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Sites and objects of cultural heritage – from modern art to ancient ruins – are 
under constant attack by time and the environment. They are subject to fa-
ding, color loss, material loss, bio-deterioration, soiling and a wide range of 
other processes. While laboratory-based studies have taught us much about 
how the material components change, very little is known about the process 
or rates of change of actual objects and sites in place. 
On July 2009 the National Science Foundation 8Arlington, VA, USA) held a 
workshop titled “Chemistry and Materials Research at the Interface Between 
Science and Art.”  The goal of the workshop was to identify challenges and 
targets for the application of modern science to the conservation of art and 
cultural heritage artifacts. The second grand challenge from the workshop 
reported by Marco [Leona and Van Duyne, 2009] is understanding material 
degradation and aging: «Effective conservation strategies must be aimed at 
diagnosing the underlying causes of deterioration, identify early stages of 
change… ». To tackle this challenge, we propose an imaging approach to 
detect and monitor early changes in an object.
In collaboration with site managers and conservators, we propose to develop 
a crowd-sourcing approach by engaging citizen scientists to acquire fi nely 
grained, time-sequenced image sets via their mobile phone cameras. These 
data will serve as the inputs for detecting and measuring change and de-
termining rates and patterns of change caused by biodeterioration, material 
loss, vandalism and soiling. Additionally, the data can be used to detect color 
changes which may be proxies for chemical changes such as UV damage, 
bleaching or pollution-driven chemistry on the surface. 
Accurate image calibration is critical to this program, and we suggest and 
test a calibration method based on on-site calibration kiosks with robust color 
targets. To determine whether mobile phone cameras can provide colorime-
tric data quantitative enough to look for changes in scenes, we measured 
the color errors in images from both Androids and iPhones, using calibrated 
Colorchecker charts.  We report on this key element of our program and also 
present results from a pilot project on obtaining images via social media.
Our approach is citizen science, in which members of the public become both 
originator and user of science. While citizen science has gained traction only 
in recent years [Cohn, 2008; McCaffrey, 2005; Newman et al., 2012], there is 
a substantial history of research involving a distributed public, particularly in 
projects that require a large number of observations over time or place.  What 
has changed in recent years is the increased availability of tools with which 
to engage participants in the research. In our case, smartphone cameras will 
collect large numbers of images over time, in far-fl ung locations, at virtually 
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no cost, an activity that would be prohibitive for long-term mounted cameras.  
Employing social media, we will create an engagement loop that makes it 
easy and fun for participants to share their contributions, spread the word and 
draw in additional feedback, engagement and outreach. Our objective in the 
public engagement strategy is to signifi cantly lower the barriers to contributing 
to the project, using technologies and apps that smartphone users are already 
likely to use: Twitter, Instagram or potentially a standalone app. 
We propose to work with an existing mobile phone app, Historypin, that provi-
des users with historical images as they visit and view sites worldwide, using 
online databases and phone GPS. For our purposes, users will take and uplo-
ad photos to our database for comparison and analysis of change going for-
ward over time. 
The project presents technical challenges at both ends of the process.  An 
overlay must be part of the mobile phone app to target the correct fi eld of view.  
Images uploaded by the users will include an image of the onsite kiosk we will 
install in collaboration with those responsible for site management and con-
servation; the kiosk’s robust color targets will provide color and white balance 
standards for image calibration.  At the back end, signifi cant computation is 
required to register, align and calibrate the images to yield data of the quality 
we need.  The resulting, cloud-based image analysis can be accessed by site 
conservators as well as by the public, enabling our users to see the value of 
their participation. 
We will use the calibration kiosk to transform the cell phone sRGB image into 
the CIELAB (L*a*b*) color space, in which color is measured by three parame-
ters. L is lightness (similar to luminance or intensity), while a* and b* provide 
the chromatic information. The red-green axis is described by a* and b* is 
yellow-blue. These are orthogonal spaces to allow quantitative measurement 
of color differences and can also be related to human perception of changes.
Repeated imaging of the same site, rephotography, has appeared in the li-
terature but mostly as a means of a one-time visual comparison of then and 
now, not as an integrated data collection and quantitative analysis method for 
cultural conservation. There has been some work on the computation chal-
lenges faced in registering and aligning images to allow genuine comparison 
[Bae, Agarwala and Durand, 2010; Hendrick and Copenheaver, 2009; Lee, 
Luo, and Chen, 2011]. We need to be able to separate 3D translation, rotation, 
zoom and dolly when comparing two images taken at different times by diffe-
rent people from different viewpoints. In our case, the problem is somewhat 
easier, as the inclusion of a color and spatial calibration target kiosk in the fi eld 
of view provides better control over the reimaging.
What can we measure at a site, using just images? Quite a bit, it turns out, that 
is important to conservators and custodians of sites and objects, including soi-
ling rates, material loss, color changes that are stand-ins for chemical chan-
ges and biodeterioration such moss/lichens with photosynthesis pigments 
detectable in color images There are many processes that can create color 
changes [Fitzner and Heinrichs, 2001] such as oxidation, reduction, leaching 
and aeolian deposits. While we may not be able to identify them, we should be 
able to differentiate between these processes and measure their rate.
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Measurement of color changes in stone materials is the primary goal of our 
mobile phone images. Studies in the literature show that various weathering 
and soiling processes primarily change lightness, L and b*, rather than a* 
[Grossi et al., 2007; Lebrun, Toussaint, and Pirard, 2004; Iñigo, Vicente Ta-
vera, and Rives, 2004; García Talegon et al., 1998]. Lightness changes can 
be due to soiling and darkening from soot, brightening from effl orescence or 
material loss that exposes a brighter interior. Changes in surface roughness 
due to weathering can also affect the lightness and chroma [Benavente et al., 
2003]. Changes in b* indicate motion along the yellow-blue axis and often 
indicate yellowing. We will later use data from these studies to evaluate how 
sensitive mobile phone cameras are to such environmental changes.
In collaboration with the Computer Science Department at Harvey Mudd Col-
lege (Pomona, CA) we created an independent study course for students. We 
looked at two components of the project: (1) Citizen science: If we were to put 
up a target kiosk, how many images would we get? What is the image quality 
for an untrained but interested and intelligent user? We are concerned about 
image saturation, focus and fi eld of view (all issues that came up). (2) Color 
calibration of cell phones off either an outdoor target kiosk and/or standard 
color charts such as the X-rite Colorchecker or Colorchecker digital SG.

Color Calibration
We used software from Imatest LLC (Imatest.com) to analyze cell phone ima-
ges of two Xrite color charts. Among its many useful features it uses an opti-
mizer to create a color transform that minimizes the errors for all the tiles. The 
user can turn tiles off to remove them from the calculation. For the analysis 
we performed, the software determined the image gamma from grey tiles in 
the image.
We have data from two popular phones, iPhone 4s and Samsung Galaxy S3. 
To avoid illumination gradients, we imaged the color checker outdoors so that 
it was diffusely lit by sunlight and not shadowed by the user. 
Some of the calibration color tiles are saturated in hue so it was common for 
the bright orange/green/yellow tiles to be saturated at a pixel value of 255 in 
the images. The camera software clips those tiles and fi lls in the others at 
lower pixel values to make images appealing to the human eye, rather than 
being especially color accurate. In building our camera models, we either ima-
ged in outdoor shade or simply excluded the saturated tiles (always with large 
b*) from the color model. We obtained about the same results either way, but 
it does point out that we need to choose tiles for a kiosk carefully.
In general, we fi nd that the larger the b, the larger is the Δb, as shown in Fi-
gure 1 and the same for L as in Figure 2.This makes sense as larger L and 
b* imply we are working over a larger gamut, making it more diffi cult to fi nd 
an optimized color transform at all values of L and b. The real question here 
then becomes what is the range of b* values we can expect to be in typical 
scenes? Grossi et al show values of b* and L ranging from 10-20 and 40-80 
respectively. Tanaca et al measures b* ~6 for biocolonized limestone, whi-
le Urzi measures b*<30 for biocolonized granite and L ~50-75. This smaller 
gamut helps with the sensitivity of the camera images and suggests that the 
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Fig.1 - Measured Δb* for Samsung Galaxy S3. The values are calculated by Imatest software 
with an optimizer that minimizes color errors for all the tiles. The images were taken sequentially, 
at single imaging session. The target was an Xrite Passport ColorChecker with three of the color 
tiles (A2, F2, D3) turned off as well as the brightest white

Fig.2 - Measured ΔL for Samsung Galaxy S3. The values are calculated by Imatest software with 
an optimizer that minimizes color errors for all the tiles. The images were taken sequentially, at 
single imaging session. The target was an Xrite Passport ColorChecker with three of the color 
tiles (A2, F2, D3) turned off as well as the brightest white
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kiosk tiles can span a small gamut of L and b*. We will not see highly satura-
ted colors with high b* so we can safely exclude them from the color model to 
obtain better results.
Nominally, sRGB has a gamma of 2.2 and we looked at whether the ima-
ge data conformed to that, which could make the calibration kiosk simpler 
to design. However, since both the ColorChecker SG and the ColorChecker 
Passport have a number of different refl ectance greys we checked the gam-
ma using the greys. In most cases, the gamma was not 2.2, but ranged from 
2.25 to 2.46. For some of the cameras, the gamma was not even linear, but 
sigmoidal. We did the gamma analysis separately from the Imatest with the 
greyscale tiles from the Color Checker SG; these results indicated that the 
calibration kiosk needs to contain enough greys to recover gamma. There are 
several blind inverse gamma recovery algorithims (Farid 2001; Asadi, Has-
sanpour, and Pouyan 2010) that claim a gamma accuracy of ~ 7.5% (Farid 
2001). These methods rely on the fact that gamma encoding introduces spe-
cifi c correlations in the image’s frequency domain, and minimizing them to 
determine gamma. 
For the Galaxy S3 data displayed, the average  ׀ b* ׀ error is 3.05 and average 
for ׀L׀ is 1.45, while for the iPhone 4S we get 3.05 and 1.65 respectively. If 
we wish to take advantage of the fact that we can span a smaller b* gamut, 
avoid saturated colors and limit ourselves to b*<33, then we get ׀b*2.15=׀ for 
the S3 and ׀b*2.5=׀ for the iPhone 4S. For the S3, ΔE76=4.6 and ΔE76=4.7 
for the iPhone.
Cell phone cameras are mass produced commodity items that all use the 
same Bayer fi lter technology, although each vendor may use different de-
mosaicing algorithms. For this reason we did not think it critical to have a 
wide range of phone cameras; it is not as if somehow one of them will be 5 
times better. How do these results stack up against either DSLR or a mid-level 
point-and-shoot camera? For that, we have to look at chroma, since that is 
widely published in camera reviews. A Canon EOS 50D has an average Del-
ta chroma (uncorrected) of 4.55 (http://www.imaging-resource.com/PRODS/
E50D/E50DIMATEST.HTM) compared with 7.57 for the S3. As expected, the 
dedicated cameras are better, but the mobile phone cameras are pretty good 
and will only improve as they ride the technology wave:  there is already one 
cell phone camera that records RAW images, which contain much less of the 
pre-processing that at present creates calibration problems. For example, a 
RAW or DNG image can provide the individual color planes from the Bayer 
fi lter pattern, rather than the demosaiced and interpolated ones we get now.
Based on our results, are mobile phones quantitative enough to measu-
re some of the changes over time we are looking for? Since we now have 
some measured Δb*, ΔL and ΔE, we can apply data from the literature to this 
question. First, restorations and repairs. Setting the imaging “clock” ticking 
is easy; it is the date of repair.  A study of photo-degradation of acrylic resins 
used in stone repair [Leona and Van Duyne, 2009; Melo et al. 1999] showed 
that photo aging at light levels ~1/3 that of sunlight changes b* as much +15 in 
~100 hours (the resins yellow). Since we are seeing Δb* ~ 2, we would detect 
this relatively early.
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There has been work on using colorimetry to measure stone discoloration 
after exposure to the environment and time [Cohn, 2008; Sanmartín et al., 
2012; McCaffrey, 2005; Grossi and Brimblecombe, 2008; Newman et al., 
2012;  Bae, Agarwala and Durand, 2010; Tanaca et al., 2011; Hendrick and 
Copenheaver, 2009; Lee, Luo and Chen, 2011], and we can use this data 
to set a detection level. A wide range of laboratory and natural experiments 
examine color changes from environmental insults. These studies range from 
granite to limestone and include natural weathering and soiling (Fitzner and 
Heinrichs, 2001; Thornbush, 2010] [Grossi et al., 2007; Grossi et al., 2003; 
Lebrun, Toussaint Pirard, 2004; Iñigo, Vicente Tavera Rives, 2004; García 
Talegon et al., 1998] as well as laboratory SO2 and acid aging. 
Biofi lm growth creates color changes through the photosynthetic pigments. 
While the studies report on a number of color difference measurements, we 
can usually match with one calculated from our data. For example, Tanaca et 
al measure color changes from fungal growth on concrete over 5 years at 3 
locations: ΔE76 ranges from 5.5-17.28, all three of which are within our color 
uncertainty and would allow building a timeline to monitor the rate of growth.  A 
study of biofi lms on exposed granite [Benavente et al., 2003; Sanmartín et al., 
2012] reported a range Δb* of ~ 4 after 194 days and a concurrent ΔL ~8. The-
se changes slowly increased to about 10 and 10 respectively after 276 days of 
exposure. Outdoor monitoring of sandstone with ongoing biofi lm colonization 
[Farid, 2001; Urzı̀ and Realini, 1998; Asadi, Hassanpour and Pouyan, 2010] 
measured ΔE76 ranging from ~1-5. These changes are easily detectable with 
mobile cameras. Several studies have demonstrated that color change can 
be correlated with the amount of cyanobacteria [Farid, 2001; Sanmartín et al., 
2010; Prieto, Rivas and Silva, 2002], so we may be able to develop a quanti-
tative assay for bacterial growth.
Can we learn anything in detail about biofi lm growth based just on color? Bac-
teria growth, in general, changes b*, typically moving towards orange [Urzı̀ 
and Realini, 1998] while fungi lead to blackening or greying. Various lichens/
algae/bacteria have different enough refl ectance spectra to allow a segmen-
ted image but are not suffi cient for identifi cation. As an example, we obtai-
ned refl ectance spectra of some cyanobacteria from the literature [Bechtel, 
Rivard and Sánchez-Azofeifa, 2002; Van Der Veen and Csatho, 2005] and 
then computed the L*a*b* values for a few examples; c. nivalis has (L*a*b*)= 
(79.58,0.86, 3.51) while c.uncialis has (39.21,3.39,12.97).
Another example is using our approach to evaluate soiling rates. A study of 
soiling rates of exposed untreated limestone over a decade [Moreau et al., 
2008] measured a L* change of ~2.2/year, while we see a detectable ΔL about 
the same. Another study of soiling [Grossi et al., 2007] shows a ΔL ~5-10, 
depending on the material, for an urban exposure of 4 months and concurrent 
Δb* ~2-3. Both parameters are within the measured errors for mobile phone 
cameras.
Harvey Mudd College, Claremont, CA, has a student population of ~800 and 
the kiosk was up for ~ 48 days. Over the course of the study, we received 75 
images, Common problems were bad lighting, i.e., self shadow, out of focus 
or zoomed way out. We even got a few taken with a fl ash at night! Only a few 
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were out of focus. As long as the targets covered a more than a few dozen 
pixels, we could get data from them. However, it would appear that users will 
need more direction to take better images. The advantage of the Historypin 
mobile app is that the overlay guides the participant to the correct image. For 
a real project, we would simply exclude bad images; and we anticipate get-
ting a lot of images from which to cull them. The iconic sites we are looking 
at get thousands of visitors - some many more. The very advantage of crowd 
sourcing and big data is that you can throw away bad data. Our study had, 
in effect, the same visitors every day, thus limiting the number of images we 
could get, since the typical student did not upload more than one image. Still, 
it is noteworthy that about 10% of “visitors” took and uploaded an image.
We fi nd that cell phone cameras can measure Δb* with an uncertainty of ~2.1 
and ΔL with an uncertainty of ~1.5. Literature values for weathering and bio-
fi lm changes in Δb* and ΔL range from 2-8 and 1.5-10, respectively, well wi-
thin the capability of mobile phone cameras. The color errors show that the 
calibration kiosk should use a smaller than normal color gamut to match the 
expected values in the scene and avoid bright saturated colors as these only 
make it harder to obtain a minimized error color transform.
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