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A B S T R A C T

Introduction: A ground reaction force decomposition algorithm based on large force platform

measurements has recently been developed to analyze ground reaction forces under each foot during

the double support phase of gait. However, its accuracy for the measurement of the spatiotemporal gait

parameters remains to be established.

Objective: The aim of the present study was to establish the agreement between the spatiotemporal gait

parameters obtained using (1) a walkway (composed of six large force platforms) and the newly

developed algorithm, and (2) an optoelectronic motion capture system.

Methods: Twenty healthy children and adolescents (age range: 6–17 years) and 19 healthy adults (age

range: 19–51 years) participated in this study. They were asked to walk at their preferred speed and at a

speed that was faster than the preferred one. Each participant performed three blocks of three trials in

each of the two walking speed conditions.

Results: The spatiotemporal gait parameters measured with the algorithm did not differ by more than

2.5% from those obtained with the motion capture system. The limits of agreement represented between

3% and 8% of the average spatiotemporal gait parameters. Repeatability of the algorithm was slightly

higher than that of the motion capture system as the coefficient of variations ranged from 2.5% to 6%, and

from 1.5% to 3.5% for the algorithm and the motion capture system, respectively.

Conclusion: The proposed algorithm provides valid and repeatable spatiotemporal gait parameter

measurements and offers a promising tool for clinical gait analysis. Further studies are warranted to test

the algorithm in people with impaired gait.

� 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Gait & Posture

jo u rn al h om ep age: ww w.els evier .c o m/lo c ate /g ai tp os t
1. Introduction

Gait analysis, including kinematic and kinetic aspects of gait, is
used to recommend therapeutic interventions [1] or to monitor the
Abbreviations: COP, center of pressure; CI, confidence interval; CV, coefficient of

variation; GRF, ground reaction force; ICC, intra-class correlation coefficient; LoA,

limit of agreement; SD, standard deviation; vGRF, vertical ground reaction force.
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effect of an intervention on gait [2]. However, full gait analysis is
time consuming and requires expensive devices as well as well-
trained technicians [3]. The clinical need for simpler over-ground
gait analysis instruments has driven the development of new tools,
such as pressure sensor mats [4] or accelerometer-based devices
[5]. Most of these systems measure spatiotemporal gait param-
eters (e.g., step length and time), which provide easy to collect and
useful gait information, because spatiotemporal gait parameters
are related to functional conditions such as risk and fear of falling
[6], risk of cognitive decline and dementia [7] and early risks of
mortality [8]. Spatiotemporal gait parameters are also useful to
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monitor disease progression or in assessing the efficiency of a
surgical or physical intervention [9]. However, most of these
methods provide little or no information on the kinetic aspects of
gait even though ground reaction forces (GRFs) are of major
importance to characterize gait [10]. During the stance phase of a
healthy walking cycle, vertical ground reaction forces present a
characteristic sinusoidal curve with a typical ‘double bump’
[10]. Vertical ground reaction forces (vGRF) are also characterized
by low intra-participant variability and high inter-limb symmetry
[11]. In rehabilitation, the amount of weight bearing during
walking is crucial after many orthopedic interventions on the
lower extremities, as non weight bearing or excessive weight
bearing can both lead to complications [12]. For this reason and
given the consistent characteristics of vGRF mentioned above,
this parameter is often used to assess gait asymmetry and joint
loads in pathological populations such as cerebral palsy [13] or
stroke [14].

Traditionally, to measure GRFs during walking the participant
must place two consecutive steps on individual force platforms
with no foot contact outside the surface of the platform. A large
number of trials can be necessary before achieving valid
measurements because it is key that participants do not
voluntarily ‘target’ the force plate by adapting their step length
[15]. Such targeting has been cited as a major limitation of gait
studies [16] because it can modify both the vertical and horizontal
component of GRFs [17–19]. Targeting also alters spatiotemporal
parameters of the targeted steps as well as several steps preceding
and following the target area [20].

An option to overcome the targeting problem is the use of large
force plates, which offer many advantages over smaller ones. For
instance, large force plates are easier to hit while walking, which
reduces the time needed to gather the required valid trials. They
are also more versatile as they can be used for large human
movements such as manual materials handling [21] or for fast
human movement such as running and jumping [22]. However,
one important limitation of large force plates is their incapacity in
dissociating the forces generated by both feet individually when
they hit the platform simultaneously. To overcome this limitation
Davis and Cavanagh [23] developed a method that uses force data
measured with a single large force plate to decompose the left and
right GRF profiles during the double support phase of walking and
to determine the spatiotemporal gait parameters from the global
values of the GRF. Nevertheless, the robustness of the method has
not been extensively tested, and the variation in intra-subject gait
pattern has not been taken into account in the method validation
process.

Providing a valid algorithm that could decompose GRFs
measured by large force plates would allow minimizing the
number of walking trials which is critical in many clinical settings
as fatigue may affect results [24]. It would be innovative to have a
device not limited to the measurement of the vertical GRF under
each foot but that can also estimate spatiotemporal gait
parameters, without any additional equipment on the subject
and with a minimum time requirement. Recently, Ballaz et al. [25]
developed an algorithm (referred to as the ‘force decomposition
algorithm’ throughout the remaining of the manuscript) which
uses single large force platform measurements to estimate
spatiotemporal gait parameters as well as the left and right
vertical ground reaction forces. The original description of the
method validated the decomposition of vertical force into left and
right GRFs [25], but the validity of this method to determine the
spatiotemporal gait parameters remained to be tested. Conse-
quently, the primary aim of the present study was to assess the
agreement between the spatiotemporal gait parameters obtained
with the approach developed by Ballaz et al. [25] and those
measured with optoelectronic (3D) motion capture system, viewed
as a ‘gold standard’ method [4,26,27]. The secondary aim was to
determine the intra-session repeatability of both methods.

2. Method

Twenty healthy children and adolescents (age range: 6–17
years; mean age [standard deviation; SD]: 10 [3] years; mean
height [SD]: 1.46 [0.17] m; mean body mass: 40 [14] kg; 14 males)
and nineteen healthy adults (age range: 19–51 years; mean age
[SD]: 26 [8] years; mean height [SD]: 1.59 [0.09] m; mean body
mass: 67 [12] kg; 8 males) participated in this study. Participants
were recruited from hospital and research staff and students. This
study was approved by the ethics committee of the Sainte-Justine
University Hospital Research Center. Informed consent was
provided by participants or for minors by their parents. Assent
was provided by participants aged 7–17 years.

2.1. Measurement equipment

2.1.1. Force measuring walkway

Vertical GRFs were recorded using the Leonardo Mechan-
ograph1 Gangway system (Novotec Medical GmbH, Pforzheim,
Germany) sampled at 800 Hz, as described in detail elsewhere
[28,29]. Six force plate modules (dimensions of each modu-
le:150 cm long � 78 cm wide � 7 cm high) were placed on the
floor to form a 9 m long walkway on which ground reaction
forces were measured. A 2 m long custom-build wooden
platform was added at the end of the walkway in order to
obtain at least a 10 m long walkway, the length classically used
in clinical gait analysis [3]. The first two meters of the walkway
allowed participants to accelerate and reach steady state
walking velocity whereas the last two meters of the walkway
were used to decelerate. This allowed us to assess gait during
steady state walking [4].

2.1.2. Optoelectronic motion capture system

Displacement of the lower legs and the feet in space and time
were measured using an 8-camera motion capture system
sampled at 60 Hz (Vicon1, 512, Oxford Metrics, Oxford, United
Kingdom). Six reflective markers were placed by the same
experienced examiner on the lower limbs at the following
anatomic landmarks: lateral malleoli, heels and second meta-
tarsals, as usually done to assess spatiotemporal gait parameters
with an optoelectronic motion capture system [30]. To ensure
that gait cycles measured by the motion capture system
corresponded to that of the force measuring gangway system,
2 reflective markers were placed on each corner of the third
walkway platform. This served as a spatial landmark which was
used to detect the first step that was concurrently measured by
the motion capture and walkway system. Using this approach,
spatiotemporal parameters were calculated on the same steps
with each of the two methods.

2.2. Test procedure

For each participant, the experimenter provided a description of
the procedure and a task demonstration. The force measuring
platform was zeroed before a participant stepped onto it.
Participants performed the walking trials in two different
conditions: at a normal/preferred speed (‘Preferred’ condition)
and at a speed that was faster than your preferred speed (‘Faster’
condition). Different walking speeds were tested because walking
speed is known to influence GRFs [31]. Prior to the beginning of
testing, the participant received one of the two following
instructions depending on the testing condition: ‘‘Start walking
at your preferred speed or a speed comfortable for you. The test
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ends when you step off the walkway’’ or ‘‘Start walking at a speed
that is faster than your preferred speed without running. The test
ends when you step off the walkway’’. Participants performed a
total of three blocks of three trials in each of the two conditions.
Each block of three trials in a condition was followed by three trials
in the other condition. The order of testing the two conditions was
equally distributed across participants: half of the participants
initiated their trials with the ‘Preferred’ condition while the other
half started with the ‘Faster’ condition.

2.3. Gait parameters computation

The following spatiotemporal parameters were computed:
average gait velocity, step length (right and left foot) and time per
step (right and left foot). These parameters were computed using
the motion capture system and the force decomposition
algorithm [25], which is based on force platform measurements.
Between one and three gait cycles were assessed during each trial
depending on stride’s length of the participants. A gait cycle
corresponded to the heel strike until the heel strike of the
same leg.

Using the motion capture system, heel strike and toe-off events
were defined for every trial. Vicon (Oxford Metrics, Oxford, United
Kingdom) Polygon software (version 2.0) was then used to
compute the spatiotemporal parameters. Heel strike and toe off
were defined visually by an experience examiner for every trial
based on positional changes of markers on the foot through
multiple frames. Heel strike was defined as the frame before the
horizontal trajectory of the heel markers changed direction. Toe off
was defined as the first frame where the toe marker change
direction in the anterior–posterior axis.

We tested the repeatability of our visual detection method on
five healthy adults who have been previously tested in our gait
laboratory. Three trials per participants including two steps on
separated floor mounted force plates were selected. A total of
30 heel-strike and toe-off instants were determined. First, for each
trial the heel-strike and toe-off instants were determined twice
with the kinematic data (based on the same heel and toe markers
than in the present study). A 2-h ‘‘washout period’’ was imposed to
the assessor between the two evaluations. Secondly, the heel-
strike and toe-off instants were determined with the two
separated force plates (gold standard method). We computed
the intra-rater reliability (ICC) as well as the absolute constant
error made when visual detection was used to determine heel-
strike and toe-off events as compared to that detected by a force
plate (see Table 1).

Using the force decomposition algorithm, gait parameters
were computed from the raw data of the walkway force sensors in
two distinct steps. The vertical GRFs and the corresponding COPs
under the left and right feet were decomposed from the global
vertical GRF on the multiple platforms set-up. The transitions
between single and double stance phases, especially the heel
strikes and toe-offs, are identified using thresholds on a variable
called DCOP2, defined as the squared Euclidian norm in the
horizontal plane between two given samples of the global center
of pressure [20]. These thresholds depend on the white noise
magnitude measured in the trials. For further details on the
process, the reader is invited to consult the following sub-
sections: ‘COP-related definitions’, ‘Detection of stance transi-
tions’, and ‘Decomposition of the GRFs’, pp. 238–240 of Ballaz
et al. [20].

Using these data, the following gait parameters were comput-
ed: average velocity, step length and time per step. These
parameters are computed for each foot as follows:

The average velocity [m/s], v, is defined as the distance
between the beginning of the first step and the end of the last
step, divided by the time, t, to move this distance, as formulated
by Eq. (1).

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCOPx;last�COPx;firstÞ2 þ ðCOPy;last�COPy;firstÞ2

q

t
(1)

where COPx,first and COPy,first denote the antero-posterior and lateral
components, respectively, of the COP at the beginning of the first
step, called t,first further in the paper, and COPx,last and COPx,last

denote the antero-posterior and lateral coordinates, respectively,
of the COP at the end of the last step, called tlast further in the paper.

The average step length [m], l, is defined as the average distance
between antero-posterior COP components at consecutive heel-
strikes, as formulated by Eq. (2).

l ¼ jCOPx;heel�strike�COPx;heel�strike�1j (2)

where COPx,heel–strike and COPx,heel–strike–1 denote the antero-
posterior components of the COP of consecutive heel-strikes (left
to right or right to left, respectively). This step length is then
averaged from the beginning of the first step, tfirst, to the end of the
last step, tlast.

The average time per step [s], Dt, is the difference between the
instants at consecutive heel-strike of one foot and that of the
opposite foot, as formulated by Eq. (3).

Dt ¼ theel�strike�theel�strike�opp (3)

where theel�strike and theel�strike�opp denote the instants at consecu-
tive heel-strikes of one foot (theel�strike) and that of the opposite foot
(theel�strike�opp; left to right or right to left). This time per step is
then averaged from tfirst to tlast.

The results of the three consecutive trials in the same condition
were averaged after normalization for the number of steps. This
average result for three trials was called a ‘block’. A minimum of
four steps and a maximum of eight steps per trial were recorded for
each participant, depending on step length. Therefore, a minimum
of 12 and a maximum of 24 steps were included in a given block.

Finally, due to the natural variability of human gait, it is
generally recommended to average spatiotemporal gait parame-
ters from several gait cycles [4,28,32,33]. Therefore it is expected
that errors might be also averaged in the process.

2.4. Statistical analysis

2.4.1. Visual detection of heel-strike and toe-off study with the motion

capture system

To assess intra-rater reproducibility (evaluation 1 vs. evaluation
2) of visual heeI-strike and toe-off detection based on the motion
capture system measurements we used intra-class coefficients
with a two-way mixed effect model – consistency definition
[34]. Thus, ICC(C,k) and their 95% confidence intervals (95% CIs)
were computed. For the intra-rater assessment, we also deter-
mined the absolute constant error the rater did when comparing
heel-strike and toe-off visual frames detection for evaluation 1 and
2. Finally, to establish the precision of heel-strike and toe-off visual
detection, we computed the absolute constant error that was done
when comparing the visual detection data to the automatic force
plate detection data (gold standard).

2.4.2. Main study

Results are presented as mean [SD]. Differences in gait
parameters between the force decomposition algorithm and the
optoelectronic motion capture system were assessed by compar-
ing the mean of the nine trials performed in adults and in children
for each of the two walking speed conditions using paired t-tests.
Differences in gait parameters between the ‘Preferred’ and ‘Faster’
walking speed conditions were assessed by comparing the mean of



Table 2
Spatiotemporal parameters (mean [� SD]) of the Children group in both the

‘Preferred’ and ‘Faster’ conditions as determined by the Ballaz et al.’s algorithm and the

motion capture method (Vicon).

Children Algorithm Motion

capture

D% P*

Preferred condition
Velocity (m/s) 1.40 [0.16] 1.38 [0.16] 1.2 <0.001

Step Length-Right Foot (cm) 70.4 [10.0] 69.9 [10.2] 0.8 0.37

Step Length-Left Foot (cm) 69.1 [9.9] 69.3 [9.7] �0.4 0.64

Time per Step-Right Foot (s) 0.51 [0.03] 0.51 [0.03] �0.2 0.59

Time per Step-Left Foot (s) 0.51 [0.03] 0.50 [0.03] 0.1 0.67

Faster condition
Velocity (m/s) 1.86 [0.20] 1.85 [0.21] 0.2 0.68

Step Length-Right Foot (cm) 78.4 [10.9] 79.1 [12.0] �0.9 0.35

Step Length-Left Foot (cm) 77.6 [11.7] 79.0 [11.5] �1.8 0.05

Time per Step-Right Foot (s) 0.42 [0.04] 0.43 [0.04] �0.7 0.28

Time per Step-Left Foot (s) 0.42 [0.03] 0.43 [0.04] �1.0 0.27

* Paired t-test; all significant effects are reported at P < 0.05.

Table 3
Spatiotemporal parameters (mean [�SD]) of the Adult group in both the ‘Preferred’

and ‘Faster’ conditions as determined by the Ballaz et al.’s algorithm and the motion

capture method (Vicon).

Adults Algorithm Motion

capture

D% P*

‘Preferred’ condition
Velocity (m/s) 1.47 [0.19] 1.46 [0.19] 0.7 0.09
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the nine trials performed in each condition using paired t-tests.
Calculations were performed using PASW 201 (SPSS Inc., Chicago,
IL, USA).

As in our previous studies [28,29], repeatability of both the
algorithm and the motion capture system approach was assessed
by calculating the coefficient of variation (CV) and the intraclass
correlation coefficient (ICC), as they are widely used repeatability
parameters for human performance measures [6]. CV was
calculated for each parameter in each of the two conditions
(‘Preferred’, ‘Faster’), as previously described [29]. Regarding ICC, a
two-way mixed effect model with a consistency definition was
used following the algorithm proposed by McGraw and Wong
[8]. In the mixed model the participant is treated as a random
effect, whereas measurement error is considered as a fixed effect.
Thus, ICC(C,k) and their 95% confidence intervals (95% CIs), where
‘C’ refers to a ‘consistency’ definition of the ICC and ‘k’ refers to the
fact that the analysis was done on averaged measurements, were
computed.

To assess validity of the proposed algorithm, Bland and Altman
plots and limits of agreement [35] were calculated for both the
adult and the children group and for each of the six spatiotemporal
parameters to determine the level of agreement between the
algorithm and the motion capture data [9]. The bias between the
algorithm computed data and the motion capture computed data
was calculated as the mean difference between measurements by
each method. To detect the presence of heteroscedasticity, i.e., to
determine if the difference between both methods was propor-
tional to the measured value, a Kendall’s tau test was done [36]. No
significant correlation between the difference and the measure-
ments were observed (all P values >0.11) and therefore no data
transformations were needed to perform the Bland and Altman
plots. The upper and lower limits of agreement, which define the
range in which 95% of the differences between methods are
expected to lie, were calculated as bias �1.96 SD. The precision of
the limits of agreement, are reported as a 95% confidence interval.
Bland and Altman analyses, assessing the agreement between both
the force decomposition algorithm and the motion capture system,
showed that the limits of agreement of the ‘Children’ and ‘Adults’
group were very similar in each of the five spatiotemporal parameters
(see Supplementary data). Thus, for sake of simplicity the data of the
child and adult groups were pooled and the Bland and Altman
analyses were performed with this regrouped set of data.

3. Results

3.1. Visual detection of heel-strike and toe-off study

Comparison between visual and automatic force plate detection
showed that the absolute constant error was 1.3 frames, i.e., 21 ms
of error, for heel-strike detection and 0.95 frames, i.e., 15 ms of
error, for toe-off detection (Table 1). The average absolute constant
error in assessing the same trial 2 h appart was of 0.13 frame (2 ms)
for heel-strike detection and 0.96 frames (15 ms) for toe-off
detection. ICCs showed that reproducibility was excellent
(Table 1).
Table 1
Absolute Constant Error for visual vs. automatic force plate detection comparison

and for the comparison of evaluation 1 vs. 2 expressed in number of ‘frames’ as well

as the intra-rater reproducibility (ICC [95% CI]).

Visual vs. force

plate detection

Visual detection

Evaluation

1 vs. Evaluation 2

ICC [95% CI]

Evaluation

1 vs. Evaluation 2

Heel-strike 1.33 (1.03) 0.13 (0.86) 1.00 [1.00–1.00]

Toe-off 0.95 (1.43) 0.96 (0.97) 1.00 [1.00–1.00]
3.2. Main study

Systematic differences between the outcomes of both methods
were observed in the child and adult populations. For the children
(Table 2) in the ‘Preferred’ condition, the algorithm significantly
overestimated velocity by 1.2%. For the adult group (Table 3) in the
‘Preferred’ speed condition the algorithm significantly over-
estimated the time per step of the left foot by 0.9% compared to
the motion capture system. In the ‘Faster’ speed condition, the
algorithm underestimated by 1.6% the values of the motion
capture system for step length of the right foot.

Repeatability data for the children group (Table 4) and the adult
group (Table 5) showed that all ICCs were between 0.72 and
0.98 for the force decomposition algorithm data and all over
0.90 for the motion capture computed data. Consistent with the
ICCs, the CVs were slightly larger for the algorithm (2–7%) than for
the motion capture (1–5%). The ICCs and CVs were very similar
across conditions and groups.

The Bland and Altman plots showed that step lengths at the
right and left feet were the parameters with the largest limits of
agreement. The limits of agreement of these two parameters
represented around 6% of the averaged measurements of both
methods: (force decomposition algorithm data + motion capture
data)/2. For the remaining parameters, i.e. velocity, time per step
right and left foot, the limits of agreement was under 5% of the
averaged method measurements (Fig. 1A–E).
Step length-Right Foot (cm) 76.0 [7.2] 75.8 [7.9] 0.2 0.71

Step length-Left Foot (cm) 75.5 [8.3] 75.6 [7.6] �0.2 0.79

Time per Step-Right Foot (s) 0.52 [0.03] 0.53 [0.03] �0.6 0.20

Time per Step-Left Foot (s) 0.52 [0.03] 0.52 [0.03] 1.0 0.01

‘Faster’ condition
Velocity (m/s) 1.95 [0.22] 1.95 [0.21] 0.1 0.71

Step Length-Right Foot (cm) 86.0 [8.1] 87.5 [7.8] �1.6 0.04

Step Length-Left Foot (cm) 86.7 [7.4] 87.2 [7.3] �0.5 0.47

Time per Step-Right Foot (s) 0.45 [0.03] 0.46 [0.02] �1.4 0.05

Time per Step-Left Foot (s) 0.45 [0.02] 0.45 [0.03] 0 0.99

* Paired t-test; all significant effects are reported at P < 0.05.



Table 4
Repeatability of the spatiotemporal data as computed by both the algorithm and the motion capture method for the Children group at both walking speed conditions.

Preferred Faster

ICC(C, k) [95% CI] CV (%) ICC(C, k) [95% CI] CV (%)

Algorithm
Velocity (m/s) 0.98 [0.91–0.98] 4.43 0.98 [0.86–0.97] 4.75

Step length-Right Foot (cm) 0.72 [0.87–0.97] 2.76 0.72 [0.71–0.94] 5.07

Step length-Left Foot (cm) 0.94 [0.83–0.97] 3.15 0.94 [0.82–0.96] 4.32

Time per Step-Right Foot (s) 0.81 [0.96–0.99] 3.78 0.81 [0.91–0.98] 5.27

Time per Step-Left Foot (s) 0.94 [0.94–0.99] 4.67 0.94 [0.89–0.98] 5.39

Motion Capture
Velocity (m/s) 0.96 [0.91–0.98] 4.82 0.96 [0.92–0.99] 3.91

Step Length-Right Foot (cm) 0.97 [0.93–0.99] 2.12 0.97 [0.94–0.99] 2.05

Step Length-Left Foot (cm) 0.90 [0.78–0.96] 3.50 0.96 [0.91–0.98] 2.87

Time per Step-Right Foot (s) 0.98 [0.96–0.99] 3.96 0.99 [0.98–1.00] 2.42

Time per Step-Left Foot (s) 0.99 [0.97–0.99] 3.00 0.99 [0.99–1.00] 1.93

Table 5
Repeatability of the spatiotemporal data of both the Ballaz et al.’s algorithm and the motion capture method for the Adult group at both walking speed conditions.

Preferred Faster

ICC(C, k) [95% CI] CV (%) ICC(C, k) [95% CI] CV (%)

Algorithm
Velocity (m/s) 0.98 [0.96–0.99] 3.66 0.98 [0.96–0.99] 2.73

Step Length-Right Foot (cm) 0.72 [0.39–0.88] 5.74 0.82 [0.62–0.93] 3.73

Step Length-Left Foot (cm) 0.94 [0.87–0.97] 2.72 0.87 [0.71–0.94] 3.92

Time per Step-Right Foot (s) 0.81 [0.59–0.92] 4.68 0.93 [0.85–0.97] 3.92

Time per Step-Left Foot (s) 0.94 [0.86–0.97] 4.10 0.95 [0.89–0.98] 4.23

Motion capture
Velocity (m/s) 0.98 [0.96–0.99] 3.49 0.98 [0.96–0.99] 2.71

Step Length-Right Foot (cm) 0.98 [0.96–0.99] 1.53 0.98 [0.96–0.99] 1.75

Step Length-Left Foot (cm) 0.96 [0.91–0.98] 2.52 0.95 [0.90–0.98] 2.22

Time per Step-Right Foot (s) 0.98 [0.97–0.99] 2.39 0.98 [0.94–0.99] 2.23

Time per Step-Left Foot (s) 0.99 [0.98–1.00] 1.72 0.99 [0.98–1.00] 1.37
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4. Discussion

The main finding of this study is the high degree of agreement
between the spatial and temporal gait parameters measured with
the optoelectronic motion capture system (Vicon1) and those
computed with the proposed algorithm [25] using large force
platforms from the Leonardo gangway1 system [28,29]. This was
true for both groups (children and adults) and for both walking
speed conditions (‘Preferred’ and ‘Faster’). While significant
differences between methods were found for selected gait
parameters, these differences, in average, did not exceed 2.4%.
The fact that these small differences were significant may reflect
the very low inter-system variability of the measures estimated by
each method or may reflect the presence type I error (false
positive), i.e., that a difference have been observed when, in fact,
there was no real difference.

Both systems showed excellent repeatability for temporal and
spatial parameters, as indicated by high ICCs (0.74–0.99) with
narrow confidence intervals and low coefficients of variation
(under 6%). These data were comparable to the ones reported for
other clinical gait analysis systems/methods [26,37]. The overall
parameter variability can result from the technical variability of
the measurement devices. For the motion capture system, the low
sampling rate (60 Hz) and the subjective visual detection of heel
strike/toe-off are the most likely candidate contributing to the
overall variability of the parameters. However, our validation/
reproducibility study showed errors ranging between 15 ms (toe-
off) and 21 ms (heel-strike) when visual detection was compared
to automatic force plate detection. The intra-rater error was
between 2 ms for heel-strike and 15 ms for toe-off detection. To
give an idea of the size of these error a 21 ms represent 4.2% of the
right and left time per step (0.50 s/500 ms), as reported in
Table 3. The ICCs also revealed excellent reproducibility for the
visual detection of heel strike and toe-off. These errors are very
similar to the 16 ms of error reported by Connor et al. who
developed an automatic detection algorithm based on foot
markers velocity [38], Therefore, it is suggested that for the
motion capture system, the overall parameter variability results
more from the gait variability than on the technical variability of
the measurement device [30].

With regard to the algorithm, Tables 4 and 5 show that the
repeatability of the spatiotemporal parameters was slightly lower
for the algorithm than for the motion capture method. The
algorithm itself is not expected to generate variability as it is
deterministic, i.e. the algorithm will always provide the same value
for a given GRF input. However, there are other sources of
variability that could have contributed to the slightly lower
repeatability of the algorithm’s data as compared to the motion
capture system. First, the variability of the spatiotemporal
parameters will mostly depend on the variability of the inputs
fed to the algorithm that in turn can be affected by the noise of the
force transducers included in the force platform. Second, when the
algorithm uses the data from two force platform, i.e. when a foot is
in contact with two force plates, the noise of the algorithm’s input
signal is expected to slightly increase. Finally, the noise associated
with the high sampling frequency of the force platform could be
another potential factor contributing to the slightly higher
variability observed for the algorithm’s data as compared to the
motion capture system.

There are an increasing number of gait analysis systems that
can measure spatiotemporal gait parameters such as pressure
mats [4], insole pressure systems [39], foot worn accelerometer
devices [26,37], webcam and silhouettes [27]. These approaches
have been validated through comparisons to an optoelectronic



Fig. 1. (A–F) Bland and Altman plots depict the differences (thick dotted line) between spatiotemporal gait parameters as computed by the algorithm method and the motion

capture method, with 95% limits of agreement (black lines). 95% confidence intervals of the limits of agreements are also depicted (small dotted lines). White filled squares

represents data of the ‘Adult’ group patients and black filled squares represents data of the ‘Children’ group. Spatiotemporal parameter: (A) Step Length-Left Foot (cm), (B)

Step Length-Right Foot (cm), (C) Time per Step-Left Foot (s), (D) Time per Step-Right Foot (s) and (E) Velocity (m/s).
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motion capture system (Vicon1) and using the Bland and Altman’s
limits of agreement statistical approach, as done in the present
study. In the current study, the limits of agreement did not exceed
8% of the averaged measurements, regardless of the gait
parameters, walking speed conditions or group that were
analyzed. On average, step length parameters had limits of
agreement around 6% of the average measurements whereas
velocity and step time parameters limits of agreement were lower
at around 4% of the average gait parameters measurements. This is
very similar to the limits of agreement reported for pressure mat
[4,40], insole pressure systems [39] as well as for a webcam-
silhouette approach [27] for which the limits of agreement
reported between the two systems ranged between 1.4 and 6%.
The agreement between portable/wearable gait analysis systems
and an optoelectronic motion capture system for spatiotemporal
gait parameters has also been assessed. However, for these systems
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the limits of agreement analyses were done on velocity and step/
stride length but not on temporal parameters [26,37] and were
generally higher than the limits reported in the current study.
Therefore, the validity of the force decomposition algorithm for the
assessment of spatiotemporal gait parameters is comparable to
pressure mats or insole pressure systems or better than less
conventional system such as foot-worn accelerometers.

The suggested algorithm has many potential applications that
demarks it from other existing and established methods. The
algorithm could be useful in current clinical gait laboratory
settings using motion capture systems and force plates. Given the
capacity of the algorithm to reconstruct forces from multiple force
sensors, it would be possible to use data from trials in which one
footfall felt on two distinct force plates laterally or consecutively.
These trials are typically rejected, contributing to increase the
usually large amount needed to perform this kind of gait analysis. It
could also favor the implementation of large force plates in new
gait/movement analysis laboratories leading to a decrease testing
time through a decreased number of trials needed to gather a
sufficient amount of valid trials.

Systems such as insole pressure mats allow measurement of
GRFs and temporal parameters but not spatial ones [41] whereas
others, such as pressure mats, allow temporal and spatial
parameters but not GRFs [4]. Accelerometer would possibly allow
the measurement of all three parameters i.e.: GRFs [42], temporal
and spatial parameters [43]. However, to the best of our knowledge
there is currently no algorithm allowing any systematic analysis of
spatiotemporal and GRF parameters using three dimensional
accelerometers. Therefore, it appears that the proposed force
decomposition algorithm is the first method to provide estimates
of temporal, spatial and force parameters in automatic mode [25].

5. Conclusion

The current data show that the force decomposition algorithm
[25] is valid for the estimation of spatiotemporal gait parameters in
healthy children and adults. Based on these results, it is now
justified to further evaluate the reliability of the system in different
patient populations.
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