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ABSTRACT 

This paper presents an application of full 
function point analysis to the estimation of the 
size of real-time control software.  The full 
function point counting technique is briefly 
described. Its usage is illustrated on a part of the 
Westinghouse Reactor Protection Control System 
and the results analyzed. We further describe a 
technique for the graphical representation of 
requirements that helps in the full function point 
assessment. Specifically, the technique is used for 
identifying the groups of data and processes as 
well as the application boundaries. 

I. INTRODUCTION 

There is a direct relationship between the 
success of a product and the quality of 
management control. Cost and effort estimation is 
an important aspect of the management of 
software development projects. Most methods for 
estimating efforts require an estimate of the size 
of the software. Moreover, size of software can be 
an indirect indicator of software reliability. A 
study on the reliability of PLC devices performed 
in the United Kingdom1 found a strong correlation 
between software failure rate and parameters 
related to the size and complexity of the software. 

Several software size measures exist. 
However the two most popular are: (1) Physical 
size: a count of source lines of code, (2) 
functional size: a measure based on the software 
functionality delivered to the users.  

Lines of code have been used widely 
throughout the software industry to estimate 
productivity and quality. However, many 
practitioners and researchers have argued that the 
line of code metric is essentially flawed. For 

instance, the higher the software language level, 
the less lines of code can be produced in a unit of 
time. Further caveats relate to the use of lines of 
code for early prediction, i.e. at the beginning of 
the software life cycle process. Since the number 
of lines of code is basically unknown the metric 
can not serve as size estimate.  

Function Point Analysis (FPA) is one of the 
best known and most widely used methods for 
measuring functional size. FPA analysis will 
typically be performed at the end of the 
requirement specification phase. FPA is now 
widely used in the Management Information 
System (MIS) domain. FPA was designed and 
refined for business applications software. 
However, FPA has not enjoyed the same degree 
of acceptance in the domain of real-time software. 
As noted by Abran2, difficulties arise when using 
FPA to measure non-business applications since 
FPA uses the amount of stored data as a 
significant factor in determining the functional 
size of the application. Where data stored is 
simple but the processing of stored values is 
complex, the functional size of the application is 
underestimated. “Several authors concur that 
when FPA is applied to real-time software, the 
results do not constitute an adequate size 
measurement2. Seven3, 4, 5, 6  attempts to adapt FPA 
to real-time software have been identified in the 
literature”.  Full Function Point (FFP), developed 
by Abran and his colleague’s,7, 8 seems to be one 
of the most promising and constitutes the basis of 
this paper.  

In general, function point counting is 
performed by a team of experts including an 
application expert, and an expert in function point 
counting. It should be noted that the 
understanding of the requirements is a crucial step 
in the counting process. Graphical representation 
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techniques can be a useful concept for the 
clarification/understanding/representation of 
requirements as well as for the identification of 
function count primitives such as inputs, outputs, 
boundaries, internal files, etc… 

This paper presents a method for the 
graphical representation of software and system 
requirements. The technique will ease the 
translation of function point concepts into an 
equivalent prepositional graphical expression of 
requirements.  

II. FPA OVERVIEW  

The first step in performing a FPA is to 
identify the counting boundary, that is, the border 
between the application being measured, and the 
external applications, or the user domain. The 
next step consists of determining the Unadjusted 
Function Point (UFP) count, which reflects the 
specific countable functionality provided to the 
user by the application. Calculation of the UFP 
begins with the identification of function types of 
the application.  

The final step consists in the assessment of a 
Value Adjustment Factor (VAF) which reflects 
the impact of general system characteristics on the 
function point count. These characteristics include 
distributed data processing, performance, heavily 
used configurations and other factors.  

III. FFP OVERVIEW  

Full Function Points (FFP) is an adaptation of 
FPA to the specific functional characteristics of 
real-time software. The Software Engineering 
Laboratory in Applied Metrics (SELAM) 
introduced the technique in 1997. More detailed 
information can be found in the Full Function 
Point Counting Practices Manual [7]. An 
overview of UFP counting by using this approach 
is summarized in Figure 1. After identify the 
counting boundary, FFP analysis includes the 
following steps:  

(1) Identify group of data. These groups are 
defined as follows. (a) Management data: same as 
FPA. (b) Control data : used by the application to 
control, directly or indirectly, the behavior of an 
application or of a mechanical device. For a 
control group of data, the following procedures 
and rules should be applied. Control is further 
divided into Updated Control Group data and 
Read Control Group data. These terms are defined 

as follows: (a) Updated Control Group: A UCG is 
a group of control data updated by the application 
being counted.  (b) Read-only Control Group: An 
RCG is a group of control data used, but not 
updated, by the application being counted. The 
point assignment differs whether single or 
multiple occurrences of data are concerned.    

(2) Identify process. (a) Management 
process: Same as FPA. (b) Control process: The 
FFP procedures and rules should be applied. We 
first distinguish between the concepts of External 
Control Entry, Internal Control Write, External 
Control Exit and Internal Control Read.  

The definitions follow: An External Control 
Entry: processes control data coming from outside 
the application’s boundary. It is the lowest level 
of decomposition process acting on one group 
data.  An Internal Control Write: is a unique sub-
process. The ICW writes control data, and is the 
lowest level of decomposition of process acting 
on one group of data.  External Control Exit: An 
ECX is a unique sub-process. It is identified from 
a functional perspective. The ECX process control 
data goes outside the application’s boundary, and 
is lowest level of decomposition of process acting 
on one group data.  Internal Control Read: An 
ICR is a unique sub-process. It is identified from a 
functional perspective. The ICR reads control 
data, and is the lowest level of decomposition of 
process acting on one group data. 

IV. REACTOR PROTECTION SYSTEM AND 
SOFTWARE REQUIREMENTS 

The goal of the reactor protection system is to 
initiate a reactor trip if the safe operating limits 
are exceeded and to initiate engineered safety 
features if an accident occurs. Sensors monitor the 
values of specific variables and compare them to 
their respective setpoints9.  The following are the 
variables required to be monitored in order to 
provide reactor trips: 

1. Neutron flux 
2. Reactor coolant temperature 
3. Reactor coolant system pressure 

(pressurizer pressure) 
4. Pressurizer water level  
5. Reactor coolant flow 
6. Reactor coolant pump operational status 

(bus voltage and frequency, and breaker 
position) 

7. Steam generator feed-water flow 
8. Steam generator water level 
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9. Turbine-generator operational status 
(auto-stop oil pressure and stop valve 
position) 

The Operational I&C system is the interface 
between man and process. To provide the 
information for the operator the actual parameters 
of the process have to be prepared by the I&C 
system.  

The Generic Westinghouse Reactor 
Protection System Software requirements consist 
of 101-requirement10. We illustrate this process on 
a small section of the Westinghouse reactor 
protection system. Our analysis focused on a 
subset of requirements that related to the 
pressurizer water level control process.  

V. NEED FOR A GRAPHICAL 
REPRESENTATION 

As can be seen from the descriptions in 
sections III and IV both counting rules and 
process to be counted are rather complex. The 
process complexity resides in the number of 
variables involved. The complexity of the 
counting rules resides in the language used, in its 
interpretation as well as in the bookkeeping that 
goes along the entire analysis. The claim made in 
this paper is that a graphical representation of the 
system under study will provide a means of 
communication between designers of systems and 
function point analysts. A further advantage of a 
well-behaved graphical representation is that it 
may be amenable to an automatic count of the 
application.  This then reduces the potential for 
error in the counting process.  

To construct a graphical function point 
representation (GFPR) of the system under study, 
we follow the sequence of steps described below.  

STEP 1. Identification of the application 
boundary. The system requirements of the 
application under count should be carefully 
reviewed to identify which part of the system 
shall be implemented by software, which part by 
hardware and which part is in the hands of 
operators. We are only interested in the software 
implementation and in the requirements that 
define this software implementation. Hardware 
and humans constitute interfaces that either feed 
data into the software or receive data from the 
software.  At the end this step whole software 
requirements have been identified and the 
interfaces with hardware and operators are known. 

STEP 2. Functional decomposition. In order 
to simplify the analysis, the functional purpose of 
the application is decomposed into functions. 
Each function will then be represented graphically 
and the graphics later recombined to yield the 
complete software functionality. The lowest level 
of decomposition is the elementary process 
meaningful to the end-user. At the end of this 
step, a list of software functions is available.  

STEP 3. Requirements collection for the 
functions(sub-processes). All requirements 
involved in a function are identified. Given the 
output generated by a function, all inputs to the 
function are traced back through other functions 
either to the boundary of the software application 
or till one can not go any further.  At the end of 
this step a list of all requirements involved in the 
computation of this function is available.  

STEP 4. External Input/Output and Boundary 
Representation. The external inputs of the 
requirements involved in the computation of the 
function of interest are identified and placed on 
the left side of the diagram presented in Figure 2, 
and the external outputs (if any) are placed on the 
top of the diagram. The dashed rectangle in the 
diagram represents  the boundary of the 
application under study.  

STEP 5. Explicit representation of 
relationships between requirements involved in 
the computation of the function. STEP 3 
identified requirements that were related. Two 
requirements A and B are related iff the input of B 
is an output of A. Figure 3 shows how the 
relationships are expressed graphically.  The 
diagram should be read from left to right and from 
bottom to top. Indeed, requirements on the left 
support (i.e. provide input data to) requirements 
on the right. Lines between requirements indicate 
the existence of a data flow or control information 
flow between the requirements. Dots in the 
diagram represent reading relationships between 
requirements where a dot between requirements A 
and B means that requirement A writes an output 
which B will read. The requirements mentioned in 
this step can either be a requirements per say or a 
group of functionally related requirements.  

STEP 6. Establishment of the GFPR.  We 
obtain the final graphical representation by 
refining Figure 3.  Each requirement or 
requirement group is decomposed to the level of 
elementary process. A process that creates an 
output that remains within the boundaries of the 
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application is represented by a single line 
rectangle box followed by a circle containing the 
number of DETs written. The default number of 
DETs is 1 and in this case the circle remains 
empty. Each elementary process that creates an 
external output is represented by a single lined 
rectangle. Read only data retrieved by an 
elementary process is represented by a single line 
rectangle that has no entry.  External inputs are 
placed in a single line rectangle box on the left 
side of the application boundary.  An arrow 
crossing the top of the application boundary 
signifies the presence of an external output. 
Double lined rectangle boxes correspond to 
multiple occurrences groups of data. They 
symbolize existence of a logical association 
between data. For example, a requirement such as 
“The system generates a log containing both the 
trip signal and the corresponding timestamp” links 
the trip signal to the timestamp logically. The 
word logically means that the majority of further 
decisions and/or computations in the application 
concern the group and not its individual elements. 
The group is considered as a single unit.  The 
graphical representation of this group of data is a 
double lined rectangle. 

STEP 7. Integration of all GFPRs. This step 
consists in integrating the GFPRs constructed for 
each function. This step will not be studied. We 
will assume here that the software application 
consists of a single function. 

STEP 8. Counting. Rules for the automatic 
counting of the application are given in the next 
section. 

VI. AUTOMATIC COUNT 

Once the GFPR is established, the full 
function point can be performed automatically. 
The following paragraph discusses the rules used 
to count the application based upon the GFPR. 

Identification and Count of UCGs.  Every 
elementary process generates data that belongs to 
an UCG. External output data is an exception to 
this rule. It does not belong to the UCG. An 
application can only have one Single Occurrence 
UCG. The number of DETs in this UCG is the 
total number of DETs in circles minus the total 
number of DETs that belong to multiple 
occurrence data groups. The number of double 
lined rectangles is the number of Multiple 
Occurrences UCGs. The number of DETs in each 
multiple occurrences UCG is the total number of 

DETs in the circles related to elementary 
processes that write into this UCG.   

Identification of RCG.  The same counting 
rules apply to the RCG. However, the data 
considered is read-only.  

Identification of ICWs and ICRs.  Each circle 
symbol increases the number of ICWs by one.  
Each dot increases the number of ICRs by one. 

Determination of DETs in the ICRs.  The 
number of branches placed just before a dot 
represents the number of DETs that dot (ICR) has.  

Identification of ECEs.  Each line crossing 
the leftmost boundary of the diagram corresponds 
to an ECE.  

Identification of ECXs.  Each line crossing 
the topmost boundary of the application is an 
ECX. 

VII. GWRPS GFPR AND FUNCTION POINT 
COUNT  

This section provides the results of the 
application of the procedure outlined in section VI 
to the GWRPS Pressurizer Water Level trip. 

The requirements involved in the 
computation of this trip function are as follows: 

Pressurizer Water Level Block  
Inputs  

• Press-Water-Level 
• B-Press-Water-Level 
• C-Press-Water-Level 
• High –Press Water-Level Set-Point 
• P-7 
• High-Press-Water-Level-Trip 

Requirement 35: The pressurizer water level 
signal (A- through C Press-Level) and pressurizer 
water level set point (High-Press-Level-Set-point) 
are given in percent total water level. All 
pressurizer water levels and set points are 
displayed as percents. The available space for 
displaying the water levels and set points is 3 
digits. 

Requirement 37: A circle indicator labeled “P-7” 
is gray when P-7 is FALSE and green when it is 
TRUE. 
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Ident i fy  Funct ion  Type

Identify
Process  Type

Identify
D a t a  T y p e

M a n a g e m e n t
Process

Cont ro l
Process

Cont ro l
Data

M a n a g e m e n t
Data

S ing le  Occur r enceM u l t i  O c c u r r e n c e

U p d a t e d
Cont ro l
Group

Read-only
C o n t r o l
Group

Exte rna l  Cont ro l
E n t r y - E C E

External  Contro l
Exi t -ECX

Interna l  Cont ro l
Read - ICR

Interna l  Cont ro l
Wr i t e - ICW

Figure  1  Overview of  Ful l  Funct ion  Poin t

Requirement 38: A rectangle indicator labeled 
“TRIP” is gray when is FALSE and green when it 
is TRUE. 

Requirement 79: Pressurizer High Water Level 
Trip 
Inputs:  

• A- Press-Level 
• B-Press-Level 
• C-Press-Level 
• High –Press Level Set-Point 
• P-7 

Output:   High-Press-Level-Trip 
Logic: The logic for the trip is the following 
(X=A, B, C). IF (2 out of 3 x Press-Level> High 
Press-Level Set-point) AND (P-7= FALSE) 
THEN 

High -Press- Level-Trip = FALSE; 
ELSE 

 High -Press- Level-Trip = TRUE; 
END. 

Requirement 87 (Permissive P-7): The actual 
logic for permissive P-7 involves at least one of 
the first stage turbine signals to be above a set 
point. In the GWRPS, it is assumed that both first 
stage turbine pressures are above the set point and 

omitted from the logic. Therefore, the logic for 
permissive P-7 is the inverse of P-10. 

P-7=NOT (P-10) 

 Requirements 86 (Permissive P-10):  
 Inputs:  

1. A-Power-Range Flux 
2. B-Power-Range Flux 
3. C-Power-Range Flux 
4. C-Power-Range Flux 

Output: P-10 
Logic: The following permissive logic for P-10 
(X=A, B, C, D)  

IF (2 out of 4X Power-Range-Flux 
>10% Nuclear Power) THEN  

P-10=TRUE 
ELSE 

P-10=FALSE; 
END. 

Requirement 100: The data generated by the 
GWRPS is placed into global variables. The data 
is then accessed by the monitor for display. 

 
Figure 4 gives the GFPR for this specific 

function. The corresponding full function point 
count is given in Table 1.  
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VIII CONCLUSIONS  

This paper presents a graphical function 
point representation and the corresponding 
counting procedure for estimating the size of real 
–time system software. The method is based on 
the full function point methodology and provides 

a means of communication between system 
designer and function point counting experts.  

The counting process can be easily automated 
once the graphical representation is available. 
Future research will be directed towards the 
automation of the entire process, i.e. from 
requirements to final count. 
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Figure 4. Application of GFPR on Pressurizer Water Level Process Software 

LB 

LC 

FA 
FB 
FC 
FD 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 

Figure 3. Classification of ECE, ECX, ICW, ICR 

Rq. 15 

Application 
Boundary 

OUTPUTS ECX 

IN
PU

TS
 

EC
E

 

Requirement 

I/O 

Rq. 8 Rq. 3 

Rq. 1 
Rq. 2 

Rq. 78 

Rq. 100 

Proce

EXTERNAL 
OUTPUTS  

EX
TE

R
N

A
L 

?

Figure 2: Identification of process 
boundary  



 7 

  
Data Function Types 

Type Description DET  Point 
Water Level A 
Water Level B 
Water Level C 
Flux Level A 
Flux Level B 
Flux Level C 
Flux Level D 
P7 
P10 

Single 
Occurrence 
UCG 

Trip Signal 

10 7 

Water Level Set Point Single 
Occurrence 
RCG Flux Level Set Point 

2 0.4 

Sub Total 7.4 
Transaction Function Types 

Type Description DET  Point 
Water Level A 1 1 
Water Level B 1 1 
Water Level C 1 1 
Flux Level A 1 1 
Flux Level B 1 1 
Flux Level C 1 1 

ECE 

Flux Level D 1 1 
Trip Signal 1 1 
Display Water Level (Rq. 35) 3 1 
Display P7 Indicator (Rq. 37) 1 1 

ECX 

Display Trip Indicator (Rq. 38) 1 1 
Rq 35 reads Water Level Set 
Point 

1 1 

Rq 35 reads Water Levels 3 1 
Rq 37 reads P7 1 1 
Rq 38 reads Trip  1 1 
Rq. 79 reads P7 1 1 

Rq. 79 reads Water Levels 3 1 
Rq. 79 reads Water Level Set 
Point 

1 1 

Rq. 86 reads Flux Set Point 1 1 
Rq. 86 reads Flux Levels 4 1 

ICR 

Rq. 87 reads P10 1 1 
System writes Water Level A 1 1 

System writes Water Level B 1 1 
System writes Water Level C 1 1 
System writes Flux Level A 1 1 
System writes Flux Level B 1 1 
System writes Flux Level C 1 1 
System writes Flux Level D 1 1 
Rq. 79 writes Trip  1 1 
Rq. 86 writes P10 1 1 

ICW 

Rq. 87 writes P7 1 1 
Sub Total 31 

Total 38.4 
Table 1 Full Function Point Count of GWRPS 
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