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ABSTRACT

The notion that men are more variable than women has become embedded into scientific thinking. For mental traits like
personality, greater male variability has been partly attributed to biology, underpinned by claims that there is generally
greater variation among males than females in non-human animals due to stronger sexual selection on males. However,
evidence for greater male variability is limited to morphological traits, and there is little information regarding sex differ-
ences in personality-like behaviours for non-human animals. Here, we meta-analysed sex differences in means and var-
iances for over 2100 effects (204 studies) from 220 species (covering five broad taxonomic groups) across five personality
traits: boldness, aggression, activity, sociality and exploration. We also tested if sexual size dimorphism, a proxy for sex-
specific sexual selection, explains variation in the magnitude of sex differences in personality. We found no significant dif-
ferences in personality between the sexes. In addition, sexual size dimorphism did not explain variation in the magnitude
of the observed sex differences in the mean or variance in personality for any taxonomic group. In sum, we find no evi-
dence for widespread sex differences in variability in non-human animal personality.
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I. INTRODUCTION

Numerous studies have quantified average differences between
men and women in traits ranging from height and physiology
to, more controversially, behaviours, including intelligence
and personality. Far fewer studies have investigated human
sex differences in variability among individuals (but see Lehre
et al., 2009). The causes and consequences of sex differences
in behavioural variability have, however, been widely debated
in the social sciences (e.g. Stewart-Williams & Halsey, 2021).
For example, sex differences in variability in academic perfor-
mance (Machin & Pekkarinen, 2008) or the classroom (Baye &
Monseur, 2016;O’Dea et al., 2018; Gray et al., 2019) have been
attributed to sex differences in variability in intelligence
(Arden & Plomin, 2006; Johnson, Deary & Carothers, 2008),
psychological state (Archer, 2019), creativity (Ju, Duan &
You, 2015), aggressiveness (Deary et al., 2003), personality
(Borkenau, McCrae & Terracciano, 2013b) and, ultimately,
brain structure (Ritchie et al., 2018; Wierenga et al., 2020).
The general conclusion is that males are more behaviourally
variable than females (‘greater male variability’ hypothesis).
This conclusion has led to much controversy as it is sometimes
used to explain male-biases in science, technology, engineering
and mathematics (STEM) for university enrolment, subse-
quent employment and recognition of extremely high-level
performance (Benbow & Stanley, 1980, 1983; Lubinski &
Benbow, 1992; Pinker, 2005; Halpern et al., 2007).

(1) ‘Greater male variability’ in humans and other
animals

Greater attention has been paid to describing average differ-
ences between the sexes than to differences in trait variability
(e.g. average differences in brain size; see Shields, 1975,
1982). It was not until Darwin (1871) suggested that males
were more likely than females to express variation in their
physical (i.e. phenotypic) traits that the ‘greater male variabil-
ity’ hypothesis became the focus of scientific attention. Dar-
win (1871, p. 272, 321–330) argued that the tendency of
males to vary more than females indicated that sex-specific
selection on males was an important evolutionary process. As
evolutionary theory emphasises the importance of variability
as the raw material for selection to operate, it became legiti-
mate to study sex differences in behavioural variation

(Shields, 1982; Hyde, 1990). Following Darwin, the promi-
nent sexologist Havelock Ellis (1894) was one of the first for-
mally to describe biological sex differences in variability for
both physical andmental traits inmen andwomen. Ellis (1894)
concluded that the differences between men and women for
variability in brain size indicated that the mental abilities of
men were superior to those of women, due to a greater con-
centration of men at the higher extremes of distributions for
both traits. Although the ‘greater male variability’ hypothesis
has faced criticism and pushback since its inception [most
notably from women scientists (Thompson, 1903;
Hollingworth, 1914, 1918; Hyde, 1981; Shields, 1982)], it
has remained a controversial topic of unresolved debate for
well over a century (see Fausto-Sterling, 1985). Some have
argued that the extent to which the ‘greater male variability’
hypothesis has been accepted is related more to societal
changes than empirical evidence. For example, Shields (1982)
stated that the hypothesis wasmore readily accepted by the sci-
entific community at a time when women began to enrol in
universities in increasing numbers. Even now, as fewer scien-
tists invoke the ‘greater male variability’ hypothesis to explain
a male-bias in STEM, the hypothesis, and its possible biologi-
cal underpinnings (i.e. due to natural and sexual selection –
referred to using the shorthand of ‘biology’ or ‘evolution’)
continue to be discussed and tested (e.g. Geary, 2018, 2021).
Greater variability among men than women in behav-

iour, personality and cognition is widely attributed to
socio-cultural factors that differ between the sexes, but
also to biological factors (Feingold, 1992; Miller &
Halpern, 2014). Some commentators have, however,
argued that the role of evolved sex differences in behaviour
is still underplayed (Archer, 2019; Stewart-Williams &
Halsey, 2021). A key line of reasoning invokes a trend
across non-human animals for greater male than female
variability (e.g. Geary, 2010). Although greater male vari-
ability has been reported for some traits in non-human
animals (e.g. reversal learning performance in mountain
chickadees; Branch et al., 2020), the robustness of this
claim is unclear. Specifically, the strongest evidence is for
greater variability in male than female morphology, espe-
cially for sexually selected traits, including ornaments,
weaponry and body size (Pomiankowski & Moller, 1995;
Reinhold & Engqvist, 2013; Wyman & Rowe, 2014). To
date, the evidence appears weak or absent for greater male
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variability for behaviours that are exhibited by both sexes
(Tarka et al., 2018; Zajitschek et al., 2020).

(2) Personality behaviours and sex differences

Human personality is often quantified by scoring five compo-
nents of behaviour (the ‘Big Five’: extraversion, neuroticism,
openness, conscientiousness and agreeableness; Costa &
McCrae, 1992), which are repeatable among individuals
over time. In the last 15 years, comparable evidence has
emerged for repeatable and heritable behavioural variation
among non-human animals that is akin to human personal-
ity. These animal behaviours are often grouped into five per-
sonality axes that loosely resemble those in humans: activity,
aggression, boldness, exploration and sociality/sociability
(Réale et al., 2007). We can therefore now test claims for
greater male variability in personality traits in non-human
animals (e.g. Archer, 1996; Nettle, 2006; Borkenau et al.,
2013b).

(3) Evolutionary explanations

There are three non-mutually exclusive explanations fre-
quently invoked by biologists to explain the maintenance of
variation in non-human animal personality despite natural
selection tending to eliminate less-fit variants (Smith &
Blumstein, 2008; Dingemanse & Wolf, 2010): (a) condition-
dependent trait expression; (b) negative frequency-dependent
selection and (c) developmental or genetic constraints. Cru-
cially, when stronger sexual selection on males than females
is taken into account, sexual selection might partially account
for why males are more variable than females for some per-
sonality traits.

Sexual selection is usually stronger on males than
females (Fromhage & Jennions, 2016; Janicke & Morrow,
2018). It favours individuals with the most extreme expres-
sion of traits that increase the likelihood of obtaining mates
(e.g. weapons, ornaments, courtship and coercive behav-
iours; Darwin, 1871), or fertilising eggs when females mate
multiply (Parker, 1970). There is often far greater among-
individual variation in mating success in males than
females (Janicke et al., 2016). This is partly attributable to
the relative abundance of males and females that are avail-
able to mate [i.e. the operational sex ratio (OSR); Emlen &
Oring, 1977]. As the OSR becomes more male-biased, the
variation in male mating success increases, and hence the
opportunity for sexual selection (Wade, 1979; Arnold &
Wade, 1984). However, a greater opportunity for sexual
selection in males than females does not, by itself, mean
that there is stronger sexual selection on males: stochastic
factors can create a relationship between the OSR and
the opportunity for sexual selection (Klug et al., 2010; Jen-
nions, Kokko & Klug, 2012). Ultimately, stronger sexual
selection on males primarily arises due to males spending
relatively more of their lives in the mating pool trying to
acquire a mate (Kokko, Klug & Jennions, 2012;
Fromhage & Jennions, 2016). This increases the costs that

males can incur to shorten this interval by investing more
heavily in traits that provide an advantage when competing
for mates. This sexual competition for mates (and fertilisa-
tions) tends to generate strong directional selection on
males which, in turn, can sometimes select for condition-
dependent mating tactics, and alter the life-history trade-
offs that males and females experience. Each of these con-
sequences can increase variability in male mating
behaviours.

(a) Condition dependence, life-history trade-offs and sexual selection

Sexual selection generally favours condition-dependent
trait expression if individuals in better condition can afford
to incur greater costs (Rowe & Houle, 1996). Even minor
differences in resource acquisition among individuals due
to chance or small genetic differences in, say, foraging effi-
ciency can therefore translate into differential expression of
sexual traits (Rowe & Houle, 1996), increasing phenotypic
variance among individuals. Condition dependence can
therefore maintain variation in sexually selected traits,
even when directional female choice should otherwise
erode genetic variation in male trait expression (i.e. the
‘lek paradox’; Borgia, 1979). Sexually selected traits are
likely to show higher condition dependence than naturally
selected traits because a small relative advantage can trans-
late into large fitness gains due to the zero-sum nature of
competition for mates. In sum, stronger sexual selection
on males is predicted to yield sexual traits with greater var-
iance among males than equivalent traits in females, or
than naturally selected traits in either sex
(Pomiankowski & Moller, 1995; Wyman & Rowe, 2014).
It is also worth noting that pleiotropic effects of sexually
selected traits might then also increase variance in corre-
lated traits (e.g. Han & Dingemanse, 2015). For example,
sexual selection on males to elevate aggressiveness when
fighting with rivals might also affect aggressiveness in other
contexts, such as when foraging in a group.

Life-history trade-offs have also been proposed to generate
variation in personality among individuals (Wolf et al., 2007).
Sexual selection on condition-dependent male sexual traits
can lead to sex-specific life-history trade-offs that generate
greater phenotypic variation among males than females. For
example, sexual selection often reduces male life expectancy
to below that of females due to the differential expression of
sex and stress hormones (e.g. in humans; Regan & Partridge,
2013), fighting-associated injuries (e.g. fatal territorial contests
in male common loons Gavia immer; Piper et al., 2008), the high
energetic costs of sexual advertising (e.g. the advertisement calls
of male field crickets Teleogryllus commodus; Hunt et al., 2004), and
ornaments attracting predators (e.g. guppy Poecilia reticulatamale
colouration;Gordon, Lopez-Sepulcre&Reznick, 2011). Sexual
selection could therefore increase variation in the magnitude of
the trade-off between current reproduction and survival, which
will elevate age-dependent variation in allocation of resources to
different life-history traits, including those under both sexual
and natural selection.
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(b) Negative frequency dependence and sexual selection

Negative frequency-dependent selection is a form of balan-
cing selection that can maintain genetic variation in traits.
It is often associated with the evolution of different morphs
within a species due to a rarer phenotype having a fitness
advantage (e.g. predators learning more readily to detect
male P. reticulata guppies with a common colour morph;
Olendorf et al., 2006). Negative frequency-dependent selec-
tion is particularly relevant for behavioural traits that elevate
the intensity of competition among similar individuals
(Wolf & McNamara, 2012). For example, there are two for-
aging morphs in Drosophila melanogaster larvae: ‘rover’
(actively explores) and ‘sitter’ (sedentary feeders). Both
morphs have lower fitness when common, as within-morph
competition increases with population density at limited food
sources (Fitzpatrick et al., 2007).

Sexual selection often results in the evolution of alternative
mating tactics. This is usually because individuals with a poor
start in life, or those that are in worse condition due to their
recent experience or to the effects of ageing, gain more from
amating tactic that circumvents female choice or direct phys-
ical contests (Taborsky & Brockmann, 2010). When early
development affects the adult phenotype, this can result in
development being canalised into a few discrete pathways
such that alternative mating tactics are associated with a suite
of morphological traits that differ from those for the domi-
nant mate-acquisition tactic. For example, sneaker males
are smaller and more female-like than males using the dom-
inant mating tactic. Sexual selection, because it more often
promotes the evolution of alternative mating tactics in males
than females, therefore tends to generate higher variation
among males than females in both morphological traits and
allied behaviours.

(c) Genetic and developmental pathways

Greater male variability might arise from ‘constraints’
imposed by sex-determination mechanisms (James, 1973).
In mammals, for example, XX/XY chromosomal sex deter-
mination means that females have two X chromosomes and
males only one. For females, the phenotypic effects of genes
on the X chromosome are therefore averaged across their
expression on both chromosomes, often via epigenetic inacti-
vation of one chromosome (Amos-Landgraf et al., 2006). By
contrast, males only express genes on the single, maternally
inherited X chromosome. All else being equal, this should
create more extreme phenotypes in males (Charlesworth,
1996), hence greater variation among males than females.
It should be noted, however, that X-inactivation is not always
random in mammals. Skewed X-inactivation, the imbal-
anced expression of paternal and maternal X chromosome
genes, is fairly common (Shvetsova et al., 2019) and can gen-
erate greater than expected genetic variation in females
(Gribnau & Barakat, 2017). Additionally, females are the het-
erogametic sex in some taxa, including birds, butterflies, and
some fish and reptiles (Beukeboom & Perrin, 2014). If the

mechanism of sex determination drives sex differences in
phenotypic variability, then taxa with heterogametic females
should exhibit greater variability in females than males
(Reinhold & Engqvist, 2013). Similarly, it is possible that
when sex determination depends on an environmental
threshold, such as temperature or host size in parasitoids,
the sexes might differ in their phenotypic variability depend-
ing on whether there is greater variation in the environmen-
tal cue above or below the threshold.

(4) Testing the ‘greater male variability’ hypothesis
using non-human animal personalities

Based on the above explanations, sexual selection and the
mechanism of sex determination are likely to amplify both
average differences in trait expression and variation in sexu-
ally selected behaviours and, as a by-product, any associated
behaviours that affect personality (reviewed in Schuett,
Tregenza &Dall, 2010). For example, aggressive personality,
as result of sexual selection on fighting behaviour, is expected
to lead to both greater average trait expression and more
among-individual variance in males compared to females
(but see Stockley & Brø-Jorgensen, 2011). Indeed, variation
in two components of human personality (agreeableness
and neuroticism) that are linked to aggressiveness, show
greater variability among men (Budaev, 1999; Archer &
Mehdikhani, 2003). This line of reasoning should apply to
all taxa: male variability in personality should be higher in
species when sexual selection on males is more intense. This
broad-scale prediction about all non-human animals is
directly relevant to proposed explanations for sex differences
in variation in human behaviour that invoke evolved biolog-
ical differences between the sexes due to sexual selection
(e.g. Archer, 2019; Stewart-Williams & Halsey, 2021), but
it remains poorly tested.
Here we conduct a large-scale meta-analysis of non-

human animal personality studies (extending an earlier
meta-analysis by Tarka et al., 2018) to test the robustness of
claims that males differ behaviourally from females for these
types of traits. More specifically, we answer three questions:
(i) do males show greater mean trait expression or variability
than females for each of the five personality components? (ii)
Do sex differences in means or variability differ among the
five components of personality? And (iii) does sexual selection
[estimated using a proxy of sexual size dimorphism (SSD)]
explain differences in the magnitude of sex differences in
the mean and variance in personality? In many taxa, the
strength of sexual selection on males is correlated with the
magnitude of SSD (Fairbairn, Blanckenhorn & Székely,
2007). We therefore included SSD as a moderator in our
meta-analyses. Additionally, our data set contains taxa where
males are heterogametic (mammals), homogametic (birds),
or a mixture of both (insects, fish and reptiles/amphibians).
As such, we also partially tested if sex determination by
sex chromosomal arrangement affects sex differences in
variation in personality by testing for a moderating effect
of taxa.
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(5) Predictions

We expected that males would show larger mean trait values
for personality traits, with the possible exception of sociality
(Dingemanse & Wolf, 2010; Wolf & Weissing, 2010), and
greater variance for all five traits in accordance with the
‘greater male variability’ hypothesis (Feingold, 1992). We
expected that the magnitude of sex-specific differences in
mean values and variance would depend on the type of per-
sonality trait, because trait types are likely to be correlated
with sex roles (e.g. parental care might affect sociality), life
histories (e.g. sex-biased dispersal is likely to affect explora-
tion and activity), and sexual selection (e.g. the level of
male–male competition or female mate choice might affect
male levels of aggression and female levels of exploration).
When testing whether the degree of sex-specific sexual selec-
tion (as measured by an index of SSD) moderated effect sizes,
we predicted that species with a greater male-bias in SSD
would show stronger sex differences in the mean and vari-
ance. However, we also expected the strength of its moderat-
ing effect to differ among the personality traits due to
variation in the magnitude of the difference in sex-specific
selection on the trait.

II. MATERIALS AND METHODS

(1) General approach

We conducted a systematic review and meta-analysis to test
the generality of the ‘greater male variability’ hypothesis
across the animal kingdom (excluding humans). Compari-
sons of shared behavioural traits often provide conflicting
evidence for greater male variability (e.g. Reinhold &
Engqvist, 2013; Tarka et al., 2018; Zajitschek et al., 2020);
we therefore chose to focus on animal personality as a way
to compare shared behaviours that are broadly equivalent,
and measured in similar ways, across many different non-
human animal species. For this synthesis, we extracted the
raw means and error for personality and personality-like
behaviours for both males and females from the primary
literature (see Fig. 1). Recently, there has been a push for
stricter definitions of personalities in non-human ani-
mal behaviour studies (Dingemanse & Wright, 2020). By
definition, personality traits are repeatable (Sih, Bell &
Johnson, 2004), but very few of the available studies reported
repeatability, nor cited previous work that has documented
repeatability of the behavioural measure used to quantify
personality. As such, many earlier studies of personality-like
animal behaviours do not necessarily meet these criteria.
To ensure adequate sample sizes, however, we retained
behaviours that are commonly described as indices of animal
personality, or where the authors explicitly interpreted these
behaviours as ‘personalities’ (Sih et al., 2004; Réale et al.,
2007). Our inclusion of studies that did not explicitly confirm
the repeatability of personality and personality-like behav-
iours could introduce potential problems with our

interpretation, but we included them to allow us to test the
‘greater male variability’ hypothesis for behaviours exhibited
by both sexes across a wider array of animal taxa. It is also
worth noting that there is no obvious reason for studies that
do not report repeatability to be biased with respect to the
magnitude or direction of any sex difference in the mean or
variance in behaviour.

(2) Literature search and data collection

Our meta-analysis was pre-registered with the Open Sci-
ence Foundation (OSF; study details available at: https://
osf.io/b9ju6/). We conducted a systematic search of the lit-
erature for empirical studies of animals that quantify per-
sonality traits, which were categorised into five types:
‘boldness’, ‘aggression’, ‘activity’, ‘sociality’ and ‘explora-
tion’ (Sih et al., 2004; Réale et al., 2007). We ran primary
and secondary key word searches using the search strings
shown in Table S1 in the online Supporting Information.
In the primary searches we looked for behavioural mea-
sures commonly used by those studying animal personality
to quantify each of the five personality types, such as ‘hid-
ing time’ as an index of boldness or ‘distance moved’ as
an index of exploration (Sih et al., 2004; Réale et al.,
2007). Our secondary searches were designed to locate
studies of ‘personality-like’ behaviours that were alterna-
tive measures of activity, aggression, boldness, exploration
or sociality. We then conducted additional forward citation
searches to include all articles that had cited any of five
influential reviews of animal personality (Dall, Houston &
McNamara, 2004; Sih et al., 2004; Réale et al., 2007;
Dingemanse &Wolf, 2010; Schuett et al., 2010). In all cases
we searched for studies that collected data on both males
and females so that the sexes could be compared for data
collected by the same researchers from the same popula-
tion using equivalent methods. In total, we collected 9698
records from the ISI Web of Science and SCOPUS databases
on 11 December 2018. The PRISMA diagram summaris-
ing our search protocol and the number of articles located
using each search method is shown in Fig. 1.

After removing obvious duplicates, 3739 articles were
available for title and abstract screening by LMH. Of these,
942 were excluded at the title/abstract screening stage
because they were: (i) duplicates (N = 130), (ii) human studies
(N = 256), (iii) reviews or non-empirical studies (N = 516), (iv)
not in English (N = 8), or (v) inaccessible (N = 32). We then
carried out a full-text screening of the remaining 2797 arti-
cles. We included articles in the final data set only if they pro-
vided raw means, variances (i.e. standard error or standard
deviation) and sample sizes for behavioural measures of per-
sonality for both sexes. Raw summary statistics are required
to calculate variance-based effect sizes, which also provide
greater opportunities to control for sources of non-
independence (Nakagawa et al., 2015; Noble et al., 2017).
Consequently, studies that only reported principle compo-
nents or factor loadings were excluded (following the
methods of Tarka et al., 2018). We excluded articles during
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full-text screening using the following criteria: (i) it was not a
personality study (i.e. reported a behaviour that could not be
assigned to any of the ‘Big Five’ categories, e.g. ‘social node
position’), (ii) the study was on domesticated or agricultural
animals, (iii) the study did not report separate data for males
and females (i.e. the study was on simultaneous hermaphro-
dites, clones or gynandromorphs; or data from both sexes
were combined; or only one sex was measured; or data was
only reported for one sex), or (iv) data were unsuitable/
missing (i.e. raw data were missing, missing sample sizes,
sampling error type was not reported, or the mean of one
sex was zero leading to effect size calculation issues) (Fig. 1
and Appendix S1).

In total, we identified 209 eligible articles with suitable
data to calculate effect sizes. We extracted means, mea-
sures of variance (standard deviation or standard error)
and sample sizes from the text, tables, figures or supple-
mentary data files for both sexes for all relevant beha-
vioural measures of personality traits that were reported
by the authors. We used the R package metaDigitise version
1.0.0 (Pick, Nakagawa & Noble, 2019) to extract summary
statistics from figures. The location of the data in the orig-
inal article is provided in our raw data file (see Datafile S1:
data.xlsx). We received an additional N = 2 unpublished
data sets from colleagues (eastern grey kangaroos Macropus

giganteus: W. Menario-Costa; white-winged choughs

Corcorax melanorhamphos: C. Leon) to bring the total number
of eligible studies to 211.
From our final 211 eligible studies, a further N = 7 inver-

tebrate studies were removed from analysis because they
used score data (i.e. ranked behaviours). We ran contrast-
based meta-analytic models with score data as a categorical
moderator to compare data calculated from scores (which
could not be transformed; see below) to the rest of the data
within each taxonomic group. Our model sensitivity checks
found that effect sizes calculated from scores were signifi-
cantly different from the rest of the invertebrate data set
(but not for any other taxonomic group, see Table S2 and
Appendix S1). Thus, we decided to remove these effect sizes,
which reduced our final data set to N = 2162 effect sizes,
N = 204 studies and N = 220 species (see Datafile S1:
data.xlsx).

(3) Data transformations

Our data set contained some means, and associated vari-
ances, that had to be transformed to meet distribution
assumptions about normality before we could calculate the
effect sizes Hedges’ g or ln coefficient of variation (lnCVR)
(N = 200 latency samples; N = 74 proportion samples). First,
any latency data (e.g. time to resume behaviour) that was

Fig. 1. PRISMA diagram of our search protocol for screening and including/excluding studies for this meta-analysis. Each stage of
the data collection process is highlighted with different coloured pipes (blue: literature search; orange: title/abstract screening; green:
full-text screening). See Table S1 for detailed key word search terms used to locate studies. W, Web of Science; S, SCOPUS.
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right-skewed was log-transformed using the following calcu-
lations to obtain means and standard deviations, respectively:

lnΧ= log Χ
� �

− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

SD2

Χ
2

� �� �s
, ð1Þ

lnSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1+

SD2

Χ
2

� �� �s
ð2Þ

where Χ is the mean and SD is the standard deviation.
Second, some behavioural measures were presented as

proportions, which constrains their distribution, so we con-

verted them to the logit scale using mean = log p

1−p

� �
;

SD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2 1

p

� �
+ 1

1−p2

� �r
, where p is the proportion, to meet

normality assumptions before calculating the relevant effect
size. Ignoring these assumptions can result in overestimated
effect size estimates (which was the case for our data). Infor-
mation on which effect sizes are based on transformed values
are provided in the raw data file (Datafile S1: data.xlsx) sup-
plied as Supporting Information.

(4) Effect sizes and sampling variances

To quantify sex differences in means and variances for person-
ality traits we used unbiased standardised effect sizes. First, to
quantify the difference between the sexes in the mean value of
personality traits we calculated Hedges’ g (sample size adjusted
standardised mean difference, SMD; Hedges &Olkin, 1985) as
follows:

g=
XM−X F

SDp

J, ð3Þ

SDp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NM−1ð ÞSD2

M+ N F−1ð ÞSD2
F

NM+N F−2

s
, ð4Þ

J=1−
3

4 NM+N F−2ð Þ−1
ð5Þ

where X is the mean of the behavioural measure, SDp is the
pooled standard deviation and N and SD are the sample size
and standard deviation for males (M) and females (F). The
associated sampling error variance of Hedges’ g is:

V g=
NM+N F

NMN F
+

d2

2 NM+N Fð Þ
� �

J2 ð6Þ

where d is Hedges’ g without the correction factor
J (see Eq. 3).

We used Hedges’ g instead of log response ratios as some
behavioural measures were based on ranks or scores (exclud-
ing invertebrates for which score data were removed). Thus
response ratios could not be calculated because score and

rank data are not bound to zero (Houle et al., 2011; Naka-
gawa et al., 2015).

The relevant direction of the effect size varies depending on
the focal behavioural measure of personality. For example,
boldness is often measured as either ‘latency to flee’ or ‘time
to resume a behaviour’ following a simulated predator
approach. Here a bolder individual is therefore indicated by
a larger or a smaller value, respectively. We examined all mea-
surement protocols and, where necessary, reversed the sign of
the male–female difference to ensure that the direction of the
effect size had a consistent interpretation for each personality
trait. Specifically, a positive value of g indicates that males are
more social, aggressive, exploratory, active or bold.

Second, to quantify sex differences in the variance in per-
sonality traits we used the ln coefficient of variation (lnCVR)
(Nakagawa et al., 2015). In our data set there was a strong
positive relationship between the mean and variance in
personality measurements (Pearson’s correlation: males:
r = 0.90; females: r = 0.91). Thus, using lnCVR controlled
for mean–variance relationships and allowed us to quantify
sex differences in variances independent of the mean
(Nakagawa et al., 2015; Senior, Viechtbauer & Nakagawa,
2020). We calculated lnCVR and its associated samping var-
iance (s2lnCVR) as:

lnCVR= ln
CVM

CVF

� �
+

1
2 NM−1ð Þ−

1
2 N F−1ð Þ , ð7Þ
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SD2
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where CVM and CVF are SDM/ XM and SDF/ XF, respec-
tively; and ρ

lnX
2
M,SD

2
M
. and ρ

lnX
2
F,SD

2
F

are the correlation

between the natural logarithms of means and standard devi-
ations of males and females respectively. A positive value of
lnCVR indicates that males are more variable than females.

(5) Moderator variables

Weextracted information on factors that differed among studies
where we had an a priori expectation that they might moderate
the magnitude and/or direction of the effect size (Tarka et al.,
2018). Specifically, we recorded the taxa (‘invertebrates’, ‘fish’,
‘amphibians’, ‘reptiles’, ‘birds’, ‘mammals’), the age of individ-
uals (‘juvenile’ or ‘adult’), whether the study population was
from the laboratory (captive bred) or the wild, whether the
behaviours were measured in the laboratory or field, and
whether the data were collected in an experiment or during nat-
ural behaviour of the subject (‘experimental’ or ‘observa-
tional’). Most importantly, we generated two moderator
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variables to quantify the strength of sexual selection. First, we
quantified the degree of SSD, which is often strongly correlated
with indicators of the strength of sexual selection (Fairbairn et al.,
2007). We calculated SSD as the ratio of male to female mean
body length, mass or the size of another focal, dimorphic trait
(e.g. wing length) using the following index of SSD (Lovich &
Gibbons, 1992):

SSD index=
ΧMbodysize

ΧFbodysize

 !
−1 ð9Þ

Using the SSD index rather than the sex difference in raw
means allows for: (i) a single continuous moderator that is
zero when the sexes are the same size, and positive when
males are larger than females; and (ii) comparison of SSD
across a wide range of absolute size measures. Larger values
of the SSD index are interpreted as species in which there is
increasingly stronger sexual selection on males. There are
limitations to using SSD as a proxy for male-biased sexual
selection because SSD reflects the combination of effects of
natural and sexual selection on each sex. First, a female-
biased SSD can be found in many animal groups (including
birds, fish, reptiles/amphibians and invertebrates). However,
a female-biased SSD can often be attributed to natural selec-
tion for larger female size (e.g. fecundity selection) rather
than stronger sexual selection on males (e.g. Shine, 1989;
Krüger, 2005). That noted, even if the SSD is female-biased
within a given taxon, a smaller bias is often likely to reflect
stronger sexual selection on males (Fairbairn et al., 2007).
Second, a male-biased SSD does not reflect sexual selection
due to sperm competition, which can arise when competition
amongst males to fertilise eggs is greater than the opportunity
to monopolise females via mate attraction, mate-guarding or
male–male competition (Lüpold et al., 2014). Where body
size measures for males and females were not reported in
the research article, we searched Web of Science, Scopus and
Google Scholar using the search terms: “species name” AND
male AND female AND body size OR length. For birds,
we first searched the CRC Handbook of Avian Body Masses

(Dunning Jr, 2007) and the online reference database Birds

of the World (Billerman et al., 2020) for body size measures.
We then used data from the located studies to calculate the
SSD index (see Datafile S2: sexual_selection.xlsx).

Second, we also quantified mating system. Where
included studies did not report mating system, we searched
Web of Science, Scopus and Google Scholar using the search terms:
“species name” AND “mating system”. Initially we quanti-
fied mating system as either ‘monogamous’, ‘polygynous’,
‘polyandrous’, or ‘promiscuous’. However, there were too
few species within some mating system categories to run con-
trasts for any taxonomic group. We therefore simplified mat-
ing system to ‘monogamous’ or ‘multiple mating’. The
location of data collected for SSD index and mating system
are provided in Datafile S2: sexual_selection.xlsx).

Based on the number of available studies for different
levels of the prospective moderators (age, population source,

test location, experimental/observational), or the level of
subjectivity required to categorise species (mating system),
we decided upon completion of data collection that the only
moderators we would formally analyse using a null hypothe-
sis framework for their influence on the effect sizes were the
SSD index and taxonomic group. The relationships between
the other moderators and the effect sizes are presented in
Tables S3–S7, but these should be treated as strictly explor-
atory analyses.

(6) Meta-analyses

Wemodelled the effect sizes Hedge’s g (also referred to as the
standardised mean difference, SMD) and lnCVR using
multi-level meta-analytic (MLMA) models (intercept-only
models that consider random effects) and then ranmulti-level
meta-regression (MLMR) models (including fixed-effect
moderators) in R version 3.5.1 (R Core Team, 2018) using
the package metafor version 2.4.0 (Viechtbauer, 2010). We
ran separate models for each of our five taxonomic groups:
birds, mammals, fish, invertebrates and reptiles/amphibians
(combined due to low sample sizes). Although we were
interested in whether sex differences varied across these
taxonomic groups, the available sample sizes generally pre-
cluded running models with taxonomic group as a moder-
ator and would have resulted in an overly complicated
interpretation. Furthermore, the diversity of taxa made it
challenging to create a full phylogeny that included all taxa
to account for evolutionary relationships and non-
independence (Noble et al., 2017). Focusing on broad taxo-
nomic groups separately allowed us to construct separate
phylogenies for each group. Even then, phylogenies were
better resolved for some groups than others (e.g. mammal
and bird phylogenies were better than those for inverte-
brates – see below).
We first estimated the overall evidence for a sex differ-

ence in the mean and variance across all personality traits
using MLMA models (Table 1). This analysis provides a
baseline to investigate sources of heterogeneity in the data.
To account for the non-independence of data we included
species and study identity as random effects, as there were
multiple effect sizes from the same species or study. We also
included an observation level random effect to estimate a
residual/within-study variance. Without this term, within-
study effects are assumed to result solely from sampling
variance (Nakagawa et al., 2017). To correct for the non-
independence of species due to their shared evolutionary
history we included phylogeny as a random effect. Phyloge-
netic correlation matrices were derived for each taxonomic
group either from existing phylogenetic tree databases
(e.g. BirdTree.org for birds; Jetz et al., 2012) or using Time-

Tree.org (Kumar et al., 2017). For the bird phylogeny, we
used the Ericson tree backbone (Ericson et al., 2006) to gen-
erate 1000 trees and then took a sample of 100 trees. We
used ape and phytools packages in R to generate an average
tree from these 100 trees, which we then used in our bird
taxa models. TimeTree phylogenies were derived by
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importing a list of the relevant species to TimeTree.org. If a
species in our data set had no phylogenetic representation,
we substituted the next closest available species (e.g. same
genus or family; see Data file S1 for phylogenetic represen-
tation). In all cases, we resolved synonymous taxa across our
data set so that species were correctly categorised and
pruned our trees where needed. We used the ggtree package
(Yu et al., 2016) in R to generate our final phylogenetic trees
for each taxonomic group as shown in Figs 2–6. In the two
initial MLMA models for g and lnCVR we derived hetero-
geneity estimates (I2; Higgins & Thompson, 2002;
Nakagawa & Santos, 2012). We partitioned heterogeneity
arising among species (I2species), studies (I

2
study), and due to

phylogeny (I2phylo; Nakagawa & Santos, 2012). The total
heterogeneity (I2Total) is the proportion of the total variance
in effect size estimates excluding total sampling variance
(see Appendix S1 for calculations).

Next, we fitted separate MLMR models for each taxo-
nomic group that included key moderator variables. Our first
set of models included personality type as a moderator to
provide an estimate of the mean effect size for each of the five
personality axes (i.e. ‘activity’, ‘aggression’, ‘boldness’, ‘soci-
ality’, ‘exploration’) (Table 2). These personality trait models
are shown in Figs 2–6 using the orchaRd R package
(Nakagawa et al., 2021a). We then tested whether the degree
of sexual selection, as measured by sexual size dimorphism
(SSD index), moderated effect sizes. We predicted that spe-
cies with a greater male-bias in SSD would show stronger
sex differences in the mean and variance. However, we also
expected the strength of its moderating effect to differ among
the personality traits. Thus, we ran subset models for each
personality trait type and included SSD. We only ran these
subset models when there were 10 or more species for each
personality type. There were too few data, and low heteroge-
neity, for reptiles/amphibians to run any models that
included SSD (Table 3).

The studies included in our meta-analysis varied greatly
in their design and there were several additional sources of
non-independence within studies (Noble et al., 2017). First,
multiple personality traits were quantified on the same sets
of individuals (e.g. ‘boldness’ and ‘aggression’). Addition-
ally, some studies measured the same individuals multiple
times for the same trait (i.e. repeatability), or for the same
trait type using a different test (e.g. several measures of
boldness). We conducted a series of sensitivity analyses to
ascertain the impact of these sources of non-independence
on our results. We created correlation matrices among
effect sizes that shared the same sets of individuals in the
sample used to derive effect sizes. Given that we did not
know the exact correlation among traits we created three
different dependency matrices (D; i.e. correlation matri-
ces) that assumed ρ = 0.3, ρ = 0.5 and ρ = 0.8. We refitted
our models replacing the identity matrix (I) that was
assumed when estimating the residual error variance
with our D matrices (see Appendix S1 and Tables S8–
S13). The results presented in Tables 1–3 are robust and
not influenced by the level of non-independence due to
correlation among effect sizes measured on the same
individuals.

For all models we present meta-analytic mean estimates
and 95% confidence intervals (Tables 1–3). To prevent
potential Type I errors arising from the number of meta-
analytic tests conducted, we applied the false discovery rate
(FDR) method (Benjamini & Hochberg, 1995) to adjust
P-values obtained for SMD and lnCVR models separately
(N = 48 tests). We therefore report the adjusted P-values
throughout Section III (see Tables S14–S16 for unadjusted
P-values). Historically, a focus on statistical significance has
likely contributed to the idea that the ‘greater male variabil-
ity’ hypothesis remains unresolved given the occurrence of
studies reporting both significant and non-significant sex dif-
ferences in variability. By contrast, a meta-analytic approach

Table 1. Multi-level meta-analytic (MLMA) models for each taxonomic group for a sex difference in the mean (SMD) and variability
(lnCVR) in personality traits. Overall, there were no significant sex differences for either mean personality or for variability. Positive
estimates indicate that the mean or variability in personality is greater for males than females. We report false discovery rate adjusted
P-values for all tests for SMD and lnCVR respectively (N = 48 tests each)

Parameters
Overall
mean

95% CIs
Prediction
interval

t score
P-value
(adjusted)

N effect
sizes

N

studies
N

species

SMD (Hedge’s g: mean)
Mammals 0.07 −0.30, 0.44 −1.14, 1.27 0.37 0.87 674 61 45
Birds −0.11 −0.35, 0.13 −1.87, 1.64 −0.92 0.85 480 50 106
Reptiles/amphibians 0.06 −0.11, 0.24 −0.57, 0.70 0.71 0.85 95 11 10
Fish 0.18 −0.23, 0.58 −1.55, 1.91 0.86 0.85 490 44 22
Invertebrates 0.25 −0.12, 0.62 −2.12, 2.63 1.35 0.85 423 38 37

lnCVR (variance)
Mammals 0.06 −0.21, 0.32 −0.66, 0.77 0.42 0.95 674 61 45
Birds −0.14 −0.63, 0.36 −1.89, 1.61 −0.55 0.95 480 50 106
Reptiles/amphibians 0.04 −0.04, 0.12 −0.04, 0.12 0.93 0.95 95 11 10
Fish 0.00 −0.09, 0.08 −0.75, 0.74 −0.11 0.95 490 44 22
Invertebrates −0.01 −0.11, 0.09 −0.74, 0.72 −0.17 0.95 423 38 37
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that emphasises the mean effect size draws attention to the
magnitude of the estimated difference, which if very small,
is likely to have little biological meaning (discussed in Fausto-
Sterling, 1985; Hyde, 2005). We therefore encourage readers
to interpret mean effect size estimates and their associated con-
fidence intervals.

(7) Publication bias

Published studies might disproportionately report certain
findings (e.g. greater male variability). To investigate publi-
cation bias, we first checked for funnel plot asymmetry for
both SMD and lnCVR when plotting the effect size against
a measure of sampling error. While we cannot know how

Fig. 2. Sex differences in means and variability for the five personality traits for mammals. The phylogeny depicts all mammal species
present in the meta-analysis. Node colours reflect sexual size dimorphism (SSD) for each species (male-biased are blue, female-biased
are red, monomorphic species are white and no data are grey) and heatmap data (green bars) show the number (N) of effect sizes for
each personality trait type for each species. Orchard plots show total effect sizes (k) and mean effect size for (A) SMD (means) and
(B) lnCVR (variance) meta-regression models with personality trait as a moderator term. Thick bars are 95% confidence intervals
(CIs) and thin bars are prediction intervals. Circle size reflects effect size precision.
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many studies are missing, we expect that low-powered studies
(e.g. low precision and high sampling error) that show effects
opposite to what is predicted are more likely to go unpub-
lished. As such, the lack of studies meeting these criteria in
a funnel plot is expected to drive funnel plot asymmetry
(Sterne et al., 2011). Visual inspection of funnel plots can be
misleading, however, as we need to account for additional
sources of variation in effect sizes beyond effect size precision
(i.e. moderator variables and random factors). In addition,

when using standardised mean differences (SMD) such as
Hedge’s g, the effect size can be correlated with the sampling
error (SE) resulting in ‘artefactual’ funnel asymmetry
(Nakagawa et al., 2021b). We therefore included the inverse
square root of ‘effective sample size’ (1/ñi) as a moderator term
in our MLMR models to test whether it explained some of the
variation in the reported effect sizes (for methodological justifi-
cation see Nakagawa et al., 2021b). If the inverse of effective
sample size has a significant influence, this is suggestive of either

Fig. 3. Sex differences in means and variability for the five personality traits for birds. The phylogeny depicts all bird species present
in the meta-analysis. Node colours reflect sexual size dimorphism (SSD) for each species (male-biased are blue, female-biased are red,
monomorphic species are white and no data are grey) and heatmap data (green bars) shows the number (N) of effect sizes for each
personality trait type for each species. Orchard plots show total effect sizes (k) and mean effect size for (A) SMD (means) and
(B) lnCVR (variance) meta-regression models with personality trait as a moderator term. Thick bars are 95% confidence intervals
(CIs) and thin bars are prediction intervals. Circle size reflects effect size precision.
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unbalanced sampling or publication bias (Nakagawa et al.,
2021b). The inverse of ñi is calculated as (female n + male n)/
(female n × male n) (see Nakagawa et al., 2021b).

III. RESULTS

(1) Data set summary

Our final data set comprised 2162 effect sizes from five broad
taxonomic groups: mammals, birds, fish, invertebrates, and
reptiles/amphibians (combined). The number of species
(N = 10–106), studies (N = 11–61) and effect sizes (N = 95–
674) per taxonomic group are shown in Table 1. Boldness

was the best studied, and sociality the least studied, of the five
personality types (N = 817 and 165 effect sizes, respectively)
(Table 2).

(2) Sex differences

Combining all five personality traits, mean effect sizes were
generally small in magnitude and males and females did
not differ significantly in their mean personality in any of
the five taxonomic groups, nor was there a significant sex dif-
ference in variability (Table 1 and Table S14). The effect size
estimates from our basic meta-analytic intercept models
almost all had high heterogeneity (I2Total SMD> 0.60; I2Total
lnCVR >0.60), although there was moderate to low

Fig. 4. Sex differences in means and variability for the five personality traits for reptiles/amphibians. The phylogeny depicts all
species used in the meta-analysis. Node colours reflect sexual size dimorphism (SSD) for each species (male-biased are blue,
female-biased are red, monomorphic species are white and no data are grey) and heatmap data (green bars) shows the number (N)
of effect sizes for each personality trait type for each species. Orchard plots show total effect sizes (k) and mean effect size for
(A) SMD (means) and (B) lnCVR (variance) meta-regression models with personality trait as a moderator term. Thick bars are
95% confidence intervals (CIs) and thin bars are prediction intervals. Circle size reflects effect size precision, where larger circles
have greater precision.
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heterogeneity for reptiles/amphibians (I2Total SMD = 0.47;
I2Total lnCVR = 0.00) and fish (I2Total lnCVR = 0.59) (-
Table S14). Heterogeneity in the sex difference in mean per-
sonality mostly came from between-study differences (I2study),
while phylogenetic relationships and among-species differ-
ences (I2phylo and I

2
species, respectively) explained heterogene-

ity in the variability of effect sizes for mammals, birds and
reptiles/amphibians only (Table S14).

The lack of a sex difference in mean and variability in
personality when examining all five personality traits simul-
taneously could arise if the direction of any difference in
sex-specific values varied across the traits. When the traits
were analysed separately and by taxonomic group, we
found two effect size differences in mean values whose

95% confidence intervals only just overlapped or did not
overlap zero. Specifically, females were more sociable than
males for birds, and males were more exploratory than
females for reptiles (Table 2). Although these estimated
effect sizes suggest that sex differences might exist for per-
sonality traits, none of the 25 taxon-specific tests for sex dif-
ferences in mean personality were statistically significant
after taking into account the false discovery rate (Table 2,
Figs 2–6).

Similarly, effect sizes were generally moderate to small
with no significant sex differences in variability when the
five personality traits were analysed separately across taxa.
We found four effect size differences in mean values whose
95% confidence intervals either only just overlapped

Fig. 5. Sex differences in means and variability for the five personality traits for fish. The phylogeny depicts all species used in the
meta-analysis. Node colours reflect sexual size dimorphism (SSD) for each species (male-biased are blue, female-biased are red,
monomorphic species are white and no data are grey) and heatmap data (green bars) shows the number (N) of effect sizes for each
personality trait type for each species. Orchard plots show total effect sizes (k) and mean effect size for (A) SMD (means) and
(B) lnCVR (variance) meta-regression models with personality trait as a moderator term. Thick bars are 95% confidence intervals
(CIs) and thin bars are prediction intervals. Circle size reflects effect size precision, where larger circles have greater precision.
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(<0.05 standard deviations) or did not overlap zero. Specif-
ically, females were more variable than males in their
exploratory behaviour for birds, males were more variable
than females in their aggressive behaviour for reptiles/
amphibians, and females were more variable than males
in their aggressive behaviour, but males were more vari-
able than females in their social behaviour for fish
(Table 2). However, the mean effect size difference in the
variability of aggression for reptiles/amphibians comes
from only two species, so the generality of this sex differ-
ence is unclear. Finally, none of the 25 taxon-specific tests
were statistically significant after accounting for the false
discovery rate (Table 2, Figs 2–6 and Table S15).

(3) Sexual size dimorphism and sex differences in
personality

SSD did not explain the extent of the sex differences in mean
personality in any of the four taxonomic groups tested (mam-
mals, birds, fish or invertebrates; Table 3 and Table S16),
although some effect sizes were large (e.g. activity and aggres-
sion for mammals). When the sexes were the same size
(SSD = 0), there were still no significant differences in the
estimated mean personality between males and females.
There were also no significant relationships between SSD

and the sex differences in personality trait variability in any of
the four taxonomic groups in which we could carry out this
test (see Table 3 and Table S16). Finally, there were also

Fig. 6. Sex differences in means and variability for the five personality traits for invertebrates. The phylogeny depicts all species used
in the meta-analysis. Node colours reflect sexual size dimorphism (SSD) for each species (male-biased are blue, female-biased are red,
monomorphic species are white and no data are grey) and heatmap data (green bars) shows the number (N) of effect sizes for each
personality trait type for each species. Orchard plots show total effect sizes (k) and mean effect size for (A) SMD (means) and
(B) lnCVR (variance) meta-regression models with personality trait as a moderator term. Thick bars are 95% confidence intervals
(CIs) and thin bars are prediction intervals. Circle size reflects effect size precision, where larger circles have greater precision.
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no significant sex differences in the variability in personality
when the sexes were the same size (SSD = 0) for any of the
four taxonomic group (Table 3 and Table S16). Interactions
between personality trait type and SSD for each taxonomic
group are presented in Table S17.

(4) Publication bias

Overall, we found no evidence for publication bias for either
mean estimates of sex differences or for variability for any of
the taxonomic groups (Table S18).

(5) Heterogamety and sex differences in variability
in personality

We decided post hoc to conduct an exploratory analysis to
compare the direction of effect sizes for birds and mammals,
overall and for each personality trait, to test explicitly
whether differences between birds and mammals might be
due to the heterogametic sex (males for mammals, females

for birds). While not significant, the observed sex differences
in variability for birds and mammals tended to follow
expected patterns due to the arrangement of sex chromo-
somes (i.e. heterogamy versus homogamy).

We found no significant differences between birds and
mammals in the direction of effect sizes for variability overall
(contrast XlnCVR = 0.24; SE = 0.46; P = 0.347), or when the
variability for the five personality traits were estimated sepa-
rately (see Table S19 and Appendix S1).

IV. DISCUSSION

Prior to the development of sexual selection theory, there was
a widespread view among biologists that females tended to be
more variable than males (reviewed by Shields, 1975).
Intriguingly, this viewpoint seems to have persisted in the
biomedical literature where non-human animal studies have
more often been conducted on males than females to reduce

Table 2. Multi-level meta-regression (MLMR) model summaries for each taxa with personality trait type as a fixed moderator. Sex
differences were evident for some trait types, within some taxa, but there was no significant difference between the sexes. Positive
estimates indicate that the mean and variability are greater for males than females.We report false discovery rate adjusted P-values for
all tests for standardised mean difference (SMD) and ln coefficient of variation (lnCVR) respectively (N= 48 tests each). Estimates with
95% confidence intervals (Cis) that only just overlapped or did not overlap zero are highlighted in bold. These models are graphically
represented in Figs 2–6

Parameters
SMD
mean

SMD
95% CIs

SMD
P-value

lnCVR
mean

lnCVR
95% CIs

lnCVR
P-value

N effect
sizes

N studies N species

Mammals
Activity −0.16 −0.57, 0.24 0.85 0.11 −0.18, 0.40 0.95 83 14 12
Aggression 0.09 −0.30, 0.48 0.87 0.11 −0.18, 0.41 0.95 87 16 14
Boldness 0.13 −0.23, 0.49 0.85 0.03 −0.24, 0.30 0.95 193 27 27
Exploration 0.03 −0.35, 0.40 0.93 0.05 −0.23, 0.33 0.95 213 19 16
Sociality 0.07 −0.33, 0.46 0.87 0.04 −0.25, 0.34 0.95 98 12 10

Birds
Activity −0.08 −0.37, 0.21 0.87 0.06 −0.22, 0.35 0.95 60 14 9
Aggression −0.15 −0.44, 0.14 0.85 −0.08 −0.39, 0.24 0.95 50 11 10
Boldness −0.14 −0.40, 0.11 0.85 0.04 −0.18, 0.26 0.95 262 24 96
Exploration 0.06 −0.21, 0.33 0.87 −0.30 −0.55, −0.05 0.49 77 15 9
Sociality −0.59 −1.06, −0.12 0.48 0.15 −0.36, 0.65 0.95 31 3 2

Reptiles/amphibians
Activity −0.05 −0.47, 0.38 0.92 −0.10 −0.38, 0.18 0.95 5 3 3
Aggression −0.13 −0.46, 0.21 0.85 0.16 −0.01, 0.32 0.74 30 2 2
Boldness 0.11 −0.14, 0.35 0.85 0.08 −0.05, 0.21 0.95 25 4 3
Exploration 0.25 0.01, 0.49 0.48 −0.09 −0.24, 0.06 0.95 32 5 4
Sociality 0.00 −0.56, 0.57 0.99 −0.03 −0.53, 0.60 0.95 3 2 2

Fish
Activity 0.15 −0.31, 0.62 0.87 −0.01 −0.16, 0.14 0.95 92 9 5
Aggression 0.25 −0.20, 0.70 0.85 −0.12 −0.26, 0.02 0.85 95 17 14
Boldness 0.08 −0.36, 0.52 0.87 0.02 −0.08, 0.13 0.95 173 24 13
Exploration 0.27 −0.20, 0.73 0.85 −0.04 −0.19, 0.12 0.95 103 10 7
Sociality 0.15 −0.34, 0.64 0.87 0.25 0.04, 0.46 0.49 27 7 6

Invertebrates
Activity 0.25 −0.15, 0.65 0.95 −0.04 −0.19, 0.10 0.95 166 18 17
Aggression 0.42 −0.28, 1.12 0.95 0.04 −0.28, 0.35 0.95 33 5 6
Boldness 0.24 −0.15, 0.63 0.95 −0.02 −0.15, 0.10 0.95 164 23 23
Exploration 0.04 −0.41, 0.49 0.95 0.12 −0.07, 0.31 0.95 54 7 6
Sociality 0.41 −0.23, 1.05 0.95 0.11 −0.27, 0.49 0.95 6 1 1
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variation in estimates of control and treatment effects (see ref-
erences in Zajitschek et al., 2020). This view changed for biol-
ogists when Darwin (1871) introduced the concept of sexual
selection, and, while doing so, presented evidence that there
was greater variation in males than females. Since then, it has
been repeatedly stated that males vary more in their appear-
ance (i.e. phenotypes) than do females, partly because of the
effects of sexual selection. On closer inspection this empirical
claim of greater male phenotypic variability in non-human
animals has limited empirical support from our and others’
analyses. One general finding from a small-scale, cross-
species study is that sexually selected traits in male animals
do show more variation than naturally selected traits
(Pomiankowski & Moller, 1995). Given that sexual selection
is usually stronger on males this implies that they will exhibit
greater phenotypic variation than females when pooled
across all traits. However, another cross-species study
reported no significant male–female difference in variation
for traits broadly associated with reproduction that are
expressed in both sexes, including some traits that might be
under direct sexual selection (Wyman & Rowe, 2014). Fur-
thermore, traits not linked to reproduction had only margin-
ally greater variation among males than females. In another
cross-species study, variation in body size was significantly

greater in males than in females in taxa where males are
the heterogametic sex, but the pattern was reversed in taxa
where males are the homogametic sex (Reinhold &
Engqvist, 2013). After correctly scaling for sex differences in
body size, the evidence for widespread sex differences in var-
iation in non-human animals remains limited.
The three cross-species studies noted above mainly

focussed on morphological traits, but studies of other types
of traits have produced similar findings. For example, a
meta-analysis of behavioural, physiological and life-history
traits (e.g. time to maturity) that mediate the link between
current and future reproductive effort (i.e. ‘pace-of-life’
traits) reported no significant sex difference in the level of var-
iation among individuals (Tarka et al., 2018). There were also
no significant male–female differences in variation when the
data were partitioned by breeding system, mating system,
study environment or trait type (which included the category
‘behaviour’). Recently, another meta-analysis investigated a
vast data set on sex differences in the most heavily studied
model laboratory vertebrate species, the house mouse Mus

musculus (Zajitschek et al., 2020). The main finding is clear:
across all examined traits there is no sex difference in trait
variability. For specific trait types there is, however, a clear
bias towards either females (e.g. immunological traits, eye

Table 3. Subset multi-level meta-analytic model with personality trait type and SSD as moderator terms for four of the five
taxonomic groups. Sexual size dimorphism (SSD) did not explain sex differences in either mean personality or for variability for any of
the taxonomic groups tested. We report false discovery rate adjusted P-values for all tests for standardised mean difference (SMD) and
ln coefficient of variation (lnCVR) respectively (N= 48 tests each). Positive estimates indicate that the mean and variability are greater
for males than females. Estimates highlighted in bold show mean effect sizes with 95% CIs that do not overlap zero. Separate models
were run for each trait type with SSD as a moderator, therefore estimates show the personality trait means when males and females
are the same size (SSD = 0), and when males are larger than females (SSD > 0). Only personality types with 10 or more species, with
SSD data, were estimated

Parameters
SMD
mean

SMD
95% CIs

SMD
P-value

lnCVR
mean

lnCVR
95% CIs

lnCVR
P-value

N studies N species
N effect
sizes

Mammals
Activity 0.50 −1.99, 3.00 0.87 0.05 −0.14, 0.25 0.95 14 12 83
SSD −2.21 −4.15, −0.26 0.48 0.12 −0.56, 0.81 0.95
Aggression −0.10 −1.30, 1.09 0.92 0.10 −0.21, 0.40 0.95 15 13 85
SSD 1.41 0.05, 2.78 0.48 −0.08 −1.46, 1.31 0.95
Boldness 0.07 −0.08, 0.23 0.85 0.01 −0.09, 0.11 0.95 26 26 163
SSD −0.17 −0.46, 0.12 0.85 0.13 −0.05, 0.31 0.95
Exploration 0.00 −0.18, 0.18 0.99 −0.06 −0.36, 0.24 0.95 19 16 213
SSD −0.05 −0.60, 0.50 0.92 0.13 −0.37, 0.64 0.95

Birds
Boldness −0.22 −0.84, 0.40 0.85 0.04 −0.03, 0.11 0.95 21 78 234
SSD −0.20 −1.39, 0.99 0.87 0.10 −0.16, 0.36 0.95

Fish
Aggression −0.16 −0.96, 0.63 0.87 −0.12 −0.23, 0.00 0.74 16 13 93
SSD 0.27 −0.84, 1.37 0.87 −0.13 −0.81, 0.55 0.95
Boldness 0.19 −0.16, 0.54 0.85 0.01 −0.25, 0.26 0.97 23 12 171
SSD −0.26 −1.16, 0.64 0.87 −0.15 −0.70, 0.39 0.95

Invertebrates
Activity 0.35 −0.38, 1.07 0.85 −0.03 −0.24, 0.18 0.95 18 16 165
SSD −0.69 −2.29, 0.92 0.85 0.27 −0.53, 1.07 0.95
Boldness 0.10 −0.06, 0.26 0.85 −0.01 −0.13, 0.11 0.95 23 23 164
SSD 0.13 −0.53, 0.79 0.87 −0.01 −0.50, 0.49 0.97
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morphology) or males (e.g. morphological traits) being more
variable in mice.

Given the available empirical data it seems that the
‘greater male variability’ hypothesis is, at best, only weakly
supported for morphological and physiological traits in
non-human animals. In humans and chimpanzees, evidence
of greater male variability is similarly equivocal and remains
controversial. While greater male variability has been shown
for a range of morphological and physiological traits includ-
ing brain structure (humans: van der Linden, Dunkel &
Madison, 2017; chimpanzees Pan troglodytes: DeCasien et al.,
2020) and, perhaps more notably, for behavioural traits like
personality (Archer & Mehdikhani, 2003; Borkenau et al.,
2013a; Karwowski et al., 2016), cognitive ability (Halpern &
LaMay, 2000; Jones, Braithwaite & Healy, 2003; Arden &
Plomin, 2006; Johnson et al., 2008) and academic achieve-
ment (Lehre et al., 2009; Baye & Monseur, 2016; O’Dea
et al., 2018), there are also many studies reporting no sex dif-
ferences in variability for those same traits. For example, the
association between brain structural variation and beha-
vioural differences between the sexes can partially be
explained by failing to take into account absolute differences
in mean brain size (e.g. van Eijk et al., 2021), and tests of cog-
nitive ability and personality often reveal greater female var-
iability (e.g. Feingold, 1994; Irwing & Lynn, 2005; Taylor &
Barbot, 2021). There is also evidence that the extent of any
sex difference is context dependent. For example, the gap
between girls’ and boys’mathematics scores becomes smaller
as gender equality in society increases (Hyde &Mertz, 2009).
Our current findings are therefore intriguing but depending
on one’s view also unsurprising: we show using a larger data-
base of 220 species that personality-like behavioural traits
are, in general, not more variable in males than females.
Additionally, any support for the greater male variability
hypothesis (if it exists) is likely highly dependent on the traits
and taxa in question; especially given the high heterogeneity
in effect estimates we report. Our findings for non-human
animals raises doubts about the extent to which evolved bio-
logical differences between the sexes, arising from past sex
differences in sexual and natural selection, should be used
to explain why men have greater trait variation than women
for certain behavioural traits. Minimally, this line of argu-
mentation needs to identify sex-specific selection on behav-
iour in catarrhine primates, rather than invoking a wider
general rule that males have evolved under sexual selection
to be more variable than females.

One widespread mechanistic biological explanation for
greater variation among men than women is attributed to
the role of sex chromosomes, and the fact that men are XY
and women XX. Men therefore only express genes from a
single X chromosome, while women, on average, express
genes on both (but see Shvetsova et al., 2019). The net effect
is greater variance in gene expression among the heteroga-
metic sex, which should tend to increase the level of pheno-
typic variation (Reinhold & Engqvist, 2013). We observed a
weak trend for male mammals to be more variable than
females, and in birds for females to be more variable than

males when inspecting the five personality traits (Table 2).
However, the direction of the sex differences in variability
between mammals and birds were not significant, even
though males are heterogametic in mammals and homoga-
metic in birds (Table S19). One explanation is that genes
on sex chromosomes do not affect, or only weakly affect,
behaviours associated with personality in non-human
animals.

Another major biological explanation for greater variation
among men than women in behavioural traits is direct sexual
selection on these traits. This is especially relevant for person-
ality as certain behavioural traits elevate the likelihood of
reproducing. For example, extravert men tend to have more
mating opportunities in some societies (Nettle, 2005). Simi-
larly, there is evidence that consistent, above-average levels
of aggression elevate success during male–male competition
in some non-human animals (e.g. killifish Lucania goodei;
McGhee & Travis, 2010). These behavioural traits are there-
fore sexually selected. Sexual selection is expected to result in
condition-dependent expression of traits which should
increase phenotypic variation because these traits ‘capture’
and magnify any difference in resource acquisition among
individuals (Rowe & Houle, 1996; Wolf et al., 2007). Indeed,
there is evidence in humans that some traits under sexual selec-
tion in men show a greater sex difference in variability than
other traits (e.g. aggression; Archer & Mehdikhani, 2003). It
is therefore relevant that we found no moderating effect of
SSD, which is a proxy for the level of sexual selection onmales
(e.g. Rohner, Blanckenhorn & Puniamoorthy, 2016), on the
sex difference in variation in personality in any of the animal
taxa that we examined, including mammals. One explanation
for our finding is that natural selection on females might lead
to comparable directional selection on the focal behavioural
traits. For example, females generally invest more than males
in parental care (Janicke et al., 2016), and, in this context, there
might therefore be equally strong natural selection on females
and males to be aggressive. Likewise, in group-living animals,
females often establish social hierarchies where dominance is
maintained through aggressive interactions (Kappeler, 2017).
Additionally, wemight find greater or lower female variability,
especially in traits like aggression or sociability, depending on
when measurements of personality are taken over the repro-
ductive cycle. That we did not find evidence of greater male
variability in personality in non-human animals could also
be due to many of the measures of personality involving
behaviours likely to be under equivalent natural selection in
both sexes. Many animal personality traits are likely to affect
survival; notably boldness, which is linked to anti-predator
responses, and activity or exploration, which is linked to
foraging.

We should, of course, be clear that a lack of evidence for
greater male variability in non-human animals for personal-
ity traits does not preclude biological factors contributing
towards greater male variation in a range of behavioural
and allied traits in humans (Snell & Turner, 2018). Given
that phylogeny (I2phylo) explained a large proportion of vari-
ance in sex-specific differences in personality variability in
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mammals it would be valuable to conduct a more focussed
meta-analysis looking at sex-specific variability in behaviour
in catarrhine primates. Nonetheless, our findings for
personality-like behaviours in non-human animals, alongside
the weak evidence for greater male variability in other traits
(Reinhold & Engqvist, 2013; Tarka et al., 2018; Zajitschek
et al., 2020), suggests that widely accepting explanations for
greater behavioural variability in men than women based on
biological differences that have evolved under sexual selection
is premature. Greater attention needs to be paid to the possible
role of social factors that might select for a wider range of devel-
opmental pathways in boys than girls that yield greater beha-
vioural variability in men than women (Gray et al., 2019).

V. CONCLUSIONS

(1) Overall, we find no evidence for male–female differ-
ences in personality in non-human animals, either for
mean values or levels of variation. Crucially, there is
no evidence to support the ‘greater male variability’
hypothesis in any taxonomic group for any of the five
personality axes.

(2) The magnitude of sexual size dimorphism (SSD), our
proxy for sexual selection, did not explain sex differ-
ences in mean personality or variability in any of the
taxa–personality type combinations that we tested.
Given that phylogeny (I2phylo) explained a large propor-
tion of variance in sex-specific differences in personality
variability in mammals it would, however, be valuable
to conduct a more focussed meta-analysis looking at
sex-specific variability in behaviour in catarrhine pri-
mates to explore possible evolved sex differences in var-
iability in humans that are likely to be expressed in a
broad range of environments.

(3) Our findings for non-human animals, alongside rather
weak evidence for greater male variability for other
traits, suggests that accepting explanations for greater
behavioural variability in men than women based on
biological differences that have evolved under past
sex differences in sex-specific sexual or natural selec-
tion is premature. More broadly, researchers should
not assume that males or men are the more variable
sex when measuring traits expressed in both sexes.
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‡Duriš, Z., Drozd, P., Hork�a, I., Koz�ak, P. & Policar, T. (2006). Biometry and
demography of the invasive crayfish Orconectes limosus in The Czech Republic.
Bulletin Français de la Pêche et de la Pisciculture 380, 1215–1228.

‡Eberle, M. & Kappeler, P. M. (2004). Selected polyandry: female choice and
intersexual conflict in a small nocturnal solitary primate (Microcebus murinus).
Behavioral Ecology and Sociobiology 57, 91–100.

*Ellenberg, U., Mattern, T. & Seddon, P. J. (2009). Habituation potential of
yellow-eyed penguins depends on sex, character and previous experience with
humans. Animal Behaviour 77, 289–296.

Ellis, H. (1894). Man and Woman: A Study of Human Secondary Sexual Characters. Walter
Scott, London.

Emlen, S. T. & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of
mating systems. Science 197, 215–223.

Ericson, P. G. P., Anderson, C. L., Britton, T., Elzanowski, A.,
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*Richter, S. H., Kästner, N., Loddenkemper, D.-H., Kaiser, S. & Sachser, N.

(2016). A time to wean? Impact of weaning age on anxiety-like behaviour and
stability of behavioural traits in full adulthood. PLoS One 11, e0167652.

*Rieger, N. S. & Marler, C. A. (2018). The function of ultrasonic vocalizations
during territorial defence by pair-bonded male and female California mice. Animal
Behaviour 135, 97–108.

Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C.,
Harris, M. A., Alderson, H. L.,Hunter, S.,Neilson, E., Liewald, D. C. M.,
Auyeung, B., Whalley, H. C., Lawrie, S. M. & Gale, C. R., et al. (2018). Sex
differences in the adult human brain: evidence from 5216 UK Biobank
participants. Cerebral Cortex 28, 2959–2975.

‡Rodriguez-Martı́nez, S., Carrete, M., Roques, S., Rebolo-Ifr�an, N. &
Tella, J. L. (2014). High urban breeding densities do not disrupt genetic
monogamy in a bird species. PLoS One 9, e91314.

‡Rogers, W. (1987). Sex ratio, monogamy and breeding success in the Midas cichlid
(Cichlasoma citrinellum). Behavioral Ecology and Sociobiology 21, 47–51.

Rohner, P. T., Blanckenhorn, W. U. & Puniamoorthy, N. (2016). Sexual
selection on male size drives the evolution of male-biased sexual size dimorphism
via the prolongation of male development. Evolution 70, 1189–1199.

‡Rohner, P. T., Pitnick, S., Blanckenhorn, W. U., Snook, R. R.,
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Lau, J., Carpenter, J., Rücker, G., Harbord, R. M., Schmid, C. H.,
Tetzlaff, J., Deeks, J. J., Peters, J., Macaskill, P. & Schwarzer, G., et al.
(2011). Recommendations for examining and interpreting funnel plot asymmetry
in meta-analyses of randomised controlled trials. The British Medical Journal 343,
d4002.

Stewart-Williams, S. &Halsey, L. G. (2021). Men, women, and STEM: why the
differences and what should be done? European Journal of Personality 35, 3–39.

‡Stirrat, S. C. (2003). Seasonal changes in home-range area and habitat use by the
agile wallaby (Macropus agilis). Wildlife Research, 30, 593.

Stockley, P. & Brø-Jorgensen, J. (2011). Female competition and its evolutionary
consequences in mammals. Biological Reviews 86, 341–366.

‡Stockley, P., Gage, M. J. G., Parker, G. A. & Møller, A. P. (1997). Sperm
competition in fishes: the evolution of testis size and ejaculate characteristics. The
American Naturalist 149, 933–954.

‡Stone, D., Jepson, P., Kramarz, P. & Laskowski, R. (2001). Time to death
response in carabid beetles exposed to multiple stressors along a gradient of heavy
metal pollution. Environmental Pollution 113, 239–244.

‡Stoner, D. C.,Wolfe, M.l L.,Mecham, C.,Mecham, M. B., Durham, S. L.

& Choate, D. M. (2013). Dispersal behaviour of a polygynous carnivore: do
cougars Puma concolor follow source-sink predictions?. Wildlife Biology, 19,
289–301.

‡Struntz, W. D. J., Kucklick, J. R., Schantz, M. M., Becker, P. R.,
McFee, W. E. & Stolen, M. K. (2004). Persistent organic pollutants in rough-
toothed dolphins (Steno bredanensis) sampled during an unusual mass stranding
event. Marine Pollution Bulletin 48, 164–192.

‡Sun, Y., Li, M., Song, G., Lei, F., Li, D.&Wu, Y. (2017). The role of climate factors
in geographic variation in body mass and wing length in a passerine bird. Avian
Research 8, 1.

‡Sundberg, J. & Dixon, A. (1996). Old, colourful male yellowhammers, Emberiza
citrinella, benefit from extra-pair copulations. Animal Behaviour 52, 113–122.

‡Suriyampola, P. S. (2013). Territoriality and landscape of aggression. Doctoral
dissertation, University of Louisville, KY. https://doi.org/10.18297/etd/1410
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