
SOFTWARE DEVELOPMENT LIFE CYCLE
MODEL TO ENSURE SOFTWARE QUALITY

Nihal Kececi, and Mohammad Modarres

Center for Technology Risk Studies
Department of Materials and Nuclear Engineering

University of Maryland, College Park, MD 20742, USA

ABSTRACT

In this paper, the Goal Tree Success Tree and Master Logic Diagram (GTST-MLD) is
proposed to model software development life cycle to ensure software quality based
on meeting the criteria for high integrity safety systems. The GTST-MLD- based
software development life cycle framework allows one to (1) show how a local
change affects other phases of development; (2) GTST-MLD hierarchically represent
software development life cycle so as to identify missing and incomplete
requirements; (3) it is easy to automate on computers, to expand and update.

1.0 Introduction

Safety-critical systems are becoming increasingly important to developers,
customers and regulatory agencies. Many problems and difficulties exist in assuring
safety in safety-critical computing which comes to light sometimes in the software
itself and sometimes in the software development process. Many factors seem to
influence the performance of software, such as, software process model, quality
measurement techniques and tools, and management control methodologies. It is
indeed widely accepted that the assessment of software can not be limited to
verification and testing of the end product, i.e. the computer code. Other factors like
the quality of the processes and management control methods also have an important
impact on software performance. Several software implementations of nuclear safety
systems have failed due to costly delays caused by difficulties in coordination the
development and qualification process. For example, The P20 Project of Chooz B
nuclear power plant [1], the shutdown system of Darlington Nuclear Power Plant [2],
and the primary protection system (PPS) of Sizewell B Nuclear Power Plant [3]. The
predominant belief today is that quality must be build into product in the process of
development. Furthermore, the quality factors, such as safety, reliability, security i.e.
that their prediction and estimation models are strongly affected to software
development life cycle models.

This paper proposes a new method for software development life-cycle process.
The architecture of this model is derived from the Goal Tree Success Tree and Master
Logic Diagram (GTST-MLD) [4]. The elements of the architecture model are taken from
IEEE Standards, which are related each life cycle phase for safety critical systems [5-
16]. The proposed model is flexible for application in different software development
environments and can be used in non-safety applications too. Also, In the architecture
model, changing of functional and non-functional requirements is straightforward.
Individual elements in the process can be updated to reflect technology advances
without affecting the model itself.

2.0 Problems in the Software Quality

Software quality system is the integrated application of these three disciplines:
modeling of development process (process), modeling of measurement of product
(product), and modeling of management and human interactions (people).
Understanding a discipline involves building models, testing these model and lesson
to learn from real applications. High quality software developer has to deal with
elements of following matrix.

 Model [M] [M*PROCESS] [M*PRODUCT]
[M*HUMAN]
 Testing [T] Process Product Human = [T*PROCESS] [T*PRODUCT]
[T*HUMAN]
 Data [D] [D*PROCESS] [D*PRODUCT] [D*HUMAN]

Main elements of software quality system are shown in Figure 1. Integration of all
quality system elements requires a model. The problems to be remedied by such model
are (1)-handling complexity in disciplines of quality system and theirs elements, (2)
addressing some weakness of existing process models.

Complexity of development process and it’s documentation, and alteration of the
documentation during maintenance are important problems for improvement of quality.
The documentation to be evaluated is often complex and voluminous. Because of
complex relationships between technical data products, planning documentation, test
requirement, and different phases of development life cycle elements, this
documentation is difficult to evaluate to assure that all activities have been adequately
addressed. Documentation provides communication between all groups concerned
with development on the one hand, and the control of project process on the other.
Schweiggert [17] notes several reasons for documentation crisis: ‘Software in the
application process must be constantly adapted and altered. The maintenance
programmer usually does not have the time alteration to documentation. Often
suitable tools are not available either. This causes the quality of documentation to
suffer”. Traditional methods for verification of quality, such as checklist can fail in
most complex software development processes. Audits and review can not be
performed without using aids and tool, which assist in identifying compliance with
standards and procedure. Moreover, complexity of development process and
uncontrolled changing of process elements are negatively impact quality.

 Different software development life cycles have been proposed. These have
different motivations, strengths, and weakness. There is no universal life cycle model,
which is considered adequate in the development environment. In traditional life cycle
models, relationships between different phases of software development life cycle
elements are not adequately represented and traced. It is therefore, difficult to describe
the effect of any change in specified requirement on the quality, safety and objectives
of software. Moreover, existing computer aids for application of process models are
inflexible and difficult to handle with complexity.

In software development life cycle, identification of relationships between
organization groups are important for several reasons: (1) The development process
must deal with complexity and changes with requirements, test methods, technology,
size etc. (2) Software faults are generated either within a phase of software

development process or at the interface between two phases. (3) Strong support from
top management is a primary factor affecting the development process.

Process:
Completeness
Consistency
Correctness

Style
Tractability

Unambiguity
Verifiability

Product:

HIGH INTEGRITY SOFTWARE QUALITY SYSTEM

Standards. Procedures
and Tools

1.
2.

3.
4.

Probabilistic Analysis
Metric Measurement
• Linguistic Metrics
• Structural Metrics
• Hybrid Metrics
Testing -Based Analysis
Logic-Based Analysis

 Software Management
Control

Accuracy
Functionality

Reliability
Robustness

Safety
Security
Timing

Quality Factors
Quality Control

[Measurements Model]

Measurement &
Analysis Techniques

-proofs of correctness(mathematical

Independent Verification &
Validation and Test

Static tests:
- audits

-reviews (inspection walkthroughs)
-static analysis with software tool

program verification)
Dynamic tests:

A program is tested with a selection
of input values.

The Waterfall Model
Incremental models

Iterative models
The ‘V’ model

Sequential
Models

Cyclic
Models

The Spiral
Model

The Evolutionary
Development

Model

Quality Assurance
[Process Model]

Software Development
Life Cycle Models

Figure 1. Elements of High Integrity Software Quality System

3.0 GTST-MLD Based Life Cycle Model Methodology

GTST-MLD framework is based on functional modeling approach to complex systems.
It can easily describes and analyze interactions between system elements [4]. The
concept of the GTST-MLD-based software development life cycle model follows a
hierarchical decomposition of software development life cycle activities. The main
step to implement a GTST-MLD-based structural hierarchy is to decompose a function
into sub-elements. The decomposition process is repeated until some lowest level of
elementary activities is reached. Such, one can describe the software development life
cycle process at several layers. In multiple layer hierarchy, the output of first lower
level can be directly linked to the inputs to other layer sub-elements. The abstraction
of each hierarchy layer and its decomposition and relationships between different
layers have been shown in Figure 2. Since the GTST-MLD has shown to be a powerful
decomposition and analysis methodology, it is proposed that the GTST-MLD can
unify representation and modeling for different phases of a traditional waterfall life
cycle.

3.1 An Example: Application of the GTST-MLD Based Life Cycle
Model on Nuclear Reactor Protection Systems

Software development life cycles involve complex processes using a hierarchy of
activities and their documentation. Guidance on Software Review for Digital Computer-

Based Instrumentation and Control System (BTP-14) is written by US Nuclear
Regulatory Commission [19]. BTP-14 was developed from IEEE Standards for different
activities for the software life cycle and important design factors for safety critical
software. Figure 3 was derived from the information in NUREG/CR-6101 [18] and BTP-
14 [19]. Planning a software development project can be a complex process involving a
hierarchic set of many activities. The result of the planning activity will be a set of
documents that will be used to oversees the development of the project.

Planning

Requirement

 Design

Implementation

Integration

Validation

Installation

Maintenance

Figure 2. Abstract Presentation of GTST-MLD Based Software Development Model

In a GTST-MLD, a consistent success tree and a support lattice represent how

various system activities interact with each other. The steps of implementation of a
modeling are started by decomposing software project management activities and
responsibilities until last hierarchical levels of development process that are operation
and maintenance activities is reached. The decomposition process is repeated for each
activity groups based on the relevant IEEE Standards [5-16].

The relationships between different levels of life cycle process planning have been
shown in Figure 4. The connectivity relationships between nodes of two different
hierarchies are classified into three categories: (1) Overlap of responsibility; there can
be considerable overlap between the activity groups. For example, code control may
reference the software configuration management plan and describe the methods by
which the SQA organization will ensure that this plan follows Lawrence [18]. (2)
Support functions from bottom to top; different level activity groups should
continuously communicate each other. For example: The Risk Management is a sub-
activity of project management procedure [5], sub-activity of software quality
assurance (SQA) planning [7] and sub-activity of software integration marginal
conditions procedure [9]. (3) Overlap of documentation sharing or reviewing to same
documentation by different activity groups of development life cycle is often in
process. For example: Safety-specific technical software documents are addressed in
the “Software Development Plan” [6]. Also same documentation set are addressed in
the “Software Technical Procedures”[5].

Management Plan
Development Plan

Quality Assurance Plan
Integration Plan
Installation Plan

Maintenance Plan
Training Plan

Operation Plan
Safety Plan
V&V Plan

Configuration Management
Plan (CM Plan)

Planning Activities

Requirement Activities
Design Activities

Implementation Activities

Installation Activities

Integration Activities

Validation Activities

Operation and Maintenance
Activities Requirement Specification.

Requirement Safety Analysis
V&V Req. Analysis Report
CM Requirement Report

Design Specification.
Hardware&Software

Architecture.

Design Safety Analy.
V&V Design Analy.
CM Design Report.

Code Listing.
Code Safety Analysis
V&V Implementation

Analysis
CM Implementation Report

Installation Configuration Table.
Operational Manual.

Maintenance Manual.
Training Manual.

Installation Safety Analysis.
V&V Installation Analysis and Test.

CM Installation Report.

Validation Safety
Analysis.

V&V Validation

 and Test Report.

 CM Validation
Analysis System Build Documentation.

V&V Integration Analysis
and Test Report.

CM Implementation Analysis.

Change Safety Analysis.
V&V Change Report.
CM Change Report

Figure 3. Software Development Life Cycle for Nuclear Protection System

The process implementation phase of development: requirement, design, code
implementation, integration validation, installation, and operation and maintenance
activities have complex relationships with each other’s and with the planning phase.
For example, in the interface between requirement and design phases, some design
elements may implement more than one requirement, while other requirements may
need several design elements for a successful implementation.

C AB

Software Project Management

Software Quality Plan

Software Integration Plan

Software Installation
PlanSoftware Maintenance

PlanSoftware Training Plan

Software Operation Plan

Software Safety Plan
Software V&V Plan

Software Configuration
Plan

Software Development
Plan

SOFTWARE LIFE CYCLE

PROCESS PLANNING

INTERFACE BETWEEN
PLANNINIG AND

IMPLEMENTATION PHASESES
F E DGL J I H

Figure 4. Relationships between Different Phases of Software Planning Activities

An analysis interaction between implementation phase elements is extremely

important for safety, because, software requirement safety analysis is concerned with
criticality analysis, system analysis, specification analysis and timing and sizing
analysis [18]. Also, all safety-related analyses should be performed in the design and
the implementation phases. Safety-related functions of systems will be easily defined
after the decomposition of the functional requirements. Furthermore, model Figure 4.

Architecture will be helpful to follow up each safety-related function in the
requirements, design and implementation phases.

Analysis of interactions between planning phase and implementation are imp ortant
for three reasons: (1) project management will ensure that this plan is followed, (2)
control of all kind changing (requirement, test case, documentation etc.) in
implementation will be easy, (3) it will help the safety analyst to follow up the safety
critical functions.

Implementation
Activities

Code Listing
Code Safety Analysis

V&V Implementation

CM Implementation Report

Requirement
 Activities

Integration
Activities

System Build Documentation

Integration Safety Analysis

V&V Integration Analy.and Test
CM Integration Analysis

Validation
Activities

Installation
Activities

Installation Safety Analy.
V&V Instsll. Analysis

CM Installation Report

Installation Configuration

Operation Manuals

Maintenance Manuals
Training Manuals

Requirement Specification.
Req. Safety Analysis

V&V Requirement Analysis

CM Requirement Analysis

Hardware,Software Arch .Design
Activities

Design Specification

Design Safety Analysis.
V&V Design Analysis

RepCM Design Report

Validation Safety Analysis.
V&V Validation. &Test

CM Validation Analysis

Operation and
Maintenance

Change Safety Analy. Report

V&V Change Report
CM Change Report

Planning
Activities

D C

J
I

L
H

FG
E

SOFTWARE LIFE CYCLE
PROCESS OUTPUT

B A

Figure 5. Relationships between Different Phase of Software Implementation

4.0 Conclusion

This paper has discussed the GTST-MLD as a new software development process
model. This model has the following advantages: (1) it can easily identify missing and
incomplete functional requirement. (2) Because of the tree and lattice structure, a
GTST-MLD can be easily expanded to accommodate change. Therefore adding new
requirement or creating new code module and changing testing plan would be an easy
process. (3) The hierarchic decomposition technique can be used to decompose the
complex software development process into independent modules by clear defined
interfaces. It can help to determine fault generation at the interface between two
phases. (4) Examination of the relationships between different phases of the software
development life cycle, based on the information review will help predicting and
tracing of quality factors such as: tractability, unambiguity, consistency and
completeness. (5) In a GTST-MLD hierarchy, the relationship between different phases
can represent including the critical functions such as; safety related, and risk related

can be identified. (6) Impact of a change on critical elements can be examined. In
addition, this model can be used to assist software project management, assist
software configuration management, and assist in streamlining development criteria
based on relative safety critical. The model can be computerized so as to effectively
follow and trace the quality issues of interest

References:
1. Appell B. Putting in a Replacement for Controbloc P20 AT Chooz B. Nuclear

Eng.Int.1992; 37:45-58.
2. Craigen, D., Gerhart, S., and Ralston T. Case Study: Darlington Nuclear Generating

Station. IEEE Software 1994; 11: 30-32.
3. Hughes, G., Boettcher D.B. Developments in Digital Instrumentation for Nuclear

Electric’s (UK) Power Plant. Nuclear Energy 1993; 32: 41-52.
4. Modarres, M. Functional Modeling of Complex Systems Using a GTST-MPLD

Framework. Proceeding of the 1st International Workshop of Functional Modeling of
Complex Technical Systems, Ispra, Italy 1993

5. IEEE 1058.1 IEEE Standard for Software Project Management Plan. 1987
6. IEEE 1074 IEEE Standard for Developing Software Life Cycle Process 1995.
7. IEEE 730.1 IEEE Standard for Quality Assurance Plans. 1989
8. IEEE 730.2 IEEE Guide to Software Quality Assurance Planning. 1993
9. IEC 880. Software for Computers in the Safety Systems of Nuclear Power Stations 1986.
10. IEEE 121.9 IEEE Standard for Software Maintenance 1992.
11. IEEE 1228. IEEE Standard for Software Safety Plans 1994.
12. IEEE 1012. IEEE Standard for Software Verification and Validation Plan 1986.
13. IEEE 828. IEEE Standard for Software Configuration Management Plans. 1983.
14. IEEE 1042. IEEE Guide to Software Configuration Management. 1987.
15. IEEE 830. IEEE Guide to Software Requirements Specification. 1984.
16. IEEE 1016. IEEE Recommended Practice for Software Design Descriptions. 1986.
17. Schweiggert, F., Schoitsch, E. Qualitatssicherung in der Software, OCG-

Computerakademie, Seminarunterlagen. 1985.
18. Lawrence J. D. Software Reliability and Safety in Nuclear Reactor Protection Systems.

NUREG/CR-6101 UCRL-ID-114839 , Lawrence Livermore National Laboratory. 1993.
19. NUREG-0800: HICB-BTP-14, Guidance on Software Reviews for Digital Computer-

Based Instrumentation and Control Systems (Draft). 1998.

