

a
 > 0; Equation 29). 

In such a case, averaging or sampling per species will not eliminate 
non- independence as effect sizes are still correlated via phylogeny 
(i.e. A in Equation 29; Nakagawa, Senior, et al., 2021). Furthermore, 
even when there is no phylogenetic signal (�2

a
 = 0), or we do not 

have the species- level structure in a dataset, these alternative ap-
proaches could be problematic. For example, if we average effect 
sizes, we will lose all effect- size- level moderators (e.g. one cannot 
average categorical moderators such as measurement types, eval-
uation methods or sex). Although iteratively sampling one effect 
size per study could capture moderating effects, this approach 
also reduces the information content of the dataset. Despite these 

limitations, under some circumstances, averaging and sampling 
could be useful (examples and implementations for the trim- and- 
fill test and a selection model in Appendix S5).

5  | CONCLUSIONS

Given the high levels of heterogeneity and prevalence of non- 
independence in ecological and evolutionary meta- analytic data-
sets, our choice of suitable tests for publication bias is limited. 
We have described the main methods for testing publication bias 
alongside our recommendations, as summarized in Figure 7. Our 
proposed multilevel regression method appears to be the only 
practical method fulfilling statistical assumptions under most 
circumstances. Although using averaging or sampling are not a 
universal solution, they may be useful in supplementing our mul-
tilevel meta- regression method. This is because all publication 
bias tests should be seen as a part of sensitivity analysis (Noble 
et al., 2017), meaning that we should run more than one publica-
tion bias test.

Few simulation studies have explicitly investigated the per-
formance of publication bias tests with non- independent data. 
Two simulation studies that we are aware of supported similar 
models to the multilevel- regression method we proposed here 
(Fernandez- Castilla et al., 2021; Rodgers & Pustejovsky, 2021). In 
addition, a general point to take from these two simulation studies 
is that most methods are prone to Type 2 error, with a possible 
exception of some selection models, even when the methods have 
nominal Type 1 error rates. Therefore, not detecting publication 
bias in a publication bias test should not be taken as a proof of 
no publication bias, including for multilevel regression. Clearly, 
we need more methodological and simulation- based work in the 
future.

Finally, we repeat that the results of publication bias tests should 
always be cautiously interpreted because no methods will ever be 
able to verify the actual number of missing effect sizes. By way of 
example, a recent study compared the results of 15 meta- analyses 
with pre- registered replication projects on the same topics (Kvarven 
et al., 2020). The overall effects from the replication projects were 
smaller than those of the meta- analyses indicating the meta- analysis 
results were likely susceptible to publication bias. Interestingly, the 
replication projects' estimates were also smaller than the adjusted 
effects from the trim- and- fill method and the three- parameter selec-
tion model. In contrast, the two- step regression model (the method 
by Stanley & Doucouliagos, 2012, 2014) provided similar estimates 
to the replication projects. This is good news as our main recommen-
dation is a version of this two- step approach. Nonetheless, caution 
needs to be exercised to acknowledge the limitations and assump-
tions of any publication bias test. Overall, we suggest that all future 
meta- analyses in ecology and evolution should test for publication 
bias, and try to identify related biases. For meta- analysts to achieve 
this goal, all empiricists need to report their statistical results, in-
cluding their sample sizes and estimates of uncertainty (SE and SD), 

(30)Var

(
1

Nwithin

Nwithin∑
g=1

yg

)
=

(
1

Nwithin

)2
(

Nwithin∑
g=1

�2
g
+

Nwithin∑
g≠l

rgl

√
�2
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transparently and compressively (Gerstner et al., 2017; Hennessy 
et al., 2021).
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