
International Topical Meeting on Probabilistic Safety Assessment –PSA’99, August 22-25,1999 Washington, DC.

1

FUNCTION POINT ANALYSIS: AN APPLICATION TO A NUCLEAR
REACTOR PROTECTION SYSTEM

 Nihal Kececi Ming Li Carol Smidts
 Reliability Engineering Reliability Engineering Reliability Engineering
 University of Maryland University of Maryland University of Maryland
 College Park, MD, 20742 College Park, MD, 20742 College Park, MD, 20742
 nkececi@eng.umd.edu mli@wam.umd.edu csmidts@eng.umd.edu

ABSTRACT

This paper presents an application of full
function point analysis to the estimation of the
size of real-time control software. The full
function point counting technique is briefly
described. Its usage is illustrated on a part of the
Westinghouse Reactor Protection Control System
and the results analyzed. We further describe a
technique for the graphical representation of
requirements that helps in the full function point
assessment. Specifically, the technique is used for
identifying the groups of data and processes as
well as the application boundaries.

I. INTRODUCTION

There is a direct relationship between the
success of a product and the quality of
management control. Cost and effort estimation is
an important aspect of the management of
software development projects. Most methods for
estimating efforts require an estimate of the size
of the software. Moreover, size of software can be
an indirect indicator of software reliability. A
study on the reliability of PLC devices performed
in the United Kingdom1 found a strong correlation
between software failure rate and parameters
related to the size and complexity of the software.

Several software size measures exist.
However the two most popular are: (1) Physical
size: a count of source lines of code, (2)
functional size: a measure based on the software
functionality delivered to the users.

Lines of code have been used widely
throughout the software industry to estimate
productivity and quality. However, many
practitioners and researchers have argued that the
line of code metric is essentially flawed. For

instance, the higher the software language level,
the less lines of code can be produced in a unit of
time. Further caveats relate to the use of lines of
code for early prediction, i.e. at the beginning of
the software life cycle process. Since the number
of lines of code is basically unknown the metric
can not serve as size estimate.

Function Point Analysis (FPA) is one of the
best known and most widely used methods for
measuring functional size. FPA analysis will
typically be performed at the end of the
requirement specification phase. FPA is now
widely used in the Management Information
System (MIS) domain. FPA was designed and
refined for business applications software.
However, FPA has not enjoyed the same degree
of acceptance in the domain of real-time software.
As noted by Abran2, difficulties arise when using
FPA to measure non-business applications since
FPA uses the amount of stored data as a
significant factor in determining the functional
size of the application. Where data stored is
simple but the processing of stored values is
complex, the functional size of the application is
underestimated. “Several authors concur that
when FPA is applied to real-time software, the
results do not constitute an adequate size
measurement2. Seven3, 4, 5, 6 attempts to adapt FPA
to real-time software have been identified in the
literature”. Full Function Point (FFP), developed
by Abran and his colleague’s,7, 8 seems to be one
of the most promising and constitutes the basis of
this paper.

In general, function point counting is
performed by a team of experts including an
application expert, and an expert in function point
counting. It should be noted that the
understanding of the requirements is a crucial step
in the counting process. Graphical representation

 2

techniques can be a useful concept for the
clarification/understanding/representation of
requirements as well as for the identification of
function count primitives such as inputs, outputs,
boundaries, internal files, etc…

This paper presents a method for the
graphical representation of software and system
requirements. The technique will ease the
translation of function point concepts into an
equivalent prepositional graphical expression of
requirements.

II. FPA OVERVIEW

The first step in performing a FPA is to
identify the counting boundary, that is, the border
between the application being measured, and the
external applications, or the user domain. The
next step consists of determining the Unadjusted
Function Point (UFP) count, which reflects the
specific countable functionality provided to the
user by the application. Calculation of the UFP
begins with the identification of function types of
the application.

The final step consists in the assessment of a
Value Adjustment Factor (VAF) which reflects
the impact of general system characteristics on the
function point count. These characteristics include
distributed data processing, performance, heavily
used configurations and other factors.

III. FFP OVERVIEW

Full Function Points (FFP) is an adaptation of
FPA to the specific functional characteristics of
real-time software. The Software Engineering
Laboratory in Applied Metrics (SELAM)
introduced the technique in 1997. More detailed
information can be found in the Full Function
Point Counting Practices Manual [7]. An
overview of UFP counting by using this approach
is summarized in Figure 1. After identify the
counting boundary, FFP analysis includes the
following steps:

(1) Identify group of data. These groups are
defined as follows. (a) Management data: same as
FPA. (b) Control data : used by the application to
control, directly or indirectly, the behavior of an
application or of a mechanical device. For a
control group of data, the following procedures
and rules should be applied. Control is further
divided into Updated Control Group data and
Read Control Group data. These terms are defined

as follows: (a) Updated Control Group: A UCG is
a group of control data updated by the application
being counted. (b) Read-only Control Group: An
RCG is a group of control data used, but not
updated, by the application being counted. The
point assignment differs whether single or
multiple occurrences of data are concerned.

(2) Identify process. (a) Management
process: Same as FPA. (b) Control process: The
FFP procedures and rules should be applied. We
first distinguish between the concepts of External
Control Entry, Internal Control Write, External
Control Exit and Internal Control Read.

The definitions follow: An External Control
Entry: processes control data coming from outside
the application’s boundary. It is the lowest level
of decomposition process acting on one group
data. An Internal Control Write: is a unique sub-
process. The ICW writes control data, and is the
lowest level of decomposition of process acting
on one group of data. External Control Exit: An
ECX is a unique sub-process. It is identified from
a functional perspective. The ECX process control
data goes outside the application’s boundary, and
is lowest level of decomposition of process acting
on one group data. Internal Control Read: An
ICR is a unique sub-process. It is identified from a
functional perspective. The ICR reads control
data, and is the lowest level of decomposition of
process acting on one group data.

IV. REACTOR PROTECTION SYSTEM AND
SOFTWARE REQUIREMENTS

The goal of the reactor protection system is to
initiate a reactor trip if the safe operating limits
are exceeded and to initiate engineered safety
features if an accident occurs. Sensors monitor the
values of specific variables and compare them to
their respective setpoints9. The following are the
variables required to be monitored in order to
provide reactor trips:

1. Neutron flux
2. Reactor coolant temperature
3. Reactor coolant system pressure

(pressurizer pressure)
4. Pressurizer water level
5. Reactor coolant flow
6. Reactor coolant pump operational status

(bus voltage and frequency, and breaker
position)

7. Steam generator feed-water flow
8. Steam generator water level

 3

9. Turbine-generator operational status
(auto-stop oil pressure and stop valve
position)

The Operational I&C system is the interface
between man and process. To provide the
information for the operator the actual parameters
of the process have to be prepared by the I&C
system.

The Generic Westinghouse Reactor
Protection System Software requirements consist
of 101-requirement10. We illustrate this process on
a small section of the Westinghouse reactor
protection system. Our analysis focused on a
subset of requirements that related to the
pressurizer water level control process.

V. NEED FOR A GRAPHICAL
REPRESENTATION

As can be seen from the descriptions in
sections III and IV both counting rules and
process to be counted are rather complex. The
process complexity resides in the number of
variables involved. The complexity of the
counting rules resides in the language used, in its
interpretation as well as in the bookkeeping that
goes along the entire analysis. The claim made in
this paper is that a graphical representation of the
system under study will provide a means of
communication between designers of systems and
function point analysts. A further advantage of a
well-behaved graphical representation is that it
may be amenable to an automatic count of the
application. This then reduces the potential for
error in the counting process.

To construct a graphical function point
representation (GFPR) of the system under study,
we follow the sequence of steps described below.

STEP 1. Identification of the application
boundary. The system requirements of the
application under count should be carefully
reviewed to identify which part of the system
shall be implemented by software, which part by
hardware and which part is in the hands of
operators. We are only interested in the software
implementation and in the requirements that
define this software implementation. Hardware
and humans constitute interfaces that either feed
data into the software or receive data from the
software. At the end this step whole software
requirements have been identified and the
interfaces with hardware and operators are known.

STEP 2. Functional decomposition. In order
to simplify the analysis, the functional purpose of
the application is decomposed into functions.
Each function will then be represented graphically
and the graphics later recombined to yield the
complete software functionality. The lowest level
of decomposition is the elementary process
meaningful to the end-user. At the end of this
step, a list of software functions is available.

STEP 3. Requirements collection for the
functions(sub-processes). All requirements
involved in a function are identified. Given the
output generated by a function, all inputs to the
function are traced back through other functions
either to the boundary of the software application
or till one can not go any further. At the end of
this step a list of all requirements involved in the
computation of this function is available.

STEP 4. External Input/Output and Boundary
Representation. The external inputs of the
requirements involved in the computation of the
function of interest are identified and placed on
the left side of the diagram presented in Figure 2,
and the external outputs (if any) are placed on the
top of the diagram. The dashed rectangle in the
diagram represents the boundary of the
application under study.

STEP 5. Explicit representation of
relationships between requirements involved in
the computation of the function. STEP 3
identified requirements that were related. Two
requirements A and B are related iff the input of B
is an output of A. Figure 3 shows how the
relationships are expressed graphically. The
diagram should be read from left to right and from
bottom to top. Indeed, requirements on the left
support (i.e. provide input data to) requirements
on the right. Lines between requirements indicate
the existence of a data flow or control information
flow between the requirements. Dots in the
diagram represent reading relationships between
requirements where a dot between requirements A
and B means that requirement A writes an output
which B will read. The requirements mentioned in
this step can either be a requirements per say or a
group of functionally related requirements.

STEP 6. Establishment of the GFPR. We
obtain the final graphical representation by
refining Figure 3. Each requirement or
requirement group is decomposed to the level of
elementary process. A process that creates an
output that remains within the boundaries of the

 4

application is represented by a single line
rectangle box followed by a circle containing the
number of DETs written. The default number of
DETs is 1 and in this case the circle remains
empty. Each elementary process that creates an
external output is represented by a single lined
rectangle. Read only data retrieved by an
elementary process is represented by a single line
rectangle that has no entry. External inputs are
placed in a single line rectangle box on the left
side of the application boundary. An arrow
crossing the top of the application boundary
signifies the presence of an external output.
Double lined rectangle boxes correspond to
multiple occurrences groups of data. They
symbolize existence of a logical association
between data. For example, a requirement such as
“The system generates a log containing both the
trip signal and the corresponding timestamp” links
the trip signal to the timestamp logically. The
word logically means that the majority of further
decisions and/or computations in the application
concern the group and not its individual elements.
The group is considered as a single unit. The
graphical representation of this group of data is a
double lined rectangle.

STEP 7. Integration of all GFPRs. This step
consists in integrating the GFPRs constructed for
each function. This step will not be studied. We
will assume here that the software application
consists of a single function.

STEP 8. Counting. Rules for the automatic
counting of the application are given in the next
section.

VI. AUTOMATIC COUNT

Once the GFPR is established, the full
function point can be performed automatically.
The following paragraph discusses the rules used
to count the application based upon the GFPR.

Identification and Count of UCGs. Every
elementary process generates data that belongs to
an UCG. External output data is an exception to
this rule. It does not belong to the UCG. An
application can only have one Single Occurrence
UCG. The number of DETs in this UCG is the
total number of DETs in circles minus the total
number of DETs that belong to multiple
occurrence data groups. The number of double
lined rectangles is the number of Multiple
Occurrences UCGs. The number of DETs in each
multiple occurrences UCG is the total number of

DETs in the circles related to elementary
processes that write into this UCG.

Identification of RCG. The same counting
rules apply to the RCG. However, the data
considered is read-only.

Identification of ICWs and ICRs. Each circle
symbol increases the number of ICWs by one.
Each dot increases the number of ICRs by one.

Determination of DETs in the ICRs. The
number of branches placed just before a dot
represents the number of DETs that dot (ICR) has.

Identification of ECEs. Each line crossing
the leftmost boundary of the diagram corresponds
to an ECE.

Identification of ECXs. Each line crossing
the topmost boundary of the application is an
ECX.

VII. GWRPS GFPR AND FUNCTION POINT
COUNT

This section provides the results of the
application of the procedure outlined in section VI
to the GWRPS Pressurizer Water Level trip.

The requirements involved in the
computation of this trip function are as follows:

Pressurizer Water Level Block
Inputs

• Press-Water-Level
• B-Press-Water-Level
• C-Press-Water-Level
• High –Press Water-Level Set-Point
• P-7
• High-Press-Water-Level-Trip

Requirement 35: The pressurizer water level
signal (A- through C Press-Level) and pressurizer
water level set point (High-Press-Level-Set-point)
are given in percent total water level. All
pressurizer water levels and set points are
displayed as percents. The available space for
displaying the water levels and set points is 3
digits.

Requirement 37: A circle indicator labeled “P-7”
is gray when P-7 is FALSE and green when it is
TRUE.

 5

Ident i fy Funct ion Type

Identify
Process Type

Identify
D a t a T y p e

M a n a g e m e n t
Process

Cont ro l
Process

Cont ro l
Data

M a n a g e m e n t
Data

S ing le Occur r enceM u l t i O c c u r r e n c e

U p d a t e d
Cont ro l
Group

Read-only
C o n t r o l
Group

Exte rna l Cont ro l
E n t r y - E C E

External Contro l
Exi t -ECX

Interna l Cont ro l
Read - ICR

Interna l Cont ro l
Wr i t e - ICW

Figure 1 Overview of Ful l Funct ion Poin t

Requirement 38: A rectangle indicator labeled
“TRIP” is gray when is FALSE and green when it
is TRUE.

Requirement 79: Pressurizer High Water Level
Trip
Inputs:

• A- Press-Level
• B-Press-Level
• C-Press-Level
• High –Press Level Set-Point
• P-7

Output: High-Press-Level-Trip
Logic: The logic for the trip is the following
(X=A, B, C). IF (2 out of 3 x Press-Level> High
Press-Level Set-point) AND (P-7= FALSE)
THEN

High -Press- Level-Trip = FALSE;
ELSE

 High -Press- Level-Trip = TRUE;
END.

Requirement 87 (Permissive P-7): The actual
logic for permissive P-7 involves at least one of
the first stage turbine signals to be above a set
point. In the GWRPS, it is assumed that both first
stage turbine pressures are above the set point and

omitted from the logic. Therefore, the logic for
permissive P-7 is the inverse of P-10.

P-7=NOT (P-10)

 Requirements 86 (Permissive P-10):
 Inputs:

1. A-Power-Range Flux
2. B-Power-Range Flux
3. C-Power-Range Flux
4. C-Power-Range Flux

Output: P-10
Logic: The following permissive logic for P-10
(X=A, B, C, D)

IF (2 out of 4X Power-Range-Flux
>10% Nuclear Power) THEN

P-10=TRUE
ELSE

P-10=FALSE;
END.

Requirement 100: The data generated by the
GWRPS is placed into global variables. The data
is then accessed by the monitor for display.

Figure 4 gives the GFPR for this specific

function. The corresponding full function point
count is given in Table 1.

 6

VIII CONCLUSIONS

This paper presents a graphical function
point representation and the corresponding
counting procedure for estimating the size of real
–time system software. The method is based on
the full function point methodology and provides

a means of communication between system
designer and function point counting experts.

The counting process can be easily automated
once the graphical representation is available.
Future research will be directed towards the
automation of the entire process, i.e. from
requirements to final count.

LA
Req.79 Trip

Req.87

Req.37

SP1

Req.100:

Req.100:

Req.100:

Req.86

SP2
Req.100:

Req.100:

Req.100:

Req.100:

EXTERNAL CONTROL EXIT

E
X

T
E

R
N

A
L

 IN
PU

T

Req.38 Req.35 Req.79

Figure 4. Application of GFPR on Pressurizer Water Level Process Software

LB

LC

FA
FB
FC
FD

1

1

1
1

1

1

1

1

1

1

Figure 3. Classification of ECE, ECX, ICW, ICR

Rq. 15

Application
Boundary

OUTPUTS ECX

IN
PU

TS

EC
E

Requirement

I/O

Rq. 8 Rq. 3

Rq. 1
Rq. 2

Rq. 78

Rq. 100

Proce

EXTERNAL
OUTPUTS

EX
TE

R
N

A
L

?

Figure 2: Identification of process
boundary

 7

Data Function Types

Type Description DET Point
Water Level A
Water Level B
Water Level C
Flux Level A
Flux Level B
Flux Level C
Flux Level D
P7
P10

Single
Occurrence
UCG

Trip Signal

10 7

Water Level Set Point Single
Occurrence
RCG Flux Level Set Point

2 0.4

Sub Total 7.4
Transaction Function Types

Type Description DET Point
Water Level A 1 1
Water Level B 1 1
Water Level C 1 1
Flux Level A 1 1
Flux Level B 1 1
Flux Level C 1 1

ECE

Flux Level D 1 1
Trip Signal 1 1
Display Water Level (Rq. 35) 3 1
Display P7 Indicator (Rq. 37) 1 1

ECX

Display Trip Indicator (Rq. 38) 1 1
Rq 35 reads Water Level Set
Point

1 1

Rq 35 reads Water Levels 3 1
Rq 37 reads P7 1 1
Rq 38 reads Trip 1 1
Rq. 79 reads P7 1 1

Rq. 79 reads Water Levels 3 1
Rq. 79 reads Water Level Set
Point

1 1

Rq. 86 reads Flux Set Point 1 1
Rq. 86 reads Flux Levels 4 1

ICR

Rq. 87 reads P10 1 1
System writes Water Level A 1 1

System writes Water Level B 1 1
System writes Water Level C 1 1
System writes Flux Level A 1 1
System writes Flux Level B 1 1
System writes Flux Level C 1 1
System writes Flux Level D 1 1
Rq. 79 writes Trip 1 1
Rq. 86 writes P10 1 1

ICW

Rq. 87 writes P7 1 1
Sub Total 31

Total 38.4
Table 1 Full Function Point Count of GWRPS

ACKNOWLEDGEMENT

The authors wish to acknowledge Drs. Serge
Oligny and Alain Abran for their careful review
of the authors’ application of the full function
point counting rules and for their clarifications of
the rules. We also wish to acknowledge Dr. Yu

Shu Hu for his critical review of earlier versions
of the graphical function point representation.

REFERENCES

1. R.M. Consultants Ltd., An Investigation into
PLC Software Reliability, A report prepared
for the Health and Safety Executive,
London, UK., November 1995.

2. Abran, A., Maya, M., St-Pierre D., and
Desharnais, J-M, Adapting Function Points
to Real Time Software, Universite du
Quebec a Montreal, November 1997.

3. Galea, S., The Boeing Company: 3D
Function Point Extensions, V2.0, Release
1.0, Seattle, WA: Boeing Information and
Support Services, Research and Technology
Software Engineering, June 1995.

4. Jones, C., Applied Software Measurement-
Assuring Productivity and Quality,
McGraw-Hill, New York, 1991, pp. 493

5. Reifer, D.J., Asset-R: A Function Point
Sizing Tool for Scientific and Real-Time
Systems. Journal of Systems and Software,
Vol.11, No.3, March 1990, pp. 159-171

6. Whitmire, S.A., 3-D Function Points:
Scientific and Real Time Extensions to
Function Points, Proceeding of the 1992
Pacific Northwest Software Quality
Conference, Portland, OR, 1992

7. Desharnais, J-M., St-Pierre D., Maya, M.,
Abran, A. Full Function Points: Counting
Practices Manual Procedure and Counting
Rules. Universite du Quebec a Montreal,
November 1997.

8. Serge Oligny, Alain Abran, Jean-Marc
Desharnais, Pam Morris. Functional Size Of
Real Time Software: Overview of Field
Test. UQAM Software Engineering
Management Research Lab.1998

9. Westinghouse Technology System Manuel
United States Nuclear Regulatory
Commission Technical Training
Center.Rev.0690 vol.2, pp12.

10. Generic Westinghouse Reactor Protection
Control System Software Requirements.

