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ABSTRACT
Meta-analysis is a powerful tool used to generate quantitatively
informed answers to pressing global challenges. By distilling data
from broad sets of research designs and study systems into
standardised effect sizes, meta-analyses provide physiologists with
opportunities to estimate overall effect sizes and understand the
drivers of effect variability. Despite this ambition, research designs in
the field of comparative physiology can appear, at the outset, as being
vastly different to each other because of ‘nuisance heterogeneity’
(e.g. different temperatures or treatment dosages used across
studies). Methodological differences across studies have led many
to believe that meta-analysis is an exercise in comparing ‘apples with
oranges’. Here, we dispel this myth by showing how standardised
effect sizes can be used in conjunction with multilevel meta-
regression models to both account for the factors driving
differences across studies and make them more comparable. We
assess the prevalence of nuisance heterogeneity in the comparative
physiology literature – showing it is common and often not accounted
for in analyses. We then formalise effect size measures (e.g. the
temperature coefficient, Q10) that provide comparative physiologists
with a means to remove nuisance heterogeneity without the need to
resort to more complex statistical models that may be harder to
interpret. We also describe more general approaches that can be
applied to a variety of different contexts to derive new effect sizes and
sampling variances, opening up new possibilities for quantitative
synthesis. By using effect sizes that account for components of effect
heterogeneity, in combination with existing meta-analytic models,
comparative physiologists can explore exciting new questions while
making results from large-scale data sets more accessible,
comparable and widely interpretable.

KEY WORDS: Multilevel meta-analysis, Quantitative synthesis,
‘Apples and oranges’, Sampling error, log Response ratio,
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Introduction
Meta-analysis has emerged as the ‘gold standard’ across various
disciplines for quantitative synthesis and is becoming increasingly
prominent in the field of comparative physiology (Glass, 2015;
Gurevitch et al., 2018; Nakagawa et al., 2017a,b). Meta-analyses
answer research questions by synthesising research results and

identifying sources of variation across studies (Arnqvist and
Wooster, 1995; Borenstein, 2019; Cooper et al., 2009; Gurevitch
and Hedges, 1999; Gurevitch et al., 2018; Koricheva et al., 2013;
Nakagawa et al., 2017a,b). Ideally, meta-analyses are part of a
systematic review. As such, methods are carefully reported upon to
ensure the review and data collation are transparent and reproducible
[see the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses in Ecology and Evolutionary Biology (PRISMA-
EcoEvo) checklist; O’Dea et al., 2021].

A meta-analysis can have three goals: (1) to provide an overall
mean estimate of a treatment effect or relationship, (2) to quantify
effect size variance and understand key drivers explaining
differences in effects across studies and (3) to attempt to identify
research gaps and publication biases (Borenstein, 2019; Cooper
et al., 2009; Gurevitch and Hedges, 1999; Gurevitch et al., 2018;
Koricheva et al., 2013; Nakagawa et al., 2017a,b). Meta-analysing
independent studies provides greater statistical power and precision
than what any individual study on its ownwould be able to provide –
particularly given that most empirical studies are already under-
powered in many areas of biology (Button et al., 2013; Forstmeier
et al., 2017; Jennions andMøller, 2003). By expressing study effects
on a common scale (i.e. standardised effect size), we can gain
broader insight into the direction and efficacy of a particular
treatment effect or the strength of a relationship between two
variables of interest (Gurevitch et al., 2018; Koricheva et al., 2013).
Meta-analyses have already provided comparative physiologists
with powerful insights on pressing global challenges – from testing
whether physiological plasticity can buffer organisms against
climate change (e.g. Seebacher et al., 2015) to the degree to
which endocrine disrupting chemicals, such as bisphenol A (BPA),
impact aquatic organisms (e.g. Wu and Seebacher, 2020).

Despite its widespread adoption and well-established
methodological procedures, meta-analysis is often criticised for
mixing ‘apples and oranges’ – in other words, mixing effects from
studies that are not comparable (Arnqvist and Wooster, 1995;
Carpenter, 2020; Gallo, 1978; Glass, 2015; Gurevitch et al., 2018;
Stewart, 2010). Lack of comparability could result from studies
differing in experimental design, species, measurement variables and
sampling units (Arnqvist and Wooster, 1995; Stewart, 2010). For
example, experimental designs in the field of comparative physiology
can vary greatly in the temperatures or dosages of chemicals that they
use in experimental treatments (e.g.Wu and Seebacher, 2020). To the
uninitiated, this concern might not be unfounded given that
heterogeneity in effects is often high in ecological and evolutionary
meta-analyses (Senior et al., 2016), telling us that the effect size varies
a great deal across studies. However, to many, having highly
heterogeneous effects ‘…is the spice of life’ (p. 519, Cooper et al.,
2019) because it provides opportunities to explore the reasons for
why effects vary within and across studies (Borenstein, 2019; Cooper
et al., 2019; Glass, 2015; Gurevitch et al., 2018).
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The goal of our Review is to briefly overview the meta-analytic
process and argue for the value of heterogeneity in answering
fundamental research problems and guiding research directions.
We present results from a survey of published meta-analyses in
the field of comparative physiology to gauge methodological and
meta-analytic practices – determining what types of effect sizes
are commonly used, how often effect size estimates are impacted
by ‘nuisance heterogeneity’ and whether meta-analytic models (i.e.
models that account for sampling variance) are commonly applied.
Then, we show how nuisance heterogeneity in comparative
physiology can be comfortably dealt with by re-formalising many
existing effect size measures and/or by using multilevel meta-
regression models. We formalise alternative effect sizes and their
associated sampling variance to provide comparative physiologists
with opportunities to explicitly incorporate nuisance heterogeneity
at the effect size level to ease their interpretation. Finally, we
describe how more complex treatment differences, such as non-
linear dosage differences, can be accommodated using multilevel
meta-regression models. We hope that expanding the meta-analytic
toolkit will provide new opportunities for comparative physiologists
to address how organisms will cope with rapidly changing
environments and anthropogenic stressors in the future.

The apples and oranges ‘problem’ in comparative physiology
Meta-analysis is always concerned with effect heterogeneity; in
other words, the factors that drive differences in the direction and
magnitude of effects within and across studies (Borenstein, 2019;
Cooper et al., 2019; Gurevitch et al., 2018; Lajeunesse, 2010;
Nakagawa et al., 2017a,b). The concept of heterogeneity is vitally
important because it tells us how general our findings are likely to be
and how much of the variance we see is the result of real biology or
methodological differences (after accounting for sampling variance)
(Borenstein, 2019; Lajeunesse, 2010; Nakagawa et al., 2017a,b).
There are many phenomena driving effect heterogeneity. First,

there is inherent uncertainty in estimating the ‘true’ population
effect (e.g. a correlation coefficient) from smaller samples
(Borenstein, 2019). A formal meta-analysis weights sample
estimates by their precision, and removes this source of
heterogeneity (Gurevitch et al., 2018; Koricheva et al., 2013).
Removing sampling variance is possible because we know,
mathematically, how to calculate it for many effect measures.
While unweighted analyses are common, weighting studies makes
overall estimates more precise, and less susceptible to publication
bias (see below), even if the overall mean itself is unbiased
(Morrissey, 2016). Second, there are sociological factors impacting
heterogeneity. These include the ease with which novel and
significant results are published relative to non-significant results,
manifesting as publication bias (Jennions et al., 2013; Nakagawa
et al., 2021a; Rothstein et al., 2005). Third, real biological processes
can drive effect heterogeneity. This is particularly true in
comparative physiology, where we synthesise data from different
species with varying life histories, habitats, mating systems and
reproductive modes. As comparative physiologists, this is the stuff
that gets us up every morning! We can model these biological
factors by including relevant predictors (moderator variables) and/
or random effects (to account for non-independence of effects). By
doing so, we can test predictions from hypotheses about the key
players impacting mean effect size and direction. This improves our
understanding of the biological world around us and helps inform
future research directions.
Finally, methodological factors are also big contributors to effect

variability. In some cases, these methodological factors are of direct

interest. For example, the methods for measuring an outcome
variable can result in different effects, and it is important we know
and understand this to determine how experiments can be designed
in the future. In other cases, methodological factors might be
considered ‘nuisance heterogeneity’ (following from Cooper et al.,
2019) – factors we know vary, but are rather unsurprising to us
(Fig. 1). These might include differences in temperature, pH,
dosages, water potential, etc. Regardless of the relative importance
of such variables compared with core questions in a meta-analysis,
nuisance variables may complicate the interpretation of effect sizes
used if not accounted for properly.

Besides sampling variance, all the sources of heterogeneity
discussed above contribute (to varying extents) to the ‘apples and
oranges’ problem often touted as compromising the reliability of
meta-analyses. Combining standardised effects while ignoring
these sources of heterogeneity can indeed weaken the reliability
of a meta-analysis. However, many argue that heterogeneity is just
what we are interested in synthesising (Borenstein, 2019; Cooper
et al., 2019; Glass, 2015; Gurevitch et al., 2018; Lajeunesse, 2010).
In the words of Gene Glass, the founder of meta-analysis: ‘Of
course it [meta-analysis] mixes apples and oranges; in the study of
fruit nothing else is sensible; comparing apples and oranges is the
only endeavor worthy of true scientists; comparing apples to apples
is trivial’ (p. 224, Glass, 2015). Whether comparing apples and
oranges is a good idea simply boils down to the specific question of
interest, the population one wishes to make conclusions about and
how heterogeneous effects actually are. If we are interested in
generalising only to apples, then mixing fruit will not be ideal.
However, if wewant to understand why different ‘fruit’ vary in their
properties, then we need to consider apples and oranges together
(Borenstein, 2019).

We tend to agree with Glass (2015), and his sentiment is
particularly relevant to comparative physiology. For example, if we
want to understand the impact of a pollutant on reproduction in
aquatic organisms, including aquatic mammals and fish would
provide answers to this general question, even if their reproductive
biology and physiology are different. Synthesising diverse study
outcomes allows us to also understand critical features of the
literature, study systems (e.g. different effects of pollutants on fish
and mammal reproduction) and approaches (e.g. short-term versus
long-term studies) that can explain the diversity of effect outcomes
observed. Doing so provides a rich set of conclusions that can
draw attention to important sources of variability that might
have otherwise been overlooked. Having said that, it is still very
important to understand the limitations and diversity of studies
included in a meta-analysis, and how this can affect interpretations
made – an important reason why transparency and reproducibility
are such prominent features of meta-analysis (or ideally should
be) (O’Dea et al., 2021). The validity of general conclusions to
certain questions (e.g. what is the overall effect of a pollutant on
reproduction?) will inevitably depend on the homogeneity of
effects being synthesised. If the estimate of an overall effect
coincides with low heterogeneity then the effects are reasonably
consistent (Borenstein, 2019). If, however, an overall effect
is accompanied by large heterogeneity, then we would shift focus
and explore drivers of that heterogeneity. For example, given the
very different physiology of aquatic mammals and fish,
understanding an overall combined effect on reproduction may
not be particularly relevant and may even be misleading. It
may, therefore, be more useful to understand overall effects in
each of these groups separately, and assess the extent to which
they differ.
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Nuisance heterogeneity complicates meta-analytic
interpretations
Nuisance heterogeneity can get in the way of understanding real
biological patterns that interest comparative physiologists. Take, for
example, a meta-analysis that attempts to assess the effects of diet on
fish growth across different populations of a widely distributed
(cosmopolitan) species. Studies might rear populations of the same
fish species under different temperatures, but in the end, they are still
all governed by the same thermodynamic effects on growth. In this
situation, we are still interested in understanding overall diet effects,
but we may question whether such a conclusion is sensible given the
diversity of temperatures applied. If temperature differences are of
direct interest, then this variable can be formally incorporated in
statistical models. If, however, it is not the primary interest, then it
may introduce an unnecessary complication to the interpretation of
the effect of diet on fish growth. Such heterogeneity is an important
contributing factor to the ‘apples and oranges’ problems described
above. Nonetheless, there is limited discussion about the ways in
which it can be dealt with in the literature.
Here, we focus onmeta-analytic solutions to circumvent nuisance

heterogeneity, showing how it can easily be overcome using a
number of meta-analytic tools. Prior to overviewing the solutions,
we conducted a literature survey to better understand the different
types of effect sizes being used in comparative physiology, the
susceptibility of studies to nuisance heterogeneity, and how these
sources are currently (if at all) being controlled for in a meta-
analysis. More specifically, we asked: (1) what type of effect size

was used within the quantitative synthesis?; (2) based on the
methods provided, was the effect size likely susceptible to nuisance
heterogeneity?; (3) if so, was such variation accounted for in the
effect size or during analysis?; and finally, (4) how many analyses
used ‘weighted’ meta-analytic models?

We searched the Scopus database between 16 and 18 May
2021, with a follow-up search on 1 September 2021 (see the
supplementary information at https://daniel1noble.github.io/
nuisance_heterogeneity/). After a series of pilot searches to refine
our search string (see Foo et al., 2021 for an overview of this
process), we searched for studies that included: ‘meta-analysis’,
‘meta regression’, ‘comparative analysis’, ‘comprehensive
analysis’, ‘global analysis’ or ‘macro physiology’ in their title or
abstract. We restricted our search to key comparative physiology
journals known to the authors that would likely contain literature-
based quantitative syntheses within the last 6 years (detailed in
the supplemental tables at https://daniel1noble.github.io/nuisance_
heterogeneity/). We expected this to provide a contemporary
overview of quantitative syntheses in comparative physiology
while making the survey and screening feasible. We acknowledge
that this may have missed some important, and influential,
quantitative syntheses in the field of comparative physiology, but
likely provided an informative random sample.

All title, abstract and full text screening was done by two people
(D.W.A.N. and M.L.). Any disagreements were resolved by
discussion to reach a consensus. Out of the 426 papers originally
identified, 80 full texts were screened for eligibility, and we
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Fig. 1. Sources of effect size heterogeneity in meta-analyses. Heterogeneity can come in various forms, from effect measures varying as a result of shared
evolutionary history (i.e. phylogeny), the different trait types measured, and sources of ‘nuisance heterogeneity’. In this example, nuisance heterogeneity is
generated by differences in the experimental temperatures at which the animals were tested (grey shaded area on top). However, nuisance heterogeneity can
come in various other forms such as differences in dosage. We can control for these types of heterogeneity by reformalising effect sizes and/or using multilevel
metaregression (white area on the bottom).
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included a total of 63 for final data extraction. For full details on the
search strings used, search dates, the number of papers found and
our PRISMA flowchart (along with reasons for exclusion at the full
text stage), we refer readers to the supplementary information
(https://daniel1noble.github.io/nuisance_heterogeneity/).
To address our questions, we categorised effect sizes as falling

into the following categories: response ratio (lnRR), standardised
mean differences (SMD; e.g. Hedges d, g or Cohen’s d ), correlation
or Fisher’s z-transformed correlation (Zr), regression slopes
(slopes), risk ratios, or whether the paper analysed the raw data or
summary statistics directly (i.e. means/proportions) (which we
labelled as ‘raw’). All other effects were labelled as ‘other’. To
determine whether effect sizes were impacted by nuisance
heterogeneity, we assessed whether authors: (1) acknowledged
this explicitly in the paper or (2) accounted for it in their models. If it
was not clear, two of us (D.W.A.N. and P.P.) discussed the paper,
and made a decision about whether the effect measure was likely to
be impacted. For example, trait means, such as ectothermic
metabolic rate (i.e. raw/mean/proportion-based effect size),
will vary depending on the temperature being measured. The
magnitude of differences between two treatments (e.g. contrast-
based effect sizes – SMD or lnRR) will depend on the pH or
dosage used in treatments, and the strength of the relationship
between two variables (e.g. correlation between behaviour and
metabolism) might depend on the temperature context under
which metabolic rate or behaviour were measured. Given the
high heterogeneity in effects used in comparative physiology,
we expected nuisance heterogeneity to be common to most effect
sizes.
We also categorised the types of statistical models fitted in each

study as: (1) fixed-effect meta-analysis; (2) random-effects meta-
analysis (i.e. intercept-only model, but has random study effects);
(3) multilevel meta-analysis (i.e. intercept-only model, but has
multiple random effect levels such as study-, species- and
observation-level random effects); (4) meta-regression models
(i.e. a multilevel or random-effects model with fixed effects –
including random effects); (5) weighted regression models
(including mixed effects models); and (6) linear regression
models (including linear and generalised linear mixed-effect
models, and phylogenetic least squares models) (see Nakagawa
and Santos, 2012 for discussion of models). Notably, only model
types 1–5 are weighted models because they weight effect sizes
based on the inverse of their sampling variance or sample size.
We summarise the results of our literature survey below while

discussing solutions for dealing with nuisance heterogeneity.

Opening new opportunities in comparative physiology:
expanding the breadth of effect sizes to deal with
nuisance heterogeneity
Common effect sizes and sampling errors that are useful in
comparative physiology
The key features of all effect sizes used in meta-analyses are that: (1)
they are statistical parameters that have been placed on a common
scale so that they can be compared across studies and (2) they have
some associated measure of precision (i.e. sampling variance)
(Borenstein et al., 2009; Koricheva et al., 2013; Schmid et al.,
2021). Effect sizes in comparative physiology are quite diverse; they
can be the mean difference between two groups (e.g. difference in
mean between a control and treatment group; e.g. Wu and Seebacher,
2020), the slope of a regression (e.g. between body size andmetabolic
rate; Uyeda et al., 2017), a correlation between two variables (e.g.
between hormone levels and behaviour; Holtmann et al., 2016), or

even the raw mean (or variance) itself (e.g. comparing CTmax or
CTmin across species; e.g. Sunday et al., 2014).

In many cases, different effect sizes might be used depending on
the question. For example, to investigate the effect of temperature on
a physiological trait, one can compile studies experimentally
manipulating temperature and analyse the mean ‘effect’ by
creating contrast-based effect sizes, or alternatively, just model the
trait in each temperature treatment. The choice as towhich one to use
boils down to the types of data available from primary studies, the
specific question of interest, and whether studies are observational
or experimental in nature. Considering our temperature example
above, if we were interested in the magnitude of change between
temperature treatments, we may want to use a contrast-based effect
size, such as the log response ratio, lnRR. Instead, if we were
interested in how the mean of some physiological trait changes with
temperature, we may model the mean itself. In the latter scenario, if
all the means are measured in the same units (e.g. °C) or can be
converted to the same units, then the mean may provide the desired
answer to the original question.

The results of our literature survey show that quantitative
syntheses in comparative physiology commonly analyse raw
summary statistics (28.36% of studies), followed closely by
Fisher’s transformed correlation coefficients (Zr) (23.88% of
studies), standardised mean differences (SMD) (23.88% of
studies) and log response ratios (lnRR) (11.94%, of studies)
(Fig. 2A). We provide details on different effect measures and
associated sample sizes in Table 1. In many cases, studies make use
of multiple effect size measures. Approximately 72.58% of effect
sizes used within the study were deemed to be impacted by nuisance
heterogeneity in some form or another (Fig. 2B), but of the studies
where this was the case, only 53.33% of the studies clearly dealt
with it (Fig. 2B), often through meta-regression modelling.

Expanding the scope of effect size metrics in comparative physiology
As can be seen in Table 1, none of the effect measures control
for nuisance heterogeneity – a point reinforced by our survey. For
example, the magnitude of lnRR or SMD can depend on differences
in the temperatures, dosages or pH applied to each treatment. The
same applies to modelling the means. For example, standard
metabolic rate (SMR) is temperature-dependent. As such, one needs
to standardise the temperature measurement to compare across
studies (Uyeda et al., 2017; White et al., 2006) (if, of course,
temperature is not of interest itself ). Although we could model
nuisance heterogeneity explicitly, this may not always be desirable.
It can often be useful to standardise the effect to both ease its
interpretation and simplify modelling. In the Appendix, we provide
readers with guidance on how comparative physiologists can
apply corrections to the effect measure itself. We highlight two
examples in the Appendix that can be easily generalized to
alternative effect size measures and show how they are distinct
from traditional effect measures (Fig. 3). Below, we focus on
one familiar example to elaborate on how a traditional effect
size, such as lnRR, can be reformalised to capture nuisance
variation. We use a common, well-understood effect measure
of interest to comparative physiologists – the temperature
coefficient (Q10).

Comparing changes in mean physiological rates, Q10

A common experiment in comparative physiology is to manipulate the
temperature organisms experience and measure some physiological
rate (e.g. metabolic rate). Using the effect size measures from Table 1
would result in the effect sizes varying with the temperatures applied
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within and across studies contributing to ‘comparability’ issues.
For example, an effect size for a temperature manipulation of 10°C
would be larger than an effect size for a temperature manipulation of
5°C (see Fig. 1). As such, it is common to standardise effects by
temperature. One common effect size measure already used in
comparative physiology to compare physiological rates is the
temperature coefficient Q10 (Havird et al., 2020; e.g. Rodgers et al.,
2021; Seebacher et al., 2015). This effect size describes the
multiplicative change in physiological rates across a 10°C
temperature change. Higher Q10 values indicate larger changes in
physiological rates. However, currently there is no formal sampling
variance associated withQ10, making it challenging tomake use of the
full power ofweightedmeta-analytic models. Interestingly,Q10 can be
seen as a variant of lnRR, meaning that we can derive a Q10-based
effect size and sampling error using the well-known mathematical
properties of lnRR. This opens up the meta-analytic toolbox and

improves our ability to account for well-known sources of non-
independence (Lajeunesse, 2011; Noble et al., 2017).

Prior to showing how the relevant Q10 effect size can be
calculated, it is useful to understand its similarities to lnRR. The
lnRR described by Hedges et al. (1999) and extended by Lajeunesse
(2015) can be calculated as follows (but see also Senior et al., 2020):

lnRR ¼ ln
M1

M2

� �
; ð1Þ

s2lnRR ¼ SD2
1

N1M2
1

� �
þ SD2

2

N2M 2
2

� �
: ð2Þ

In Eqn 1,M1 is the mean of group 1 (e.g. a control group), whereas
M2 is the mean of group 2 (e.g. a treatment group). The mean for
group i, Mi, can be any measurement type (e.g. a physiological
rate, mass, etc.) so long as the variable is measured on the ratio scale.

Table 1. Common effect sizes used throughout meta-analyses in comparative physiology, their associated sampling variances and examples on
when they might be used

Effect measure Definition Sampling variance Examples

Mean M SD2

N

CTmin, CTmax, LC50, LT50, metabolic rate (MR)

log Standard deviation, lnSD lnSDþ 1
2ðN � 1Þ

1
2ðN � 1Þ Variability in CTmin, CTmax, MR

log Response ratio, lnRR ln
M1

M2

� �
SD2

1

M2
1N1

þ SD2
2

M2
2N2

Ratio between pollutant exposed treatment (e.g. BPA-exposed group) and
control (no pollutant)

Standardised mean difference,
SMDa

ðM2 �M1Þ
SDp

J
N1 þ N2

N1N2
þ SMD2

2ðN1 þ N2Þ Difference in immune response between males and females, performance
difference in the presence of stressor compared with absence of stressor

Zr (Fisher transformation of
correlation coefficient, r)

1
2
log

1þ r
1� r

� �
1

N � 3
Relationship between sex hormones and immune responses or metabolic
rate and behaviour

N, sample size; CTmin, critical thermal minimum; CTmax, critical thermal maximum; LC50, median lethal concentration; LT50, median lethal temperature; BPA,
bisphenol A.

aJ ¼ 1� 3
4ðN1 þ N2 � 2Þ � 1

; SDp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 � 1ÞSD2

1 þ ðN2 � 1ÞSD2
2

N1 þ N2 � 2

s
.

Other
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Fig. 2. Summary of meta-analytic practices in comparative physiology. (A) Different types of effect measures commonly used in meta-analyses and their
relative frequency of use. (B) Frequency of studies where nuisance heterogenity had the potential to impact effect sizes (x-axis), and the frequencies of studies
explicitly dealing with nuisance heterogeneity (bar colour). (C) Frequencies of analytical approaches used to analyse effect measures. Orange bars indicate
weighted models.
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Natural log transformation of this ratio makes the effect size
normally distributed (as commonly assumed by meta-analytic
models). Eqn 2 is the analytical solution for the sampling
variance of lnRR, where SD2

1 and SD2
2 are the sample standard

deviations and N1 and N2 are the sample sizes for group 1 and 2,
respectively.
The equations for lnRR and its sampling variance allow us to

extend this to Q10-based effect sizes. Recall that Q10 is described as
follows:

Q10 ¼ R2

R1

� �
10°C

T2 � T1

� �
: ð3Þ

Here, R1 and R2 are mean physiological rates and T1 and T2 are the
temperatures at which these rates are measured for groups 1 and 2,
respectively. Natural log transformation of Eqn 3 leads to the
following log-transformed Q10:

lnRRQ10
¼ ln

R2

R1

� �
10°C

T2 � T1

� �
: ð4Þ

Eqn 4 is essentially a temperature-corrected equivalent of lnRR
when the numerator and denominator are measured at different
temperatures. This allows one to compare the mean of two
temperature treatments directly regardless of the temperatures at
which these groups have been measured. Here, we will refer to this
as the log Q10 response ratio, lnRRQ10. Notably, using this effect
rather than the traditionalQ10 has two statistical advantages: (1) zero
becomes biologically meaningful as zero means two rates are
exactly the same, and ‘significantly different from zero’ means
that two rates are significantly different to each other; and (2)
lnRRQ10 is more likely to satisfy the assumption of residual
normality thanQ10 (see Hedges et al., 1999). The recognition of this
equivalence means that we can calculate the sampling variance for
Eqn 4 as follows:

s2lnRRQ10
¼ SD2

2

R2
2N2

þ SD2
1

R2
1N1

� �
10°C

T2 � T1

� �2

; ð5Þ

formalising effect size metrics that compare changes in variability
across treatments in the presence of nuisance heterogeneity.

Nakagawa et al. (2015) recently proposed analogous effect size
estimates to lnRR that allow for comparisons of changes in variance
between two groups, the log variance ratio (lnVR) and the log
coefficient of variation (lnCVR). Like lnRR, lnVR and lnCVR are
ratios that describe the relative difference in trait variability between
two groups. We refer readers to Nakagawa et al. (2015) for the
equations describing lnVR and lnCVR, but these can easily be
extended to their Q10 analogues (and associated sampling
variances) as follows:

lnVRQ10
¼ ln

SD2

SD1

� �
10°C

T2 � T1

� �
; ð6Þ

s2lnVRQ10
¼ 1

2ðN2 � 1Þ þ
1

2ðN1 � 1Þ
� �

10°C

T2 � T1

� �2

: ð7Þ

Eqns 6 and 7 describe the change in physiological rate variance
(Eqn 6) relative to a 10°C temperature change, along with its
sampling variance (Eqn 7). While this is a useful metric, as
discussed by Nakagawa et al. (2015), there is often a strong mean–
variance relationship that needs to be accounted for in analysing
changes in variance. As such, we can calculate the coefficient of
variation, which standardises changes in variance for changes in
means as follows:

lnCVRQ10
¼ ln

CV2

CV1

� �
10°C

T2 � T1

� �
; ð8Þ

s2lnCVRQ10
¼ SD2

1

N1R2
1

þ SD2
2

N2R2
2

þ 1

2ðN1 � 1Þ þ
1

2ðN2 � 1Þ
� �

10°C

T2 � T1

� �2

;

ð9Þ
where CV is the coefficient of variation defined as SD/R.
Whether one chooses to use SD- or CV-based effect size depends
on the questions at hand (see Nakagawa et al., 2015; Senior et al.,
2020).

Our example using Q10, a well-known effect measure in
comparative physiology, shows that common effect sizes can be
re-formalised to account for nuisance heterogeneity (in this case,
temperature). In doing so, we are making assumptions about the

‘Traditional’ ‘Comparative physiology’‘Universal’

‘Expanded’

...lnCVRlnVRZrSMDlnRR Q10 LT50 LC50 CTmax MR ...

lnRRQ10
SMDT ARR lnCVRQ10

...

Mean lnSD Slope ...

Effect sizes

Fig. 3. Effect sizes from old to new. ‘Traditional’ effect sizes (top left) are somehow detached from more biologically relevant measures commonly used in
‘comparative physiology’ (top right), although statistical connections have always existed (‘universal’; top middle). By combining traditional effects with
physiological parameters, and correcting the resulting quantities for nuisance variation, we can derive a new generation of biologically relevant, easily
interpretable effect measures for use in meta-analyses (‘expanded’; bottom). For abbreviations of common effect sizes, see Table 1. lnRRQ10,Q10 response ratio;
lnCVRQ10, log Q10 coefficient of variation ratio; SMDT, temperature-corrected standardised mean difference; ARR, acclimation response ratio.

6

REVIEW Journal of Experimental Biology (2022) 225, jeb243225. doi:10.1242/jeb.243225

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



nature of temperature effects on an effect size. Nonetheless, we can
apply similar approaches to other commonly used effect size
metrics. We describe more generally how this can be done in the
Appendix, applying similar principles to standardise temperature
differences for slopes and standardised mean differences.

Meta-analytic models to control for nuisance heterogeneity
and investigate heterogeneous effects within and
across studies
It will not always be possible to derive an effect size that completely
controls for nuisance heterogeneity at the effect size level. This
limitation is partly because treatment effects may not be simple
linear or exponential functions of the mean response, making the
effect sizes we discuss above unsuitable (e.g. thermal performance
curves; Noble et al. 2018). For example, dosages applied to
treatments can follow quite complex non-linear relationships in
relation to some mean response (e.g. quadratic relationships). When
this occurs, we recommend comparative physiologists apply meta-
regression approaches, controlling for nuisance heterogeneity as a
moderator. In many cases, this will be the easiest, or even preferred,
approach because exploring drivers of heterogeneity is the main
interest in most meta-analyses anyway. Nonetheless, there are
some simple statistical approaches a comparative physiologist can
use to make the overall effects more easily interpretable, allowing
one to control for nuisance heterogeneity, while also testing other
biological moderators of interest (Schielzeth, 2010). Before diving
into meta-regression models, we will first overview the meta-
analytic models commonly used.

Multilevel meta-analysis when the overall effect is of interest
A common goal of meta-analysis is to obtain an overall meta-
analytic mean effect size estimate and some form of uncertainty
around that mean, such as a 95% confidence interval (CI). Including
a prediction interval (PI) can also be useful (discussed below)
(Nakagawa et al., 2021b). Estimating an overall mean and 95%CI is
generally done with a simple random-effects or multilevel meta-
analytic model that accounts for effect size sampling error
(Nakagawa and Santos, 2012; Nakagawa et al., 2017a,b). Often,
meta-analyses in comparative physiology will have complex
hierarchical structure. For example, multiple effect sizes may be
taken from a single study on traits measured on the same individuals
or from many different species that share an evolutionary history
(Cinar et al., 2021 preprint; Noble et al., 2017). As such, it is far
more likely that comparative physiologists will need to apply a
multilevel meta-analytic model to control for the various sources of
non-independence (Cinar et al., 2021 preprint; Nakagawa and
Santos, 2012; Nakagawa et al., 2021c; Noble et al., 2017; Song
et al., 2021). Multilevel models are also extremely useful in
describing the various drivers of effect size variance (a feature we
describe below). For the purpose of our discussion, we will assume
one needs to use more advanced multilevel models. Having said
that, in some instances, it may be sufficient for a meta-analysis to
make use of traditional random-effects models. We refer readers to
excellent reviews and books that overview the distinctions between
common (fixed) effect, random-effect and multilevel models and
when one might (or might not) want to apply these models
(Borenstein et al., 2009; Koricheva et al., 2013; Nakagawa and
Santos, 2012; Nakagawa et al., 2017a,b; Schmid et al., 2021).
Assume that we are interested in understanding the overall effect

of, say, testosterone on offspring traits (e.g. see Podmokła et al.,
2018). Wemight extract data from studies manipulating testosterone
in bird eggs. Of course, these studies are diverse, spanning many

species and applying different dosages of testosterone. If the studies
are experimental in nature, then a standardised effect size, such as
lnRR or SMD, might be applicable. We then might fit an overall
multilevel meta-analytic model as follows:

Yi ¼ b0 þ ak½i� þ spk½i� þ s j½i� þ ei þ mi;

ak½i� � Nð0;s2
phylogenyAÞ;

spk½i� � Nð0;s2
speciesIÞ;

s j½i� � Nð0;s2
studyIÞ;

ei � Nð0;s2
residualIÞ;

mi � Nð0; viIÞ;

ð10Þ

where Yi is the ith effect size (i=1, …, NES, the number of effect
sizes), β0 is the overall meta-analytic mean, and ak[i] is the
phylogenetic effect (a random effect) for species k applied to effect
size i (i.e. species effects because of shared evolutionary history;
Cinar et al., 2021 preprint). Phylogenetic effects are assumed to be
normally distributed deviates sampled from a distribution with a
mean of 0 and variance s2

phylogeny [i.e. Nð0;s2
phylogenyAÞ], whereA is

a phylogenetic correlation matrix derived from a phylogenetic tree.
spk[i] is an additional species-specific effect for the kth species
applied to effect size i (i.e. these are species-specific effects because
of shared ecology and other factors, Cinar et al., 2021 preprint), sj[i]
is the study-specific effect for the jth study applied to effect size i, ei
is the effect size-specific effect (or within study effect, or residuals)
for the ith effect size, and mi is the sampling effect for the ith effect
size, resulting from varying precision for each effect size, vi (which
is known as the sampling variance for the effect).

This model is a ‘weighted’ multilevel meta-analysis model
because the estimation of the overall meta-analytic mean, β0, is
partially weighted by the inverse sampling variance of each effect
size. Weighted meta-analytic models are important to use because
they: (1) improve the precision on meta-analytic mean estimates by
accounting for sampling variance; (2) allow for a formal analysis of
heterogeneity; and (3) give precedence to higher quality studies (see
below). From our survey, 62.9% of studies used a weighted meta-
analytic model; however, of the studies self-described as ‘meta-
analyses’, 17.39% (N=8 of 46) did not account for sampling
variance. Many studies used ‘linear regression’ (including linear
and generalised linear mixed effects models) as the main type of
model fit to the data (Fig. 2C). Of the studies using weighted meta-
analytic models, 35% (N=14 meta-analyses) did not report any
measure of heterogeneity, which is unfortunate given how important
these measures are to interpreting effects.

Importantly, if we have effect sizes that are derived from the same
sample of organisms (e.g. because traits are measured on the same
sets of individuals), then we need to remove this dependency from
the calculation of each vi; we can then account for the assumed
sampling covariance between effect sizes by modifying I to include
off-diagonals that describe this covariance (see the Appendix and
Noble et al., 2017). Alternatively, robust variance estimators can
also be used to deal with effect size non-independence (Nakagawa
et al., 2021c; Song et al., 2021). The fact that we can obtain an
overall estimate of sampling variance (i.e. s2

sampling, see below for
how it is defined) is very important because it provides a way for us
to understand just how much variation in effects are the result of
sampling differences across studies versus other, potentially
important sources of variation, such as differences in the methods
applied, species differences, or even real biological effects that
impact the effect size a study is likely to observe (Nakagawa and
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Santos, 2012; Nakagawa et al., 2017a,b). This is formalised in what
we call ‘heterogeneity analysis’, which we describe below.
Importantly, this model provides us with the answer to our

question: across all the species and studies manipulating egg
testosterone, how much of an overall effect does testosterone have
on offspring traits relative to control conditions? Of course, the
overall effect does not provide us with a way to interpret its
magnitude in the context of howmuch testosterone has been applied
in the treatments used in the sample of studies. The most we can say
about it is that the effect is small, moderate or large given the sample
of effect sizes extracted from this set of studies. In the next section,
we show how to ‘correct’ the overall effect size so that its
interpretation is more meaningful.

Multilevel meta-regression to understand variation, account for
nuisance heterogeneity and improve effect interpretation
Heterogeneity among effects that result from nuisance heterogeneity
can be dealt with using multilevel meta-regression models.
Multilevel meta-regression models include all the same random
effects that we have already discussed, but they also include fixed
effects (i.e. predictors or moderators) that attempt to explain
changes in the mean effect size. In other words, we can modify our
multilevel meta-analytic model and turn it into a multilevel meta-
regression model as follows:

Yi ¼ b0 þ
Xp
l¼1

blxl½i� þ ak½i� þ spk½i� þ sj½i� þ ei þ mi; ð11Þ

where
Pp
l¼1

blxl½i� is simply the sum of all effects for all moderators

(fixed effects; p=number of slopes), xl. All other notation is the
same as described above. Importantly, the variable xl could be any
moderator collected from studies, including dosage, temperature,
salinity or pH. Somemoderators will be at the level of the study (e.g.
was the study experimental or observational in nature), but others
could be taken at the effect size level (i.e. was the effect derived
using a temperature of 23°C or 35°C). By including these
moderators in a meta-regression model, the interpretation of the
overall meta-analytic mean, β0, changes. For example, assume we
collected the change in in ovo testosterone dosage relative to a
control group (i.e. in ng testosterone g−1 yolk) for our meta-analysis
on egg testosterone effects on bird offspring traits. If the
untransformed dosage, xl, is included in the model, then the
overall meta-analytic mean estimate, β0, would be the mean effect of
testosterone on traits when the dosage difference between the
treatment and control group is 0 ng testosterone g−1 yolk (i.e. it
would be reflective of unmanipulated eggs). Of course, this
interpretation does not make much sense.
We can, however, apply some simple transformations to make the

overall mean estimate more intuitive while also improving the
interpretation of non-linear parameters and interactions estimated
from the model (Gelman and Hill; Schielzeth, 2010). One simple
transformation would be to centre the variable xl by subtracting each
value from the mean to create a new input variable (i.e. cl ¼ xi � �x,
where the subscript i denotes each individual effect size dosage
difference). The new variable, cl, is now centred on the mean
and can replace xl in the meta-regression model. When the model
is refitted with cl, the estimated β0 can now be more intuitively
interpreted as the overall mean effect of testosterone on offspring
traits at an average dosage difference between treatment and control
groups. Importantly, by centring, we retain the original units
(ng testosterone g−1 yolk) of the variable, which can be very useful

to ease the interpretation of the effect magnitude (e.g. when the
dosage difference is 10 ng testosterone g−1 yolk).

Given it is very common to estimate and compare overall
meta-analytic means (i.e. β0) in meta-analyses, centring can be
particularly useful in making these means more interpretable. Mean
centring can even be extended to include other ‘nuisance’ variables
that might creep into the dataset; the same centring approach can be
done with a second variable, and the overall mean adjusted and
interpreted in the context of this new variable along with dosage. Of
course, if one is not interested in the magnitude of the effect, we can
simply model mean reproductive output as a function of dosage
(often what are referred to as ‘arm-based’ meta-analytic models).
Here, one can model the mean for each group (i.e. control and
treatment) and account for the known sampling variance associated
with each group mean. Dosage, or other continuous variables, such
as temperature, can then be modelled (accounting for sampling
variance) to understand mean trait changes. It is important to
recognise that all means need to be comparable and that these
models are more complex to fit. While they can be equivalent to
‘contrast-based’ models, they require complex interactions to be
estimated (Nakagawa et al., 2015).

Centring moderator variables, like temperature and dosage, not
only provides a way to make the overall mean effect more
interpretable in the face of treatment heterogeneity, but it also
allowsmore complex relationships to be fitted without compromising
interpretations, such as when one includes non-linear parameters (e.g.
higher-order polynomials) and interactions with other variables. In
other words, linear or main effects can still be interpreted normally in
the presence of non-linear effects or interactions fit in the model
(Gelman and Hill; Schielzeth, 2010). We provide examples in the
online supplementary material (https://daniel1noble.github.io/
nuisance_heterogeneity/) along with R code to show readers how
the models we describe above can be fitted, and how meta-analytic
means can be adjusted for treatment heterogeneity.

Heterogeneity analysis: how much nuisance heterogeneity actually
exists?
Aswe have already emphasised, quantifying effect size heterogeneity
provides the impetus for exploring why effects might vary within and
across studies, while also providing context for interpreting the
generality of overall effects. There are several measures commonly
used to quantify effect size heterogeneity (Borenstein, 2019);
however, in ecological and evolutionary meta-analysis,
heterogeneity is often calculated and reported as I2total as follows (if
using a multilevel meta-analytic model as we describe above):

I2total ¼
s2
study þ s2

phylogeny þ s2
species þ s2

residual

s2
study þ s2

phylogeny þ s2
species þ s2

residual þ s2
sampling

; ð12Þ

where s2
total ¼ s2

study þ s2
phylogeny þ s2

species þ s2
residual þ s2

sampling is
the total effect size variance and s2

sampling is the ‘typical’ sampling
error variance calculated as:

s2
sampling ¼

XNES

i
wiðk � 1Þ=

X
wi

� �2
þ
X

w2
i

� �
; ð13Þ

where k is the number of studies and the weights, wi=1/vi, can be
calculated using the inverse of the sampling variance (vi) for each
effect size i.

Quantifying heterogeneity using I2total provides a formal way to
assess the relative amount of variation that is the result of ‘true’
biological or methodological differences as opposed to chance
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(i.e. sampling variance) (Higgins and Thompson, 2002; Nakagawa
and Santos, 2012). In other words, I2total is the percentage of variance
between effect sizes after removing the effects of sampling error
(Higgins and Thompson, 2002). Note that we can only calculate this
metric if we have an estimate of the sampling variance for a given
effect measure because only then can we quantify the proportion
of variation that is the result of sampling variability. Senior
et al. (2016) have shown that total heterogeneity is often extremely
high in ecological and evolutionary meta-analysis (∼91%),
suggesting that effect measures vary widely within and across
studies. Some of the variation is clearly the result of working with
different species or strains, or measuring different traits and
outcome measures. However, some of this variation also arises
because of methodological differences across studies (e.g. different
temperature or dosage treatments).
Formally quantifying and presenting heterogeneity estimates

from meta-analytic models can provide a way to understand the
major drivers of effect size variation by producing various I2

estimates that can be compared within and across studies.
For example, we could fit the multilevel model described above
to understand what proportion of variation is the result of, say,
‘study’ effects following Nakagawa and Santos (2012):
I2study ¼ s2

study=s
2
total; where s

2
study is the study-specific variance.

Some readers may notice the similarities between I2 and R2

(Nakagawa and Schielzeth, 2010, 2013; Nakagawa et al., 2017a,b).
If we want to formally assess how much effect size variation is the
result of nuisance heterogeneity (e.g. temperature and dosage
differences applied across studies), then we could fit our multilevel
meta-regression model including dosage or temperature (linear,
quadratic or even more complex fits), and estimate how much
variation is explained by these fixed effects following Nakagawa
and Schielzeth (2013):

R2
marginal ¼

s2
fixed

s2
fixed þ s2

study þ s2
phylogeny þ s2

species þ s2
residual

: ð14Þ

Note that this formula does not include s2
sampling, as sampling error

variance is assumed to be known in meta-analysis, as explained
above. When including continuous moderators, such as dosage,
temperature, salinity and even pH, R2

marginal provides a formal means
to assess just how much variation in effects is the result of nuisance
heterogeneity. Other biological moderators of interest could also be
included as fixed effects and R2

marginal can be calculated for each
independently, or all together. Importantly, moderators could
be those that explain variation at the effect-size level (i.e. dosage,
temperature) or variation at the study or species level (e.g.
reproductive mode, endothermy, etc.). R2

marginal, or how we like to
think of it in this context, R2

nuisance, may be a useful measure to help
readers understand just how much effect variation can result from the
specific treatment application. If the heterogeneity is high as a result
of, say, dosage differences, then it is clear that the choice of dosage
will have a critical impact on the effect of interest. Comparative
physiologists interested in implementing these calculations can do so
using our packages orchaRd (Nakagawa et al., 2021b) or metaAidR
(https://github.com/daniel1noble/metaAidR).
Heterogeneity described using I2 measures can be useful for

understanding the relative contributions of different factors to effect
size variation; however, prediction intervals might be more
appropriate in many cases (Borenstein, 2019; Nakagawa et al.,
2021b). Prediction intervals describe the range of plausible effect-
size values expected from a future study (Nakagawa et al., 2021b).
This is different from a confidence interval that expresses the range

of uncertainty around a statistical parameter estimate. Unlike I2,
prediction intervals (PIs) are probably more meaningful in the
context of meta-analysis because they explicitly incorporate
measures of dispersion around a mean effect size. They provide
information about the likely effect size one can expect if we were to
randomly sample a new population. For example, assume that we
were interested in the overall impact of salinity stress in freshwater
fish. To tackle this question, we might collect experimental studies
measuring fish swimming performance under high salinity
treatments (∼15–20 ppm NaCl) compared with freshwater
(∼0 ppm NaCl) controls, using SMD to quantify the effect
salinity had on swim performance. We conducted a meta-analysis
and estimated an overall SMD of 0.50 with a 95% prediction
interval of 0.05 to 0.85. The PI indicates that effects can vary widely
from as low as an SMD of 0.05 to as high as an SMD of 0.85,
depending on the population. In addition, if we were to repeat a
similar study, we would expect a new effect to fall within the range
of 0.05 and 0.85, 95% of the time (Borenstein, 2019; Nakagawa
et al., 2021b). This is a very intuitive interpretation of how variable
effects are, yet PIs are often not reported in meta-analyses
(Nakagawa et al., 2021b). We encourage more meta-analysts to
report these (for examples of PIs, see supplementary material at
https://daniel1noble.github.io/nuisance_heterogeneity/).

Conclusions
Comparative physiologists are interested in meta-analysing effects
across a diversity of species, experimental designs and environments.
Importantly, sampling variances for many effect sizes commonly
used by comparative physiologists (e.g. CTmax, Q10, etc.) can be
formalized and powerful meta-analytic models can be easily applied
to these effect measures (Fig. 3). Although an overall meta-analytic
mean may be of interest, more often than not, understanding the
drivers of effect size heterogeneity will be the primary interest.
However, factors such as temperature and dosage differences across
studies may generate obvious sources of heterogeneity that may not
be of prime interest. Instead, comparative physiologists might simply
want to focus on biological drivers of effect-size variability and want
an effect size or analytical approach that allows them to remove these
‘nuisances’. Surveying the comparative physiology literature shows
that nuisance heterogenity is common, and is often not completely
dealt with in a meta-analysis. Here, we provide a set of tools to deal
with nuisance heterogeneity (Fig. 1) by reinventing standard effect
sizes and/or using mean centred nuisance variables in meta-
regression models. Estimating complex meta-regression models
with a multitude of fixed effects might result, however, in more
challenging model interpretation. As such, a combined approach
might bemore desirable. Nuisance heterogeneity can be dealt with by
using an appropriate effect size and associated sampling variance in
combination with meta-regression models that contain moderators
that test biological hypotheses of interest. Indeed, this may even be a
necessity to simplify the model. The set of tools we describe provide
clarification around the importance and limitations of heterogeneity.
We also hope to provide new ways to help comparative physiologists
communicate effect measures more richly to guide our understanding
and decisions around pressing global challenges.

APPENDIX
Examples of how to derive sampling variances
Here, we show how to obtain sampling variance for a slope (or a
‘rate of change’) when you have measurements of a physiological
trait at two points along an environmental gradient (e.g.
temperature, salinity, pH). We then derive sampling variance for
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the difference between two slopes, and demonstrate how SMD can
be corrected to account for differences in both units (e.g. cm or mg)
and points on an environmental gradient (e.g. temperature of 24°C
and 30°C). Finally, we introduce a useful approximation technique
known as ‘the Delta method’. The sampling variances associated
with these ‘new’ effect sizes will allow comparative physiologists to
take advantage of powerful meta-analytic models.

Sampling variance for a slope between two points
Let us start with a real example that comparative physiologists can
easily relate with, the slope of responses to temperature acclimation,
or as we call it, the acclimation response ratio (ARR) (Pottier et al.,
2021). ARR can be defined as a slope for acclimated physiological
responses at two different temperature points, defined as:

ARR ¼ M1 �M2

T2 � T1
; ðA1Þ

where T is temperature (°C) and T2>T1, and M1 and M2 are the
average physiological responses (e.g. mean CTmax) at temperature
points T1 and T2, respectively. Many studies might manipulate
multiple variables using a fully factorial design (e.g. temperature and
pH); however, for simplicity we assume the study only manipulates
temperature. In the supplementary information (https://daniel1noble.
github.io/nuisance_heterogeneity/), we also show how to derive ARR
from fully factorial studies (i.e. main effects and interactions).
To obtain the sampling variance for this equation (slope), we first

need to describe some basic properties of variance. Let us assume
M1 is a random variable drawn from a distribution that can be
characterised by a mean and standard deviation (note that this
standard deviation is not the ‘sample’ but the ‘sampling’ standard
deviation, which is often referred to as standard error; see fig. 1 in
Nakagawa et al., 2021a). Multiplying it by a constant (a) will
change the variance by the square of that constant (a2) while adding
or subtracting the constant (b) does not change the variance of M1.
This can be summarized as:

s2ðaM1 + bÞ ¼ a2s2
M1
: ðA2Þ

Also, when adding two random variables (M1 and M2), the
combined variance is the sum of the variance ofM1 and the variance
of M2 plus 2 times the covariance between M1 and M2. This
relationship can be written as:

s2ðM1 +M2Þ ¼ s2
M1

þ s2
M2

+ 2CovðM1;M2Þ
¼ s2

M1
þ s2

M2
+ 2CorðM1;M2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
M1
s2
M2

q
; ðA3Þ

where the covariance Cov(M1,M2) equals the correlation multiplied
by the square root of the product of two variances

2CorðM1;M2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
M1
s2
M2

q
.

Importantly, whenM1 andM2 are independent of each other, their
covariance is 0. In other words, if measurements are taken from two
different groups of animals at two different temperatures (T1 and
T2), then the covariances between these two sets of measurements
are 0.
Therefore, when M1 and M2 are independent, we can obtain the

sampling variance for ARR as:

s2
ARR ¼ 1

T2 � T1

� �2 SD2
1

N1
þ SD2

2

N2

� �
; ðA4Þ

where SD1 and SD2 and N1 and N2 are standard deviations and
sampling sizes at temperatures T1 and T2, respectively. Readers may

find it difficult to see how we obtained this equation. Let us explain
further. The (sampling) standard error for M1 is SE1 ¼ SD1=

ffiffiffiffiffiffi
N1

p
.

Given this, the sampling variance for M1 is SD2
1=N1, and the

sampling variance forM2 is SD
2
2=N2. You can see those elements of

the sampling variance of ARR in the formula above. The term [1/
(T2–T1)]

2 comes from recognizing 1/(T2–T1) as a constant.
In ecological and evolutionary studies, it is not uncommon that

we measure the same group of organisms at two temperatures.
However, if we do, then we need to add the covariance betweenM1

and M2 [Cov(M1,M2)] in the equation. Note that, as above, the
covariance equals the correlation multiplied by the square root of
two (sampling) variances. Therefore, the sampling variance of ARR
can be now written as:

s2
AAR ¼ 1

T2 � T1

� �2 SD2
1

N1
þ SD2

2

N2
� 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

1

N1

SD2
2

N2

s0
@

1
A: ðA5Þ

By assuming the numbers of organisms (N ) are the same at the two
temperatures, we can slightly simplify this formula:

s2
AAR ¼ 1

T2 � T1

� �2 SD2
1 þ SD2

2 � 2rSD1SD2

N

� �
; ðA6Þ

where r is the correlation between a set of measurementsM1 andM2

from the same individuals at two points T1 and T2. As you may
notice, we need the raw data to calculate r. Therefore, in reality, we
often need to assume a certain value of r. When we do not have an
estimate of r we can reasonably assume it to be 0.5 (Noble et al.,
2017).

Sampling variance for the difference between two slopes
Now let us assume that wewant to know the difference between two
different ARR values: e.g. female ARR (ARRf) and male ARR
(ARRm). Such a difference (ARRD) can be written as:

ARRD ¼ ARRf � ARRm: ðA7Þ
Using the properties of variance and the equations from above,

the sampling variance for ARRD can be derived; when
measurements at two temperature points are independent, as:

s2
ARRD ¼ 1

T2 � T1

� �2 SD2
f1

Nf1
þ SD2

f2

Nf2
þ SD2

m1

Nm1
þ SD2

m2

Nm2

� �
; ðA8Þ

where subscripts f and m stand for females and males, respectively.
Similarly, the dependent version of the sampling variance can be

written as:

s2
ARRD ¼ 1

T2 � T1

� �2

SD2
f1 þ SD2

f2 � 2rSDf1SDf2

Nf
þ SD2

m1 þ SD2
m2 � 2rSDm1SDm2

Nm

� �
:

ðA9Þ
Here, we have derived sampling variances for ‘temperature’ ARR
and ARRD for both independent and dependent cases. These
formulas can also be applied to changes in other factors (e.g.
salinity, pH, oxygen) by changing the temperature constant. Also,
our calculation can easily account for methodological
inconsistencies. For example, it may be possible that males and
females were measured at slightly different temperatures; say
females at T3 and T4 (and T4>T3) and males at T5 and T6 (and
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T6>T5), like below:

s2
ARRD ¼ 1

T4 � T3

� �2 SD2
f3 þ SD2

f4 � 2rSDf3SDf4

Nf

� �

þ 1

T6 � T5

� �2 SD2
m5 þ SD2

m6 � 2rSDm5SDm6

Nm

� �
:

ðA10Þ

Also, note that the difference between slopes does not need to be
that of males and females. This formula can be used to compare any
two treatments or biological groups.

Controlling for unit differences and temperature
across studies
Calculating ARR assumes that the units for the mean difference
across studies is consistent. Frequently, this will not be the case for
meta-analyses that hope to synthesise a wide array of traits that vary
in their units (e.g. μl g−1, g, s, min). Fortunately, lnRR and SMD
(Table 1) already control for unitary differences. As such, we can
apply similar logic that we discuss above to correct SMD for both
temperature and unitary differences. Table 1 provides the formula
for SMD, its pooled standard deviation (SDp) and sampling
variance. Just like with ARR, we can apply our temperature
correction to the SMD formula as follows:

SMDT ¼ ðM1 �M2Þ
SDpðT2 � T1Þ J : ðA11Þ

Here, we can see that the difference between M1 and M2 is
standardised by the pooled SD, correcting for differences in
measurement units. Additionally, dividing SMD by the temperature
difference results in further correcting the effect size by the applied
temperature difference. J is a small sample correction (see Table 1).
To derive the sampling variance for SMDT, we can apply the same
principle as we did above to derive a sampling variance as:

s2SMDT
¼ N1 þ N2

N1N2
þ SMD2

T

2ðN1 þ N2Þ
� �

1

T2 � T1

� �2

: ðA12Þ

The Delta method
Deriving sampling variances using common properties of variance
has its limits. Therefore, we introduce a practical and widely
applicable method to obtain approximate variance when the basic
properties of variance cannot be applied. This is where the Delta
method comes in. The general form of this method can bewritten as:

Varð f ðX ÞÞ � VarðX Þ � ð f 0ðX ÞÞ2; ðA13Þ

where f (X ) represents the function of the random variable X, and
importantly, f′(X ) is the first derivative of f (X ). Let us demonstrate
this with a concrete example by re-deriving the sampling variance
for lnRR defined as:

lnRR ¼ ln
M1

M2

� �
¼ lnM1 � lnM2: ðA14Þ

Here, f (M1)=lnM1. By applying f′(M1)=1/M1 (i.e. the first derivative
of lnM1 is 1/M1) to the Delta method and using the variance’s basic

properties, we have:

s2
lnRR � SD2

1

N1

� �
1

M1

� �2

þ SD2
2

N2

� �
1

M2

� �2

¼ SD2
1

N1M 2
1

� �
þ SD2

2

N2M2
2

� �
: ðA15Þ

Note that the first term, SD2
1=N1 is once again the sampling variance

for group 1, and we simply multiply this term by the square of the
first derivative of M1 as described by the Delta method. Readers
may notice that this formula is now equivalent to the sampling
variance for lnRR (Table 1). We can extend this sampling variance
to include dependency between the groups as:

s2
lnRR � SD2

1

N1M2
1

� �
þ SD2

2

N2M2
2

� �
� 2r

ffiffiffiffiffiffiffiffiffiffiffiffi
SD2

1

N1M2
1

s ffiffiffiffiffiffiffiffiffiffiffiffi
SD2

2

N2M2
2

s
; ðA16Þ

where r is the correlation between lnM1 and lnM2 when organisms
are measured multiple times (with r often assumed to be 0.5), while
r is 0 when two sets of measurements are independent.

Finally, we note that, by using the basic properties of variance
and the Delta method, one can derive sampling variance for most
effect size measures. For instance, these methods allowed us to
derive sampling variance for our ‘new’ effect sizes (e.g. lnQ10; see
‘Comparing changes in mean physiological rates, Q10’) and were
used in Nakagawa et al. (2015) and Senior et al. (2020). We also
refer the reader to Nakagawa et al. (2017a) for additional details on
the Delta method.
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