K13-propeller mutations confer artemisinin resistance in *Plasmodium* falciparum clinical isolates

Judith Straimer,¹ Nina F. Gnädig,¹ Benoit Witkowski,^{2,*} Chanaki Amaratunga,^{3*} Valentine Duru,^{2*} Arba P. Ramadani,^{4,5*†} Mélanie Dacheux,¹Nimol Khim,² Lei Zhang,⁶ Stephen Lam,⁶ Philip D. Gregory,⁶ Fyodor D. Urnov,⁶ Odile Mercereau-Puijalon,⁷ Françoise Benoit-Vical,^{4,5‡} Rick M. Fairhurst,^{3‡} Didier Ménard,^{2‡} David A. Fidock^{1,8§}

¹Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. ²Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia. ³Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ⁴Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. ⁵Université de Toulouse III, UPS, INPT, Toulouse, France. ⁶Sangamo BioSciences, Inc., Richmond, CA, USA. 7Institut Pasteur, Parasite Molecular Immunology Unit, Paris, France. 8Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.

*These authors contributed equally to this work.

+Present address: Department of Pharmacology and Therapy, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia.

‡These authors contributed equally to this work.

§Corresponding author. E-mail: df2260@columbia.edu

The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases, and measured ring-stage survival rates following drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13–49% to 0.3–2.4% following the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from $\leq 0.6\%$ to 2–29% following the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared to reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

The worldwide use of artemisinin (ART)-based combination therapies (ACTs) for the treatment of Plasmodium falciparum malaria is the foundation of renewed efforts to eradicate this leading cause of childhood mortality (1, 2). The pharmacodynamic properties of clinically-used ART derivatives (artesunate, artemether and dihydroartemisinin (DHA)) can reduce the biomass of drug-sensitive parasites by 10^4 -fold every 48 hours (3), corresponding to a single cycle of asexual blood-stage P. falciparum development. The short half-life (typically <1 hour) of ART derivatives in plasma necessitates the use of longer-lasting partner drugs that can eliminate residual parasites once the ART component has dropped to subtherapeutic concentrations (4). The use of ACTs in expanded malaria control and elimination programs has yielded notable successes in recent years, contributing to an estimated 30% reduction in global mortality rates in the past decade (5).

These impressive gains, however, are now threatened by the emergence of ART resistance, first detected in western Cambodia and now observed in Thailand, Vietnam and Myanmar (6, 7). The severity of this situation \blacktriangleleft is underscored by the fact that $\dot{\aleph}$ resistance to piperaquine, an ACT partner drug, is emerging in western Cambodia (8, 9). No al-ternative, fully effective first-line therapy is currently available to replace ACTs, should ART fail a globally. Clinically, ART re- 5 sistance is defined as a long parasite clearance half-life (the time it takes for the peripheral blood parasite density to decrease by 50%) following treatment with **5** ART monotherapy or an ACT (6, S *10, 11*). This metric correlates with the percentage of early "ring-stage" parasites (0–3 hours post-invasion of human erythro-cytes) that survive a pharmaco-logically relevant exposure to DHA (the active metabolite of ARTs), as measured in the in witro Bing stage Survival Access vitro Ring-stage Survival Assay (RSA_{0-3h}) (12).

Recently, mutations in the propeller domain of the K13 gene were identified as candidate molecular markers of ART

resistance (13). This gene resides on chromosome 13 of the P. falciparum genome, near regions earlier associated with slow parasite clearance rates (14-16). K13 belongs to the kelch superfamily of proteins whose propeller domain harbors multiple protein-protein interaction sites and mediates diverse cellular functions, including ubiquitin-regulated protein degradation and oxidative stress responses (17). The K13 M476I mutation was first observed in Tanzanian F32 parasites that were exposed in vitro to escalating concentrations of ART over 5 years (yielding the F32-ART line (13, 18)). Subsequent genomic analysis of Cambodian isolates

identified four prevalent K13-propeller mutations (Y493H, R539T, I543T and C580Y) that were associated with elevated RSA_{0-3h} survival rates in vitro and long parasite clearance half-lives (>5 hours) in patients (*13, 19*). Determining whether K13-propeller mutations confer ART resistance in clinical isolates and assessing the contributions of individual polymorphisms in distinct genetic backgrounds is essential to defining the underlying molecular mechanisms.

We developed zinc-finger nucleases (ZFNs (20)) to enable targeted genetic engineering of K13 in newly cultureadapted Cambodian isolates and older established reference lines of P. falciparum (tables S1, S2). ZFNs were introduced into cultured intra-erythrocytic parasites via electroporation with plasmids containing K13 donor templates. ZFNs triggered double-stranded breaks in the K13 genomic target locus of this haploid organism, leading to DNA resection and repair events that captured mutations delivered by pZFN^{K13}-hdhfr plasmids (fig. S1). Donor plasmids contained additional synonymous mutations that preclude ZFN binding while preserving the K13 translated amino acid sequence across that same stretch of DNA base pairs. These silent ZFN binding-site mutations thereby protected the donor sequence and prevented the edited recombinant locus from being re-cleaved by the nucleases. Plasmids contained either the wild-type K13 allele or one of several mutations (present in the six-blade K13-propeller domain) found in ART-resistant Cambodian isolates or F32-ART. This strategy successfully introduced or removed mutations in a set of P. *falciparum* clinical isolates from Cambodia, the epicenter of emerging ART resistance, as well as reference laboratory lines from distinct geographic origins (Fig. 1; table S3). Of note, RSA_{0-3h} assays comparing parental and edited control parasites showed no difference if only the binding-site mutations were introduced into the K13-propeller domain, inthat these synonymous dicating mutations were phenotypically silent (Fig. 1; fig. S2). Independent assays with the same parasite lines tested by our different groups yielded consistent survival rates between laboratories (fig. S3).

Using donor plasmids containing a wild-type K13propeller sequence and silent binding-site mutations, we generated a series of clones in which individual K13 mutations were removed from ART-resistant Cambodian isolates. One of these isolates (Cam3.II) showed slow clearance following ART monotherapy (in vivo half-life 6.0 hours; table S2). Parental Cam3.I^{R539T} and Cam3.II^{R539T} isolates harboring the R539T mutation showed 40-49% RSA_{0-3h} survival, while edited Cam3.I^{rev} and Cam3.II^{rev} clones carrying the reverted wild-type allele showed only 0.3-0.7% survival (Fig. 2A, B; table S4). These highly significant differences in the survival rates of ring-stage parasites exposed to elevated DHA concentrations confirm the importance of R539T in mediating in vitro ART resistance in Cambodian isolates. Significant reductions in RSA_{0-3h} survival rates were also observed upon removal of I543T (43% in Cam5^{I543T} versus 0.3% in Cam5^{rev}; Fig. 2C) and C580Y (13% in Cam 2^{C580Y} versus 2.4% in Cam 2^{rev} ; Fig. 2D).

We also assessed the impact of introducing K13 mutations into a fast-clearing Cambodian isolate (CamWT; in vivo half-life 3.7 hours; table S2), the Cam3.II^{rev} clone, and three reference lines (V1/S, F32-TEM and FCB). CamWT and Cam3.II^{rev} parasites harboring wild-type K13 alleles showed 0.6-0.7% RSA_{0-3h} survival, while the corresponding C580Yedited clones yielded 9% and 24% survival, respectively (Fig. 2E, F). Introducing R539T into V1/S caused a similar increase in RSA_{0-3h} survival (0.3% to 21%; Fig. 2G; table S4). Editing F32-TEM to express M476I caused a moderate increase in RSA_{0-3h} survival (<0.2% in F32-TEM to 1.7% in F32-TEM^{M476I}; Fig. 2H). We also observed modest in vitro resistance in FCB parasites edited to express C580Y, with RSA_{0-3h} survival increasing from 0.3% in the parental line to 1.9% in FCB^{C580Y} parasites (Fig. 2I). This result differs from a recent study of the use of CRISPR in P. falciparum, which reported a greater increase in RSA_{0-3h} survival (11-15%) in two clones engineered to express K13 C580Y (21). That report used the drug-sensitive NF54 strain, isolated decades before ART use and the emergence of resistance (22), and did not examine additional mutations or assess the impact of removing K13 mutations from ART-resistant clinical isolates.

In contrast to the significant changes we observed in the RSA_{0-3h}, standard in vitro dose-response measurements using parental and *K13*-edited V1/S and Cam3.II parasites revealed no effect of R539T or C580Y on DHA or artesunate IC₅₀ values (fig. S4). This finding is consistent with earlier studies that showed no correlation between IC₅₀ values and clinical ART resistance (6, 10, 12).

We subsequently investigated whether individual mutations confer different levels of ART resistance in the RSA_{0·3h}. In the Dd2 reference line, the introduction of M476I, R539T or I543T mutations conferred considerably higher degrees of resistance than Y493H and C580Y (10–30% versus 2-4% survival, respectively; Fig. 2J; table S4). These data corroborate the recent observation of higher levels of in vitro resistance in Cambodian isolates containing the R539T mutation as compared to Y493H or C580Y (23).

The relatively modest increase in survival of C580Yexpressing Dd2 parasites compared to R539T- and I543Texpressing clinical isolates and edited clones was quite unexpected, given that C580Y has rapidly become the predominant mutant allele in western Cambodia (7, *13*). We thus explored the impact of C580Y in different genetic backgrounds. Introducing C580Y conferred greater levels of resistance in three Cambodian isolates as compared to Dd2 and FCB parasites (Fig. 2K), suggesting a role for additional parasite factors in augmenting K13-mediated resistance in these contemporary field isolates. The disparity between relatively low in vitro resistance conferred by C580Y and its widespread dissemination in Cambodia might be explained by a lower fitness cost or increased transmission potential of C580Y-expressing parasites, or by the parasite genetic background.

Cambodian parasites are uniquely characterized by sympatric subpopulations that show only limited genetic admixture and that generally harbor distinct K13 mutations (16). These findings suggest that K13 mutations might have arisen preferentially on backgrounds with favorable genetic factors. In this context, recent comprehensive analyses of K13 mutations across multiple sites in Southeast Asia have documented a series of additional mutations associated with slow clearance rates in Cambodia, Thailand, Myanmar, Laos and Vietnam (7, 24). K13 mutations have also been observed in African isolates (7, 25, 26), although none of these correspond to the most prevalent mutations in Cambodia, and ART or ACT treatments in African sites continue to show a high level of efficacy (7). Of note, a recent deep-sequencing study of the K13-propeller domain in over 1,110 P. falciparum infections collected from 14 sites across sub-Saharan Africa identified a large reservoir of naturally-occurring K13-propeller variation, whose impact on artemisinin susceptibility is unknown and requires further investigation. These polymorphisms include one rare mutation previously observed in Cambodia (P553L), and several others (including A578S) close to known resistance-causing mutations in the propeller domain (26). Our gene-editing system can now be used to comprehensively dissect K13 polymorphisms across malaria-endemic regions and identify those that confer ring-stage ART resistance.

Mode-of-action studies have shown that ARTs are active against all asexual blood stages of parasite development. In the more mature trophozoite stages, ARTs are activated following hemoglobin degradation and liberation of reactive heme whose iron moiety can cleave the endoperoxide linkage of these sesquiterpene lactone drugs (27). Activation generates free radicals that are thought to trigger oxidative stress and damage cellular macromolecules including parasite membrane components, proteins and neutral lipids (28, 29). Recent evidence suggests that hemoglobin degradation begins early after merozoite invasion, potentially providing a source of ART activator in ring-stage parasites (30). Our RSA_{0-3h} data support earlier evidence that reduced ring-stage susceptibility accounts for the clinical phenotype of slow parasite clearance following ART treatment (12, 31). K13 mutations might achieve this by protecting parasites from the lethal effects of ART-induced oxidative damage, potentially via a cellular pathway similar to antioxidant transcriptional responses regulated by the mammalian ortholog Keap1 (32). Our set of K13-modified isogenic parasites with different levels of ART resistance on distinct genetic backgrounds now enables a search for K13-interacting partners and delivers tools to interrogate the underlying mechanism.

Our data demonstrate a central, causal role for K13propeller mutations in conferring ART resistance in vitro, and provide a molecular explanation for slow parasite clearance rates in patients (6, 7, 10). By exposing greater parasite biomasses to ACTs in vivo, K13-propeller mutations may promote the evolution of partner drug resistance (8, 9) and higher-grade ART resistance. Our study thus offers a conclusive rationale for a global *K13* sequencing effort to track the spread of ART resistance and mitigate its impact on malaria treatment and control programs, particularly in hyperendemic regions in Africa.

REFERENCES AND NOTES

- R. Feachem, O. Sabot, A new global malaria eradication strategy. *Lancet* 371, 1633–1635 (2008). <u>Medline doi:10.1016/S0140-6736(08)60424-9</u>
- N. J. White, S. Pukrittayakamee, T. T. Hien, M. A. Faiz, O. A. Mokuolu, A. M. Dondorp, Malaria. *Lancet* 383, 723–735 (2014). <u>Medline doi:10.1016/S0140-6736(13)60024-0</u>
- N. J. White, Delaying antimalarial drug resistance with combination chemotherapy. *Parassitologia* 41, 301–308 (1999). <u>Medline</u>
- R. T. Eastman, D. A. Fidock, Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. *Nat. Rev. Microbiol.* 7, 864–874 (2009). <u>Medline</u>
- World Health Organization, World Malaria Report: 2013. WHO Press: Geneva, Switzerland.

http://www.who.int/malaria/publications/world_malaria_report_2013/en/

- A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo, J. Tarning, K. M. Lwin, F. Ariey, W. Hanpithakpong, S. J. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S. S. An, S. Yeung, P. Singhasivanon, N. P. Day, N. Lindegardh, D. Socheat, N. J. White, Artemisinin resistance in *Plasmodium falciparum* malaria. *N. Engl. J. Med.* **361**, 455–467 (2009). <u>Medline</u> doi:10.1056/NEJMoa0808859
- 7. E. A. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim, S. Suon, S. Sreng, J. M. Anderson, S. Mao, B. Sam, C. Sopha, C. M. Chuor, C. Nguon, S. Sovannaroth, S. Pukrittayakamee, P. Jittamala, K. Chotivanich, K. Chutasmit, C. Suchatsoonthorn, R. Runcharoen, T. T. Hien, N. T. Thuy-Nhien, N. V. Thanh, N. H. Phu, Y. Htut, K. T. Han, K. H. Aye, O. A. Mokuolu, R. R. Olaosebikan, O. O. Folaranmi, M. Mayxay, M. Khanthavong, B. Hongvanthong, P. N. Newton, M. A. Onyamboko, C. I. Fanello, A. K. Tshefu, N. Mishra, N. Valecha, A. P. Phyo, F. Nosten, P. Yi, R. Tripura, S. Borrmann, M. Bashraheil, J. Peshu, M. A. Faiz, A. Ghose, M. A. Hossain, R. Samad, M. R. Rahman, M. M. Hasan, A. Islam, O. Miotto, R. Amato, B. MacInnis, J. Stalker, D. P. Kwiatkowski, Z. Bozdech, A. Jeeyapant, P. Y. Cheah, T. Sakulthaew, J. Chalk, B. Intharabut, K. Silamut, S. J. Lee, B. Vihokhern, C. Kunasol, M. Imwong, J. Tarning, W. J. Taylor, S. Yeung, C. J. Woodrow, J. A. Flegg, D. Das, J. Smith, M. Venkatesan, C. V. Plowe, K. Stepniewska, P. J. Guerin, A. M. Dondorp, N. P. Day, N. J. White; Tracking Resistance to Artemisinin Collaboration (TRAC), Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411-423 (2014). Medline doi:10.1056/NEJMoa1314981
- D. L. Saunders, P. Vanachayangkul, C. LonU.S. Army Military Malaria Research ProgramNational Center for Parasitology, Entomology, and Malaria Control (CNM)Royal Cambodian Armed Forces, Dihydroartemisinin-piperaquine failure in Cambodia. N. Engl. J. Med. **371**, 484–485 (2014).<u>Medline</u> doi:10.1056/NEJMc1403007
- R. Leang, A. Barrette, D. M. Bouth, D. Menard, R. Abdur, S. Duong, P. Ringwald, Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated *Plasmodium falciparum* and Plasmodium vivax in Cambodia, 2008 to 2010. *Antimicrob. Agents Chemother.* 57, 818–826 (2013). Medline doi:10.1128/AAC.00686-12
- C. Amaratunga, S. Sreng, S. Suon, E. S. Phelps, K. Stepniewska, P. Lim, C. Zhou, S. Mao, J. M. Anderson, N. Lindegardh, H. Jiang, J. Song, X. Z. Su, N. J. White, A. M. Dondorp, T. J. Anderson, M. P. Fay, J. Mu, S. Duong, R. M. Fairhurst, Artemisinin-resistant *Plasmodium falciparum* in Pursat province, western Cambodia: A parasite clearance rate study. *Lancet Infect. Dis.* **12**, 851–858 (2012).<u>Medline</u>
- J. A. Flegg, P. J. Guérin, F. Nosten, E. A. Ashley, A. P. Phyo, A. M. Dondorp, R. M. Fairhurst, D. Socheat, S. Borrmann, A. Björkman, A. Mårtensson, M. Mayxay, P. N. Newton, D. Bethell, Y. Se, H. Noedl, M. Diakite, A. A. Djimde, T. T. Hien, N. J. White, K. Stepniewska, Optimal sampling designs for estimation of *Plasmodium falciparum* clearance rates in patients treated with artemisinin derivatives. *Malar. J.* **12**, 411 (2013). Medline doi:10.1186/1475-2875-12-411
- 12. B. Witkowski, C. Amaratunga, N. Khim, S. Sreng, P. Chim, S. Kim, P. Lim, S. Mao,

C. Sopha, B. Sam, J. M. Anderson, S. Duong, C. M. Chuor, W. R. Taylor, S. Suon, O. Mercereau-Puijalon, R. M. Fairhurst, D. Menard, Novel phenotypic assays for the detection of artemisinin-resistant *Plasmodium falciparum* malaria in Cambodia: In-vitro and ex-vivo drug-response studies. *Lancet Infect. Dis.* **13**, 1043–1049 (2013). Medline doi:10.1016/S1473-3099(13)70252-4

- F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. C. Langlois, N. Khim, S. Kim, V. Duru, C. Bouchier, L. Ma, P. Lim, R. Leang, S. Duong, S. Sreng, S. Suon, C. M. Chuor, D. M. Bout, S. Ménard, W. O. Rogers, B. Genton, T. Fandeur, O. Miotto, P. Ringwald, J. Le Bras, A. Berry, J. C. Barale, R. M. Fairhurst, F. Benoit-Vical, O. Mercereau-Puijalon, D. Ménard, A molecular marker of artemisinin-resistant *Plasmodium falciparum* malaria. *Nature* **505**, 50–55 (2014).<u>Medline</u> doi:10.1038/nature12876
- I. H. Cheeseman, B. A. Miller, S. Nair, S. Nkhoma, A. Tan, J. C. Tan, S. Al Saai, A. P. Phyo, C. L. Moo, K. M. Lwin, R. McGready, E. Ashley, M. Imwong, K. Stepniewska, P. Yi, A. M. Dondorp, M. Mayxay, P. N. Newton, N. J. White, F. Nosten, M. T. Ferdig, T. J. Anderson, A major genome region underlying artemisinin resistance in malaria. *Science* **336**, 79–82 (2012). *Medline doi:10.1126/science.1215966*
- 15. S. Takala-Harrison, T. G. Clark, C. G. Jacob, M. P. Cummings, O. Miotto, A. M. Dondorp, M. M. Fukuda, F. Nosten, H. Noedl, M. Imwong, D. Bethell, Y. Se, C. Lon, S. D. Tyner, D. L. Saunders, D. Socheat, F. Ariey, A. P. Phyo, P. Starzengruber, H. P. Fuehrer, P. Swoboda, K. Stepniewska, J. Flegg, C. Arze, G. C. Cerqueira, J. C. Silva, S. M. Ricklefs, S. F. Porcella, R. M. Stephens, M. Adams, L. J. Kenefic, S. Campino, S. Auburn, B. MacInnis, D. P. Kwiatkowski, X. Z. Su, N. J. White, P. Ringwald, C. V. Plowe, Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc. Acad. Sci. U.S.A. 110, 240-245 (2013). Natl Medline doi:10.1073/pnas.1211205110
- O. Miotto, J. Almagro-Garcia, M. Manske, B. Macinnis, S. Campino, K. A. Rockett, C. Amaratunga, P. Lim, S. Suon, S. Sreng, J. M. Anderson, S. Duong, C. Nguon, C. M. Chuor, D. Saunders, Y. Se, C. Lon, M. M. Fukuda, L. Amenga-Etego, A. V. Hodgson, V. Asoala, M. Imwong, S. Takala-Harrison, F. Nosten, X. Z. Su, P. Ringwald, F. Ariey, C. Dolecek, T. T. Hien, M. F. Boni, C. Q. Thai, A. Amambua-Ngwa, D. J. Conway, A. A. Djimdé, O. K. Doumbo, I. Zongo, J. B. Ouedraogo, D. Alcock, E. Drury, S. Auburn, O. Koch, M. Sanders, C. Hubbart, G. Maslen, V. Ruano-Rubio, D. Jyothi, A. Miles, J. O'Brien, C. Gamble, S. O. Oyola, J. C. Rayner, C. I. Newbold, M. Berriman, C. C. Spencer, G. McVean, N. P. Day, N. J. White, D. Bethell, A. M. Dondorp, C. V. Plowe, R. M. Fairhurst, D. P. Kwiatkowski, Multiple populations of artemisinin-resistant *Plasmodium falciparum* in Cambodia. *Nat. Genet.* **45**, 648–655 (2013). <u>Medline doi:10.1038/ng.2624</u>
- J. Adams, R. Kelso, L. Cooley, The kelch repeat superfamily of proteins: Propellers of cell function. *Trends Cell Biol.* **10**, 17–24 (2000). <u>Medline</u> doi:10.1016/S0962-8924(99)01673-6
- B. Witkowski, J. Lelièvre, M. J. Lopez Barragán, V. Laurent, X.-Z. Su, A. Berry, F. Benoit-Vical, Increased tolerance to artemisinin in *Plasmodium falciparum* is mediated by a quiescence mechanism. *Antimicrob. Agents Chemother.* 54, 1872–1877 (2010). Medline doi:10.1128/AAC.01636-09
- C. Amaratunga, B. Witkowski, N. Khim, D. Menard, R. M. Fairhurst, Artemisinin resistance in *Plasmodium falciparum. Lancet Infect. Dis.* 14, 449–450 (2014). <u>Medline doi:10.1016/S1473-3099(14)70777-7</u>
- J. Straimer, M. C. Lee, A. H. Lee, B. Zeitler, A. E. Williams, J. R. Pearl, L. Zhang, E. J. Rebar, P. D. Gregory, M. Llinás, F. D. Urnov, D. A. Fidock, Site-specific genome editing in *Plasmodium falciparum* using engineered zinc-finger nucleases. *Nat. Methods* **9**, 993–998 (2012). <u>Medline doi:10.1038/nmeth.2143</u>
- M. Ghorbal, M. Gorman, C. R. Macpherson, R. M. Martins, A. Scherf, J. J. Lopez-Rubio, Genome editing in the human malaria parasite *Plasmodium falciparum* using the CRISPR-Cas9 system. *Nat. Biotechnol.* **32**, 819–821 (2014). <u>Medline</u> doi:10.1038/nbt.2925
- T. Ponnudurai, J. H. Meuwissen, A. D. Leeuwenberg, J. P. Verhave, A. H. Lensen, The production of mature gametocytes of *Plasmodium falciparum* in continuous cultures of different isolates infective to mosquitoes. *Trans. R. Soc. Trop. Med. Hyg.* **76**, 242–250 (1982). <u>Medline doi:10.1016/0035-9203(82)90289-9</u>
- C. Amaratunga, B. Witkowski, D. Dek, V. Try, N. Khim, O. Miotto, D. Ménard, R. M. Fairhurst, *Plasmodium falciparum* founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. *Antimicrob. Agents Chemother.* 58, 4935–4937 (2014). Medline doi:10.1128/AAC.03055-14
- S. Takala-Harrison *et al.*, Independent emergence of artemisinin resistance mutations among *Plasmodium falciparum* in Southeast Asia. *J. Infect. Dis.* 10.1093/infdis/jiu491 (2014).

- M. D. Conrad, V. Bigira, J. Kapisi, M. Muhindo, M. R. Kamya, D. V. Havlir, G. Dorsey, P. J. Rosenthal, Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in *Plasmodium falciparum* isolated from Ugandan children. *PLOS ONE* 9, e105690 (2014). <u>Medline doi:10.1371/journal.pone.0105690</u>
- S. M. Taylor *et al.*, Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: A molecular epidemiologic study. *J. Infect. Dis.* 10.1093/infdis/jiu467 (2014).
- N. Klonis, D. J. Creek, L. Tilley, Iron and heme metabolism in *Plasmodium falciparum* and the mechanism of action of artemisinins. *Curr. Opin. Microbiol.* 16, 722–727 (2013). <u>Medline doi:10.1016/j.mib.2013.07.005</u>
- C. L. Hartwig, A. S. Rosenthal, J. D'Angelo, C. E. Griffin, G. H. Posner, R. A. Cooper, Accumulation of artemisinin trioxane derivatives within neutral lipids of *Plasmodium falciparum* malaria parasites is endoperoxide-dependent. *Biochem. Pharmacol.* **77**, 322–336 (2009). Medline doi:10.1016/j.bcp.2008.10.015
- 29. T. Antoine, N. Fisher, R. Amewu, P. M. O'Neill, S. A. Ward, G. A. Biagini, Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. *J. Antimicrob. Chemother.* **69**, 1005–1016 (2014). <u>Medline doi:10.1093/jac/dkt486</u>
- N. Klonis, M. P. Crespo-Ortiz, I. Bottova, N. Abu-Bakar, S. Kenny, P. J. Rosenthal, L. Tilley, Artemisinin activity against *Plasmodium falciparum* requires hemoglobin uptake and digestion. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 11405–11410 (2011). <u>Medline doi:10.1073/pnas.1104063108</u>
- S. Saralamba, W. Pan-Ngum, R. J. Maude, S. J. Lee, J. Tarning, N. Lindegårdh, K. Chotivanich, F. Nosten, N. P. Day, D. Socheat, N. J. White, A. M. Dondorp, L. J. White, Intrahost modeling of artemisinin resistance in *Plasmodium falciparum*. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 397–402 (2011). Medline doi:10.1073/pnas.1006113108
- 32. Y. S. Keum, B. Y. Choi, Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. *Molecules* 19, 10074–10089 (2014). <u>Medline</u> doi:10.3390/molecules190710074
- 33. F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, P. D. Gregory, Genome editing with engineered zinc finger nucleases. *Nat. Rev. Genet.* **11**, 636–646 (2010). <u>Medline doi:10.1038/nrg2842</u>
- 34. M. C. S. Lee, P. A. Moura, E. A. Miller, D. A. Fidock, *Plasmodium falciparum* Sec24 marks transitional ER that exports a model cargo via a diacidic motif. *Mol. Microbiol.* 68, 1535–1546 (2008). Medline doi:10.1111/j.1365-2958.2008.06250.x
- D. A. Fidock, T. Nomura, T. E. Wellems, Cycloguanil and its parent compound proguanil demonstrate distinct activities against *Plasmodium falciparum* malaria parasites transformed with human dihydrofolate reductase. *Mol. Pharmacol.* 54, 1140–1147 (1998). Medline
- E. H. Ekland, J. Schneider, D. A. Fidock, Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. *FASEB J.* 25, 3583–3593 (2011). Medline doi:10.1096/fj.11-187401

ACKNOWLEDGMENTS

D.A.F. gratefully acknowledges funding from the NIH (R01 Al109023). This study was supported in part by the Intramural Research Program of NIAID, NIH, the French Agence Nationale de la Recherche (ANR-13-BSV3-0018-01, and the Laboratoire d'Excellence IBEID), and the Institut Pasteur, Division International (ACIP A-10-2010). Parental and transgenic parasite lines have been deposited and are being made available through BEI Resources (http://www.mr4.org) with the following accession numbers: MRA-1240: Cam3.IR539T (also known as IPC 5202); MRA-1252: Cam3.Irev; MRA-1241: Cam5I543T (also known as IPC 4912); MRA-1253: Cam5rev; MRA-1236: Cam2C580Y (also known as IPC 3445); MRA-1254: Cam2rev; MRA-1250: CamWT; MRA-1251: CamWTC580Y; MRA-150: Dd2; MRA-1255: Dd2R539T. Parasite lines generated for this study will also be provided upon request from D.A.F. Requests for ZFNs should be directed to F.D.U. (FUrnov@sangamo.com); a Materials Transfer Agreement is required. We extend our gratitude to Dr. Frederic Ariey (Institut Pasteur, Paris) for his important contribution to initiating this study, Dr. Ian McKeague and Ori Lieberman (Columbia University Medical Center) for their statistical and scientific input, and Dr. Edward Rebar and the Production Group at Sangamo BioSciences, Inc., for ZFN assembly and validation. L.Z., S.L., P.D.G. and F.D.U. declare they are full-time employees of Sangamo, which designed, validated and provided the ZFNs used in this study. B.W., O.M.-P., F.B.-V., D.M., and N.K., D.M. are co-inventors on the pending patents #US61/904651 and US62/062439,

respectively, filed by Institut Pasteur. These patents cover the use of K13 mutations as a molecular marker of *P. falciparum* ART resistance. Sangamo BioSciences, Inc. holds patents on engineered DNA-binding proteins and the use thereof in targeted genome engineering and gene-specific regulation. All other authors declare no competing financial interests.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.1260867/DC1 Materials and Methods Figs. S1 to S4 Tables S1 to S5 Statistical data References (*33–36*)

5 September 2014; accepted 1 December 2014 Published online 11 December 2014 10.1126/science.1260867

Fig. 1. Genetic modification of the K13-propeller domain. Location of K13-propeller mutations, and sequencing results showing the insertion of individual mutations into recombinant parasites used in the Ring-stage Survival Assay (RSA_{0-3h}). Dd2^{ctrl} parasites contain only silent binding-site mutations and showed 0.7% survival rates, equivalent to those of parental Dd2 parasites (fig. S2).

Fig. 2. K13-propeller mutations confer artemisinin resistance in clinical isolates and reference lines in vitro, as defined in the Ring-stage Survival Assay (RSA_{0-3h}). Results show the percentage of early ring-stage parasites (0–3 hours post-invasion of human erythrocytes) that survived a 6-hour pulse of 700 nM DHA (a pharmacologically relevant concentration of the active metabolite of ARTs), as measured by microscopy 66 hours later. Data show mean ± SEM percent survival compared to DMSO-treated parasites processed in parallel. (A–D) RSA_{0-3h} survival for Cambodian isolates harboring native K13 mutations (shown in superscript) and ZFN-edited isogenic clones carrying wild-type K13 alleles (superscript "rev"). (E-I) RSA_{0-3h} survival for Cambodian isolates and reference lines harboring wild-type K13 alleles and ZFN-edited isogenic clones carrying individual K13 mutations (shown in superscripts). (J) Impact of different K13 mutations on RSA_{0-3h} survival in the Dd2 reference line, showing that I543T and R539T confer the highest levels of resistance. (K) Introduction of C580Y into multiple Cambodian clinical isolates and reference lines, showing that this mutation confers varying degrees of in vitro resistance depending on the parasite genetic background. The geographic origins and known drug-resistance genotypes of these isolates and lines are provided in table S2. Results were obtained from 3-4 independent assays performed in duplicate (values provided in table S4; F32-TEM showed <0.2% RSA_{0-3h} survival). Two-sample t tests with unequal variances (performed using the STATA package) were used to assess for statistically significant differences between K13edited clones and their comparator lines, i.e., the parental isolates listed on the left in panels A-J and the FCB^{C580Y} clone in panel K (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Statistical outputs (including calculations of the standard error of the difference between the means of samples being compared and the p values) are listed in the Supplementary Materials.

www.sciencemag.org/cgi/content/full/science.1260867/DC1

Supplementary Materials for

K13-propeller mutations confer artemisinin resistance in *Plasmodium falciparum* clinical isolates

Judith Straimer, Nina F. Gnädig, Benoit Witkowski, Chanaki Amaratunga, Valentine Duru, Arba P. Ramadani, Mélanie Dacheux, Nimol Khim, Lei Zhang, Stephen Lam, Philip D. Gregory, Fyodor D. Urnov, Odile Mercereau-Puijalon, Françoise Benoit-Vical, Rick M. Fairhurst, Didier Ménard, David A. Fidock^{*}

*Corresponding author. E-mail: df2260@columbia.edu

Published 11 December 2014 on *Science* Express DOI: 10.1126/science.1260867

This PDF file includes:

Materials and Methods Figs. S1 to S4 Tables S1 to S5 Statistical data References

MATERIALS AND METHODS

Zinc-finger nuclease (ZFN) engineering. ZFNs directed against *K13* (PlasmoDB ID PF3D7_1343700; also referred to as Kelch13) were designed and assembled using an archive of validated modules (*33*). These were screened for activity using an episomal reporter system, yielding ZFN pairs 18/19 and 18/20 (Table S1).

Plasmid construction. Left and right ZFNs were first linked with the 2A peptide to ensure equal levels of expression driven by a single promoter (20). This ZFN L-2A-ZFN R sequence was cloned into the AvrII and XhoI restriction sites in pDC2 (34). This placed the fused sequence under the regulatory control of the 5' *calmodulin* (PF3D7_1434200) promoter and the 3' *hsp86* (PF3D7_0708500) terminator. This plasmid also contained the human *dhfr* selectable marker (**Fig. S1**).

We generated six different donor plasmids to introduce either the wild-type *K13* allele or one of five mutant alleles: M476I (allele 1), C580Y (allele 2), R539T (allele 3), Y493H (allele 4) or I543T (allele 5). In a first step we amplified a 1.5-kb donor sequence of the *K13*-propeller domain using the primer pair p1/p2 (**Table S5**) and cloned this into the pGEM[®]-T vector (Promega). At the zinc-finger binding site we introduced six silent mutations by site-directed mutagenesis using the primer pair p3/p4. Allele-specific mutations were introduced via mutagenesis with specific primer pairs: p5/p6 for M476I, p7/p8 for C580Y, p9/p10 for R539T, p11/p12 for Y493H and p13/p14 for I543T. *K13* donor sequences were excised from the pGEM-T vector with the restriction enzymes SacII and PstI while the ZFN-containing plasmid was digested with SalI and PstI. The two incompatible sites SacII and SalI from the donor fragment and the vector, respectively, were previously filled in using Klenow DNA polymerase. *K13* templates were ligated into the pDC2-based plasmids described above (with primer pairs 18/19 or 18/20, both showing similar efficiency; **Table S1**) using the compatible PstI site and blunt-end cloning, yielding the final pZFN^{K13}-h*dbfr* transfection plasmids.

Parasite cultures, transfections and DNA analysis. Asexual blood-stage parasites were propagated in human erythrocytes in RPMI-1640 medium containing 2 mM L-glutamine, 50 mg/L hypoxanthine, 25 mM HEPES, 0.225% NaHCO₃, 10 mg/L gentamycin and 0.5% (w/v) Albumax II (Invitrogen) for the Dd2, FCB and V1/S reference lines. Cambodian isolates and F32 parasites were further supplemented with 5% human AB⁺ serum (Interstate Blood Bank). Parasites were maintained at 37°C in an atmosphere

of 5% O₂, 5% CO₂ and 90% N₂, and electroporated with purified circular plasmid DNA as described (*35*). One day after electroporation, parasites were exposed to 2.5 nM or 10 nM WR99210 for 6 days (the latter concentration was reserved for quadruple *dhfr* mutant parasites; **Table S3**) to select for transformed parasites (**Fig. S1A**). Parasites generally became microscopically detectable 15–25 days postelectroporation. *K13* editing was assessed by PCR analysis of bulk cultures, and cultures showing the highest level of editing were selected for 96-well cloning by limiting dilution (**Table S2**). Clones were identified after 17–28 days by staining with 2× SYBR Green I and 1.6 μ M MitoTracker Deep Red (Invitrogen) and assaying for growth by flow cytometry on an Accuri C6 cytometer (*36*). To test for *K13* editing, *P. falciparum* trophozoite-infected erythrocytes were harvested and saponin-lysed. Parasite genomic DNA was extracted and purified using DNeasy Blood kits (Qiagen). *K13* sequences (**Fig. 1**) were examined by PCR-amplifying the genomic locus with primers p15/p16 flanking the *K13* plasmid donor sequence. These products were amplified from bulk cultures or parasite clones. Sequencing was performed with the internal p17 primer (**Table S5**). For select clones, expression of the mutant or wild-type *K13* alleles was confirmed by RT-PCR and sequencing.

Ring-stage survival assays (RSA0-3h). These assays were carried out as previously described, with minor modifications (12). A detailed protocol is available on the WorldWide Antimalarial Resistance Network's website at http://www.wwarn.org/toolkit/procedures/ring-stage-survival-assays-rsa-evaluatesusceptibility-p-falciparum. In summary, 10–15 mL parasite cultures were synchronized 1–2 times using 5% sorbitol (Sigma-Aldrich). Synchronous multinucleated schizonts were incubated in RPMI-1640 containing 15 units/ml sodium heparin for 15 min at 37°C to disrupt agglutinated erythrocytes, concentrated over a gradient of 75% Percoll (Sigma-Aldrich), washed once in RPMI-1640, and incubated for 3 hours with fresh erythrocytes to allow time for merozoite invasion. Cultures were then subjected again to sorbitol treatment to eliminate remaining schizonts. The 0-3 hours post-invasion rings were adjusted to 1% parasitemia and 2% hematocrit in 1 mL volumes (in 48-well plates), and exposed to 700 nM DHA or 0.1% DMSO (solvent control) for 6 hours. Duplicate wells were established for each parasite line ± drug. One-mL cultures were then transferred to 15 mL conical tubes, centrifuged at 800xg for 5 min to pellet the cells, and the supernatants carefully removed. As a washing step to remove drug, 9 mL culture medium were added to each tube and the cells resuspended, centrifuged, and the medium aspirated. Fresh medium lacking drug was then added to cultures, which were returned to standard culture conditions for 66 hours.

Parasite viability was assessed by microscopic examination of Giemsa-stained thin blood smears by counting parasites that developed into second-generation rings or trophozoites with normal morphology. To obtain a homogenous smear for all slides, the cultures were resuspended, transferred into an Eppendorf tube, and briefly centrifuged. 2 μ L of the pellet were then used for each smear. Parasitemias were calculated from a total of at least 40,000 erythrocytes per assay. Slides were read from the two duplicate wells per assay by two separate microscopists, each of whom examined at least 10,000 erythrocytes per slide. In instances of >20% discrepancy in parasite counts, slides were further examined by a third microscopist. The mean±SEM numbers of erythrocytes counted per parasite line and per assay were 44,160±970. Our mean±SEM parasitemia for non DHA-treated cultures was 5.1±0.3%. For assays where ≤ 5 infected erythrocytes were counted from the initial examination of 40,000 erythrocytes (corresponding to a calculated parasitemia of $\leq 0.0125\%$), the total number of erythrocytes was expanded to a mean±SEM of 58,360±3,460.

Percent survival was calculated as the parasitemia in the drug-treated sample divided by the parasitemia in the untreated sample ×100. As an example, a 20% RSA_{0-3h} survival value corresponded to a 1% parasitemia in drug-treated parasites compared to a 5% parasitemia in the untreated control (the mean parasitemia in our untreated controls). Assuming a total cell count of 40,000 erythrocytes, this produced a 95% confidence interval (CI) of 0.9–1.1% parasitemia (corresponding to 360–440 infected erythrocytes for that particular line in one assay). A 2% RSA_{0-3h} survival value corresponded to a 0.1% parasitemia in the drug-treated sample (95% CI 0.07–0.13%; i.e. 28–52 infected erythrocytes) assuming a count of 40,000 erythrocytes. Given a 0.01% parasitemia (corresponding to a 0.2% RSA_{0-3h} survival value) and an average count of 58,360 erythrocytes, the 95% CI was 0.002–0.018% (i.e. 1–10 infected erythrocytes). The limit of assay sensitivity was therefore set to 0.2% survival. For each parent and corresponding *K13*edited clones, individual groups were designated to perform the RSA_{0-3h} assays, whose results are presented in Fig. 2 and summarized in Table S4.

In vitro 50% inhibitory concentration (IC₅₀) assays. In vitro IC₅₀ values were determined by incubating parasites for 72 hours across a range of concentrations of DHA or artesunate (0.25–24 nM for both). Proliferation was determined by staining parasites with SYBR Green I and MitoTracker Deep Red, and measuring parasitemia by flow cytometry (see above). In vitro IC₅₀ values were calculated by nonlinear regression analysis, and Student *t* tests were used for statistical analysis.

Fig. S1. *K13*-propeller editing strategy and plasmid map. (A) SNPs were inserted into wild-type or removed from mutant *K13*-propeller alleles using zinc-finger nucleases (ZFNs; Table S1). In this schematic, ZFNs introduce a double-stranded break (thunderbolt) in the 2nd propeller domain of the wild-type genomic target locus, thus triggering DNA resection. The pZFN^{K13}-h*dhfr* donor plasmid sequence provides a DNA template for homology-directed repair processes. Green bars indicate the presence of silent binding-site mutations that prevent the plasmid and the edited recombinant locus from being cleaved by ZFNs. Red stars indicate the presence of a non-synonymous propeller mutation in the plasmid and edited recombinant locus. (B) pZFN^{K13}-h*dhfr* plasmid map. Plasmids contained either the ZFN pairs 18/20 or 19/20 (Table S1). Black and green arrows indicate SacII/SaII and AvrII/NheI restriction sites that were ablated during plasmid construction (see supplementary text).

Fig. S2. Synonymous *K13* binding-site mutations do not significantly alter ring-stage susceptibility to artemisinins. Parasite lines were transfected with pZFN^{K13}-h*dbfr* plasmids harboring only silent bindingsite mutations in the *K13* donor template (Fig. 1), and edited clones were obtained. RSA_{0-3h} assays were performed on 3–5 separate occasions in duplicate, and percent survival was calculated as described in Methods. We note that Dd2, FCB and V1/S harbor the wild-type *K13* allele, whereas F32-ART harbors the K13-propeller mutation M476I that was acquired during several years of artemisinin pressure *in vitro*. The F32-ART line and the edited F32-ART^{ctrl} line carrying silent binding-site mutations (in addition to M476I), showed survival rates in the RSA_{0-3h} that were 2–3 fold lower than those originally reported for F32-ART, suggesting that the resistance phenotype had attenuated over time. Mean±SEM values are represented above each column. Student *t* tests revealed no significant differences between the edited clones harboring only the synonymous binding-site mutations (designated with superscript ctrl) and the isogenic parental lines (*p*>0.05 in all cases).

Fig. S3. Demonstration of consistent RSA_{0-3h} values between test sites. To test for consistency between research groups, several parasite lines were shipped to separate laboratories for independent analysis. Results showed equivalent survival rates among the three sites, namely those led by Dr. Didier Ménard at the Institut Pasteur du Cambodge (IPC), Dr. Françoise Benoit-Vical at the Université de Toulouse, Centre National de Recherche Scientifique UPR8241 (CNRS), and Dr. Rick Fairhurst at the National Institutes of Health (NIH). Assays were performed on 2–3 separate occasions in duplicate, and results are shown as mean±SEM above each column. Dd2 and FCB^{ctrl} parasites harbor the wild-type *K13* allele (the latter parasite line also contains synonymous binding-site mutations), whereas Cam5 parasites harbor the K13 I543T mutation that confers elevated survival rates in the RSA_{0-3h} results of different laboratories when testing the same parasite lines (p>0.05 in all cases).

Fig. S4. In vitro proliferation assays show no significant differences in IC₅₀ values between K13 wild-type and mutant parasites. IC₅₀ values (mean \pm SEM) were measured in 72-h proliferation assays with final parasitemias determined using flow cytometry with SYBR Green I and MitroTracker Deep Red-stained parasites. Assays were performed on three separate occasions in duplicate. DHA, dihydroartemisinin.

Table S1. Nucleotide sequences of K13-specific ZFN binding sites and amino acid sequences of zinc-finger proteins.

K13 ZFN Binding Sequence (underlined)	ZFN	Finger 1	Finger 2	Finger 3	Finger 4	Finger 5	Finger 6
CTTT <u>GACTCCACATACTAGCAA</u> ATTCTCTACATACCATACAAAGT	43418-ELD ^a	RSDNLSV	IRSTLRD	RSADLTR	TNQNRIT	TSGNLTR	DSSNLAT
GAAACTGAGGTGTATGATCGTTTAAGA <u>GATGTATGGTATG</u>	43419-KKR	TSGSLTR	TSSNRKT	RPTRMQ	QSGSLTR	TSANLSR	-
GAAACTGAGGTGTATGATCGTTTAAGA <u>GATGTATGGTATG</u>	43420-KKR	TSGSLSR	TSSNRRH	RSAHLTT	QSGSLTR	TSANLSR	-

Amino acid sequences of ZFNs used in this study (individual fingers are underlined).

43418-ELD (414 amino acids)

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAMAERPFQCRICMRNFSRSDNLSVHIRTHTGEKPFACDICGRKFAIRSTLRDHTKIHTGSQKPFQCRICMRNFSRSADL TRHIRTHTGEKPFACDICGRKFATNQNRITHTKIHTGSQKPFQCRICMRNFSTSGNLTRHIRTHTGEKPFACDICGRKFADSSNLATHTKIHLRGSQLVKSELEEKKSELRHKLKYVP HEYIELIEIARNSTQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMERYVEENQTRDKHLNPNEWWKVYPSSVTEFKFLFVSGH FKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINFRSXX

43419-KKR (382 amino acids)

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAMAERPFQCRICMRKFATSGSLTRHTKIHTGEKPFQCRICMRNFSTSSNRKTHIRTHTGEKPFACDICGRKFARPTRMQ HTKIHTGSQKPFQCRICMRNFSQSGSLTRHIRTHTGEKPFACDICGRKFATSANLSRHTKIHLRGSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKV YGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVKENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNRKTNCNGAVLSVEELLI GGEMIKAGTLTLEEVRRKFNNGEINFXX

43420-KKR (383 amino acids)

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAMAERPFQCRICMRNFSTSGSLSRHIRTHTGEKPFACDICGRKFATSSNRRHHTKIHTGSQKPFQCRICMRKFARSAHL TTHTKIHTGEKPFQCRICMRNFSQSGSLTRHIRTHTGEKPFACDICGRKFATSANLSRHTKIHLRGSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMK VYGYRGKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVKENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNRKTNCNGAVLSVEELL

^a The left ZFN 43418-ELD contains six zinc fingers, whereas the two right ZFNs 43419-KKR and 43420-KKR each contain five. Each finger recognizes a 3nucleotide *K13* sequence. 43418-ELD binds to the *K13* non-coding (-) strand, whereas 43419-KKR and 43420-KKR bind to the same sequence on the coding (+) strand. 43418-ELD / 43419-KKR, and 43418-ELD / 43420-KKR constitute the ZFN pairs 18/19 and 18/20 respectively (Table S3).

Table S2. Geographic origin, native K13 allele and drug-resistance genotypes of Plasmodium falciparum clinical isolates and reference lines.

Parasite	Original ID	Sanger ID	Provider	Geographic origin (year)	PCt _{1/2} (h)	KH group	K13-propeller	PMID #	pfcrt	pfmdr1	<i>pfmdr1</i> CN	dhfr	dhps
Cam3.I	IPC 5202	N/A	D. Ménard	Battambang, W. Cambodia (2011)	ND	ND	R539T (allele 3)	24352242	Dd2 ^a	184F	4	Triple ^b	436A/540E
Cam3.II	RF 967	PH0306-C	R. Fairhurst	Pursat, W. Cambodia (2010)	6.0	3	R539T (allele 3)	22940027	Dd2	184F	1	Triple	436A/540E
Cam5	IPC 4912	N/A	D. Ménard	Mondulkiri, E. Cambodia (2011)	ND	ND	I543T (allele 5)	24352242	Dd2	WT	1	Quadruple	436F/540E/613S
Cam2	IPC 3445	N/A	D. Ménard	Pailin, W. Cambodia (2010)	ND	ND	C580Y (allele 2)	24352242	Dd2	WT	2	Triple	436A/540E
CamWT	RF 915	PH0164-C	R. Fairhurst	Pursat, W. Cambodia (2010)	3.7	1	Wild-type	22940027	Dd2	WT	1	Triple	436A/540E
F32-TEM	F32	N/A	F. Benoit-Vical	Tanzania (1982)	N/A	N/A	Wild-type	20160056	WT	WT	1	WT	436A
V1/S	V1/S	N/A	MR4	Vietnam (1976)	N/A	N/A	Wild-type	12124623	Dd2	86Y	1	Quadruple	613T
FCB	FCB	N/A	MR4	Asia (1980)	N/A	N/A	Wild-type	12124623	FCB	86Y	2	16V/108T	437A
Dd2	Dd2	N/A	MR4	Indochina (1980)	N/A	N/A	Wild-type	12124623	Dd2	86Y	3	Triple	436F/613S

^a Dd2: 74I/75D/76T/220S/271E/326S/356T/371I; FCB: 74I/75E/76T/220S/271E/326S/371I.

^b Triple, 51I/59R/108N; Quadruple, 51I/59R/108N/164L.

PCt_{1/2}, parasite clearance half-life; PMID #, PubMed identification number; *pfmdr1* CN, *pfmdr1* copy number; MR4, Malaria Research and Reference Reagent Resource, Manassas, VA; N/A, not available; ND, not determined.

		Bindi mutatio	ng site ons only	M476I	(allele 1)	C580Y	(allele 2)	R539T	(allele 3)	Y493H	(allele 4)	1543T ((allele 5)
Parasite	ZFN pair	Edited cultures (%)	Edited clones (%)										
Cam3.I	18/19	1 of 1 (100%)	ND	ND	N/A								
Cam3.I	18/20	1 of 1 (100%)	2 of 7 (29%) a	ND	N/A								
Cam3.II	18/19	1 of 2 (50%)	4 of 16 (25%)	ND	N/A	0 of 1 (0%)	ND	ND	N/A	ND	N/A	ND	N/A
Cam3.II	18/20	1 of 2 (50%)	ND	ND	N/A	1 of 1 (100%)	1 of 4 (25%)	ND	N/A	ND	N/A	ND	N/A
Cam5	18/19	1 of 4 (25%)	ND	ND	N/A								
Cam5	18/20	1 of 4 (25%)	6 of 11 (55%)	ND	N/A								
Cam2	18/19	1 of 2 (50%)	1 of 6 (17%)	ND	N/A								
Cam2	18/20	(50%)	ND	ND	N/A								
CamWT	18/19	0 of 1 (0%)	ND	ND	N/A	1 of 2 (50%)	1 of 2 (50%)	0 of 1 (0%)	ND	0 of 2 (0%)	ND	1 of 2 (50%)	0 of 3 (0%)
CamWT	18/20	ND	N/A	ND	N/A	0 of 2 (0%)	ND	0 of 1 (0%)	ND	1 of 2 (50%)	ND	ND	N/A
F32-TEM	18/19	ND	N/A	1 of 2 (50%)	ND	ND	N/A	ND	N/A	ND	ND	ND	N/A
F32-TEM	18/20	ND	N/A	1 of 2 (50%)	2 of 19 (11%)	ND	N/A	ND	N/A	ND	N/A	ND	N/A
F32-ART	18/19	1 of 2 (50%)	N/A	ND	N/A								
F32-ART	18/20	1 of 2 (50%)	0 of 3 (0%) b	ND	N/A								
V1/S	18/19	0 of 1 (0%)	N/A	0 of 2 (0%)	ND	1 of 1 (100%)	0 of 18 (0%)	0 of 1 (0%)	ND	1 of 2 (50%)	ND	0 of 1 (0%)	ND
V1/S	18/20	1 of 1 (100%)	ND c	0 of 2 (0%)	ND	0 of 1 (0%)	ND	1 of 1 (100%)	1 of 8 (13%)	0 of 1 (0%)	ND	0 of 1 (0%)	ND
FCB	18/19	0 of 1 (0%)	N/A	0 of 1 (0%)	ND	1 of 2 (50%)	2 of 25 (8%)	0 of 3 (0%)	ND	0 of 2 (0%)	ND	0 of 2 (0%)	ND
FCB	18/20	0 of 1 (0%)	N/A	0 of 1 (0%)	ND	0 of 2 (0%)	ND	0 of 3 (0%)	ND	0 of 3 (0%)	ND	0 of 2 (0%)	ND
Dd2	18/19	0 of 1 (0%)	N/A	0 of 3 (0%)	ND	1 of 1 (100%)	1 of 10 (10%)	0 of 6 (0%)	ND	1 of 1 (100%)	1 of 17 (6%)	0 of 3 (0%)	ND
Dd2	18/20	1 of 3 (33%)	ND	1 of 3 (33%)	1 of 8 (13%)	0 of 1 (0%)	ND	1 of 6 (0%)	1 of 8 (13%)	0 of 1 (0%)	ND	1 of 3 (33%)	3 of 21 (14%)
Positive events		12 of 30 (40%) d	13 of 43 (30%)	3 of 16 (19%)	3 or 27 (11%)	5 of 14 (36%) e	5 of 59 (9%)	2 of 22 (9%)	2 of 16 (13%)	3 of 14 (21%)	1 of 17 (6%)	2 of 14 (14%)	3 of 24 (13%)

Table S3. K13 transfection outcomes with Plasmodium falciparum clinical isolates and reference lines.

^a Clones were generated from individual bulk cultures with the highest percentage of editing events for a given mutation and parasite. The percentages of edited clones are listed only for those that captured the desired nucleotide changes (either insertion or removal of a point mutation of interest). Clones that captured binding site mutations but not *K13* mutations were not included in this analysis; therefore, the percentages listed underestimate the percentage of editing events.

^b One clone (F32-ART^{ctrl} in Fig. S3) captured the binding site mutations, but did not revert M476I to wild-type. This clone was therefore not listed as being edited at the mutation of interest (see definition in footnote a).

^c This culture was not cloned because the desired binding site control line $(V1/S^{ctrl})$ was obtained from the transfection with the R539T plasmid, resulting in incorporation of the binding site mutations but not R539T. This was one of several instances where a binding site mutant control was obtained from transfections with mutant donor sequences that captured only the binding site mutations, but not the *K13* mutations more distant from the ZFN cleavage site. Binding site control clones are shown in Fig. S3.

^d These data suggest that removing K13 mutations (achieved using the plasmid containing the binding site mutations only) was generally more efficient than introducing them, possibly due to a fitness cost associated with their presence.

^e These data suggest that C580Y editing into K13 wild-type parasites was more efficient than editing of other mutations, possibly because the C580Y mutation might have a lesser fitness cost. These results are consistent with C580Y being highly prevalent in western Cambodia, despite our evidence that C580Y mediates a lower level of *in vitro* resistance than R539T or I543T (see Fig. 2). N/A, not applicable; ND, not done.

Parasite	Original isolate/line	K13 sequence	Binding-site mutations	RSA values mean ± SEM	Assays	Primary site of RSA data
Cam3.I ^{R539T}	IPC 5202	R539T (parent allele 3)	No	40.2 ± 3.0 ^{a,b}	3 ^c	IPC, Cambodia ^d
Cam3.I ^{rev}	IPC 5202	wild-type (revertant)	Yes	0.3 ± 0.1	3	IPC, Cambodia
Cam3.II ^{R539T}	RF 967	R539T (parent allele 3)	No	48.9 ± 0.8	3	NIH, USA
Cam3.II ^{rev}	RF 967	wild-type (revertant)	Yes	0.7 ± 0.2	3	NIH, USA
Cam3.II ^{C580Y}	RF 967	C580Y (allele 2)	Yes	24.1 ± 2.9	3	NIH, USA
Cam5 ^{I543T}	IPC 4912	I543T (parent allele 5)	No	43.4 ± 3.4	3	NIH, USA
Cam5 ^{rev}	IPC 4912	wild-type (revertant)	Yes	0.3 ± 0.02	3	NIH, USA
Cam2 ^{C580Y}	IPC 3445	C580Y (parent allele 2)	No	13.0 ± 2.6	3	IPC, Cambodia
Cam2 ^{rev}	IPC 3445	wild-type (revertant)	Yes	2.4 ± 0.1	3	IPC, Cambodia
CamWT	RF 915	wild-type (parent)	No	0.6 ± 0.1	3	NIH, USA
CamWT ^{C580Y}	RF 915	C580Y (allele 2)	Yes	8.9 ± 0.5	3	NIH, USA
F32-TEM	F32-TEM	wild-type (parent)	No	<0.2 ^e	4	CNRS, France
F32-TEM ^{M476I}	F32-TEM	M476I (allele 1)	Yes	1.7 ± 0.4	4	CNRS, France
V1/S	V1/S	wild-type (parent)	No	0.3 ± 0.1	3	NIH, USA
V1/S ^{R539T}	V1/S	R539T (allele 3)	Yes	20.7 ± 4.0	4	NIH, USA
FCB	FCB	wild-type (parent)	No	0.3 ± 0.1	3	NIH, USA
FCB ^{C580Y}	FCB	C580Y (allele 2)	Yes	1.9 ± 0.3	4	NIH, USA
Dd2	Dd2	wild-type (parent)	No	0.3 ± 0.1	3	IPC, Cambodia
Dd2 ^{Y493H}	Dd2	Y493H (allele 4)	Yes	1.7 ± 0.4	3	IPC, Cambodia
Dd2 ^{C580Y}	Dd2	C580Y (allele 2)	Yes	4.1 ± 0.4	3	IPC, Cambodia
Dd2 ^{M476I}	Dd2	M476I (allele 1)	Yes	9.8 ± 2.6	4	CNRS, France
Dd2 ^{R539T}	Dd2	R539T (allele 3)	Yes	19.4 ± 0.8	3	NIH, USA
Dd2 ^{I543T}	Dd2	I543T (allele 5)	Yes	29.1 ± 3.9	3	IPC, Cambodia

Table S4. Data from ring-stage survival assays (RSAs).

^a RSA values are the percentage of parasites that survived a 6-h pulse of 700 nM dihydroartemisinin, compared to DMSOtreated parasites. Parasitemias were determined 66 h after ending the drug pulse.

^b For each RSA value, the relative standard error (RSE) was calculated as the SEM/mean x100. The mean RSE for all assays was 17.0%, indicating an average SEM of 17.0% of the mean.

^c Assavs were performed on separate occasions as enumerated, with each assav performed in duplicate.

^d IPC, Institut Pasteur du Cambodge (Ménard lab); CNRS, Centre National de Recherche Scientifique UPR8241 (Benoit-Vical lab); NIH, National Institutes of Health (Fairhurst lab).

^e RSA values for F32-TEM were calculated to be 0.02±0.02. Based on our limit of sensitivity (as discussed in Supplementary Materials) we have indicated this survival value to be <0.2%.

Table S5. Oligonucleotides used in this study.

Name	Nucleotide sequence (5'-3') ^a	Description	Lab name
p1	GTGACGTCGATTGATATTAATGTTGGTGGAGC	K13 donor fwd	p3984
p2	CCGCATATGGTGCAAACGGAGTGACCAAATCTGGG	K13 donor rev	p3986
р3	GGTGTATGATaGaTTAAGAGAcGTcTGGTATGTaTCAAGTAATTTAAATATACC	SDM ZFN binding site mutation fwd	p4169
p4	CCAgACgTCTCTTAAtCtATCATACACCTCtGTTTCAAATAAAGCC	SDM ZFN binding site mutation rev	p4170
p5	GCTGGCGTATGTGTACACCTATaTCTACCAAAAAGCTTATTTTGGAAGTGC	SDM allele 1 M476I fwd	p4173
p6	GGTAGAtATAGGTGTACACATACGCCAGCATTGTTGACTAATATCTAATAATTCC	SDM allele 1 M476l rev	p4174
р7	CATCAGCTATGTaTGTTGCTTTTGATAATAAAATTTATGTCATTGG	SDM allele 2 C580Y fwd	p4003
p8	ATTATCAAAAGCAACAtACATAGCTGATGATCTAGGGGTATTCAAAGG	SDM allele 2 C580Y rev	p4004
p9	CGTCAAATGGTAcAATTTATTGTATTGGGGGGATATGATGGCTCTTC	SDM allele 3 R539T fwd	p4005
p10	CCAATACAATAAATTgTACCATTTGACGTAACACCACAATTATTTC	SDM allele 3 R539T rev	p4006
p11	GAATAATTTCTTAcACGTTTTTGGTGGTAATAACTATGATTATAAGGC	SDM allele 4 Y493H fwd	p4188
p12	CCAAAAACGTgTAAGAAATTATTCAATACAGCACTTCCAAAATAAGC	SDM allele 4 Y493H rev	p4189
p13	GGTAGAATTTATTGTAcTGGGGGATATGATGGCTCTTCTATTATACC	SDM allele 5 I543T fwd	p4007
p14	CATATCCCCCAgTACAATAAATTCTACCATTTGACGTAACACCAC	SDM allele 5 I543T rev	p4008
p15	GCAAATCTTATAAATGATGATTCTGG	K13 5' for screening fwd	p4433
p16	GCTAATAAGTAATATCAATATAAGGG	K13 3' for screening rev	p4434
p17	GGTATTAAATTTTTACCATTCCCATTAGTATTTTGTATAGG	Sequencing primer	p4186

^a Lower-case nucleotides show the position that was subjected to mutagenesis.

fwd, forward; rev, reverse; SDM, site directed mutagenesis.

Statistical data: Results of two-sample t-tests with unequal variances

Cam3.I^{R539T} vs. Cam3.I^{rev} (groups 1 vs. 2 respectively; p<0.01; Fig. 2A)

. ttest logCam3I, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	3.688271 -1.546587	.0768044 .4405906	.133029 .7631253	3.357809 -3.442296	4.018734 .3491212
combined	6	1.070842	1.187515	2.908805	-1.981761	4.123445
diff		5.234858	.4472348		3.412362	7.057355
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees.	t s of freedom	= 11.7049 = 2.12144
Ha: d [.] Pr(T < t]	iff < 0) = 0.9971	Pr(Ha: diff != T > t) =	= 0 0.0058	Ha: d Pr(T > t	liff > 0 :) = 0.0029

Two-sample t test with unequal variances

Cam3.II^{R539T} vs. Cam3.II^{rev} (groups 1 vs. 2 respectively; p<0.01; Fig. 2B)

. ttest logCam3II, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	3.89019 5074539	.016374 .3730999	.0283606 .646228	3.819738 -2.112773	3.960642 1.097866
combined	6	1.691368	.9974256	2.443184	8725962	4.255332
diff		4.397644	.3734591		2.796674	5.998614
diff = Ho: diff =	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t s of freedom	= 11.7754 = 2.0077
Ha: d [.] Pr(T < t)	iff < 0) = 0.9965	Pr(Ha: diff != T > t) =	0 0.0070	Ha: d Pr(T > t	liff > 0 :) = 0.0035

Two-sample t test with unequal variances

Cam5^{I543T} vs. Cam5^{rev} (groups 1 vs. 2 respectively; *p*=<0.0001; Fig. 2C)

. ttest logCam5, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	3.763479 -1.215887	.0753753 .0725464	.1305539 .125654	3.439165 -1.528029	4.087793 9037451
combined	6	1.273796	1.114403	2.729718	-1.590867	4.138459
diff		4.979366	.1046155		4.688739	5.269993
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= 47.5968 = 3.99416
Ha: d Pr(T < t	iff < 0) = 1.0000	Pr(Ha: diff != T > t) =	= 0 0.0000	Ha: d Pr(T > t	iff > 0) = 0.0000

Two-sample t test with unequal variances

Cam2^{C580Y} vs. Cam2^{rev} (groups 1 vs. 2 respectively; p<0.01; Fig. 2D)

. ttest logCam2, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	2.525393 .867163	.1843995 .0518709	.3193893 .0898431	1.731986 .6439804	3.3188 1.090346
combined	6	1.696278	.3805589	.9321752	.7180201	2.674536
diff		1.65823	.1915562		.9325863	2.383874
diff = Ho: diff =	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= 8.6566 = 2.31454
Ha: di Pr(T < t)	iff < 0) = 0.9959	Pr(Ha: diff != T > t) = (0 0.0082	Ha: d Pr(T > t	iff > 0) = 0.0041

Two-sample t test with unequal variances

CamWT vs. CamWT^{C580Y} (groups 1 vs. 2 respectively; p<0.01; Fig. 2E)

. ttest logCamWT, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	5885569 2.184728	.1905804 .0602016	.330095 .1042722	-1.408558 1.925701	.2314445 2.443754
combined	6	.7980854	.6265337	1.534688	8124706	2.408642
diff		-2.773285	.1998628		-3.510595	-2.035975
diff : Ho: diff :	= mean(1) - = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -13.8759 = 2.3952
Ha: d Pr(T < t	iff < 0) = 0.0012	Pr(Ha: diff != T > t) =	0 0.0024	Ha: c Pr(T > t	liff > 0 :) = 0.9988

Two-sample t test with unequal variances

Cam3.II^{rev} vs. Cam3.II^{C580Y} (groups 1 vs. 2 respectively; p<0.01; Fig. 2F)

. ttest logCam3IIC580Y, by(group) unequal

Two-sample i lest with unequal variance	Two-sample	t	test	with	unequal	variance
---	------------	---	------	------	---------	----------

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	5074539 3.167337	.3730999 .1149281	.646228 .1990612	-2.112773 2.672841	1.097866 3.661832
combined	6	1.329941	.8400516	2.057698	8294799	3.489363
diff		-3.67479	. 3903998		-5.123775	-2.225806
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -9.4129 = 2.37616
Ha: d Pr(T < t	iff < 0) = 0.0031	Pr(Ha: diff != T > t) =	= 0 0.0062	Ha: d Pr(T > t	iff > 0) = 0.9969

. ttest logV1S, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3	-1.208234 2.972716	.3612046 .1999613	.6256247 .3999226	-2.762372 2.33635	.3459035 3.609082
combined	7	1.18088	.8622912	2.281408	9290704	3.290831
diff		-4.18095	.4128599		-5.447017	-2.914884
diff Ho: diff	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -10.1268 = 3.21256
Ha: d Pr(T < t	iff < 0) = 0.0008	Pr(Ha: diff != T > t) =	= 0 0.0015	Ha: c Pr(T > t	liff > 0 :) = 0.9992

Two-sample t test with unequal variances

F32-TEM vs. F32-TEM^{M476I} (groups 1 vs. 2 respectively; p<0.01; Fig. 2H)

. ttest logF32TEM, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 4	-1.609438 .3982619	0 . 3075268	0 .6150537	-1.609438 5804257	-1.609438 1.37695
combined	7	4621809	.4376593	1.157938	-1.533095	.6087328
diff		-2.0077	.3075268		-2.986388	-1.029012
diff Ho: diff	= mean(1) = 0	- mean(2)	Satterthwai	ite's degrees	t of freedom	= -6.5285 = 3
Ha: d Pr(T < t	iff < 0) = 0.0037	Pr(Ha: diff != T > t) =	= 0 0.0073	Ha: d Pr(T > t	liff > 0) = 0.9963

Two-sample t test with unequal variances

. ttest logFCB, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 4	-1.260332 .5756699	.1874178 .2217322	.3246172 .4434645	-2.066726 129981	4539377 1.281321
combined	7	2111879	.3957941	1.047173	-1.179661	.7572853
diff		-1.836002	.2903285		-2.582576	-1.089427
diff Ho: diff	= mean(1) - = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -6.3239 = 4.99418
Ha: d Pr(T < t	iff < 0) = 0.0007	Pr(Ha: diff != T > t) =	• 0 0.0015	Ha: d Pr(T > t	liff > 0 :) = 0.9993

Two-sample t test with unequal variances

Dd2 vs. Dd2^{Y493H} (groups 1 vs. 2 respectively; p < 0.05; Fig. 2J)

. ttest logDd2Y493H, by(group) unequal

Two-sample t	: test	with	unequal	variances
--------------	--------	------	---------	-----------

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.304008 .4804795	.3314896 .2148663	.5741568 .3721593	-2.730292 4440154	.1222767 1.404975
combined	6	4117641	.4363832	1.068916	-1.533523	.7099947
diff		-1.784487	.3950352		-2.957299	6116756
diff : Ho: diff :	= mean(1) - = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -4.5173 = 3.42843
Ha: d Pr(T < t	iff < 0) = 0.0076	Pr(Ha: diff != T > t) =	0 0.0152	Ha: d Pr(T > t	iff > 0) = 0.9924

Dd2 vs. Dd2^{C580Y} (groups 1 vs. 2 respectively; p<0.01; Fig. 2J)

. ttest logDd2C580Y, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.304008 1.39194	.3314896 .1087222	.5741568 .1883124	-2.730292 .9241457	.1222767 1.859734
combined	6	.043966	.622694	1.525282	-1.55672	1.644652
diff		-2.695947	.3488637		-3.970905	-1.42099
diff = Ho: diff =	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -7.7278 = 2.42536
Ha: d [.] Pr(T < t)	iff < 0) = 0.0046	Pr(Ha: diff != T > t) =	0 0.0092	Ha: d Pr(T > t	iff > 0) = 0.9954

Two-sample t test with unequal variances

Dd2 vs. Dd2^{M476I} (groups 1 vs. 2 respectively; p < 0.001; Fig. 2J)

. ttest logDd2M476I, by(group) unequal

Two-sample t test with unequal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 4	-1.304008 2.162859	.3314896 .2838199	.5741568 .5676399	-2.730292 1.259617	.1222767 3.0661
combined	7	.6770588	.7275241	1.924848	-1.103129	2.457246
diff		-3.466866	.4363933		-4.634165	-2.299568
diff = Ho: diff =	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= -7.9444 = 4.42262
Ha: d [:] Pr(T < t)	iff < 0) = 0.0004	Pr(Ha: diff != T > t) = (0 0.0009	Ha: d Pr(T > t	iff > 0) = 0.9996

Dd2 vs. Dd2^{R539T} (groups 1 vs. 2 respectively; p<0.01; Fig. 2J)

. ttest logDd2R539T, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.304008 2.96476	.3314896 .0417134	.5741568 .0722497	-2.730292 2.785281	.1222767 3.144238
combined	6	.830376	.966149	2.366572	-1.653189	3.313941
diff		-4.268767	.3341038		-5.664839	-2.872696
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -12.7768 = 2.06332
Ha: d Pr(T < t	iff < 0) = 0.0027	Pr(1	Ha: diff != T > t) =	₌ 0 0.0054	Ha: d Pr(T > t	liff > 0 :) = 0.9973

Two-sample t test with unequal variances

Dd2 vs. Dd2^{I543T} (groups 1 vs. 2 respectively; p < 0.01; Fig. 2J)

. ttest logDd2I543T, by(group) unequal

Two-sample	t	test	with	unequal	variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.304008 3.353108	.3314896 .1395851	.5741568 .2417684	-2.730292 2.752522	.1222767 3.953694
combined	6	1.02455	1.053713	2.581058	-1.684104	3.733204
diff		-4.657116	.3596795		-5.880846	-3.433385
diff = Ho: diff =	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= -12.9480 = 2.68763
Ha: d Pr(T < t	iff < 0) = 0.0008	Pr(Ha: diff != T > t) =	0 0.0017	Ha: d Pr(T > t	iff > 0) = 0.9992

FCB^{C580Y} vs. Dd2^{C580Y} (groups 1 vs. 2 respectively; *p*<0.05; Fig. 2K)

. ttest logDd2C580Y, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	4 3	.5756699 1.39194	.2217322 .1087222	.4434645 .1883124	129981 .9241457	1.281321 1.859734
combined	7	.9254998	.2071994	.5481982	.418501	1.432499
diff		8162698	.2469528		-1.486439	1461009
diff : Ho: diff :	= mean(1) - = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -3.3054 = 4.24766
Ha: d Pr(T < t	iff < 0) = 0.0136	Pr(Ha: diff != T > t) =	0 0.0272	Ha: c Pr(T > t	liff > 0 z) = 0.9864

Two-sample t test with unequal variances

FCB^{C580Y} vs. CamWT^{C580Y} (groups 1 vs. 2 respectively; p<0.01; Fig. 2K)

. ttest logCamWTC580Y, by(group) unequal

Two-sample t test with unequal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	4 3	.5756699 2.184728	.2217322 .0602016	.4434645 .1042722	129981 1.925701	1.281321 2.443754
combined	7	1.265266	.3467581	.9174356	.4167797	2.113753
diff		-1.609058	.2297595		-2.290976	9271395
diff : Ho: diff :	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= -7.0032 = 3.43063
Ha: d Pr(T < t	iff < 0) = 0.0019	Pr(Ha: diff != T > t) = '	0 0.0038	Ha: d Pr(T > t	iff > 0) = 0.9981

FCB^{C580Y} vs. Cam2^{C580Y} (groups 1 vs. 2 respectively; p<0.01; Fig. 2K)

. ttest logCam2C580Y, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
1 2	4 3	.5756699 2.525393	.2217322 .1843995	.4434645 .3193893	129981 1.731986	1.281321 3.3188
combined	7	1.411266	.4172107	1.103836	.3903876	2.432143
diff		-1.949723	.2883892		-2.691124	-1.208322
diff Ho: diff	= mean(1) - = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -6.7607 = 4.99837
Ha: d Pr(T < t	iff < 0) = 0.0005	Pr(Ha: diff != T > t) =	0 0.0011	Ha: d Pr(T > f	diff > 0 t) = 0.9995

Two-sample t test with unequal variances

FCB^{C580Y} vs. Cam3.II^{C580Y} (groups 1 vs. 2 respectively; p<0.001; Fig. 2K)

. ttest logCam3IIC580Y, by(group) unequal

Two-sample	t	test	with	unequal	variances
------------	---	------	------	---------	-----------

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	4 3	.5756699 3.167337	.2217322 .1149281	.4434645 .1990612	129981 2.672841	1.281321 3.661832
combined	7	1.686384	. 5385969	1.424993	.3684851	3.004283
diff		-2.591667	.2497471		-3.263246	-1.920088
diff Ho: diff	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= -10.3772 = 4.35678
Ha: d Pr(T < t	iff < 0) = 0.0002	Pr(Ha: diff != T > t) = (0 0.0003	Ha: d Pr(T > t	iff > 0) = 0.9998

Dd2 vs. Dd2^{ctrl} (groups 1 vs. 2 respectively; p = not significant; Fig. S2)

. ttest logDd2, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3	-1.304008 3955087	.3314896 .2486298	.5741568 .4306395	-2.730292 -1.465276	.1222767 .6742591
combined	6	8497582	.2749708	.6735382	-1.556593	1429232
diff		908499	.4143695		-2.095421	.2784229
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= -2.1925 = 3.70929
Ha: d Pr(T < t	iff < 0) = 0.0494	Pr(Ha: diff != T > t) =	0 0.0988	Ha: d Pr(T > t	iff > 0) = 0.9506

Two-sample t test with unequal variances

FCB vs. FCB^{ctrl} (groups 1 vs. 2 respectively; p = not significant; Fig. S2)

. ttest logFCB, by(group) unequal

Iwo-sample t test with unequal variance	wo-sample [.]	t tes	st with	unequal	variance
---	------------------------	-------	---------	---------	----------

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.260332 8974407	.1874178 .3438403	.3246172 .5955488	-2.066726 -2.376866	4539377 .5819846
combined	6	-1.078886	.193015	.4727884	-1.575047	5827252
diff		3628909	.3916013		-1.588419	.8626372
diff = Ho: diff =	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees.	t : of freedom :	= -0.9267 = 3.09202
Ha: di Pr(T < t)	iff < 0) = 0.2103	Pr(Ha: diff != T > t) =	= 0 0.4206	Ha: d Pr(T > t	iff > 0) = 0.7897

V1/S vs. V1/S^{ctrl} (groups 1 vs. 2 respectively; p = not significant; Fig. S2)

. ttest logV1S, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	-1.208234 -1.735915	.3612046 .1444376	.6256247 .2501733	-2.762372 -2.35738	.3459035 -1.11445
combined	6	-1.472075	.2102107	.514909	-2.012439	931711
diff		.5276807	.3890128		8171156	1.872477
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= 1.3565 = 2.62366
Ha: d Pr(T < t	iff < 0) = 0.8601	Pr(Ha: diff != T > t) =	0 0.2799	Ha: d Pr(T > t	iff > 0) = 0.1399

Two-sample t test with unequal variances

F32-ART vs. F32-ART ^{ctrl} (groups 1 vs. 2 respectively; p = not significant; Fig. S2)

. ttest logF32ART, by(group) unequal

Two-sample	t	test	with	unequal	variances
------------	---	------	------	---------	-----------

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 5	1.54359 1.056817	.2493203 .2388532	.4318355 .5340919	.470851 .3936547	2.616329 1.71998
combined	8	1.239357	.1869997	.5289149	.7971732	1.681541
diff		.4867725	.3452701		3917757	1.365321
diff : Ho: diff :	= mean(1) - = 0	mean(2)	Satterthwai	te's degrees	t of freedom	= 1.4098 = 5.17592
Ha: d Pr(T < t	iff < 0) = 0.8921	Pr(Ha: diff != T > t) = '	0 0.2158	Ha: d Pr(T > t	iff > 0) = 0.1079

Dd2 comparison between IPC and CNRS (groups 1 vs. 2 respectively; *p* = not significant; Fig. S3)

. ttest logDd2, by(group) unequal

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 2	-1.304008 4315231	.3314896 .5493061	.5741568 .7768362	-2.730292 -7.411119	.1222767 6.548073
combined	5	9550139	.3298683	.7376079	-1.870875	0391527
diff		8724846	.6415782		-4.057465	2.312496
diff : Ho: diff :	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees.	t of freedom	= -1.3599 = 1.74524
Ha: d Pr(T < t	iff < 0) = 0.1615	Pr(Ha: diff != T > t) =	= 0 0.3230	Ha: d Pr(T > t	liff > 0 :) = 0.8385

Two-sample t test with unequal variances

FCB^{ctrl} comparison between NIH and CNRS (groups 1 vs. 2 respectively; *p* = not significant; Fig. S3)

. ttest logFCB, by(group) unequal

Two-sample	+	test	with	uneaual	variances
Two Sumple	C	CCSC	WL CH	uncquut	vui Lunces

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 3	8974407 -1.260332	.3438403 .1874178	.5955488 .3246172	-2.376866 -2.066726	.5819846 4539377
combined	6	-1.078886	.193015	.4727884	-1.575047	5827252
diff		.3628909	.3916013		8626372	1.588419
diff : Ho: diff :	= mean(1) · = 0	- mean(2)	Satterthwai	te's degrees	t of freedom	= 0.9267 = 3.09202
Ha: d Pr(T < t	iff < 0) = 0.7897	Pr(Ha: diff != T > t) =	0 0.4206	Ha: d Pr(T > t	iff > 0) = 0.2103

Cam5^{I543T} comparison between NIH and IPC (groups 1 vs. 2 respectively; p = notsignificant; Fig. S3)

. ttest logCam5, by(group) unequal

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	3 2	3.763479 3.685584	.0753753 .0181838	.1305539 .0257158	3.439165 3.454537	4.087793 3.916632
combined	5	3.732321	.0458427	.1025074	3.605041	3.859601
diff		.077895	.0775377		2254468	.3812368
diff Ho: diff	= mean(1) = 0	- mean(2)	Satterthwai	te's degrees	t s of freedom	= 1.0046 = 2.2245
Ha: d Pr(T < t	iff < 0) = 0 7942	Pr(Ha: diff !=	· 0 0 4116	Ha: d Pr(T > t	iff > 0

Two-sample t test with unequal variances

Pr(T < t) = 0.7942 Pr(|T| > |t|) = 0.4116 Pr(T > t) = 0.2058

References and Notes

- 1. R. Feachem, O. Sabot, A new global malaria eradication strategy. *Lancet* **371**, 1633–1635 (2008). <u>Medline doi:10.1016/S0140-6736(08)60424-9</u>
- 2. N. J. White, S. Pukrittayakamee, T. T. Hien, M. A. Faiz, O. A. Mokuolu, A. M. Dondorp, Malaria. *Lancet* **383**, 723–735 (2014). <u>Medline doi:10.1016/S0140-6736(13)60024-0</u>
- 3. N. J. White, Delaying antimalarial drug resistance with combination chemotherapy. *Parassitologia* **41**, 301–308 (1999). <u>Medline</u>
- 4. R. T. Eastman, D. A. Fidock, Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. *Nat. Rev. Microbiol.* **7**, 864–874 (2009). <u>Medline</u>
- 5. World Health Organization, World Malaria Report: 2013. WHO Press: Geneva, Switzerland. http://www.who.int/malaria/publications/world_malaria_report_2013/en/
- 6. A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo, J. Tarning, K. M. Lwin, F. Ariey, W. Hanpithakpong, S. J. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S. S. An, S. Yeung, P. Singhasivanon, N. P. Day, N. Lindegardh, D. Socheat, N. J. White, Artemisinin resistance in *Plasmodium falciparum* malaria. *N. Engl. J. Med.* 361, 455–467 (2009). <u>Medline doi:10.1056/NEJMoa0808859</u>
- 7. E. A. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim, S. Suon, S. Sreng, J. M. Anderson, S. Mao, B. Sam, C. Sopha, C. M. Chuor, C. Nguon, S. Sovannaroth, S. Pukrittayakamee, P. Jittamala, K. Chotivanich, K. Chutasmit, C. Suchatsoonthorn, R. Runcharoen, T. T. Hien, N. T. Thuy-Nhien, N. V. Thanh, N. H. Phu, Y. Htut, K. T. Han, K. H. Aye, O. A. Mokuolu, R. R. Olaosebikan, O. O. Folaranmi, M. Mayxay, M. Khanthavong, B. Hongvanthong, P. N. Newton, M. A. Onyamboko, C. I. Fanello, A. K. Tshefu, N. Mishra, N. Valecha, A. P. Phyo, F. Nosten, P. Yi, R. Tripura, S. Borrmann, M. Bashraheil, J. Peshu, M. A. Faiz, A. Ghose, M. A. Hossain, R. Samad, M. R. Rahman, M. M. Hasan, A. Islam, O. Miotto, R. Amato, B. MacInnis, J. Stalker, D. P. Kwiatkowski, Z. Bozdech, A. Jeeyapant, P. Y. Cheah, T. Sakulthaew, J. Chalk, B. Intharabut, K. Silamut, S. J. Lee, B. Vihokhern, C. Kunasol, M. Imwong, J. Tarning, W. J. Taylor, S. Yeung, C. J. Woodrow, J. A. Flegg, D. Das, J. Smith, M. Venkatesan, C. V. Plowe, K. Stepniewska, P. J. Guerin, A. M. Dondorp, N. P. Day, N. J. White; Tracking Resistance to Artemisinin Collaboration (TRAC), Spread of artemisinin resistance in *Plasmodium falciparum* malaria. *N. Engl. J. Med.* **371**, 411–423 (2014). <u>Medline doi:10.1056/NEJMoa1314981</u>
- D. L. Saunders, P. Vanachayangkul, C. LonU.S. Army Military Malaria Research ProgramNational Center for Parasitology, Entomology, and Malaria Control (CNM)Royal Cambodian Armed Forces, Dihydroartemisinin-piperaquine failure in Cambodia. *N. Engl. J. Med.* 371, 484–485 (2014). <u>Medline doi:10.1056/NEJMc1403007</u>
- R. Leang, A. Barrette, D. M. Bouth, D. Menard, R. Abdur, S. Duong, P. Ringwald, Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated *Plasmodium falciparum* and Plasmodium vivax in Cambodia, 2008 to 2010. *Antimicrob. Agents Chemother.* 57, 818–826 (2013). <u>Medline doi:10.1128/AAC.00686-12</u>
- 10. C. Amaratunga, S. Sreng, S. Suon, E. S. Phelps, K. Stepniewska, P. Lim, C. Zhou, S. Mao, J. M. Anderson, N. Lindegardh, H. Jiang, J. Song, X. Z. Su, N. J. White, A. M. Dondorp, T. J. Anderson, M. P. Fay, J. Mu, S. Duong, R. M. Fairhurst, Artemisinin-resistant *Plasmodium falciparum* in Pursat province, western Cambodia: A parasite clearance rate study. *Lancet Infect. Dis.* **12**, 851–858 (2012). <u>Medline</u>

- 11. J. A. Flegg, P. J. Guérin, F. Nosten, E. A. Ashley, A. P. Phyo, A. M. Dondorp, R. M. Fairhurst, D. Socheat, S. Borrmann, A. Björkman, A. Mårtensson, M. Mayxay, P. N. Newton, D. Bethell, Y. Se, H. Noedl, M. Diakite, A. A. Djimde, T. T. Hien, N. J. White, K. Stepniewska, Optimal sampling designs for estimation of *Plasmodium falciparum* clearance rates in patients treated with artemisinin derivatives. *Malar. J.* **12**, 411 (2013). <u>Medline doi:10.1186/1475-2875-12-411</u>
- B. Witkowski, C. Amaratunga, N. Khim, S. Sreng, P. Chim, S. Kim, P. Lim, S. Mao, C. Sopha, B. Sam, J. M. Anderson, S. Duong, C. M. Chuor, W. R. Taylor, S. Suon, O. Mercereau-Puijalon, R. M. Fairhurst, D. Menard, Novel phenotypic assays for the detection of artemisinin-resistant *Plasmodium falciparum* malaria in Cambodia: In-vitro and ex-vivo drug-response studies. *Lancet Infect. Dis.* 13, 1043–1049 (2013). Medline doi:10.1016/S1473-3099(13)70252-4
- 13. F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. C. Langlois, N. Khim, S. Kim, V. Duru, C. Bouchier, L. Ma, P. Lim, R. Leang, S. Duong, S. Sreng, S. Suon, C. M. Chuor, D. M. Bout, S. Ménard, W. O. Rogers, B. Genton, T. Fandeur, O. Miotto, P. Ringwald, J. Le Bras, A. Berry, J. C. Barale, R. M. Fairhurst, F. Benoit-Vical, O. Mercereau-Puijalon, D. Ménard, A molecular marker of artemisinin-resistant *Plasmodium falciparum* malaria. *Nature* 505, 50–55 (2014). Medline doi:10.1038/nature12876
- 14. I. H. Cheeseman, B. A. Miller, S. Nair, S. Nkhoma, A. Tan, J. C. Tan, S. Al Saai, A. P. Phyo, C. L. Moo, K. M. Lwin, R. McGready, E. Ashley, M. Imwong, K. Stepniewska, P. Yi, A. M. Dondorp, M. Mayxay, P. N. Newton, N. J. White, F. Nosten, M. T. Ferdig, T. J. Anderson, A major genome region underlying artemisinin resistance in malaria. *Science* 336, 79–82 (2012). <u>Medline doi:10.1126/science.1215966</u>
- 15. S. Takala-Harrison, T. G. Clark, C. G. Jacob, M. P. Cummings, O. Miotto, A. M. Dondorp, M. M. Fukuda, F. Nosten, H. Noedl, M. Imwong, D. Bethell, Y. Se, C. Lon, S. D. Tyner, D. L. Saunders, D. Socheat, F. Ariey, A. P. Phyo, P. Starzengruber, H. P. Fuehrer, P. Swoboda, K. Stepniewska, J. Flegg, C. Arze, G. C. Cerqueira, J. C. Silva, S. M. Ricklefs, S. F. Porcella, R. M. Stephens, M. Adams, L. J. Kenefic, S. Campino, S. Auburn, B. MacInnis, D. P. Kwiatkowski, X. Z. Su, N. J. White, P. Ringwald, C. V. Plowe, Genetic loci associated with delayed clearance of *Plasmodium falciparum* following artemisinin treatment in Southeast Asia. *Proc. Natl. Acad. Sci. U.S.A.* 110, 240–245 (2013). Medline doi:10.1073/pnas.1211205110
- O. Miotto, J. Almagro-Garcia, M. Manske, B. Macinnis, S. Campino, K. A. Rockett, C. Amaratunga, P. Lim, S. Suon, S. Sreng, J. M. Anderson, S. Duong, C. Nguon, C. M. Chuor, D. Saunders, Y. Se, C. Lon, M. M. Fukuda, L. Amenga-Etego, A. V. Hodgson, V. Asoala, M. Imwong, S. Takala-Harrison, F. Nosten, X. Z. Su, P. Ringwald, F. Ariey, C. Dolecek, T. T. Hien, M. F. Boni, C. Q. Thai, A. Amambua-Ngwa, D. J. Conway, A. A. Djimdé, O. K. Doumbo, I. Zongo, J. B. Ouedraogo, D. Alcock, E. Drury, S. Auburn, O. Koch, M. Sanders, C. Hubbart, G. Maslen, V. Ruano-Rubio, D. Jyothi, A. Miles, J. O'Brien, C. Gamble, S. O. Oyola, J. C. Rayner, C. I. Newbold, M. Berriman, C. C. Spencer, G. McVean, N. P. Day, N. J. White, D. Bethell, A. M. Dondorp, C. V. Plowe, R. M. Fairhurst, D. P. Kwiatkowski, Multiple populations of artemisinin-resistant *Plasmodium falciparum* in Cambodia. *Nat. Genet.* 45, 648– 655 (2013). <u>Medline doi:10.1038/ng.2624</u>
- J. Adams, R. Kelso, L. Cooley, The kelch repeat superfamily of proteins: Propellers of cell function. *Trends Cell Biol.* 10, 17–24 (2000). <u>Medline doi:10.1016/S0962-8924(99)01673-6</u>
- 18. B. Witkowski, J. Lelièvre, M. J. Lopez Barragán, V. Laurent, X.-Z. Su, A. Berry, F. Benoit-Vical, Increased tolerance to artemisinin in *Plasmodium falciparum* is mediated by a quiescence mechanism. *Antimicrob. Agents Chemother.* 54, 1872–1877 (2010). <u>Medline</u> <u>doi:10.1128/AAC.01636-09</u>

- C. Amaratunga, B. Witkowski, N. Khim, D. Menard, R. M. Fairhurst, Artemisinin resistance in *Plasmodium falciparum. Lancet Infect. Dis.* 14, 449–450 (2014). <u>Medline doi:10.1016/S1473-3099(14)70777-7</u>
- 20. J. Straimer, M. C. Lee, A. H. Lee, B. Zeitler, A. E. Williams, J. R. Pearl, L. Zhang, E. J. Rebar, P. D. Gregory, M. Llinás, F. D. Urnov, D. A. Fidock, Site-specific genome editing in *Plasmodium falciparum* using engineered zinc-finger nucleases. *Nat. Methods* 9, 993–998 (2012). <u>Medline doi:10.1038/nmeth.2143</u>
- M. Ghorbal, M. Gorman, C. R. Macpherson, R. M. Martins, A. Scherf, J. J. Lopez-Rubio, Genome editing in the human malaria parasite *Plasmodium falciparum* using the CRISPR-Cas9 system. *Nat. Biotechnol.* 32, 819–821 (2014). <u>Medline doi:10.1038/nbt.2925</u>
- 22. T. Ponnudurai, J. H. Meuwissen, A. D. Leeuwenberg, J. P. Verhave, A. H. Lensen, The production of mature gametocytes of *Plasmodium falciparum* in continuous cultures of different isolates infective to mosquitoes. *Trans. R. Soc. Trop. Med. Hyg.* **76**, 242–250 (1982). <u>Medline doi:10.1016/0035-9203(82)90289-9</u>
- 23. C. Amaratunga, B. Witkowski, D. Dek, V. Try, N. Khim, O. Miotto, D. Ménard, R. M. Fairhurst, *Plasmodium falciparum* founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. *Antimicrob. Agents Chemother.* 58, 4935–4937 (2014). <u>Medline</u> <u>doi:10.1128/AAC.03055-14</u>
- 24. S. Takala-Harrison *et al.*, Independent emergence of artemisinin resistance mutations among *Plasmodium falciparum* in Southeast Asia. *J. Infect. Dis.* 10.1093/infdis/jiu491 (2014).
- 25. M. D. Conrad, V. Bigira, J. Kapisi, M. Muhindo, M. R. Kamya, D. V. Havlir, G. Dorsey, P. J. Rosenthal, Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in *Plasmodium falciparum* isolated from Ugandan children. *PLOS ONE* 9, e105690 (2014). <u>Medline doi:10.1371/journal.pone.0105690</u>
- 26. S. M. Taylor *et al.*, Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: A molecular epidemiologic study. *J. Infect. Dis.* 10.1093/infdis/jiu467 (2014).
- N. Klonis, D. J. Creek, L. Tilley, Iron and heme metabolism in *Plasmodium falciparum* and the mechanism of action of artemisinins. *Curr. Opin. Microbiol.* 16, 722–727 (2013). <u>Medline doi:10.1016/j.mib.2013.07.005</u>
- 28. C. L. Hartwig, A. S. Rosenthal, J. D'Angelo, C. E. Griffin, G. H. Posner, R. A. Cooper, Accumulation of artemisinin trioxane derivatives within neutral lipids of *Plasmodium falciparum* malaria parasites is endoperoxide-dependent. *Biochem. Pharmacol.* 77, 322–336 (2009). <u>Medline doi:10.1016/j.bcp.2008.10.015</u>
- 29. T. Antoine, N. Fisher, R. Amewu, P. M. O'Neill, S. A. Ward, G. A. Biagini, Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. *J. Antimicrob. Chemother.* 69, 1005–1016 (2014). <u>Medline doi:10.1093/jac/dkt486</u>
- 30. N. Klonis, M. P. Crespo-Ortiz, I. Bottova, N. Abu-Bakar, S. Kenny, P. J. Rosenthal, L. Tilley, Artemisinin activity against *Plasmodium falciparum* requires hemoglobin uptake and digestion. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 11405–11410 (2011). <u>Medline</u> <u>doi:10.1073/pnas.1104063108</u>
- 31. S. Saralamba, W. Pan-Ngum, R. J. Maude, S. J. Lee, J. Tarning, N. Lindegårdh, K. Chotivanich, F. Nosten, N. P. Day, D. Socheat, N. J. White, A. M. Dondorp, L. J. White, Intrahost modeling of

artemisinin resistance in *Plasmodium falciparum*. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 397–402 (2011). <u>Medline doi:10.1073/pnas.1006113108</u>

- 32. Y. S. Keum, B. Y. Choi, Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. *Molecules* **19**, 10074–10089 (2014). <u>Medline doi:10.3390/molecules190710074</u>
- 33. F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, P. D. Gregory, Genome editing with engineered zinc finger nucleases. *Nat. Rev. Genet.* 11, 636–646 (2010). <u>Medline</u> <u>doi:10.1038/nrg2842</u>
- 34. M. C. S. Lee, P. A. Moura, E. A. Miller, D. A. Fidock, *Plasmodium falciparum* Sec24 marks transitional ER that exports a model cargo via a diacidic motif. *Mol. Microbiol.* 68, 1535–1546 (2008). <u>Medline doi:10.1111/j.1365-2958.2008.06250.x</u>
- 35. D. A. Fidock, T. Nomura, T. E. Wellems, Cycloguanil and its parent compound proguanil demonstrate distinct activities against *Plasmodium falciparum* malaria parasites transformed with human dihydrofolate reductase. *Mol. Pharmacol.* **54**, 1140–1147 (1998). <u>Medline</u>
- 36. E. H. Ekland, J. Schneider, D. A. Fidock, Identifying apicoplast-targeting antimalarials using highthroughput compatible approaches. *FASEB J.* 25, 3583–3593 (2011). <u>Medline</u> <u>doi:10.1096/fj.11-187401</u>